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PERIODIC SOLUTIONS OF CONVOLUTION TYPE

EQUATIONS WITH MONOTONE NONLINEARITY
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Abstract. By the method of monotone operators we establish theorems on global
existence and uniqueness, as well as estimats and methods of finding the solutions for
various classes of nonlinear convolution type integral equations in the real space of 2𝜋-
periodic functions 𝐿𝑝(−𝜋, 𝜋).
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1. Introduction

Many problems of modern mathematics, physics, mechanics and biology give rise to non-
linear convolution type integral equations. For instance, the general class of servomechanisms
(tracking systems) is described by nonlinear integral equation of the form [1]

𝑢(𝑥) +

∞∫︁
−∞

ℎ(𝑥− 𝑡) · 𝐹 [𝑡, 𝑢(𝑡)] 𝑑𝑡 = 𝑓(𝑥) , (1)

where 𝑓(𝑥) is the input signal and ℎ(𝑥) is the system response impulse. Equation (1) arises also
in the theory of electric nets (signal transmission via a general electric net) involving nonlinear
elements (nonlinear resistor) [2]. As 𝑓(𝑥) = 0, equation (1) describes deterministic models of
spatial epidemic distribution or of the distribution of auspicious gene in a population along
the line with various nonlinearities in epidemic or genetic models, and it is also employed as
a mathematical model for some infectious diseases or as a growing equation for some types of
population.

Convolution type integral equations with a power nonlinearity arise in the theory of a liquid
infiltration from a cylindrical reservoir into an isotropic porous media [5], [6], for describing the
propagation of shock wave in tubes filled by a gas [7], as well as for describing the dynamics of
an open 𝑝-adic string for a scalar tachyon field [8]–[10].

The information on other applications of nonlinear convolution type integral equations can
be found in monograph [11].

In the present work, employing a new approach, by the method of monotone operators
[12]–[14] we establish global estimates on existence, uniqueness and estimates for solutions to
various classes of convolution type nonlinear equations in real spaces of 2𝜋-periodic functions
𝐿𝑝(−𝜋, 𝜋) for all values 𝑝 ∈ (1,∞) (see [16]). Similar results for spaces 𝐿𝑝(−∞,∞) were
proved before in [11] subject to the considered class of equations or only for 𝑝 ∈ (1, 2], or only
for 𝑝 ∈ [2,∞) (the matter is that in accordance with Young inequality [11], the convolution
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operator acts from space 𝐿𝑝(−∞,∞) into the dual space 𝐿𝑝′(−∞,∞), 𝑝′ = 𝑝/(𝑝 − 1), only
as 𝑝 ∈ (1, 2]). In the considered here case of space 𝐿𝑝(−𝜋, 𝜋), by using Young inequality
for 𝑝 ∈ (1, 2] and the embedding 𝐿𝑝(−𝜋, 𝜋) ⊂ 𝐿2(−𝜋, 𝜋) ⊂ 𝐿𝑝′(−𝜋, 𝜋) as 𝑝 ∈ [2,∞), we
show that the convolution operator acts continuously from space 𝐿𝑝(−𝜋, 𝜋) into the dual space
𝐿𝑝′(−𝜋, 𝜋) for all values of 𝑝 ∈ (1,∞) and it is positive. It allows us to the prove the existence
and uniqueness theorems with no additional restrictions for 𝑝. Moreover, in the case of general
monotonous (non-power) nonlinearities of general, by combining Banach-Caccioppoli principle
and Browder-Minty principle, we show that the solutions of these equations in space 𝐿2(−𝜋, 𝜋)
can be found by the method of successive approximations of Picard type (cf. [17]), while in
the case of power nonlinearities 𝑢𝑝−1, by employing the potential monoton operators theory, we
prove that the solutions can be found by the method of steepest descent (gradient descent) in
spaces 𝐿𝑝(−𝜋, 𝜋) for each even 𝑝 > 2 (cf. [18]).

For the sake of convenience of citations, we provide basic definitions and auxiliary statements
used in the present work following the terminology and notations adopted in monograph [14].

Let 𝑋 be a real Banach space and 𝑋* be its dual space. We denote by ⟨𝑦, 𝑥⟩ the value of a
linear continuous functional 𝑦 ∈ 𝑋* on an element 𝑥 ∈ 𝑋, while by ‖ · ‖ and ‖ · ‖* we denote
the norms in 𝑋 and 𝑋*, respectively.

Definition 1. Let 𝑢, 𝑣 ∈ 𝑋 be arbitrary elements. Operator 𝐴 : 𝑋 → 𝑋* (acting from 𝑋
into 𝑋*) is called:

monotonous if ⟨𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣⟩ > 0;
strictly monotonous if ⟨𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣⟩ > 0 as 𝑢 ̸= 𝑣;
strongly monotonous if ⟨𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣⟩ > 𝑚 · ‖𝑢− 𝑣‖2, 𝑚 > 0;
uniformly monotonous if ⟨𝐴𝑢−𝐴𝑣, 𝑢− 𝑣⟩ > 𝛽(‖𝑢− 𝑣‖), where 𝛽 is an increasing on [0,∞)

function such that 𝛽(0) = 0;
coercive if ⟨𝐴𝑢, 𝑢⟩ > 𝛾(‖𝑢‖) · ‖𝑢‖, where 𝛾(𝑠) is a real function of a non-negative argument

such that 𝛾(𝑠) → ∞ as 𝑠→ ∞;
Lipschitz continuous if ‖𝐴𝑢− 𝐴𝑣‖* 6𝑀 · ‖𝑢− 𝑣‖, 𝑀 > 0;
bounded Lipschitz continuous if ‖𝐴𝑢 − 𝐴𝑣‖* 6 𝜇(𝑟) · ‖𝑢 − 𝑣‖, where 𝜇 is an increasing on

[0,∞) function, and 𝑟 = max(‖𝑢‖, ‖𝑣‖);
semi-continuous if function 𝑠→ ⟨𝐴(𝑢+𝑠·𝑣), 𝑤⟩ is continuous on [0, 1] for each fixed 𝑢, 𝑣, 𝑤 ∈

𝑋.

The main theorem in the monotone operators theory (see, for instance, [14]) is the Browder-
Minty theorem. It is still true if instead of coercitivity condition we assume that operator

𝐴 : 𝑋 → 𝑋* satisfies the condition: lim
‖𝑢‖→∞

⟨𝐴𝑢,𝑢⟩
‖𝑢‖ = ∞.

If 𝐴 is a linear operator, then the definitions of monotonous, strictly monotonous and strongly
monotone operator coincide respectively with the definition of positive, strictly positive and
strongly positive (positive definite) operator [14].

Let 𝑓 : 𝑋 → R, where R = (−∞,∞), be an arbitrary (not necessarily linear) functional.

Definition 2. Functional 𝑓 : 𝑋 → R is called Gâteaux differential if there exists an operator

𝐴 : 𝑋 → 𝑋* such that for all 𝑢, 𝑣 ∈ 𝑋 the identity lim
𝑡→0

𝑓(𝑢+𝑡·𝑣)−𝑓(𝑢)
𝑡

= ⟨𝐴𝑢, 𝑣⟩ holds true. At

that, operator 𝐴 is called the gradient of functional 𝑓 and it is denoted by 𝐴 = 𝑔𝑟𝑎𝑑 𝑓 .

Definition 3. Operator 𝐴 : 𝑋 → 𝑋* is called potential if there exists a functional 𝑓 : 𝑋 → R

such that operator 𝐴 is its gradient. At that, functional 𝑓 is called the potential of operator 𝐴.

Example 1. [14]. Let 𝑋 be a real reflexive Banach space and 𝐴 : 𝑋 → 𝑋* be a linear
bounded symmetric operator, i.e., ⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢,𝐴𝑣⟩, ∀𝑢, 𝑣 ∈ 𝑋. Then 𝐴 is a potential operator
and its potential is 𝑓(𝑢) = 1

2
⟨𝐴𝑢, 𝑢⟩.
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2. Positivity and potentiality of convolution operator

In Lebesgue space 𝐿𝑝(−𝜋, 𝜋), 1 < 𝑝 < ∞, formed by real 2𝜋-periodic functions, integral
convolution operator is

(𝐻𝑢)(𝑥) =

𝜋∫︁
−𝜋

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡,

where kernel ℎ(𝑥) ∈ 𝐿1(−𝜋, 𝜋) is a 2𝜋-periodic function continued to the segment [−2𝜋, 2𝜋].
To find out the conditions for kernel ℎ(𝑥) ensuring that convolution operator 𝐻 is positive

in space 𝐿𝑝(−𝜋, 𝜋), we introduce discrete Fourier transform (image) of a sequence of complex
numbers 𝑎 = {𝑎𝑘}∞𝑘=−∞:

𝑎(𝑥) =
∞∑︁

𝑘=−∞

𝑎𝑘 · 𝑒𝑖 𝑘 𝑥, where 𝑎𝑘 =
1

2𝜋

𝜋∫︁
−𝜋

𝑎(𝑥) 𝑒−𝑖 𝑘 𝑥𝑑𝑥 .

We shall make use of the following two identities:
the formula for convolution of images [21]:

𝜋∫︁
−𝜋

𝑎(𝑥− 𝑡) 𝑏(𝑡) 𝑑𝑡 = 2𝜋
∞∑︁

𝑘=−∞

𝑎𝑘 𝑏𝑘 𝑒
𝑖 𝑘 𝑥,

generalized Parseval identity [22]:
𝜋∫︁

−𝜋

𝑎(𝑥) 𝑏(𝑥) 𝑑𝑥 = 2𝜋
∞∑︁

𝑘=−∞

𝑎𝑘 𝑏𝑘 ,

where 𝑏(𝑥) =
∞∑︀

𝑘=−∞
𝑏𝑘 𝑒

𝑖 𝑘 𝑥, 𝑏𝑘 = 1
2𝜋

𝜋∫︀
−𝜋

𝑏(𝑥) 𝑒−𝑖 𝑘 𝑥𝑑𝑥.

Lemma 1. Assume that 1 < 𝑝 <∞ and the conditions{︂
ℎ(𝑥) ∈ 𝐿𝑝/[2 (𝑝−1)](−𝜋, 𝜋), if 1 < 𝑝 6 2,

ℎ(𝑥) ∈ 𝐿1(−𝜋, 𝜋), if 2 < 𝑝 <∞.
(2)

ℎ𝑐(𝑘) =

𝜋∫︁
−𝜋

ℎ(𝑡) cos(𝑘 · 𝑡) 𝑑𝑡 > 0 as 𝑘 = 0, 1, 2, 3, . . . (3)

hold true. Then convolution operator 𝐻 acts continuously from space 𝐿𝑝(−𝜋, 𝜋) into its dual
space 𝐿𝑝′(−𝜋, 𝜋), 𝑝′ = 𝑝/(𝑝− 1), is positive and for all 𝑢(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋) the inequalities

‖𝐻𝑢‖𝑝′ 6 𝑐𝑝,ℎ · ‖𝑢‖𝑝 , (4)

⟨𝐻𝑢, 𝑢⟩ =

𝜋∫︁
−𝜋

⎛⎝ 𝜋∫︁
−𝜋

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡

⎞⎠𝑢(𝑥) 𝑑𝑥 > 0

hold true, where

𝑐𝑝,ℎ =

{︃
2𝜋 · ‖ℎ‖𝑝′/2, if 1 < 𝑝 6 2,

(2𝜋)2/𝑝
′‖ℎ‖1, if 2 < 𝑝 <∞.

(5)

Proof. Let 1 < 𝑝 6 2 and 𝑢(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋) be an arbitrary function. Since ℎ(𝑥) ∈
𝐿𝑝/[2 (𝑝−1)](−𝜋, 𝜋), Young inequality [23] implies immediately that

‖𝐻𝑢‖𝑝′ 6 2𝜋 ‖ℎ‖𝑝′/2‖𝑢‖𝑝 , ∀𝑢(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋), 1 < 𝑝 6 2 . (6)
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Suppose that 2 < 𝑝 < ∞. Then we have continuous embeddings 𝐿𝑝(−𝜋, 𝜋) ⊂ 𝐿2(−𝜋, 𝜋) ⊂
𝐿𝑝′(−𝜋, 𝜋), and by Hölder inequality we have

‖𝑢‖𝑝′ 6 (2𝜋)(𝑝−2)/(2𝑝)‖𝑢‖2 , ∀𝑢(𝑥) ∈ 𝐿2(−𝜋, 𝜋) ,

‖𝑢‖2 6 (2𝜋)(𝑝−2)/(2𝑝)‖𝑢‖𝑝 , ∀𝑢(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋).

Employing these inequalities as well as inequality (6) for 𝑝 = 𝑝′ = 2, we get

‖𝐻𝑢‖𝑝′ 6(2𝜋)(𝑝−2)/(2𝑝)‖𝐻𝑢‖2 6 (2𝜋)(𝑝−2)/(2𝑝)2𝜋 · ‖ℎ‖1 · ‖𝑢‖2
6(2𝜋)(𝑝−2)/(2𝑝)2𝜋 · (2𝜋)(𝑝−2)/(2𝑝)‖ℎ‖1 · ‖𝑢‖𝑝 = (2𝜋)2(𝑝−1)/𝑝‖ℎ‖1 · ‖𝑢‖𝑝 ,

i.e.,

‖𝐻𝑢‖𝑝′ 6 (2𝜋)2/𝑝
′‖ℎ‖1 · ‖𝑢‖𝑝 , ∀𝑢(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋), 2 < 𝑝 <∞ . (7)

It follows immediately from inequalities (6) and (7) that operator 𝐻 acts continuously from
𝐿𝑝(−𝜋, 𝜋) into 𝐿𝑝′(−𝜋, 𝜋) for each 𝑝 ∈ (1,∞), and inequality (4) holds true.

Let us prove the positivity of operator 𝐻. By the formula of the convolution of images we

have (𝐻𝑢)(𝑥) = 2𝜋
∞∑︀

𝑘=−∞
ℎ𝑘 · 𝑢𝑘 · 𝑒𝑖 𝑘 𝑥, where

ℎ𝑘 =
1

2𝜋

𝜋∫︁
−𝜋

ℎ(𝑥) · 𝑒−𝑖 𝑘 𝑥𝑑𝑥, 𝑢𝑘 =
1

2𝜋

𝜋∫︁
−𝜋

𝑢(𝑥) · 𝑒−𝑖 𝑘 𝑥𝑑𝑥.

Hence,

2𝜋 · ℎ𝑘 · 𝑢𝑘 =
1

2𝜋

𝜋∫︁
−𝜋

(𝐻𝑢)(𝑥) · 𝑒−𝑖 𝑘 𝑥𝑑𝑥.

Therefore, employing generalized Parseval identity and the fact that we deal with real functions
𝑢(𝑥), we have

⟨𝐻𝑢, 𝑢⟩ =

𝜋∫︁
−𝜋

(𝐻𝑢)(𝑥) · 𝑢(𝑥) 𝑑𝑥 = 2𝜋
∞∑︁

𝑘=−∞

2𝜋 · ℎ𝑘 · 𝑢𝑘 · 𝑢𝑘

=(2𝜋)2 ·

(︃
ℎ0 · |𝑢0|2 +

−1∑︁
𝑘=−∞

ℎ𝑘 · |𝑢𝑘|2 +
∞∑︁
𝑘=1

ℎ𝑘 · |𝑢𝑘|2
)︃

=(2𝜋)2 ·

(︃
ℎ0 · |𝑢0|2 +

∞∑︁
𝑘=1

[︁
ℎ−𝑘 · |𝑢−𝑘|2 + ℎ𝑘 · |𝑢𝑘|2

]︁)︃
.

(8)

Since

|𝑢−𝑘|2 = 𝑢−𝑘 · 𝑢−𝑘 =

⎛⎝ 1

2𝜋

𝜋∫︁
−𝜋

𝑢(𝑡) · 𝑒𝑖𝑘𝑡𝑑𝑡

⎞⎠ ·

⎛⎝ 1

2𝜋

𝜋∫︁
−𝜋

𝑢(𝑡) · 𝑒−𝑖𝑘𝑡𝑑𝑡

⎞⎠ = 𝑢𝑘 · 𝑢𝑘 = |𝑢𝑘|2 ,

ℎ𝑘 + ℎ−𝑘 =
1

2𝜋

𝜋∫︁
−𝜋

ℎ(𝑡)
[︀
𝑒𝑖𝑘𝑡 + 𝑒−𝑖𝑘𝑡

]︀
𝑑𝑡 =

1

𝜋

𝜋∫︁
−𝜋

ℎ(𝑡) cos(𝑘𝑡)𝑑𝑡 =
1

𝜋
ℎ𝑐(𝑘),
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by identity (8) we obtain

⟨𝐻𝑢, 𝑢⟩ =(2𝜋)2

(︃
1

2𝜋
· ℎ𝑐(0) · |𝑢0|2 +

∞∑︁
𝑘=1

1

𝜋
ℎ𝑐(𝑘) · |𝑢𝑘|2

)︃

=2𝜋 · ℎ𝑐(0) · |𝑢0|2 + 4 𝜋
∞∑︁
𝑘=1

ℎ𝑐(𝑘) · |𝑢𝑘|2 .
(9)

In view of formula (9) we see that convolution operator 𝐻 is positive if ℎ𝑐(𝑘) > 0, i.e., if
condition (3) holds true.

In the same way one can prove the following lemma dual to Lemma 1.

Lemma 2. Assume that 1 < 𝑝 <∞,{︂
ℎ(𝑥) ∈ 𝐿1(−𝜋, 𝜋), if 1 < 𝑝 6 2,

ℎ(𝑥) ∈ 𝐿𝑝/2(−𝜋, 𝜋), if 2 < 𝑝 <∞,
(10)

and condition (3) holds true. Then convolution operator 𝐻 acts continuously from 𝐿𝑝′(−𝜋, 𝜋)
into 𝐿𝑝(−𝜋, 𝜋), 𝑝′ = 𝑝/(𝑝− 1), and is positive, at that,

‖𝐻𝑢‖𝑝 6 𝑐*𝑝,ℎ · ‖𝑢‖𝑝′ , ∀𝑢(𝑥) ∈ 𝐿𝑝′(−𝜋, 𝜋) ,

where

𝑐*𝑝,ℎ =

{︃
(2𝜋)2/𝑝 · ‖ℎ‖1, if 1 < 𝑝 6 2,

2𝜋‖ℎ‖𝑝/2, if 2 < 𝑝 <∞.

Remark 1. If in Lemmata 1 and 2 we assume additionally that kernel ℎ(𝑥) is an even
function, then convolution operator 𝐻 is potential. Indeed, in the case of an even kernel ℎ(𝑥)
operator 𝐻 is symmetric and, therefore, thanks to Example 1, it is potential.

3. Existence and uniqueness theorems

Hereafter we assume that given function 𝐹 (𝑥, 𝑢) generating nonlinearity in the considered
equation is defined for 𝑥 ∈ [−𝜋, 𝜋], 𝑢 ∈ R, has period 2𝜋 w.r.t. 𝑥 and satisfies Caratheodory
conditions [15]: it is measurable in 𝑥 for each fixed 𝑢 and is continuous in 𝑢 for almost each 𝑥.
We denote by 𝐿+

𝑝 (−𝜋, 𝜋) the set of all non-negative functions in 𝐿𝑝(−𝜋, 𝜋), while 𝐹 stands for
the superposition operator (Nemytskii operator) generated by function 𝐹 (𝑥, 𝑢).

Theorem 1. Let 1 < 𝑝 < ∞, kernel ℎ(𝑥) obey conditions (2) and (3), and nonlinearity
𝐹 (𝑥, 𝑢) satisfy the conditions

3.1) |𝐹 (𝑥, 𝑢)| 6 𝑐(𝑥) + 𝑑1 · |𝑢|𝑝−1, where 𝑐(𝑥) ∈ 𝐿+
𝑝′(−𝜋, 𝜋), 𝑑1 > 0;

3.2) 𝐹 (𝑥, 𝑢) does not decrease w.r.t. 𝑢 for almost each 𝑥;
3.3) 𝐹 (𝑥, 𝑢) · 𝑢 > 𝑑2 · |𝑢|𝑝 −𝐷(𝑥), where 𝐷(𝑥) ∈ 𝐿+

1 (−𝜋, 𝜋), 𝑑2 > 0,
for almost each 𝑥 ∈ [−𝜋, 𝜋] and all 𝑢 ∈ R. Then for each 𝜆 > 0 and 𝑓(𝑥) ∈ 𝐿𝑝′(−𝜋, 𝜋) equation

𝜆 · 𝐹 [𝑥, 𝑢(𝑥)] +

𝜋∫︁
−𝜋

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡 = 𝑓(𝑥) (11)

has a solution 𝑢*(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋). This solution is unique if in condition 3.2) function 𝐹 (𝑥, 𝑢)
strictly increases w.r.t. 𝑢. Moreover, if condition 3.3) is satisfied as 𝐷(𝑥) = 0, then ‖𝑢*‖𝑝 6(︀
𝜆−1 · 𝑑−1

2 ‖𝑓‖𝑝′
)︀1/(𝑝−1)

.



PERIODIC SOLUTIONS OF CONVOLUTION TYPE EQUATIONS. . . 25

Proof. We write equation (11) in operator form: 𝐴𝑢 = 𝑓 , where 𝐴𝑢 = 𝜆 · 𝐹𝑢 + 𝐻𝑢. By
Lemma 1 and conditions 3.1)–3.3) we obtain that operator 𝐴 acts continuously from 𝐿𝑝(−𝜋, 𝜋)
into 𝐿𝑝′(−𝜋, 𝜋) and is monotonous and coercive. At that, operator 𝐴 is strictly monotonous if
function 𝐹 (𝑥, 𝑢) strictly increases w.r.t. 𝑢. This is why the statements on the existence and
uniqueness of solution are implied by Browder-Minty principle (see, for instance, [14]), which
is the main theory of the monotone operators theory. Finally, employing condition 3.3) as
𝐷(𝑥) = 0, the positivity of operator 𝐻 and the identity 𝐴𝑢* = 𝑓 , we have

𝜆 · 𝑑2 · ‖𝑢*‖𝑝𝑝 6𝜆 · ⟨𝐹𝑢*, 𝑢*⟩ 6 𝜆 · ⟨𝐹𝑢*, 𝑢*⟩ + ⟨𝐻𝑢*, 𝑢*⟩
=⟨𝐴𝑢*, 𝑢*⟩ = ⟨𝑓, 𝑢*⟩ 6 ‖𝑓‖𝑝′‖𝑢‖𝑝,

that implies immediately the desired estimate for the norm of the solution.

Corollary 1. Let 𝑝 > 2 be an arbitrary even number, kernel ℎ(𝑥) ∈ 𝐿1(−𝜋, 𝜋) satisfy con-
dition (3). Then equation

𝑢𝑝−1(𝑥) +

𝜋∫︁
−𝜋

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡 = 𝑓(𝑥)

has the unique solution 𝑢*(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋) for each 𝑓(𝑥) ∈ 𝐿𝑝′(−𝜋, 𝜋), and ‖𝑢*‖𝑝 6 ‖𝑓‖1/(𝑝−1)
𝑝′ .

In the next theorem the existence and the uniqueness of the solution to the considered
Hammerstein type equation are established without coercitivity of the nonlinearity.

Theorem 2. Let 1 < 𝑝 < ∞, ℎ(𝑥) ∈ 𝐿1(−𝜋, 𝜋) as 1 < 𝑝 6 2 and ℎ(𝑥) ∈ 𝐿𝑝/2(−𝜋, 𝜋) as
2 < 𝑝 < ∞. If kernel ℎ(𝑥) satisfies condition (3) and nonlinearity 𝐹 (𝑥, 𝑢) satisfies condition
3.1) and 3.2) of Theorem 1, then equation

𝑢(𝑥) + 𝜆

𝜋∫︁
−𝜋

ℎ(𝑥− 𝑡)𝐹 [𝑡, 𝑢(𝑡)] 𝑑𝑡 = 𝑓(𝑥) (12)

has the unique solution 𝑢*(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋) for each 𝜆 > 0 and each 𝑓(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋). Moreover,
if conditions 3.1) and 3.3) hold true as 𝑐(𝑥) = 𝐷(𝑥) = 0, then ‖𝑢*‖𝑝 6 𝑑1 · 𝑑−1

2 · ‖𝑓‖𝑝.

Proof. As 𝜆 = 0, the statement of the theorem is obvious. This is why in what follows we
assume that 𝜆 > 0. We write equation (12) in operator form: 𝑢+ 𝜆 ·𝐻𝐹𝑢 = 𝑓 . It follows from
conditions 3.1) and 3.2) that operator 𝐹 acts continuously from 𝐿𝑝(−𝜋, 𝜋) into 𝐿𝑝′(−𝜋, 𝜋) and
is monotone, while Lemma 2 yields that operator 𝐻 acts continuously from 𝐿𝑝′(−𝜋, 𝜋) back to
𝐿𝑝(−𝜋, 𝜋) and is positive. Then by Theorem 3 in [19] (see Remark 2 below), this equation has
the unique solution 𝑢*(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋).

It remains to prove the estimate for the norm of solution 𝑢*(𝑥). Employing conditions 3.1)
and 3.3) as 𝑐(𝑥) = 𝐷(𝑥) = 0, the positivity of convolution operator 𝐻 and the identity

𝑢* + 𝜆 ·𝐻𝐹𝑢* = 𝑓,

we have

𝑑2‖𝑢*‖𝑝𝑝 6 ⟨𝑢*, 𝐹𝑢*⟩ + 𝜆⟨𝐻𝐹𝑢*, 𝐹𝑢*⟩ = ⟨𝑓, 𝐹𝑢*⟩ 6 ‖𝑓‖𝑝‖𝐹𝑢*‖𝑝′ 6 𝑑1‖𝑓‖𝑝‖𝑢*‖𝑝−1
𝑝 ,

that implies immediately the desired estimate.

Corollary 2. Let 𝑝 > 2 be an arbitrary even number, kernel ℎ(𝑥) ∈ 𝐿𝑝/2(−𝜋, 𝜋) satisfies
condition (3). Then the equation

𝑢(𝑥) +

𝜋∫︁
−𝜋

ℎ(𝑥− 𝑡)𝑢𝑝−1(𝑡) 𝑑𝑡 = 𝑓(𝑥)
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has the unique solution 𝑢*(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋) for each 𝑓(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋), and ‖𝑢*‖𝑝 6 ‖𝑓‖𝑝.

Remark 2. The proof of the existence and uniqueness in Theorem 2 is based on Theorem 3
in [19]. It is important to stress that in Theorem 3 concerning Hammerstein equation

𝑢(𝑥) +

𝑏∫︁
𝑎

𝐾(𝑥, 𝑠)𝐹 [𝑠, 𝑢(𝑠)] 𝑑𝑠 = 𝑓(𝑥),

nonlinearity 𝐹 (𝑥, 𝑢) should not decrease w.r.t. 𝑢 (it was assumed in [19] that nonlinearity
𝐹 (𝑥, 𝑢) does not increases w.r.t. 𝑢). It follows from work [20] by the same authors, where the
proof of Theorem 3 in [19] was provided. Moreover, the equation

𝑢(𝑥) − 𝑤(𝑥)

𝑏∫︁
𝑎

𝑤(𝑠)𝑢1/3(𝑠) 𝑑𝑠 = 0

with decreasing nonlinearity 𝐹 (𝑠, 𝑢) = −𝑢1/3 and degenerated kernel 𝐾(𝑥, 𝑠) = 𝑤(𝑥) ·𝑤(𝑠) with

𝑤(𝑥) ∈ 𝐿4/3(𝑎, 𝑏), having two different solutions 𝑢1(𝑥) = 0 and 𝑢2(𝑥) = 𝑤(𝑥)

(︂
𝑏∫︀
𝑎

𝑤4/3(𝑠) 𝑑𝑠

)︂3/2

in space 𝐿4/3(𝑎, 𝑏) shows that statement on the uniqueness of the solution in Theorem 3 in [19]
fails.

Consider now the integral equation where convolution operator 𝐻 is involved nonlinearly.
In this case, as opposed to Theorems 1 and 2, for nonlinearity 𝐹 (𝑥, 𝑢) we impose conditions
ensuring the action of Nemytskii operator 𝐹 from dual space 𝐿𝑝′(−𝜋, 𝜋) into original space
𝐿𝑝(−𝜋, 𝜋), in which we seek for the solutions; the conditions should also ensure the continuity,
strict monotonicity and coercitivity. An important role in studying such equation is played by
the existence, strict monotonicity and the coercitivity of inverse operator 𝐹−1.

Theorem 3. Let 1 < 𝑝 < ∞, kernel ℎ(𝑥) satisfy conditions (2) and (3), and nonlinearity
𝐹 (𝑥, 𝑢) satisfy the conditions

3.4) |𝐹 (𝑥, 𝑢)| 6 𝑔(𝑥) + 𝑑3|𝑢|1/(𝑝−1), where 𝑔(𝑥) ∈ 𝐿+
𝑝 (−𝜋, 𝜋), 𝑑3 > 0;

3.5) 𝐹 (𝑥, 𝑢) strictly increases w.r.t. 𝑢 for almost each 𝑥;
3.6) 𝐹 (𝑥, 𝑢) · 𝑢 > 𝑑4|𝑢|𝑝/(𝑝−1) −𝐷(𝑥), where 𝐷(𝑥) ∈ 𝐿+

1 (−𝜋, 𝜋), 𝑑4 > 0.
for almost each 𝑥 ∈ [−𝜋, 𝜋] and all 𝑢 ∈ R. Then for all 𝜆 > 0 and 𝑓(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋) equation

𝑢(𝑥) + 𝜆 · 𝐹

⎡⎣𝑥, 𝜋∫︁
−𝜋

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡

⎤⎦ = 𝑓(𝑥) (13)

has the unique solution 𝑢*(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋). Moreover, if 𝑔(𝑥) = 𝐷(𝑥) = 0 in conditions 3.4)
and 3.6), then the estimate

‖𝑢* − 𝑓‖𝑝 6 𝜆 ·
[︁
𝑑𝑝3 · 𝑑−1

4 · 𝑐𝑝,ℎ · ‖𝑓‖𝑝
]︁1/(𝑝−1)

holds true, where constant 𝑐𝑝,ℎ is defined in (5).

Proof. As 𝜆 = 0, the statement of the theorem is obvious. This is why in what follows we assume
that 𝜆 > 0. By Lemma 1, operator 𝐻 acts from 𝐿𝑝(−𝜋, 𝜋) into 𝐿𝑝′(−𝜋, 𝜋), is continuous and
positive. It follows from conditions 3.4)-3.6) that operator 𝐹 acts back from 𝐿𝑝′(−𝜋, 𝜋) into
𝐿𝑝(−𝜋, 𝜋), is continuous, strictly monotone and coercive. Therefore, by Lemma 2.1 in [11],
operator 𝐹 has the inverse 𝐹−1, which acts from 𝐿𝑝(−𝜋, 𝜋) into 𝐿𝑝′(−𝜋, 𝜋), is semi-continuous
and strictly monotone, and lim

‖𝑣‖𝑝→∞
⟨𝐹−1𝑣, 𝑣⟩ · ‖𝑣‖−1

𝑝 = ∞. We write equation (13) in operator
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form: 𝑢+ 𝜆 · 𝐹𝐻𝑢 = 𝑓 . Letting 𝑓 − 𝑢 = 𝜆 · 𝑣 and applying inverse operator 𝐹−1 to both sides
of the resulting equation, we arrive at the equation

Φ𝑣 = 𝐻𝑓, where Φ𝑣 = 𝐹−1𝑣 + 𝜆 ·𝐻𝑣. (14)

By the above mentioned properties of operators 𝐹−1 and 𝐻, operator Φ acts from 𝐿𝑝(−𝜋, 𝜋)
into 𝐿𝑝′(−𝜋, 𝜋), is semi-continuous and strictly monotone, and

⟨Φ𝑣, 𝑣⟩
‖𝑣‖𝑝

>
⟨𝐹−1𝑣, 𝑣⟩

‖𝑣‖𝑝
→ ∞ as ‖𝑣‖𝑝 → ∞.

Hence, by Browder-Minty theorem, equation (14) has the unique solution 𝑣*(𝑥) ∈ 𝐿𝑝(−𝜋, 𝜋).
Then equation (13) has the solution 𝑢* = 𝑓 − 𝜆 · 𝑣* ∈ 𝐿𝑝(−𝜋, 𝜋).

Let us show that this solution 𝑢* is unique. We assume the opposite, i.e., that equation (13)
has two different solutions 𝑢1, 𝑢2 ∈ 𝐿𝑝(−𝜋, 𝜋). Then the identities

𝑢1 + 𝜆 · 𝐹𝐻𝑢1 = 𝑓 and 𝑢2 + 𝜆 · 𝐹𝐻𝑢2 = 𝑓 (15)

hold true. Deducting the former identity from the latter, by (15) we have

𝑢2 − 𝑢1 + 𝜆 · 𝐹𝐻𝑢2 − 𝜆 · 𝐹𝐻𝑢1 = 0

and hence,
⟨𝑢2 − 𝑢1 + 𝜆 · 𝐹𝐻𝑢2 − 𝜆 · 𝐹𝐻𝑢1, 𝐻𝑢2 −𝐻𝑢1⟩ = 0

or
⟨𝑢2 − 𝑢1, 𝐻𝑢2 −𝐻𝑢1⟩ + 𝜆 · ⟨𝐹𝐻𝑢2 − 𝐹𝐻𝑢1, 𝐻𝑢2 −𝐻𝑢1⟩ = 0.

The latter identity is impossible, since the first term in the left hand side is nonnegative by the
positivity of operator 𝐻, while the second term is strictly positive due to the strict monotonicity
of operator 𝐹 and since 𝐻𝑢1 ̸= 𝐻𝑢2. Indeed, let us show that 𝐻𝑢1 ̸= 𝐻𝑢2. If we assume the
opposite 𝐻𝑢1 = 𝐻𝑢2, then it follows from (15) that 𝑢1 + 𝜆 ·𝐹𝐻𝑢2 = 𝑓 and 𝑢2 + 𝜆 ·𝐹𝐻𝑢2 = 𝑓 .
Deducting the left and right hand sides, we obtain 𝑢1−𝑢2 = 0 that contradicts to the fact that
𝑢1 and 𝑢2 are different.

It remains to prove the estimate for the norm of the solution. We let 𝜓 = 𝐹−1𝑣*. Then
𝐹𝜓 = 𝑣*. Since 𝐹−1𝑣* + 𝜆 ·𝐻𝑣* = 𝐻𝑓 , then by Lemma 1 and identities 𝑔(𝑥) = 𝐷(𝑥) = 0, we
have

𝑑4‖𝜓‖𝑝
′

𝑝′ 6⟨𝐹𝜓, 𝜓⟩ = ⟨𝑣*, 𝐹−1𝑣*⟩ 6 ⟨𝑣*, 𝐹−1𝑣*⟩ + 𝜆⟨𝑣*, 𝐻𝑣*⟩

=⟨𝐹𝜓,𝐻𝑓⟩ 6 ‖𝐹𝜓‖𝑝‖𝐻𝑓‖𝑝′ 6 𝑐𝑝,ℎ‖𝐹𝜓‖𝑝‖𝑓‖𝑝 6 𝑐𝑝,ℎ𝑑3‖𝜓‖𝑝
′−1

𝑝′ ‖𝑓‖𝑝.
Therefore,

‖𝜓‖𝑝′ 6 𝑑3𝑑
−1
4 𝑐𝑝,ℎ‖𝑓‖𝑝. (16)

Since ‖𝑣*‖𝑝 = ‖𝐹𝜓‖𝑝 6 𝑑3 · ‖𝜓‖𝑝
′−1

𝑝′ and 𝑣* = 𝜆−1 · (𝑓 − 𝑢*), then

‖𝑓 − 𝑢*‖𝑝 6 𝜆𝑑3‖𝜓‖1/(𝑝−1)
𝑝′ ,

that by inequality (16) we obtain the desired estimate for the norm of the solution.

Corollary 3. Let kernel ℎ(𝑥) ∈ 𝐿2(−𝜋, 𝜋) satisfy condition (3). Then the equation

𝑢(𝑥) +

⎛⎝ 𝜋∫︁
−𝜋

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡

⎞⎠3

= 𝑓(𝑥)

has the unique solution 𝑢* ∈ 𝐿4/3(−𝜋, 𝜋) for each 𝑓(𝑥) ∈ 𝐿4/3(−𝜋, 𝜋), and ‖𝑢*‖𝑝 6 (‖ℎ‖2‖𝑓‖𝑝)3.

We note that the estimate for the norms of solutions proven in Theorems 1–3 imply imme-
diately that under the assumptions of these theorems, homogeneous equation (as 𝑓(𝑥) = 0)
corresponding to equations (11)–(13) have only the trivial solution 𝑢*(𝑥) = 0.
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4. Approximate solution. Method of successive approximations

Theorems 1–3 contain no information on how to find the solutions of equations (11)–(13).
In this section, as 𝑝 = 2 and under stricter than in Section 3 conditions for the nonlinearity we
prove not only the existence and uniqueness of solutions to the considered nonlinear convolution
type integral equations but we also justify a was of finding these solutions via the method of
successive approximations of Picard type with no restrictions for the value of scalar parameter
𝜆. In what follows, as usually, we assume that nonlinearity 𝐹 (𝑥, 𝑢) satisfies Caratheodory
conditions (see Section 3).

We shall make us of the following theorem being a corollary of well-known results proven in
monograph [14].

Theorem 4. Let 𝐻 be a real Hilbert space and operator 𝐴 acts from 𝐻 into 𝐻. If there
exists constants 𝑚 > 0 and 𝑀 > 0 (𝑀 > 𝑚) such that for all 𝑢, 𝑣 ∈ 𝐻 the inequalities

‖𝐴𝑢− 𝐴𝑣‖𝐻 6𝑀 · ‖𝑢− 𝑣‖𝐻 , (𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣) > 𝑚 · ‖𝑢− 𝑣‖2𝐻 (17)

hold true, then the operator equation 𝐴𝑢 = 𝑓 has the unique solution 𝑢* ∈ 𝐻 for each 𝑓 ∈ 𝐻.
This solution can be found by the method of successive approximations by the formulae:

𝑢𝑛 = 𝑢𝑛−1 −
𝑚

𝑀2
· (𝐴𝑢𝑛−1 − 𝑓), 𝑛 ∈ N, (18)

and the following estimate for the error

‖𝑢𝑛 − 𝑢*‖𝐻 6
𝑚

𝑀2
· 𝛼𝑛

1 − 𝛼
· ‖𝐴𝑢0 − 𝑓‖𝐻 (19)

holds true, where 𝛼 =
√

1 −𝑚2 ·𝑀−2, 𝑢0 ∈ 𝐻 is an arbitrary element.
If, in addition, 𝐴 is a potential operator, this solution can be found by the method of successive

approximations defined by the formulae

𝑢𝑛 = 𝑢𝑛−1 −
2

𝑀 +𝑚
· (𝐴𝑢𝑛−1 − 𝑓), 𝑛 ∈ N, (20)

and the following estimate for the error holds:

‖𝑢𝑛 − 𝑢*‖𝐻 6
2

𝑀 +𝑚
· 𝛼𝑛

1 − 𝛼
· ‖𝐴𝑢0 − 𝑓‖𝐻 , (21)

where 𝛼 = (𝑀 −𝑚)/(𝑀 +𝑚).

Proof. Since operator 𝐴 satisfies two-sided estimates (17), it follows from Theorem 1.4 in [11]
that equation 𝐴𝑢 = 𝑓 has the unique solution 𝑢* ∈ 𝐻 and it can be found by iteration formula
(18) with estimate (19) for the error. If operator 𝐴 is also potential, then by Theorem 1.7 in
[11] this solution can be found by iteration formula (20) with estimate (21) for the error.

Remark 3. By Cauchy-Schwarz inequality, the inequalities in (17) can be simultaneously
true only if 𝑚 6𝑀 . Hence, since as 𝑚 < 𝑀

𝑀 −𝑚

𝑀 +𝑚
<

√︂
𝑀 −𝑚

𝑀 +𝑚
<
𝑀 +𝑚

𝑀
·
√︂
𝑀 −𝑚

𝑀 +𝑚
=

√︂
1 − 𝑚2

𝑀2
,

successive approximations (20) converge to solution 𝑢* much faster as (18), i.e., as 𝑛 → ∞,
the right hand side in (21) tends to zero faster than in (19).

Theorem 4 can be applied to equation (11). We have the following theorem.

Theorem 5. Let kernel ℎ(𝑥) ∈ 𝐿1(−𝜋, 𝜋) satisfy assumption (3). If for almost each 𝑥 ∈
[−𝜋, 𝜋] and all 𝑢1, 𝑢2 ∈ R nonlinearity 𝐹 (𝑥, 𝑢) satisfies the conditions

4.1) there exists a constant 𝑀 > 0 such that the inequality

|𝐹 (𝑥, 𝑢1) − 𝐹 (𝑥, 𝑢2)| 6𝑀 · |𝑢1 − 𝑢2|
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holds true;
4.2) there exists a constant 𝑚 > 0 such that the inequality

[𝐹 (𝑥, 𝑢1) − 𝐹 (𝑥, 𝑢2)] · [𝑢1 − 𝑢2] > 𝑚 · |𝑢1 − 𝑢2|2

holds true;
then for each 𝜆 > 0 and each 𝑓(𝑥) ∈ 𝐿2(−𝜋, 𝜋) equation (11) has the unique solution 𝑢*(𝑥) ∈
𝐿2(−𝜋, 𝜋). This solution can be found by the method of successive approximations defined by
the formula

𝑢𝑛 = 𝑢𝑛−1 − 𝜇 · (𝜆 · 𝐹𝑢𝑛−1 +𝐻𝑢𝑛−1 − 𝑓), 𝑛 ∈ N, (22)

where 𝜇 = 𝜆 ·𝑚 ·
(︁
𝜆 ·𝑀 + ‖ℎ‖1

)︁−2

, with the estimate for the error

‖𝑢𝑛 − 𝑢*‖2 6 𝜇 · 𝛼𝑛

1 − 𝛼
· ‖𝜆 · 𝐹𝑢0 +𝐻𝑢0 − 𝑓‖2, (23)

where 𝛼 =
√︀

1 − 𝜆2𝑚2(𝜆 ·𝑀 + ‖ℎ‖1)−2, 𝑢0(𝑥) ∈ 𝐿2(−𝜋, 𝜋) is the initial approximation (ar-
bitrary function). If, in addition, kernel ℎ(𝑥) is an even function, then solution 𝑢*(𝑥) can be
found by formula (22), where 𝜇 = 2/[𝜆 · (𝑀 + 𝑚) + ‖ℎ‖1], with estimate for (23) the error,
where 𝛼 = [𝜆 · (𝑀 −𝑚) + ‖ℎ‖1]/[𝜆 · (𝑀 +𝑚) + ‖ℎ‖1].

Proof. We write equation (11) in operator form 𝐴𝑢 = 𝑓 , where 𝐴𝑢 = 𝜆 · 𝐹𝑢+𝐻𝑢. It follows
from conditions 4.1) and 4.2) that for all 𝑢(𝑥), 𝑣(𝑥) ∈ 𝐿2(−𝜋, 𝜋) the inequalities

‖𝐹𝑢− 𝐹𝑣‖2 6𝑀 · ‖𝑢− 𝑣‖2 , (𝐹𝑢− 𝐹𝑣, 𝑢− 𝑣) > 𝑚 · ‖𝑢− 𝑣‖22 , (24)

hold true, respectively, i.e., operator 𝐹 : 𝐿2(−𝜋, 𝜋) → 𝐿2(−𝜋, 𝜋) is Lipschitz-continuous and
strongly monotone.

Employing estimates (24), condition (3) and inequality (4), we have

‖𝐴𝑢− 𝐴𝑣‖2 6 𝜆 · ‖𝐹𝑢− 𝐹𝑣‖2 + ‖𝐻(𝑢− 𝑣)‖2 6
(︁
𝜆 ·𝑀 + ‖ℎ‖1

)︁
· ‖𝑢− 𝑣‖2 ,

(𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣) = 𝜆 · (𝐹𝑢− 𝐹𝑣, 𝑢− 𝑣) + (𝐻(𝑢− 𝑣), 𝑢− 𝑣) > 𝜆 ·𝑚 · ‖𝑢− 𝑣‖22 .
Since operator 𝐴 satisfies all the assumptions of Theorem 4, then the equation 𝐴𝑢 = 𝑓 , and
therefore, equation (11), have the unique solution 𝑢*(𝑥) ∈ 𝐿2(−𝜋, 𝜋), and this solution can be
found by iteration formula (22) with estimate (23) for the error.

If in addition we assume that kernel ℎ(𝑥) is an even function, the convolution operator 𝐻
is potential. Condition 4.1) yields that superposition operator 𝐹 is also potential [15]. Hence,
operator 𝐴 = 𝜆 ·𝐹 +𝐻 satisfies the assumptions of Theorem 4, and in accordance with formula
(20) and estimate (21) it yields that in (22) and (23) we can take 𝜇 = 2/[𝜆 · (𝑀 +𝑚) + ‖ℎ‖1],
𝛼 = [𝜆 · (𝑀 −𝑚) + ‖ℎ‖1]/[𝜆 · (𝑀 +𝑚) + ‖ℎ‖1].

It is important to note (see Remark 3) that successive approximations (22) corresponding to
an even kernel ℎ(𝑥) converge much faster to solution 𝑢*(𝑥).

Consider now nonlinear convolution type integral equations (12) and (13). We can not
directly apply Theorem 4 to these equations since, generally speaking, the product of monotone
operators is not necessarily monotone. This is why in the case of equations (12) and (13) we
can construct successive approximations and estimate the rate of the convergence to the exact
solution only in terms of inverse operator 𝐹−1 for superposition operator 𝐹 .

Theorem 6. Let kernel ℎ(𝑥) ∈ 𝐿1(−𝜋, 𝜋) satisfy condition (3), and nonlinearity 𝐹 (𝑥, 𝑢)
satisfy conditions 4.1) and 4.2) of Theorem 5. Then for each 𝜆 > 0 and each 𝑓(𝑥) ∈ 𝐿2(−𝜋, 𝜋)
equation (12) has the unique solution 𝑢*(𝑥) ∈ 𝐿2(−𝜋, 𝜋). This solution can be found by the
formula 𝑢𝑛 = 𝐹−1𝑣𝑛, 𝑛 ∈ N, where 𝐹−1 is the inverse operator for 𝐹 ,

𝑣𝑛 = 𝑣𝑛−1 − 𝜇 · (𝐹−1𝑣𝑛−1 + 𝜆 ·𝐻𝑣𝑛−1 − 𝑓), (25)
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with the estimate for the error:

‖𝑢𝑛 − 𝑢*‖2 6 𝜇 · 𝛼𝑛

1 − 𝛼
· ‖𝐹−1𝑣0 + 𝜆 ·𝐻𝑣0 − 𝑓‖2, (26)

where 𝜇 = 𝑚/[𝑀2(𝑚−1+𝜆‖ℎ‖1)2], 𝛼 =
√︀

1 −𝑚4𝑀−4(1 + 𝜆𝑚‖ℎ‖1)−2, 𝑣0(𝑥) ∈ 𝐿2(−𝜋, 𝜋) is the
initial approximation (arbitrary function). If, in addition, kernel ℎ(𝑥) is an even function, then
solution 𝑢*(𝑥) can be found by iteration formula (25), where 𝜇 = 2/[𝑚−1+𝜆·‖ℎ‖1+𝑚·𝑀−2] with
estimate (26) for the error, where 𝛼 = [1 + 𝜆 · ‖ℎ‖1 −𝑚2 ·𝑀−2]/[1 + 𝜆 · ‖ℎ‖1 +𝑚2 ·𝑀−2].

Proof. It follows from conditions 4.1) and 4.2) that Nemytskii operator 𝐹 acts continuously
from 𝐿2(−𝜋, 𝜋) into 𝐿2(−𝜋, 𝜋) and is strongly monotone and inequalities (24) hold true. This
is why by Theorems 1.3 and 1.5 in [11], there exists the inverse operator 𝐹−1, and as 𝐹 , it is
potential. At that, for all 𝑢(𝑥), 𝑣(𝑥) ∈ 𝐿2(−𝜋, 𝜋) the inequalities

‖𝐹−1𝑢− 𝐹−1𝑣‖2 6 𝑚−1 · ‖𝑢− 𝑣‖2, (27)

(𝐹−1𝑢− 𝐹−1𝑣, 𝑢− 𝑣) > 𝑚 ·𝑀−2 · ‖𝑢− 𝑣‖22. (28)

hold true. Consider equation (12). We write it in operator form:

𝑢+ 𝜆 ·𝐻 𝐹𝑢 = 𝑓. (29)

It is easy to see that if 𝑣* ∈ 𝐿2(−𝜋, 𝜋) solves equation

𝐴𝑣 = 𝑓, where 𝐴𝑣 = 𝐹−1𝑣 + 𝜆 ·𝐻𝑣 , (30)

then 𝑢* = 𝐹−1𝑣* ∈ 𝐿2(−𝜋, 𝜋) is a solution to equation (29) and these solutions are unique in
𝐿2(−𝜋, 𝜋) since 𝐹 and 𝐹−1 are strongly monotone operators. Since by inequalities (27), (28),
condition (3) and estimate (4) the inequalities

‖𝐴𝑢− 𝐴𝑣‖2 6 ‖𝐹−1𝑢− 𝐹−1𝑣‖2 + 𝜆 · ‖𝐻(𝑢− 𝑣)‖2 6
(︁
𝑚−1 + 𝜆 · ‖ℎ‖1

)︁
· ‖𝑢− 𝑣‖2, (31)

(𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣) = (𝐹−1𝑢− 𝐹−1𝑣, 𝑢− 𝑣) + 𝜆 · (𝐻(𝑢− 𝑣), 𝑢− 𝑣) > 𝑚 ·𝑀−2 · ‖𝑢− 𝑣‖22, (32)

hold true for all 𝑢(𝑥), 𝑣(𝑥) ∈ 𝐿2(−𝜋, 𝜋), then operator 𝐴 satisfies all the assumptions of Theorem
4. Therefore, equation (30) has the unique solution 𝑣*(𝑥) ∈ 𝐿2(−𝜋, 𝜋) and this solution can be
found by iteration formula (25) with the estimate for error

‖𝑣𝑛 − 𝑣*‖2 6
𝑚 ·𝑀−2

(𝑚−1 + 𝜆 · ‖ℎ‖1)2
· 𝛼𝑛

1 − 𝛼
· ‖𝐹−1𝑣0 + 𝜆 ·𝐻𝑣0 − 𝑓‖2, (33)

where 𝛼 =
√︀

1 −𝑚4 ·𝑀−4 · (1 + 𝜆 ·𝑚 · ‖ℎ‖1)−2. Since by inequality (27)

‖𝑢𝑛 − 𝑢*‖2 = ‖𝐹−1𝑣𝑛 − 𝐹−1𝑣*‖2 6 𝑚−1 · ‖𝑣𝑛 − 𝑣*‖2,
by (33) we obtain easily desired estimate (26).

If, in addition, kernel ℎ(𝑥) is an even function, then convolution operator 𝐻 is potential.
Hence, operator 𝐴 satisfies all the assumptions of Theorem 4, which by formula (20) and
estimate (21) yield that in (25) and (26) we can take 𝜇 = 2/[𝑚−1 + 𝜆 · ‖ℎ‖1 + 𝑚 ·𝑀−2] and
𝛼 = [1 + 𝜆 · ‖ℎ‖1 −𝑚2 ·𝑀−2]/[1 + 𝜆 · ‖ℎ‖1 +𝑚2 ·𝑀−2].

We finally prove the following theorem.

Theorem 7. Let kernel ℎ(𝑥) ∈ 𝐿1(−𝜋, 𝜋) satisfy condition (3) and nonlinearity 𝐹 (𝑥, 𝑢)
satisfy conditions 4.1) and 4.2) of Theorem 5. Then for each 𝜆 > 0 and each 𝑓(𝑥) ∈ 𝐿2(−𝜋, 𝜋)
equation (13) has the unique solution 𝑢*(𝑥) ∈ 𝐿2(−𝜋, 𝜋). This solution can be found by the
iteration formula:

𝑢𝑛 = 𝑢𝑛−1 + 𝜆 · 𝜇 ·
(︂
𝐹−1(𝜆−1(𝑓 − 𝑢𝑛−1)) −𝐻𝑢𝑛−1

)︂
, (34)
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where 𝜇 = 𝑚 ·𝑀−2/(𝑚−1 + 𝜆 · ‖ℎ‖1)2, with the estimate for the error

‖𝑢𝑛 − 𝑢*‖2 6 𝜆 · 𝜇 · 𝛼𝑛

1 − 𝛼
· ‖𝐹−1(𝜆−1(𝑓 − 𝑢0)) −𝐻𝑢0‖2, (35)

where 𝛼 =
√︀

1 −𝑚4 ·𝑀−4 · (1 + 𝜆 ·𝑚 · ‖ℎ‖1)−2, 𝑢0(𝑥) ∈ 𝐿2(−𝜋, 𝜋) is the initial approximation
(arbitrary function). If, in addition, kernel ℎ(𝑥) is an even function, then solution 𝑢*(𝑥) can
be found by iteration formula (34), where 𝜇 = 2/[𝑚−1 +𝜆 · ‖ℎ‖1 +𝑚 ·𝑀−2], with estimate (35)
for the error, where 𝛼 = [1 + 𝜆 · ‖ℎ‖1 −𝑚2 ·𝑀−2]/[1 + 𝜆 · ‖ℎ‖1 +𝑚2 ·𝑀−2].

Proof. It follows from conditions 4.1) and 4.2) that (see the proof of Theorem 6) superposition
operator 𝐹 has inverse operator 𝐹−1 and both the operators are potential and inequalities (24),
(27), (28) are satisfied. Consider equation (13). We write it in operator form:

𝑢+ 𝜆 · 𝐹 𝐻𝑢 = 𝑓. (36)

It is easy to see that if 𝑣* ∈ 𝐿2(−𝜋, 𝜋) solves the equation

𝐹−1𝑣 + 𝜆 ·𝐻𝑣 = 𝐻, (37)

then 𝑢* = 𝑓 − 𝜆 · 𝑣* ∈ 𝐿2(−𝜋, 𝜋) is a solution to equation (36), i.e., to equation (13).
Observing that equation (37) is of the same form as equation (30) (with 𝐻𝑓 instead of 𝑓), we

obtain (see the proof of Theorem 6) that equation (37) has the unique solution 𝑣* ∈ 𝐿2(−𝜋, 𝜋)
and this solution can be found by iteration formula (25)

𝑣𝑛 = 𝑣𝑛−1 −
𝑚 ·𝑀−2

(𝑚−1 + 𝜆 · ‖ℎ‖1)2
· (𝐹−1𝑣𝑛−1 + 𝜆 ·𝐻𝑣𝑛−1 −𝐻𝑓), (38)

with estimate for error similar to (33):

‖𝑣𝑛 − 𝑣*‖2 6
𝑚 ·𝑀−2

(𝑚−1 + 𝜆 · ‖ℎ‖1)2
· 𝛼𝑛

1 − 𝛼
· ‖𝐹−1𝑣0 + 𝜆 ·𝐻𝑣0 −𝐻𝑓‖2, (39)

where 𝛼 =
√︀

1 −𝑚4 ·𝑀−4 · (1 + 𝜆 ·𝑚 · ‖ℎ‖1)−2.
By (38) and (39), multiplying by 𝜆 and taking into consideration that 𝜆 · 𝑣* = 𝑓 − 𝑢* and

𝜆 · 𝑣𝑛−1 = 𝑓 − 𝑢𝑛−1, we obtain easily formula (34) and estimate (35).
If kernel ℎ(𝑥) is an even function, by the mentioned relation between equations (37) and

(30), it follows obviously from the proof of Theorem 6 that in (34) and (35) we can take

𝜇 =
2

𝑚−1 + 𝜆 · ‖ℎ‖1 +𝑚 ·𝑀−2
and 𝛼 =

1 + 𝜆 · ‖ℎ‖1 −𝑚2 ·𝑀−2

1 + 𝜆 · ‖ℎ‖1 +𝑚2 ·𝑀−2
.

5. Approximate solution. Gradient method

In Section 4 we have considered issues related to approximate solution of convolution type
equations (11)–(13) involving general nonlinearities in Lebesgue spaces as 𝑝 = 2. The employed
methods happen to be inappropriate as 𝑝 ̸= 2 since in this case we can not combine contracting
mappings principle, which requires an operator to map a given space into itself, with Browder-
Minty principle, which requires the operator to map a given space into the dual one. In this
section we shall show that if we restrict ourselves by convolution type equations with odd-power
nonlinearity of the form 𝑢𝑝−1, such equations can be approximately solved in Lebesgue space
𝐿𝑝(−𝜋, 𝜋) for even 𝑝 > 2. At that, as opposed to Section 4, we employ one of the methods of
potential monotone operators theory known as steepest descent method or gradient method.

Definition 4. Banach space 𝑋 is called strictly convex if for all 𝑢, 𝑣 ∈ 𝑋 it follows from
𝑢 ̸= 𝑣, ‖𝑢‖ 6 1, ‖𝑣‖ 6 1 that ‖𝑢+ 𝑣‖ < 2.
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Definition 5. Operator 𝐽 : 𝑋 → 𝑋*, where 𝑋* is a strictly convex space, is called a duali-
zing mapping if for each 𝑢 ∈ 𝑋 the identities ⟨𝐽𝑢, 𝑢⟩ = ‖𝑢‖2 = ‖𝐽𝑢‖2* hold true.

We note that the property of strict convexity of dual space 𝑋* in Definition 5 ensures [13]
the uniqueness of dualizing mapping 𝐽 : 𝑋 → 𝑋*, and 𝐽 is a potential operator with potential
𝑓(𝑢) = 1

2
‖𝑢‖2 [14].

We shall make use of the following theorem implied by known results proven in monograph
[14].

Theorem 8. Let 𝑋 be a real reflexive Banach space and 𝐴 : 𝑋 → 𝑋* be a semi-continuous
monotone coercive operator. Then equation 𝐴𝑢 = 𝑓 has the unique solution 𝑢* ∈ 𝑋 for
each 𝑓 ∈ 𝑋*. Moreover, if 𝑋 and 𝑋* are strictly convex spaces and operator 𝐴 is potential
and boundedly Lipschitz-continuous, then the sequence 𝑢𝑛+1 = 𝑢𝑛 − 𝛿𝑛 · 𝐽*(𝐴𝑢𝑛 − 𝑓), where
𝛿𝑛 = min{1, 2/[𝜀 + 𝜇(‖𝑢𝑛‖ + ‖𝐴𝑢𝑛 − 𝑓‖*)]}, 𝑛 = 0, 1, 2, 3, . . ., 𝐽* : 𝑋* → 𝑋 is a dualizing
mapping for 𝑋*, 𝜀 > 0 is an arbitrary number, converges to 𝑢* in the sense of the norm in
space 𝑋.

Proof. The existence and uniqueness of solution 𝑢* is implied by Browder-Minty principle and
the strong convergence of sequence {𝑢𝑛} to 𝑢* is implied via mentioned scheme from [14, Thm.
4.2] and [14, Rem. 4.13], since each uniformly monotone operator is strictly monotone and
possesses (S)-property [14].

The mentioned in Theorem 8 way of approximate finding solution 𝑢* is known as the steepest
descent method (or gradient method) [14] since 𝐽*𝑣 = ‖𝑣‖* · grad ‖𝑣‖* for all 𝑣 ∈ 𝑋*).

As opposed to Theorem 4, Theorem 8 is applicable to convolution type integral equations
with power nonlinearities. Namely, the following theorem holds true and it is in agreement
with Corollary 1.

Theorem 9. Let 𝛼 = 𝑟/𝑠 ∈ [1,∞), where 𝑟, 𝑠 = 1, 3, 5, . . . are odd number, 𝑓(𝑥) ∈
𝐿1+1/𝛼(−𝜋, 𝜋), ℎ(𝑥) ∈ 𝐿1(−𝜋, 𝜋) and condition (3) holds true. Then equation

𝑢𝛼(𝑥) +

𝜋∫︁
−𝜋

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡 = 𝑓(𝑥) (40)

has the unique solution 𝑢*(𝑥) ∈ 𝐿1+𝛼(−𝜋, 𝜋). If, in addition, kernel ℎ(𝑥) is an even function
and 𝛼 > 1 is an odd number, then this solution can be found via successive approximations
method by the formula:

𝑢𝑛+1 = 𝑢𝑛 − 𝛿𝑛 · ‖𝐴𝑢𝑛 − 𝑓‖1−1/𝛼
1+1/𝛼 · |𝐴𝑢𝑛 − 𝑓 |−1+1/𝛼 · [𝐴𝑢𝑛 − 𝑓 ], (41)

where 𝑛 = 0, 1, 2, 3, . . ., 𝑢0(𝑥) ∈ 𝐿1+𝛼(−𝜋, 𝜋) is an arbitrary function (initial approximation),
𝐴𝑢 = 𝑢𝛼 +𝐻𝑢,

𝛿𝑛 = min

⎛⎜⎝1,
2

𝜀+ 𝛼 ·
(︁
‖𝑢𝑛‖1+𝛼 + ‖𝐴𝑢𝑛 − 𝑓‖1+1/𝛼

)︁𝛼−1

+ 𝛾 · ‖ℎ‖1

⎞⎟⎠ , (42)

𝜀 > 0 is an arbitrary number, 𝛾 = (2𝜋)2𝛼/(𝛼+1).

Proof. We write equation (40) in an operator form

𝐴𝑢 = 𝑓, where 𝐴𝑢 = 𝑢𝛼 +𝐻𝑢. (43)

The existence and uniqueness of solution 𝑢*(𝑥) ∈ 𝐿1+𝛼(−𝜋, 𝜋) of equation (43) is implied by
Theorem 1, where we take 𝑝 = 1 + 𝛼, 𝜆 = 1, 𝐹 (𝑥, 𝑢) = 𝑢𝛼 and 𝛼 = 𝑟/𝑠.

It remains to prove the main statement of the theorem that sequence (41) converges to 𝑢*(𝑥)
in the sense of the norm in space 𝐿1+𝛼(−𝜋, 𝜋). In order to do it, we employ Theorem 8.
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By Lemma 1, as 𝑝 = 𝛼 + 1 > 2, we obtain that convolution operator 𝐻 acts continuously
from 𝐿1+𝛼(−𝜋, 𝜋) into 𝐿1+1/𝛼(−𝜋, 𝜋) and

‖𝐻𝑢‖1+1/𝛼 6 𝛾 · ‖ℎ‖1 · ‖𝑢‖1+𝛼, where 𝛾 = (2𝜋)2𝛼/(𝛼+1). (44)

Since 𝑢𝛼(𝑥) ∈ 𝐿1+1/𝛼(−𝜋, 𝜋), operator 𝐴 also acts from 𝐿1+𝛼(−𝜋, 𝜋) into 𝐿1+1/𝛼(−𝜋, 𝜋). Let
us show that operator 𝐴 is boundedly Lipschitz-continuous. For each 𝑢, 𝑣 ∈ 𝐿1+𝛼(−𝜋, 𝜋) we
have

‖𝐴𝑢− 𝐴𝑣‖1+1/𝛼 6 ‖𝑢𝛼 − 𝑣𝛼‖1+1/𝛼 + ‖𝐻(𝑢− 𝑣)‖1+1/𝛼 = 𝐼1 + 𝐼2.

Since |𝑡𝛼 − 𝑠𝛼| 6 (𝛼/2) · |𝑡− 𝑠| · (𝑡𝛼−1 + 𝑠𝛼−1) for all 𝑡, 𝑠 ∈ R and odd 𝛼 > 3, then

𝐼1 6
𝛼

2

⎛⎝ 𝜋∫︁
−𝜋

|𝑢(𝑥) − 𝑣(𝑥)|1+1/𝛼|𝑢𝛼−1(𝑥) + 𝑣𝛼−1(𝑥)|1+1/𝛼𝑑𝑥

⎞⎠𝛼/(𝛼+1)

6
𝛼

2
‖𝑢− 𝑣‖1+𝛼

⎛⎝ 𝜋∫︁
−𝜋

|𝑢𝛼−1(𝑥) + 𝑣𝛼−1(𝑥)|(𝛼+1)/(𝛼−1)𝑑𝑥

⎞⎠(𝛼−1)/(𝛼+1)

6
𝛼

2
‖𝑢− 𝑣‖1+𝛼

(︀
‖𝑢‖𝛼−1

1+𝛼 + ‖𝑣‖𝛼−1
1+𝛼

)︀
6 𝛼 · 𝑟𝛼−1 · ‖𝑢− 𝑣‖1+𝛼,

where 𝑟 = max (‖𝑢‖1+𝛼, ‖𝑣‖1+𝛼). Thus, estimating 𝐼2 by inequality (44), we have

‖𝐴𝑢− 𝐴𝑣‖1+1/𝛼 6 𝜇(𝑟) · ‖𝑢− 𝑣‖1+𝛼,

where 𝜇(𝑟) = 𝛼 · 𝑟𝛼−1 + 𝛾 · ‖ℎ‖1 is an increasing on [0,∞) function. Hence, 𝐴 is a boundedly
Lipschitz-continuous operator.

Let us show that 𝐴 is an uniformly monotone operator. Employing Lemma 1 and inequality
(𝑡𝛼 − 𝑠𝛼) · (𝑡− 𝑠) > 21−𝛼|𝑡− 𝑠|𝛼+1 valid for all 𝑡, 𝑠 ∈ R and odd 𝛼 > 3, we have

⟨𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣⟩ >
𝜋∫︁

−𝜋

[𝑢𝛼(𝑥) − 𝑣𝛼(𝑥)] · [𝑢(𝑥) − 𝑣(𝑥)] 𝑑𝑥

>21−𝛼 · ‖𝑢− 𝑣‖1+𝛼
1+𝛼 = 𝛽(‖𝑢− 𝑣‖1+𝛼) , ∀𝑢, 𝑣 ∈ 𝐿1+𝛼(−𝜋, 𝜋),

where 𝛽(𝑠) = 21−𝛼 · 𝑠𝛼+1 is a strictly increasing on [0,∞) function such that 𝛽(0) = 0, i.e., 𝐴
is an uniformly monotone operator.

Since 𝐹𝑢 = 𝑢𝛼 and 𝐻 are potential operators (see [13] and Remark 1), operator 𝐴 is also
potential. We finally observe that since spaces 𝐿1+𝛼(−𝜋, 𝜋) and 𝐿1+1/𝛼(−𝜋, 𝜋) are strictly
convex and dualizing mapping 𝐽* for space 𝐿1+1/𝛼(−𝜋, 𝜋) is of the form [15]:

𝐽*𝑤(·) = ‖𝑤‖1−1/𝛼
1+1/𝛼 · |𝑤(·)|1/𝛼−1 · 𝑤(·).

Therefore, due to Theorem 8, sequence (41) converges to 𝑢*(𝑥) in the sense of the norm in
space 𝐿1+𝛼(−𝜋, 𝜋).
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