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SOME PROPERTIES OF PRINCIPAL SUBMODULES IN THE

MODULE OF ENTIRE FUNCTIONS OF EXPONENTIAL

TYPE AND POLYNOMIAL GROWTH ON THE REAL AXIS
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Abstract. In the work we consider a topological module of entire functions 𝒫(𝑎; 𝑏),
which is the isomorphic image of Fourier-Laplace transform of Schwarz space formed by
distributions with compact supports in a finite or infinite segment (𝑎; 𝑏) ⊂ R. We study
the conditions ensuring that the principal submodule of module 𝒫(𝑎; 𝑏) can be uniquely
recovered by the zeroes of a generating function.

Keywords: entire functions, subharmonic functions, Fourier-Laplace transform, principal
submodules, local description of submodules, invariant subspaces, spectral synthesis.

Mathematics Subject Classification: 30D15, 30H99, 42A38, 47E05

1. Introduction

Let [𝑎1; 𝑏1] b [𝑎2; 𝑏2] b . . . be a sequence of segments exhausting a finite or infinite interval
(𝑎; 𝑏) in the real axis, 𝑃𝑘 be a Banach space consisting of entire functions 𝜙 having a finite
norm

‖𝜙‖𝑘 = sup
𝑧∈C

|𝜙(𝑧)|
(1 + |𝑧|)𝑘 exp(𝑏𝑘𝑦+ − 𝑎𝑘𝑦−)

, 𝑦± = max{0,±𝑦}, 𝑧 = 𝑥+ i𝑦. (1.1)

We denote 𝒫(𝑎; 𝑏) the inductive limit of sequence {𝑃𝑘}. The multiplication by independent
variable 𝑧 is continuous in this space and this is why 𝒫(𝑎; 𝑏) is a topological module over ring
of polynomials C[𝑧]. Each of the embedding 𝑃𝑘 ⊂ 𝑃𝑘+1 is completely continuous and therefore,
𝒫(𝑎; 𝑏) is a locally-convex space of type (𝐿𝑁*) (see [1]). It is known (see, for instance, [2, Ch.
I, Lect. 16, Thms. 1, 2]) that each element of space 𝒫(𝑎; 𝑏) is a function of completely regular
growth with order 1; its indicator diagram is a segment of the imaginary axis: [i𝑐𝜙; i𝑑𝜙] ⊂ (i𝑎; i𝑏).

In the present work we study principal submodules of module 𝒫(𝑎; 𝑏). We recall that a
principal submodule 𝒥𝜙 generated by a function 𝜙 ∈ 𝒫(𝑎; 𝑏) is the closure of the set {𝑝𝜙 : 𝑝 ∈
C[𝑧]} in 𝒫(𝑎; 𝑏).

For the sake of brevity, if else is not said, we shall say “submodule” meaning a closed
submodule.

The submodules of module 𝒫(𝑎; 𝑏) are in the duality relation with closed differentiation-
invariant subspaces of space 𝐶∞(𝑎; 𝑏) (see [3], [4]). Namely, Fourier-Laplace transform ℱ acting
in the strongly dual space (𝐶∞(𝑎; 𝑏))′ by the rule

ℱ(𝑆)(𝑧) = (𝑆, 𝑒−𝑖𝑡𝑧), 𝑆 ∈ (𝐶∞(𝑎; 𝑏))′

is a linear topological isomorphism of spaces (𝐶∞(𝑎; 𝑏))′ and 𝒫(𝑎; 𝑏) [5, Thm. 7.3.1]. At
that, between the set {𝒥 } of the closed submodules of module 𝒫(𝑎; 𝑏) and the set {𝑊} of
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closed differentiation-invariant subspaces of space 𝐶∞(𝑎; 𝑏) there is a one-to-one correspondence
described by the rule 𝒥 ←→ 𝑊 if and only if 𝒥 = ℱ(𝑊 0), where closed subspace 𝑊 0 ⊂
(𝐶∞(𝑎; 𝑏))′ consists of all distributions 𝑆 ∈ (𝐶∞(𝑎; 𝑏))′ annulating 𝑊 . The aim of the spectral
synthesis for closed differentiation-invariant subspaces 𝑊 ⊂ 𝐶∞(𝑎; 𝑏) was first considered in
work [6] (for an arbitrary interval (𝑎; 𝑏) ⊂ R). This problem is dual to the problem on a (weak)
localizability of submodules in 𝒫(𝑎; 𝑏).

Let us recall the series of notions characterizing the property of submodules (see [3], [4], [7],
[8]). For a submodule 𝒥 ⊂ 𝒫(𝑎; 𝑏) we let 𝑐𝒥 = inf

𝜙∈𝒥
𝑐𝜙, 𝑑𝒥 = sup

𝜙∈𝒥
𝑑𝜙. The set [𝑐𝒥 ; 𝑑𝒥 ] is called

indicator segment of submodule 𝒥 .
The divisor of a function 𝜙 ∈ 𝒫(𝑎; 𝑏) is defined by the formula

𝑛𝜙(𝜆) =

{︃
0, if 𝜙(𝜆) ̸= 0,

𝑚, if 𝜆 is a zero of 𝜙 of multiplicity 𝑚,

for all 𝜆 ∈ C, and the divisor of submodule 𝒥 ⊂ 𝒫(𝑎; 𝑏) is introduced by the formula 𝑛𝒥 (𝜆) =
min
𝜙∈𝒥

𝑛𝜙(𝜆).

A submodule 𝒥 is weakly localizable if it contains all functions 𝜙 ∈ 𝒫(𝑎; 𝑏) satisfying the
conditions: 1) 𝑛𝜙(𝑧) > 𝑛𝒥 (𝑧), 𝑧 ∈ C; 2) the indicator diagram of function 𝜙 is contained in the
set i[𝑐𝒥 ; 𝑑𝒥 ]. If 𝑐𝒥 = 𝑎 and 𝑑𝒥 = 𝑏, the weak localizability of 𝒥 means that this submodule is
ample.

Submodule 𝒥 is called stable at a point 𝜆 ∈ C if the conditions 𝜙 ∈ 𝒥 and 𝑛𝜙(𝜆) > 𝑛𝒥 (𝜆)
imply 𝜙/(𝑧 − 𝜆) ∈ 𝒥 . Submodule 𝒥 is stable if it is stable at each point 𝜆 ∈ C.

It is clear that the stability of submodule 𝒥 is the necessary condition of its localizability.
It follows from the results of [9, Sect. 4] that a principal submodule 𝒫(𝑎; 𝑏) is always stable.

It is can be also checked straightforwardly by employing the definition of stability and the
description of the topology in 𝒫(𝑎; 𝑏). By the duality principle [4, Prop. 1], the indicator
segment of a principle submodule is [𝑐𝜙; 𝑑𝜙].

Given a function 𝜙 ∈ 𝒫(𝑎; 𝑏), we denote by 𝒥 (𝜙) a weakly localizable submodule with the
divisor, which is equal to divisor 𝑛𝜙 of function 𝜙, and with indicator segment [𝑐𝜙; 𝑑𝜙]. In other
words, submodule 𝒥 (𝜙) consists of all functions 𝜓 ∈ 𝒫(𝑎; 𝑏) divisible by 𝜙 and having indicator
ℎ𝜓 = ℎ𝜙.

Submodules 𝒥𝜙 and 𝒥 (𝜙) have the same divisor, which is equal to 𝑛𝜙, and the same indicator
segment [𝑐𝜙; 𝑑𝜙]. This is why the inclusion

𝒥𝜙 ⊂ 𝒥 (𝜙)

holds true. The identity
𝒥𝜙 = 𝒥 (𝜙) (1.2)

is equivalent to the weak localizability of principal submodule 𝒥𝜙. As an example provided in
work [10] shows, this identity is not always true.

There are two options to satisfy identity (1.2).
(I) Submodule 𝒥 (𝜙), and therefore, principal submodule 𝒥𝜙, contain only functions 𝑝𝜙,

𝑝 ∈ C[𝑧]. In other words, the generator 𝜙 is such that the set of entire functions of minimal
type at order 1, which can be represented as Φ/𝜙, Φ ∈ 𝒫(𝑎; 𝑏), coincides with the set of
polynomials C[𝑧].

(II) The set 𝒥 (𝜙) ∖ {𝑝𝜙 : 𝑝 ∈ C[𝑧]} is non-empty and for each function Φ ∈ 𝒥 (𝜙) there
exists a generalized sequence of polynomials 𝑝𝛼 such that 𝑝𝛼𝜙→ Φ in the sense of the topology
in space 𝒫(𝑎; 𝑏).

The sufficient condition ensuring the first of the above options is the invertibility of function
𝜙: function 𝜙 ∈ 𝒫(−∞; +∞) is called invertible (see [11]) if for each same function Φ the
implication holds true: the condition “Φ ∈ 𝒫(−∞; +∞), Φ/𝜙 is an entire function” implies
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that Φ/𝜙 ∈ 𝒫(−∞; +∞), i.e., the principal ideal ℐ𝜙 generated by this function in algebra
𝒫(−∞;∞) is closed.

Indeed, it is easy to see that if 𝜙 ∈ 𝒫(𝑎; 𝑏) is invertible, then

𝒥 (𝜙) = 𝒥𝜙 = {𝑝𝜙 : 𝑝 ∈ C[𝑧]}. (1.3)

The invertibility of the generating functions turns out to be not the necessary condition for
(1.3). In what follows, in the second section, we shall construct an example of a non-invertible
function 𝜙 ∈ 𝒫(𝑎; 𝑏) satisfying relations (1.3).

Passing to case (II), we reproduce the above mentioned example in work [10]. Let (𝑎; 𝑏) =
(−2𝜋; 2𝜋) and

𝜙0(𝑧) =
sin 𝜋𝑧

𝑈(𝑧)𝑉 (𝑧)
, where 𝑈(𝑧) =

sin 𝜋
√
𝑧

𝜋
√
𝑧

, 𝑉 (𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧

22𝑛 + 1

)︂
. (1.4)

Theorem 1.2 in work [10] states (although in dual terms of admissibility of the spectral synthesis
in the weak sense) that principal submodule 𝒥𝜙0 is not weakly localizable in 𝒫(−2𝜋; 2𝜋).

In the third section of the present work we obtain some necessary conditions for the weak
localizability of principal submodule 𝒥𝜙 in 𝒫(𝑎; 𝑏) in the case, when the set

𝒥 (𝜙) ∖ {𝑝𝜙, 𝑝 ∈ C[𝑧]}

is non-empty. We also prove the following statement involving the above cited result [10, Thm.
1.2] as a particular case.

Theorem 3. Suppose that the generator of submodule 𝒥𝜙 is of the form

𝜙 =
Φ

𝜔
,

where Φ = 𝑒𝑖𝛾𝑧𝑆 ∈ 𝒫(𝑎; 𝑏), 𝑆 is a sine-like function, 𝛾 ∈ R, 𝜔 is an entire function of the
minimal type at order 1.

If the orders of function 𝜔 on the rays arg 𝑧 = 0 and arg 𝑧 = 𝜋 determined by the identities

𝜌0 = lim sup
𝑟→+∞

ln ln |𝑓(𝑟)|
ln 𝑟

, 𝜌𝜋 = lim sup
𝑟→+∞

ln ln |𝑓(−𝑟)|
ln 𝑟

, respectively,

satisfy one of the relations

𝜌0 < 1/4 < 1/2 6 𝜌𝜋 or 𝜌𝜋 < 1/4 < 1/2 6 𝜌0, (1.5)

then submodule 𝒥𝜙 is not weakly localizable.

2. Example of non-invertible function satisfying relations (1.3)

Suppose that ends 𝑎 and 𝑏 of an interval satisfy the conditions

𝑎 < −𝜋, 𝜋 < 𝑏.

We let

𝜙(𝑧) =
𝑠(𝑧)

𝑠1(𝑧)
+
𝜋𝑧𝑠(𝑧)

𝑠0(𝑧)
,

where

𝑠(𝑧) =
sin 𝜋𝑧

𝜋𝑧
, 𝑠1(𝑧) = 𝑠(

√
𝑧) =

sin 𝜋
√
𝑧

𝜋
√
𝑧

, 𝑠0(𝑧) =
∞∏︁
𝑘=1

(︁
1 +

𝑧

22𝑘

)︁
.
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It is well-known that function 𝑠 satisfy the estimates

|𝑠(𝑧)| 6 𝑐0𝑒
𝜋|Im 𝑧|

𝜋(1 + |𝑧|)
, 𝑧 ∈ C, (2.1)

|𝑠(𝑧)| > 𝑚𝑑𝑒
𝜋|Im 𝑧|

𝜋|𝑧|
, |𝑧 − 𝑘| > 𝑑, 𝑘 ∈ Z, (2.2)

where 𝑐0 is an absolute constant, 𝑑 ∈ (0; 1/2) is an arbitrary number, 𝑚𝑑 is a positive number
depending on 𝑑. It follows from (2.1) that entire function 𝑠1 obeys the upper bound:

|𝑠1(𝑧)| 6 𝑐0𝑒
𝜋
√

|𝑧|| sin(𝜃/2)|

𝜋(1 +
√︀
|𝑧|)

, 𝑧 = 𝑟𝑒𝑖𝜃, −𝜋 < 𝜃 6 𝜋, 𝑟 > 0. (2.3)

We summarize other auxiliary estimates as lemmata.

Lemma 1. Let a number 𝑑0 ∈ (0; 1/2) be small enough so that
⃒⃒⃒
sin𝜋𝜉
𝜋𝜉
− 1

⃒⃒⃒
6 1/2 as 𝜋|𝜉| 6 𝑑0.

Then there exists a constant 𝑐𝑑0 > 0 such that

|𝑠1(𝑧)| > 𝑐𝑑0𝑒
𝜋
√

|𝑧|| sin(𝜃/2)|

1 + |𝑧|
, 𝑧 ∈ C ∖

⋃︁
𝑘∈N

{︀
𝑧 : |𝑧 − 𝑘2| < 3𝑑0

}︀
. (2.4)

Proof. We first observe that for each 𝑧 satisfying inequalities

𝑑0
|𝑘|

6 |𝑧 − 𝑘| 6 𝑑0, 𝑘 ∈ Z ∖ {0}, (2.5)

the estimate

|𝑠(𝑧)| > 𝑑0
4|𝑧|2

(2.6)

holds true.
Employing standard methods, by inequalities (2.2) and (2.6) we obtain the estimate

|𝑠(𝑧)| > 𝑐𝑑0𝑒
𝜋|Im 𝑧|

1 + |𝑧|2
𝑧 ∈ C ∖

⋃︁
𝑘∈Z∖{0}

{︂
𝑧 : |𝑧 − 𝑘| < 𝑑0

|𝑘|

}︂
, (2.7)

where 𝑐𝑑0 is a positive constant depending on 𝑑0. Then the statement of the lemma is implied
by (2.7).

Lemma 2. For each 𝜃 ∈ (−𝜋; 𝜋) the asymptotic identity

ln 𝑠0(𝑟𝑒
𝑖𝜃) =

(ln 𝑟)2

ln 8
+
𝑖𝜃ln 𝑟

ln 4
+ 𝑜(ln 𝑟), 𝑟 →∞, (2.8)

holds true. There exist a number 𝛿 > 0 and a set 𝐸0 ⊂ (−∞; 0) of zero relative measure such
that for each 𝑥 ∈ (−∞; 0) ∖ 𝐸0 the identity

ln |𝑠0(𝑥)| > 𝛿 (ln (|𝑥|+ 1))2 (2.9)

holds true.

Proof. Counting function 𝑛(𝑟) of zeroes of function 𝑠0 satisfies the asymptotic relation

𝑛(𝑟) =
ln 𝑟

ln 4
+ 𝑜(ln 𝑟), 𝑟 →∞. (2.10)

Hence, by Theorem 1 in work [12], function 𝑠0 has a strong regular growth and it satisfies
asymptotic relation (2.8).
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By (2.10), function 𝑠0 satisfies the assumptions of Theorem 3.6.1 [13]. This theorem states
that

min
|𝑧|=𝑟
|𝑠0(𝑧)|

max
|𝑧|=𝑟
|𝑠0(𝑧)|

→ 1, (2.11)

as 𝑟 → +∞ outside some set 𝐸0 of zero relative measure.
By (2.11) we obtain that for some number 𝛿 > 0 inequality (2.9) holds true everywhere on

the half-line (−∞; 0) except set 𝐸0.

Theorem 1. Function 𝜙 is contained in 𝒫(𝑎; 𝑏) and is not invertible. Submodules 𝒥𝜙 and
𝒥 (𝜙) satisfy relations (1.3).

Proof. We consider the function 𝜙1 = 𝑠/𝑠1. This function satisfies the following estimate on the
real axis:

|𝜙1(𝑥)| 6 𝑐0

𝜋𝑐𝑑0𝑒
𝜋
√

|𝑥|
, 𝑥 6 0, (2.12)

|𝜙1(𝑥)| 6 𝑐0𝑒
3𝑑0𝜋

𝜋𝑐𝑑0
, 𝑥 > 0. (2.13)

The former of these estimates is a direct implication of estimates (2.1) and (2.4), while the
other, (2.13), can be obtained from the same estimates in the standard way by employing
maximum principle for analytic functions. In their turn, estimates (2.12) and (2.13) imply that
function 𝜙1 is bounded on the real axis. Taking into consideration that it has type 𝜋 at order
1, we conclude that

𝜙1 ∈ 𝒫(𝑎; 𝑏). (2.14)

Let us show that function 𝜙2 = (𝜋𝑧𝑠)/𝑠0 is also contained in 𝒫(𝑎; 𝑏). Both this function and
function 𝜙1 have type 𝜋 at order 1.

It follows from the proof of Lemma 2 that for each 𝜀 ∈ (0; 1/2) there exists 𝛿 > 0 such that
outside the union of the rings

𝐴𝑗 = {(1− 𝜀)4𝑗 6 |𝑧| 6 (1 + 𝜀)4𝑗}, 𝑗 = 1, 2, . . . ,

the inequality

ln |𝑠0(𝑧)| > 𝛿 (ln (|𝑧|+ 1))2 . (2.15)

holds true. Hence, for all real

𝑥 ̸∈
∞⋃︁
𝑗=1

(−(1 + 𝜀)4𝑗;−(1− 𝜀)4𝑗)

the inequality

ln |𝑠0(𝑥)| > 𝛿 (ln (|𝑥|+ 1))2 (2.16)

holds true.
In order to estimate function 𝜙2 in the intervals

(−(1 + 𝜀)4𝑗;−(1− 𝜀)4𝑗), 𝑗 ∈ N, (2.17)

we observe that by (2.15), on the boundary of ring 𝐴𝑗 the inequality

ln |𝜙2(𝑧)| 6 ln

⃒⃒⃒⃒
sin 𝜋𝑧

1− 𝑧2/42𝑗

⃒⃒⃒⃒
+ 2 ln(2 + 𝜀)− 𝛿

(︀
ln((1− 𝜀)4𝑗 + 1)

)︀2
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holds true. Since the right hand of this inequality is a function harmonic in ring 𝐴𝑗, this

inequality is true for each 𝑧 ∈ 𝐴𝑗. Therefore, there exist positive numbers 𝛿 > 𝛿 and 𝑐 > 1
depending on 𝛿 and 𝜀 and independent of 𝑗 such that in intervals (2.17) the estimate

|𝜙2(𝑥)| 6 𝑐

𝑒𝛿(ln(|𝑥|+1))2
, 𝑥 ∈ (−(1 + 𝜀)4𝑗;−(1− 𝜀)4𝑗), 𝑗 ∈ N,

holds true. In view of (2.16) it implies that on the real axis the inequality

|𝜙2(𝑥)| 6 𝑐

𝑒𝛿(ln(|𝑥|+1))2
(2.18)

holds true. Applying Paley-Wiener-Schwarz theorem [5, Thm. 7.3.1], we conclude that

𝜙2 ∈ ℱ(𝐶∞
0 (𝑎; 𝑏)) ⊂ 𝒫(𝑎; 𝑏). (2.19)

It follows from (2.14) and (2.19) that function 𝜙 belongs to space 𝒫(𝑎; 𝑏).
In order to prove the non-invertibility of function 𝜙, we shall make use of the analyticity

criterion by L. Ehrenpreis [14, Thm. I]:
function 𝜙 ∈ 𝒫(𝑎; 𝑏) is invertible if and only if there exists a positive number 𝑎 with the property:
for each 𝑥 ∈ R there exists 𝑦 ∈ R such that

|𝑥− 𝑦| 6 𝑎 ln(1 + |𝑥|), 𝜙(𝑦) > (𝑎+ |𝑦|)−𝑎.

By (2.12) and (2.18), there exists a positive number 𝑐1 such that on the ray (−∞; 0) function
𝜙 satisfies the estimate

ln |𝜙(𝑥)| 6 −𝛿 (ln(|𝑥|+ 1))2 + 𝑐1.

Comparing this estimate and the invertibility criterion by L. Ehrenpreis, we conclude that
function 𝜙 is not invertible.

Let us prove the latter of the statements formulated for function 𝜙, which is the identity

𝒥 (𝜙) = {𝑝𝜙 : 𝑝 ∈ C[𝑧]}. (2.20)

It follows from estimates (2.2), (2.4) and relation (2.8) that for each positive 𝜃0 there exists
a constant 𝑎0 = 𝑎0(𝜃0) such that outside the angles {𝑧 : | arg 𝑧| < 𝜃0}, {𝑧 : |𝜋 − arg 𝑧| < 𝜃0}
function 𝜙 admits the lower bound:

|𝜙(𝑧)| > |𝑠(𝑧)|
(︂

𝜋|𝑧|
|𝑠0(𝑧)|

− 1

|𝑠1(𝑧)|

)︂
>

𝑎0𝑒
𝜋|Im 𝑧|

exp
(︀
(ln(|𝑧|+ 1))2 / ln 8

)︀ . (2.21)

Let Φ be an arbitrary function in submodule 𝒥 (𝜙). For some 𝐶0 > 0 and 𝑘 ∈ N we have

|Φ(𝑧)| 6 𝐶0(1 + |𝑧|)𝑘𝑒𝜋|Im 𝑧|, 𝑧 ∈ C. (2.22)

Employing this relation, estimate (2.21) and Phragmén-Lindelöf principle, it is easy to get that
function 𝜔 = Φ/𝜙 satisfies the estimate

|𝜔(𝑧)| 6 𝐶𝑒𝑘 ln(|𝑧|+1)+(ln(|𝑧|+1))2 (2.23)

in the whole complex plane, where 𝐶 > 0 is some constant. In particular, this estimate means
that 𝜔 is an entire function of zero order.

Let us estimate function 𝜔 on the ray (3𝑑0; +∞). In order to do it, we observe that by (2.2),
(2.3), (2.8), everywhere in the half-strip {𝑧 = 𝑥+ 𝑖𝑦 : 𝑥 > 3𝑑0, |𝑦| 6 𝑑0} but outside the circles
|𝑧 − 𝑘| < 3𝑑0, 𝑘 ∈ N, the estimate

|𝜙(𝑧)| > |𝑠(𝑧)|
(︂

1

|𝑠1(𝑧)|
− 𝜋|𝑧|
|𝑠0(𝑧)|

)︂
>

𝑏0
1 + |𝑧|

(2.24)

holds true for some constant 𝑏0 > 0.
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Taking into consideration estimate (2.22) for function Φ, by (2.24) we obtain that for all
positive 𝑥 the inequality

|𝜔(𝑥)| 6 (𝐶0/𝑏0)(1 + 𝑥)𝑘+1 (2.25)

holds true. Estimates (2.23) and (2.25) and Phragmén-Lindelöf principle imply that 𝜔 is a
polynomial. Since this fact holds true for each entire function 𝜔 of the form Φ/𝜙, Φ ∈ 𝒥 (𝜙),
we conclude that desired relation (2.20) holds true for the submodules.

3. Necessary conditions of weak localizability of principle submodule

We denote by 𝒫0(𝑎; 𝑏) ⊂ 𝒫(𝑎; 𝑏) the image of the space of compactly supported infinitely
differentiable functions 𝐶∞

0 (𝑎; 𝑏) ⊂ (𝐶∞(𝑎; 𝑏))′ under the transform ℱ .
We consider function 𝜙 ∈ 𝒫(𝑎; 𝑏), for which submodule 𝒥𝜙 contains the elements of the form

Φ = 𝜔𝜙, 𝜔 is an entire function not being a polynomial. (3.1)

In this section we obtained some conditions necessary for the weak localizability of principal
submodule 𝒥𝜙
Theorem 2. Principal submodule 𝒥𝜙 contains function Φ of the form (3.1) if and only if

𝜙 ∈ 𝒫0(𝑎; 𝑏).

Proof. 1. Necessity. Let us prove the equivalent implication: the condition

𝜙 ̸∈ 𝒫0(𝑎; 𝑏) (3.2)

implies the identity
𝒥𝜙 = {𝑝𝜙 : 𝑝 ∈ C[𝑧]}. (3.3)

In accordance with the aforementioned Paley-Wiener-Schwarz theorem [5, Thm. 7.3.1], it
follows from (3.2) that there exist a natural number 𝑘0 and a real sequence

𝑥𝑛, 𝑛 = 1, 2, . . . , |𝑥𝑛| → ∞,
for which

|𝜙(𝑥𝑛)| > |𝑥𝑛|−𝑘0 , 𝑛 = 1, 2, . . . (3.4)

On the other hand, the inclusion 𝜙 ∈ 𝒫(𝑎; 𝑏) means that for some 𝐶 > 0 and 𝑚0 ∈ N
⋃︀
{0}

the estimate
|𝜙(𝑧)| 6 𝐶(1 + |𝑧|)𝑚0𝑒𝑏𝑚0𝑦

+−𝑎𝑚0𝑦
−

(3.5)

holds true everywhere in C, where 𝑦± = max{0,±𝑦}, 𝑧 = 𝑥+ i𝑦, 𝑎 < 𝑎𝑚0 < 𝑏𝑚0 < 𝑏. Estimates
(3.4) and (3.5) imply that for each natural 𝑗, the closure of the set (possibly, an empty one)

𝑃𝑗
⋂︁
{𝑝𝜙 : 𝑝 ∈ C[𝑧]} (3.6)

in Banach space 𝑃𝑗 is contained in the set (possibly, an empty one)

𝑃𝑗
⋂︁
{𝑝𝜙 : 𝑝 ∈ C[𝑧], deg 𝑝 6 𝑗 + 𝑘0 −𝑚0},

which is, in its turn, a subset of set (3.6). Therefore, set (3.6) is closed for each 𝑗 ∈ N. In
accordance with the criterion of the closedness in a space of type (𝐿𝑁*) [1, Thm. 1], the set
{𝑝𝜙 : 𝑝 ∈ C[𝑧]} is closed in 𝒫(𝑎; 𝑏) and therefore, (3.3) holds true.

2. Sufficiency. Let 𝜙 = ℱ(𝑠), 𝑠 ∈ 𝐶∞
0 (𝑎; 𝑏), [𝑎0; 𝑏0] be the closure the convex hull of the

support of function 𝑠, [𝑎0; 𝑏0] b (𝑎; 𝑏) and let 𝜙 ∈ 𝑃𝑘1 .
By Paley-Wiener-Schwarz theorem, there exist positive constants 𝐶𝑛, 𝑛 = 1, 2, . . . , such that

the estimates

|𝜙(𝑧)| 6 𝐶𝑛
(1 + |𝑧|)𝑛

𝑒𝑏0𝑦
+−𝑎0𝑦− , 𝑧 = 𝑥+ 𝑖𝑦 ∈ C, 𝑛 ∈ N, (3.7)

hold true.
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We let

𝑓(𝑟) = sup
𝑛∈N

(𝑛 ln(1 + 𝑟)− ln𝐶𝑛),

and consider a subharmonic in C function 𝑣(𝑧) = 𝑓(|𝑧|). According to Theorem 5 in work [15],
there exists an entire function 𝜔 such that outside the set of circles with a finite sum of radii,
the inequality

|ln |𝜔(𝑧)| − 𝑣(𝑧)| 6 𝑚0ln(1 + |𝑧|)
holds true for some natural number 𝑚0. In particular, 𝜔 ̸∈ C[𝑧]. Therefore, Φ = 𝜔𝜙 is an entire
function of the form (3.1) belonging to submodule 𝒥 (𝜙).

Let us show that Φ ∈ 𝒥𝜙, in other words, that function Φ can be approximated in the
topology of space 𝒫(𝑎; 𝑏) by functions of the form 𝑝𝜙, where 𝑝 is a polynomial.

The possibility of such approximation is implied by the following statement.

Lemma 3. There exists a sequence of polynomials 𝑝𝑗 converging to function 𝜔 on the real
axis in the weighted norm ‖ · ‖𝑉 determined by the formula

‖𝑓‖𝑉 = sup
𝑥∈R

|𝑓(𝑥)|
𝑉 (𝑥)

, (3.8)

where 𝑉 (𝑥) = 𝐶1(1 + |𝑥|)𝑚0+3𝑒𝑣(𝑥) and constant 𝐶1 comes from inequalities (3.7).

Proof of Lemma 3. In monograph [16, Ch. VI], as weight 𝑉 , there was chosen an even weight
function 𝑊 defined on the real axis and satisfying the conditions
1) 𝑊 (𝑥) > 1, 𝑥 ∈ R,
for each natural 𝑛, the fraction 𝑥𝑛/𝑊 (𝑥) tends to zero as 𝑥→ ±∞,
ln𝑊 (𝑥) is a convex function of 𝑡 = ln |𝑥|;
2) for each 𝛿 > 1 there exists a constant 𝐶𝛿 > 0 such that

𝑥2𝑊 (𝑥) 6 𝐶𝛿(𝛿𝑥), 𝑥 ∈ R.

It follows from de Branges theorem [16, VI.H.1] and the theorems proved by P. Koosis in the
same work [16, VI.H.2] that for weight 𝑊 satisfying Conditions 1) and 2) each entire function
𝜔 of minimal type at order 1 growing over the real axis slower than 𝑊 :

|𝜔(𝑥)|
𝑊 (𝑥)

→ 0, 𝑥→ ±∞,

is approximated by polynomials in the norm ‖𝜔‖𝑊 = sup
𝑥∈R

|𝜔(𝑥)|
𝑊 (𝑥)

.

The function 𝑉 (𝑥) = 𝐶1(1 + |𝑥|)𝑚0+1𝑒𝑣(𝑥) satisfies Conditions 1) and, generally speaking,
does not satisfy Condition 2). However, tracking the proof by P. Koosis in [16, VI.H.2], we see
that it is possible to approximate function 𝜔 by polynomials on the real axis in the norm ‖ · ‖𝑉 ,
𝑉 = (1 + |𝑥|)2𝑉 .

The definition of function 𝑉 yields that there exists a constant 𝐶0 > 0 such that

|𝑝𝑗(𝑥)𝜙(𝑥)| 6 𝐶0(1 + |𝑥|)𝑚0+3, 𝑗 = 1, 2, . . .

on the real axis. Employing Phragmén-Lindelöf principle, we obtain on the complex plane

|𝑝𝑗(𝑧)𝜙(𝑧)| 6 𝐶0(1 + |𝑧|)𝑚0+3𝑒𝑏0𝑦
+−𝑎0𝑦− , 𝑗 = 1, 2, . . .

Taking into consideration that space 𝒫(𝑎; 𝑏) belongs to the class of locally-convex spaces of
type (𝐿𝑁*) and employing the properties of such spaces, by the above estimates we get that
there exists a subsequence in this sequence converging to function Φ in 𝒫(𝑎; 𝑏).
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Remark 1. Function 𝜙1 = (sin𝜋𝑧)/(
√
𝑧 sin 𝜋

√
𝑧) considered in Section 1 does not belong to

class 𝒫0(𝑎; 𝑏), but the set
𝒥 (𝜙1) ∖ {𝑝𝜙 : C[𝑧]}

contains the function sin𝜋
√
𝑧√

𝑧
and therefore, it is non-empty. Thus, as opposed to principal

submodule 𝒥𝜙, submodule 𝒥 (𝜙) can contain functions 𝜔𝜙, 𝜔 ̸∈ C[𝑧] also when generating
function 𝜙 is not in class 𝒫0(𝑎; 𝑏). Nevertheless, the proven theorem implies that principal
submodule 𝒥𝜙 with a generator 𝜙 ̸∈ 𝒫0(𝑎; 𝑏) is weakly localizable if and only if relations (1.3)
hold true.

Proof of Theorem 3. We begin with an auxiliary statement.

Lemma 4. Under the assumptions of the theorem there exists a positive number 𝑑 such that
for each natural 𝑛 function 𝜙 can be represented as the product of two entire functions 𝜙1,𝑛 and
𝜙2,𝑛 satisfying the condition: for all 𝑧 outside the strip |Im 𝑧| < 3𝑑 the inequalities⃒⃒

ln |𝜙1,𝑛(𝑧)| − 2−𝑛 ln |𝜙(𝑧)|
⃒⃒
6 ln (1 + |𝑧|) + 𝐴0 (3.9)

hold true, where 𝐴0 is a positive constant depending only on 𝑑, 𝑎, 𝑏.

Proof of Lemma 4. Since the zero set of function 𝜙 is a part of the zero set of a sine-like function,
it is contained in some horizontal strip |Im 𝑧| < 𝑑/2, see, for instance, [2, Ch. III, Lect. 22]).

We shall make use of the following theorem in work [17, Thm. 2]:
Let 𝑓 be an entire function, whose zeroes are located in the strip |Im 𝑧| 6 𝑑/2, and there exists
an entire function 𝐹 divisible by function 𝑓 and satisfying the conditions

ln |𝐹 (𝑧)| 6 𝐻(𝑧), 𝐹 (0) = 1, (3.10)

where function 𝐻 is Lipschitz:

|𝐻(𝑧′)−𝐻(𝑧′′)| 6 𝜎|𝑧′ − 𝑧′′|, 𝑧′, 𝑧′′ ∈ C.
Then 𝑓 is represented as the product of two entire functions 𝑓1 and 𝑓2, and for 𝑧, |Im 𝑧| > 3𝑑,
and each 𝑝 > 1 the relation

|ln |𝑓1(𝑧)| − ln |𝑓2(𝑧)|| 6 𝐶0

𝑝
(𝐻(𝑧)− ln |𝐹 (𝑧)|) + 𝐶1 + ln(1 + |𝑧|) + 𝐶2 + 𝐶3𝑒

𝑝 (3.11)

holds true, where 𝐶𝑗 are some constants depending on 𝜎, 𝑑, 𝐻(0).
We let 𝑓 = 𝜙, 𝐹 = Φ, 𝐻(𝑟𝑒𝑖𝜃) = ℎΦ(𝜃)𝑟, ℎΦ is the indicator of function Φ, 𝜎 = max

𝜃∈[0;2𝜋]
|ℎΦ(𝜃)|,

𝑝 = 1. Since by the properties of sine-like function [2] as |Im 𝑧| > 3𝑑 we have

|𝐻(𝑧)− ln |𝐹 (𝑧)|| = |ℎΦ(arg 𝑧)|𝑧| − ln |Φ(𝑧)|| 6 𝐶4,

where constant 𝐶4 depend only on function Φ, we obtain the representation of function 𝜙 as
the product of two entire functions 𝜙1,1 and 𝜙2,1, and

|ln |𝜙1,1(𝑧)| − ln |𝜙2,1(𝑧)|| 6 ln(1 + |𝑧|) + 𝐴0, |Im 𝑧| > 3𝑑, (3.12)

constant 𝐴0 depends only on function Φ.
By (3.12) and identity

ln |𝜙| = ln |𝜙1,1|+ ln |𝜙2,1|
we obtain the estimate⃒⃒⃒⃒

ln |𝜙1,1(𝑧)| − 1

2
ln |𝜙(𝑧)|

⃒⃒⃒⃒
6

1

2
ln(1 + |𝑧|) +

𝐴0

2
, |Im 𝑧| > 3𝑑. (3.13)

Applying the above cited theorem by R.S. Yulmukhametov to the function 𝑓 = 𝜙1,1 with the
same 𝐹, 𝐻, 𝜎 and 𝑝 as above, we obtain the representation

𝜙1,1 = 𝜙1,2𝜙2,2,
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where entire function 𝜙1,2 satisfies the estimate⃒⃒⃒⃒
ln |𝜙1,2(𝑧)| − 1

2
ln |𝜙1,1(𝑧)|

⃒⃒⃒⃒
6

1

2
ln(1 + |𝑧|) +

𝐴0

2
, |Im 𝑧| > 3𝑑.

This estimate and (3.13) yield⃒⃒⃒⃒
ln |𝜙1,2(𝑧)| − 1

22
ln |𝜙(𝑧)|

⃒⃒⃒⃒
6

(︂
1

2
+

1

22

)︂
(ln(1 + |𝑧|) + 𝐴0) , |Im 𝑧| > 3𝑑.

Repeating this process, in 𝑛 steps we obtain the representation of function 𝜙 as the product of
two entire functions 𝜙1,𝑛 and 𝜙2,𝑛 and for all 𝑧 outside the strip |Im 𝑧| < 3𝑑 desired estimate
(3.9) holds true.

Let us prove that under the assumption of the theorem function Φ can not belong to principal
module 𝒥𝜙. We assume the opposite: there exists a generalized sequence of polynomials 𝑝𝛼 such
that 𝑝𝛼𝜙 converges to Φ in space 𝒫(𝑎; 𝑏). We fix a natural number 𝑛0, for which function 𝜙𝜙1,𝑛0

lies in 𝒫(𝑎; 𝑏). Employing the properties of space 𝒫(𝑎; 𝑏), it is easy to prove the existence of
a countable subsequence 𝑝𝛼𝑘

𝜙𝜙1,𝑛0 , 𝑘 = 1, 2, . . . , converging to function Φ𝜙1,𝑛0 in one of the
norms ‖ · ‖𝑚0 (cf. (1.1)). In particular, this subsequence is bounded in the sense of this norm:
for some constant 𝐶 > 0 and all natural numbers 𝑘 we have

|𝑝𝛼𝑘
(𝑧)𝜙(𝑧)𝜙1,𝑛0(𝑧)| 6 𝐶(1 + |𝑧|)𝑚0 exp(𝑏𝑚0𝑦

+ − 𝑎𝑚0𝑦
−), 𝑦 = Im 𝑧, 𝑧 ∈ C.

By these inequalities, Lemma 4 and the properties of sine-like functions we obtain that on the
line Im 𝑧 = 𝑦0, |𝑦0| > 3𝑑, the estimates

|𝑝𝛼𝑘
(𝑧)| 6 𝐶(1 + |𝑧|)𝑚0+1|𝜔(𝑧)|1+2−𝑛0 (3.14)

hold true, where 𝐶 is a positive constant depending only on 𝑑.
Assume that the former of relations (1.5) hold true and let us estimate |𝑝𝛼𝑘

(𝑧)| on the half-line
𝑧 = 𝑥+ 𝑖𝑦0, 𝑥 > 0, 𝑦0 > 3𝑑.

According to the remark after Theorem3 in [2, S14.2] and in view of the fact that function 𝜔
has the minimal type at order 1, for all 𝑥 ∈ R, 𝑦0 > 0 we can write

ln |𝜔(𝑥+ 𝑖𝑦0)| =
𝑦0
𝜋

∫︁ +∞

−∞

ln |𝜔(𝑡)|
(𝑡− 𝑥)2 + 𝑦20

d 𝑡+
∞∑︁
𝑗=1

ln

⃒⃒⃒⃒
𝑥+ 𝑖𝑦0 − 𝜆𝑗
𝑥+ 𝑖𝑦0 − �̄�𝑗

⃒⃒⃒⃒
,

where {𝜆𝑗} is the set of zeroes of function 𝜔 in the upper half-plane.

Let us estimate
+∞∫︀
−∞

ln |𝜔(𝑡)|
(𝑡−𝑥)2+𝑦20

d 𝑡 for positive 𝑥 and 𝑦0. We have

∫︁ +∞

−∞

ln |𝜔(𝑡)|
(𝑡− 𝑥)2 + 𝑦20

d 𝑡 =

∫︁ 0

−∞

ln |𝜔(𝑡)|
(𝑡− 𝑥)2 + 𝑦20

d 𝑡

+

∫︁ 2𝑥

0

ln |𝜔(𝑡)|
(𝑡− 𝑥)2 + 𝑦20

d 𝑡+

∫︁ +∞

2𝑥

ln |𝜔(𝑡)|
(𝑡− 𝑥)2 + 𝑦20

d 𝑡 = 𝐼1 + 𝐼2 + 𝐼3.

(3.15)
For the first term 𝐼1 we have the estimate

|𝐼1| 6
∫︁ +∞

−∞

| ln |𝜔(𝑡)||
𝑡2 + 𝑦20

d 𝑡 < +∞, (3.16)

the finiteness of the integral is implied by the remark in [2, Sect. 14.2]. For each positive
number 𝜀 < 1/8− 𝜌0/2 there exist positive constants 𝑏𝜀, 𝑐𝜀 such that

ln |𝜔(𝑥)| 6 𝑏𝜀𝑥
𝜌0+𝜀 + 𝑐𝜀
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for all 𝑥 > 0. This is why terms 𝐼2 and 𝐼3 can be estimated as follows:

𝐼2 6 (2𝜌0+𝜀𝑏𝜀𝑥
𝜌0+𝜀 + 𝑐𝜀)

∫︁ 2𝑥

0

d 𝑡

(𝑡− 𝑥)2 + 𝑦20
6

𝜋

𝑦0

(︀
2𝜌0+𝜀𝑏𝜀𝑥

𝜌0+𝜀 + 𝑐𝜀
)︀
, (3.17)

𝐼3 6 (𝑏𝜀 + 𝑐𝜀)

(︂∫︁ +∞

1

𝑡𝜌0+𝜀

𝑡2/4 + 𝑦20
d 𝑡+ 𝑦−2

0

)︂
6 (𝑏𝜀 + 𝑐𝜀)

(︂
4

∫︁ +∞

1

d 𝑡

𝑡2−𝜌0−𝜀
+ 𝑦−2

0

)︂
. (3.18)

It follows from relations (3.14)–(3.18) that on the half-line 𝑧 = 𝑥 + 𝑖𝑦0, 𝑥 > 0, 𝑦0 > 3𝑑 the
estimates

|𝑝𝛼𝑘
(𝑧)| 6 𝐶 ′(1 + |𝑧|)𝑚0+1 exp(𝐶 ′′|𝑧|𝜌0+𝜀), 𝑘 = 1, 2, . . . ,

hold true, where 𝐶 ′, 𝐶 ′′ are positive constants depending on 𝜀 and 𝑦0 and independent of 𝑥 and
𝑘.

Employing Phragmén-Lindelöf principle, by these estimates it is easy to see that the inequal-
ities

|𝑝𝛼𝑘
(𝑧)| 6 𝐶 exp(|𝑧|𝜌0+2𝜀), 𝑘 = 1, 2, . . . ,

hold true in the complex plane and constant 𝐶 > 0 depends on 𝜀 but is independent of 𝑘 and
𝑧. In its turn, it implies that function 𝜔 (being equal to the limit of sequence 𝑝𝛼𝑘

) should have
order in the whole plane less than 1/4 that is impossible by conditions (1.5).

Remark 2. The condition max(𝜌0, 𝜌𝜋) > 1/2 is necessary for the strict inequality
min(𝜌0, 𝜌𝜋) < max(𝜌0, 𝜌𝜋) by Wiman theorem (see, for instance, [18, Ch. 1, Sect. 18, Thm.
30]).

Remark 3. Function 𝑉 (−𝑧), where 𝑉 (𝑧) is the function in the definition of 𝜙0 in (1.4),
satisfies both relations, (2.8) and (2.9) of Lemma 2. Employing this fact and Lemma 1, it is
easy to make sure that function 𝜙0 in work [10] cited in Introduction satisfies the assumptions
of the proven theorem. Namely, 𝜙0 = sin𝜋𝑧

𝜔
, where 𝜔 = 𝑈𝑉, and orders 𝜌0 and 𝜌𝜋 of function

𝜔 are equal to 0 and 1/2, respectively. Applying Theorem 3 gives the proof of the absence of
the weak localizability for principal module 𝒥𝜙 in each module 𝒫(𝑎; 𝑏), 𝑎 < −𝜋, 𝜋 < 𝑏, and this
proof is different in comparison with that given in [10].
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