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GENERAL REGULARIZED TRACE FORMULAE
FOR LOADED EQUATIONS

I.D. TSOPANOV

Abstract. We consider regularized traces for differential operators with the coefficients at
the powers of a spectral parameter being the values of an unknown function at prescribed
points in its domain. Such differential operators are interpreted as polynomial operator
pencils whose coefficients are unbounded fininte-dimensional operators. Basing on the theory
of M.V. Keldysh, we construct general regularized trace formulae for such operator pencils.
The obtained formulae develop a known result by V.A. Sadovnichii and V.A. Lyubishkin
for relative finite-dimensional perturbations of self-adjoint operators.
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1. Introduction

We consider the operator pencil

𝑁𝜆 = 𝐴−𝑄0 − 𝜆𝑄1 − · · · − 𝜆𝑛−1𝑄𝑛−1 − 𝜆𝑛𝐸, (1)

where 𝐴 is an unbounded self-adjoint operator in a separable Hilbert space H with a compact
resolvent. Operators 𝑄0, 𝑄1, . . . , 𝑄𝑛−1 are assumed to be 𝐴-finite-dimensional, i.e., they read
as 𝑄𝑗 = 𝑃𝑗𝐴, where 𝑃𝑗 are finite-dimensional bounded operators in H:

∀ℎ ∈ H 𝑃𝑗ℎ =

𝑛𝑗∑︁
𝑙=1

(ℎ, 𝜙𝑗
𝑙 )𝜓

𝑗
𝑙 , (2)

where 𝜙𝑗
𝑙 , 𝜓

𝑗
𝑙 ∈ H, 𝑗 = 0, 1, . . . , 𝑛− 1; 𝑙 = 1, . . . , 𝑛𝑗. We observe that if vectors 𝜙𝑗

𝑙 do not belong
to the domain of operator 𝐴, then 𝑄𝑗 is an unbounded operator in H.

The above operator pencils appear, for instance, while solving initial boundary value problems
for loaded equations [1, 2]

𝜕2𝑢(𝑡, 𝑥)

𝜕2𝑡
=
𝜕2𝑢(𝑡, 𝑥)

𝜕2𝑥
+

𝜈∑︁
𝑖=1

𝑎𝑖(𝑥)𝑢(𝑡, 𝑥𝑖) +

𝜇∑︁
𝑗=1

𝑏𝑗(𝑥)
𝜕𝑢(𝑡, 𝑧𝑗)

𝜕𝑡
.

by the Fourier method.
As a regularized trace formula for pencil (1) we call the formula∑︁

𝜈

(𝜇𝑠
𝜈 − 𝜂𝑠𝜈 − 𝑐𝜈(𝑠)) = 𝐹 (𝑠), (3)

where 𝜇𝜈 and 𝜂𝜈 are the eigenvalues of pencils 𝑁𝜆 and 𝐴𝜆𝑛
𝑑𝑒𝑓
= 𝐴 − 𝜆𝑛𝐸, respectively, 𝑠 is the

arc length, 𝑐𝜈(𝑠) and 𝐹 (𝑠) are some quantities. In the left hand side of (3) the sum symbol
denotes a summation, probably with some brackets, over all eigenvalues of pencils 𝑁𝜆 and 𝐴𝜆𝑛 ,
and the way of placing brackets depend on the behavior of spectrum of operator 𝐴.

I.D. Tsopanov, General regularized trace formulae for loaded equations.
c○ Tsopanov I.D. 2015.
Submitted October 13, 2014.

70

http://dx.doi.org/10.13108/2015-7-1-70


GENERAL REGULARIZED TRACES FORMULAE . . . 71

As 𝑛 = 1 and 𝑠 = 1, a regularized trace formula was obtained first in work [3] for a relative
finite-dimensional perturbation of an unbounded self-adjoint operator under rather general
assumptions for the sparseness of its spectrum. In work [4] there were obtained regularized
traces as 𝑛 = 1 and 𝑠 > 1 for relative finite-dimensional perturbation and they are expressed
as recurrent formulae. As 𝑠 > 1, the construction of regularized trace formulae in the case
of infinite-dimensional perturbations is a more complicated problem. By the methods of the
perturbation theory for abstract operators with discrete spectra in Hilbert space, formulae (3)
were obtained in [5] (see also [6]) under a condition for the sparseness of the spectrum of
an unperturbed operator. An essential progress in this direction was made in [7], where the
restrictions for the sparseness of the spectrum were omitted. The survey and detailed analysis
of the results obtained in the theory of regularized traces of operators were provided in [8].

Paper [9] was likely the first work devoted to constructing regularized trace formulae by
analytic methods for a loaded ordinary differential equation, which in some cases can be treated
as operator pencil (1). In the present work we obtain regularized trace formulae (3) for operator
pencils (1) and arbitrary 𝑠 ∈ N.

It is interesting to note that the history of regularized traces for polynomial operator pencils
reproduce the history of operator traces. Works [10]–[14] are devoted to constructing the
formulae for the sums of the inverses for the eigenvalues of polynomial operator pencils. The
main approach in these works is the linearization method and the known Lidskii’s theorem on
trace of a nuclear operator [15].

2. Preliminaries

In what follows we assume that 𝜆 = 0 /∈ 𝜎(𝐴), i.e., 𝑇 = 𝐴−1 is a compact operator. From
original pencil (1) we pass to the pencil 𝐿𝜆 = 𝑁𝜆𝐴

−1:

𝐿𝜆 = 𝐸 − 𝑃0 − 𝜆𝑃1 − · · · − 𝜆𝑛−1𝑃𝑛−1 − 𝜆𝑛𝑇. (4)

A complex number 𝜇 is an eigenvalue of pencil 𝐿𝜆 if 𝐿𝜇𝑦 = 0 for some non-zero vector 𝑦 ∈ H. It
was shown in work [16] that the spectrum of pencil 𝐿𝜆 is formed by a discrete set of eigenvalues
𝜎(𝐿𝜆) = {𝜇𝑘}∞𝑘=1 with the only accumulation point at infinity.

Let {𝜆𝜈}∞𝜈=1 be the eigenvalues of pencil 𝑇𝜆 = 𝐸 − 𝜆𝑇 , i.e., 𝜎(𝑇𝜆) = {𝜆𝜈}∞𝜈=1. We consider
also the pencil 𝑇𝜆𝑛

𝑑𝑒𝑓
= 𝐸 − 𝜆𝑛𝑇 whose eigenvalues are denoted by 𝜂𝑘, i.e., 𝜎(𝑇𝜆𝑛) = {𝜂𝑘}∞𝑘=1.

We index the eigenvalues in the order of ascending absolute values with the multiplicities taken
into account. We have the following lemma [16]

Lemma 1 (M.V. Keldysh). Let 𝐸 − 𝐿𝜆 be an analytic in D ⊆ C operator function with the
values in the ideal S∞ of compact operators. Then the trace of the principal part of the operator
𝜕𝐿𝜆

𝜕𝜆
𝐿−1
𝜆 for the pole 𝜆 = 𝑐 is equal to 𝑁

𝜆−𝑐
, where 𝑁 is an algebraic multiplicity of eigenvalue

𝜆 = 𝑐 of pencil 𝐿𝜆.

If we denote by [𝜕𝐿𝜆

𝜕𝜆
𝐿−1
𝜆 ] the principal part of operator 𝜕𝐿𝜆

𝜕𝜆
𝐿−1
𝜆 , and by Tr(∙) we denote the

trace, Lemma (1) implies the relation
1

2𝜋𝑖

∮︁
Γ𝑐

𝜆𝑠𝑇𝑟

(︂[︂
𝜕𝐿𝜆

𝜕𝜆
𝐿−1
𝜆

]︂)︂
𝑑𝜆 = 𝑁𝑐𝑠, (5)

where Γ𝑐 is a circle of a sufficiently small radius centered 𝜆 = 𝑐 passed counterclockwise.

3. Preliminary regularized trace formula

Suppose that the counting function of characteristic values of operator 𝑇 = 𝐴−1 satisfies the
condition

lim
𝑟→∞

𝑁(𝑟)

𝑟𝛼
= 𝜀 <∞ as 0 < 𝛼 6

1

𝑛
, (6)
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where 𝜀 is a positive constant (i.e., 0 < 𝜀 6 ∞). We introduce the notations: 𝑟𝑘 = |𝜆1/𝑛𝑘 |,
𝑑𝑘 = 𝑟𝑘+1 − 𝑟𝑘. The proof of the next lemma was provided in [17].

Lemma 2. Under condition (6) for function 𝑁(𝜆), there exists a subsequence of the natural
series {𝑘𝜈}∞𝜈=1 such that 𝑑𝑘𝜈 = 𝑟𝑘𝜈+1 − 𝑟𝑘𝜈 > 𝜀0 ∀𝜈 ∈ N, where 𝜀0 > 0 is a constant.

Corollary 1. There exists an infinite system of expanding concentric circles {Γ𝜈}∞𝜈=1

centered at the origin and containing no spectrum of pencil 𝑇𝜆𝑛 such that the distance 𝛿𝜈 from
circle Γ𝜈 to spectrum 𝜎(𝑇𝜆𝑛) satisfies the condition 𝛿𝜈 > 𝜀0/2 ∀𝜈 ∈ N.

Доказательство. As Γ𝜈 we choose the circle of radius ̃︀𝑅𝜈 = 𝑟𝑘𝜈 + 1
2
𝑑𝑘𝜈 centered at the origin.

Then Γ𝜈 contains no spectrum 𝜎(𝑇𝜆𝑛), i.e., points in 𝜎(𝑇𝜆𝑛) are located on circumferences of
radii 𝑟𝑘, 𝑘 ∈ N, centered at the origin. Moreover, since the points in spectrum 𝜎(𝑇𝜆𝑛) are
located at the rays arg 𝜆 = 𝑘𝜋

𝑛
, 𝑘 = 0, 1, . . . , 2𝑛− 1, then 𝛿𝜈 > 𝑑𝑘𝜈/2. Hence, in accordance with

Lemma 2, 𝛿𝜈 > 𝜀0/2 ∀𝜈 ∈ N.

Lemma 3. Let 𝑃 be a finite-dimensional operator in H: 𝑃 =
𝑡∑︀

𝑙=1

(∙, 𝜙𝑙)𝜓𝑙, 𝜓𝑙 ∈ D(𝑇−1),

𝑙 = 1, 2, . . . , 𝑡. Then for 𝑗 = 0, 1, 2, . . . , 𝑛−1 and 𝑅𝜆 = (𝐸−𝜆𝑛𝑇 )−1 the relations ‖𝜆𝑗𝑅𝜆𝑃‖ → 0
hold true as 𝜆 ∈ Γ𝜈 and 𝜈 → ∞ uniformly in arg 𝜆. (see [17]).

By means of Lemma 3 we can represent operator function 𝐿−1
𝜆 as a series.

Corollary 2. For 𝜆 ∈ Γ𝜈 and sufficiently large 𝜈 the formula

𝐿−1
𝜆 =

∞∑︁
𝑘=0

{︃
𝑅𝜆

𝑛−1∑︁
𝑗=0

𝜆𝑗𝑃𝑗

}︃𝑘

𝑅𝜆 (7)

holds true, where the series converges in the operator topology uniformly in arg 𝜆.

Multiplying the left and right hand sides of this identity by the left and right hand sides of
the identity 𝜕𝐿𝜆

𝜕𝜆
= −

∑︀𝑛−1
𝑗=0 𝑗𝜆

𝑗−1𝑃𝑗 − 𝑛𝜆𝑛−1𝑇, we obtain

𝜕𝐿𝜆

𝜕𝜆
𝐿−1
𝜆 + 𝑛𝜆𝑛−1𝑇𝑅𝜆 = −

𝑛−1∑︁
𝑗=1

𝑗𝜆𝑗−1𝑃𝑗𝑅𝜆

−
𝑛−1∑︁
𝑗=1

𝑗𝜆𝑗−1𝑃𝑗

∞∑︁
𝑘=1

{︃
𝑅𝜆

𝑛−1∑︁
𝑙=0

𝜆𝑙𝑃𝑙

}︃𝑘

𝑅𝜆 − 𝑛𝜆𝑛−1𝑇
∞∑︁
𝑘=1

{︃
𝑅𝜆

𝑛−1∑︁
𝑙=0

𝜆𝑙𝑃𝑙

}︃𝑘

𝑅𝜆.

(8)

Integrating identity (8) over the contour Γ𝜈 , 𝜈 > 𝑚0, by formula (5) with 𝑠 = 0, in the left
hand side we obtain:

1

2𝜋𝑖

∮︁
Γ𝜈

Tr

(︂
𝜕𝐿𝜆

𝜕𝜆
𝐿−1
𝜆 + 𝑛𝜆𝑛−1𝑇𝑅𝜆

)︂
𝑑𝜆 =

1

2𝜋𝑖

∮︁
Γ𝜈

Tr

(︂[︂
𝜕𝐿𝜆

𝜕𝜆
𝐿−1
𝜆

]︂)︂
𝑑𝜆+

+
1

2𝜋𝑖

∮︁
Γ𝜈

Tr
(︀[︀
𝑛𝜆𝑛−1𝑇𝑅𝜆

]︀)︀
𝑑𝜆 = 𝑀𝜈 −𝑁𝜈 .

(9)

Here 𝑀𝜈 and 𝑁𝜈 are numbers of the eigenvalues taken counting multiplicities of pencils 𝐿𝜆 and
𝑇𝜆𝑛 lying respectively inside contour Γ𝜈 .

Lemma 4. The left hand side of identity (9) tends to zero as 𝜈 → ∞. Since 𝑁𝜈 and 𝑀𝜈

are natural numbers, there exists an index 𝑚0 such that for 𝜈 > 𝑚0 we have 𝑀𝜈 = 𝑁𝜈, i.e.,
starting from some index 𝑚0, all circles Γ𝜈 contain the same number (counting multiplicities)
of the eigenvalues of pencils 𝐿𝜆 and 𝑇𝜆𝑛.
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The proof will be given later once we study function 𝐹 (𝑠) defined by identity (11).
In what follows we assume that index 𝑚0 is such that inequality 𝜈 > 𝑚0 ensures all the

aforementioned conditions. It follows from Lemma 4 that as 𝜈 > 𝑚0, between contours Γ𝑚+1

and Γ𝑚 there is the same number (counting multiplicities) of the eigenvalues of pencils 𝐿𝜆 and
𝑇𝜆𝑛 , namely 𝑁𝑚+1−𝑁𝑚 eigenvalues. Hence, multiplying (8) by 𝜆𝑠(2𝜋𝑖)−1, calculating the trace,
integrating over contour Γ𝜈 , passing to the limit 𝜈 → ∞ by formula (5), in the left hand side
we obtain:

lim
𝜈→∞

𝑁𝜈∑︁
𝑘=1

(𝜇𝑠
𝑘 − 𝜂𝑠𝑘) =

⎛⎝𝑁𝑚0∑︁
𝑘=1

+
∞∑︁

𝜈=𝑚0

𝑁𝜈+1∑︁
𝑘=𝑁𝜈+1

⎞⎠ (𝜇𝑠
𝑘 − 𝜂𝑠𝑘). (10)

In order to get formula (3), we need to study the right hand side of (8) after the above
described procedure, namely, the expression:

𝐹 (𝑠) = − lim
𝜈→∞

{︃
𝑛−1∑︁
𝑗=1

𝑗

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑗+𝑠−1Tr(𝑃𝑗𝑅𝜆)𝑑𝜆

+
𝑛−1∑︁
𝑗=1

𝑗

2𝜋𝑖

∮︁
Γ𝜈

Tr

⎛⎝ ∞∑︁
𝑘=1

𝜆𝑗+𝑠−1𝑃𝑗

(︃
𝑅𝜆

𝑛−1∑︁
𝑙=0

𝜆𝑙𝑃𝑙

)︃𝑘

𝑅𝜆

⎞⎠ 𝑑𝜆

+
𝑛

2𝜋𝑖

∮︁
Γ𝜈

Tr

⎛⎝ ∞∑︁
𝑘=1

𝜆𝑛+𝑠−1𝑇

(︃
𝑅𝜆

𝑛−1∑︁
𝑙=0

𝜆𝑙𝑃𝑙

)︃𝑘

𝑅𝜆

⎞⎠ 𝑑𝜆

}︃
.

(11)

We have (︃
𝑛−1∑︁
𝑙=0

𝜆𝑙𝑅𝜆𝑃𝑙

)︃𝑘

=
(︁
𝑅𝜆𝑃0

)︁𝑘
+

𝑘(𝑛−1)∑︁
𝑚=1

𝜆𝑚
∑︁

𝛼1+𝛼2+...+𝛼𝑘=𝑚
06𝛼1,...,𝛼𝑘6𝑛−1

𝑅𝜆𝑃𝛼1 · · ·𝑅𝜆𝑃𝛼𝑘
.

Denoting the internal sum by
∑︀
𝑚

𝑃𝛼1...𝛼𝑘
, we arrive at(︃

𝑛−1∑︁
𝑙=0

𝜆𝑙𝑅𝜆𝑃𝑙

)︃𝑘

=
(︁
𝑅𝜆𝑃0

)︁𝑘
+

𝑘(𝑛−1)∑︁
𝑚=1

𝜆𝑚
∑︁
𝑚

𝑃𝛼1...𝛼𝑘
. (12)

Employing identity (12), by (11) we obtain:

𝐹 (𝑠) = − lim
𝜈→∞

{︃
𝑛−1∑︁
𝑗=1

𝑗

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑗+𝑠−1Tr(𝑅𝜆𝑃𝑗)𝑑𝜆

+
𝑛−1∑︁
𝑗=1

∞∑︁
𝑘=1

𝑗

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑗+𝑠−1Tr
(︁
𝑅𝜆𝑃𝑗 (𝑅𝜆𝑃0)

𝑘
)︁
𝑑𝜆

+
𝑛−1∑︁
𝑗=1

∞∑︁
𝑘=1

𝑘(𝑛−1)∑︁
𝑚=1

𝑗

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑗+𝑠+𝑚−1Tr

(︃
𝑅𝜆𝑃𝑗

∑︁
𝑚

𝑃𝛼1...𝛼𝑘

)︃
𝑑𝜆

+
∞∑︁
𝑘=1

𝑛

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑛+𝑠−1Tr
(︁
𝑇𝑅𝜆 (𝑅𝜆𝑃0)

𝑘
)︁
𝑑𝜆

+
∞∑︁
𝑘=1

𝑘(𝑛−1)∑︁
𝑚=1

𝑛

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑚+𝑛+𝑠−1Tr

(︃
𝑅𝜆𝑇

∑︁
𝑚

𝑃𝛼1...𝛼𝑘

)︃
𝑑𝜆

}︃
.

(13)
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We denote by 𝐽𝜈
𝑙 (𝑠) (𝑙 = 1, 2, . . . , 5) in the right hand side of (13), respectively. Our next step is

to calculate lim
𝜈→∞

𝐽𝜈
𝑙 (𝑠) ∀𝑠 ∈ N∪{0} 𝑙 = 1, 2, . . . , 5. In order to do it, we need some preliminary

formulae to which the next section is devoted.
We note that the subsequent considerations imply easily the well-definiteness of the passage

to the limit as 𝜈 → ∞ in infinite series in (13).

4. Auxiliary formulae

We recall that 𝑇 is a compact self-adjoint operator in separable Hilbert space H and its
counting function satisfies condition (6). Let {𝑒𝑗}∞𝑗=1 be the orthonormalized basis in space H
formed by the eigenvectors of operator 𝑇 . In what follows by 𝑛 we denote the orders of pencils
(1), (4).

4.1. Calculations with 𝑃 𝑘
𝜆 . We employ the system of circles {Γ𝜈}∞𝜈=1 constructed in

Corollary 1. Let 𝑁 > 0 be an integer number and 𝑃 be a finite-dimensional operator and
𝜓𝑙 ∈ D(𝑇−(𝑁+1)), 𝑙 = 1, . . . , 𝑡. Employing then the identity 𝑅𝜆𝑒𝑗 = 𝜆𝑗(𝜆𝑗 − 𝜆𝑛)−1𝑒𝑗, we obtain

Tr(𝑅𝜆𝑃 ) =
𝑡∑︁

𝑙=1

(𝑅𝜆𝜓𝑙, 𝜙𝑙) =
𝑡∑︁

𝑙=1

∞∑︁
𝑘=1

𝜆𝑘(𝜓𝑙, 𝑒𝑘)(𝑒𝑘, 𝜙𝑙)

𝜆𝑘 − 𝜆𝑛
.

In the right hand side we apply the identity
1

𝜆𝑘 − 𝜆𝑛
= − 1

𝜆𝑛
+

𝜆𝑘
𝜆𝑛(𝜆𝑘 − 𝜆𝑛)

(14)

𝑁 times. It leads us to the formula

Tr(𝑅𝜆𝑃 ) = −
𝑡∑︁

𝑙=1

𝑁∑︁
𝑘=1

(𝑇−𝑘𝜓𝑙, 𝜙𝑙)

𝜆𝑛𝑘
+

𝑡∑︁
𝑙=1

∞∑︁
𝑘=1

𝜆𝑁+1
𝑘 (𝜓𝑙, 𝑒𝑘)(𝑒𝑘, 𝜙𝑙)

𝜆𝑛𝑁(𝜆𝑘 − 𝜆𝑛)
. (15)

We denote the second term by Φ𝑁(𝜆). Employing then the trick used in the proof of Lemma 3,
it is easy to show that as 𝜓𝑙 ∈ D(𝑇−(𝑁+1)), 𝑙 = 1, 2, . . . , 𝑡, and 𝜆 ∈ Γ𝜈 the identity Φ𝑁(𝜆) =
𝑜(𝜆−𝑛𝑁), 𝜈 → ∞, holds true and this identity is uniform in arg 𝜆.

Suppose that we have set (2) of finite-dimensional operators. Let 𝑃 𝑗
𝑙 = (∙, 𝜙𝑗

𝑙 )𝜓
𝑗
𝑙 , then 𝑃𝑗 =

𝑛𝑗∑︀
𝑙=1

𝑃 𝑗
𝑙 . We consider the operator function 𝑃 𝑘

𝜆

𝑑𝑒𝑓
= 𝑅𝜆𝑃1𝑅𝜆𝑃2 · · ·𝑅𝜆𝑃𝑘. It is easy to obtain that

𝑃 𝑘
𝜆 =

∑︁
𝑙1,𝑙2,...,𝑙𝑘
06𝑙𝑗6𝑛𝑗

𝑅𝜆𝑃
1
𝑙1
𝑅𝜆𝑃

2
𝑙2
· · ·𝑅𝜆𝑃

𝑘
𝑙𝑘
,

Tr(𝑃 𝑘
𝜆 ) =

∑︁
𝑙1,𝑙2,...,𝑙𝑘
06𝑙𝑗6𝑛𝑗

{︃
𝑘−1∏︁
𝑗=1

(𝑅𝜆𝜓
𝑗+1
𝑙𝑗+1

, 𝜙𝑗
𝑙𝑗

)

}︃
(𝑅𝜆𝜓

1
𝑙1
, 𝜙𝑘

𝑙𝑘
). (16)

Suppose that

𝜓𝑗
𝑙 ∈ D(𝑇−(𝑁+2)), 𝑁 ∈ N0, 𝑗 = 1, 2, . . . , 𝑘; 𝑙 = 1, . . . , 𝑛𝑗. (17)

Hence, by relations (15) and (16), as 𝜆 ∈ Γ𝜈 , 𝜈 → ∞ we get

Tr(𝑃 𝑘
𝜆 ) =

∑︁
𝑙1,𝑙2,...,𝑙𝑘
06𝑙𝑗6𝑛𝑗

(−1)𝑘
∑︁

𝑝1+𝑝2+...+𝑝𝑘=𝑀
𝑝1,...,𝑝𝑘>1

𝜆−𝑀𝑛

{︃
𝑘−1∏︁
𝑗=1

(𝑇−𝑝𝑗+1𝜓𝑗+1
𝑙𝑗+1

, 𝜙𝑗
𝑙𝑗

)

}︃
(𝑇−𝑝1𝜓1

𝑙1
, 𝜙𝑘

𝑙𝑘
)

+𝐵𝑀
𝜆 + 𝑜(𝜆−𝑛(𝑁+𝑘)),

(18)



GENERAL REGULARIZED TRACES FORMULAE . . . 75

where natural 𝑀 satisfies the condition 𝑘 6 𝑀 6 𝑁 + 𝑘, and the symbol 𝐵𝑀
𝜆 stands for the

sum of terms obeying 𝑝1 + 𝑝2 + . . .+ 𝑝𝑘 ̸= 𝑀 .
It follows from (18) that for each natural 𝑀 satisfying the inequalities 𝑘 6𝑀 6 𝑁 + 𝑘, the

identity

lim
𝜈→∞

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑀𝑛−1Tr(𝑃 𝑘
𝜆 )𝑑𝜆 =

∑︁
𝑙1,𝑙2,...,𝑙𝑘
06𝑙𝑗6𝑛𝑗

(−1)𝑘
∑︁

𝑝1+𝑝2+...+𝑝𝑘=𝑀
𝑝1,...,𝑝𝑘>1

{︃
𝑘−1∏︁
𝑗=1

(𝑇−𝑝𝑗+1𝜓𝑗+1
𝑙𝑗+1

, 𝜙𝑗
𝑙𝑗

)

}︃
(𝑇−𝑝1𝜓1

𝑙1
, 𝜙𝑘

𝑙𝑘
)

=(−1)𝑘
∑︁

𝑝1+𝑝2+...+𝑝𝑘=𝑀
𝑝1,...,𝑝𝑘>1

Tr(𝑇−𝑝1𝑃1 · · ·𝑇−𝑝𝑘𝑃𝑘)

(19)

holds true. Thus, we arrive at

Lemma 5. Suppose that we are given finite-dimensional operators 𝑃1, . . . , 𝑃𝑘 in Hilbert space
H and condition (17) is satisfied. If natural number 𝑀 is such that 𝑘 6 𝑀 6 𝑁 + 𝑘, then
operator function 𝑃 𝑘

𝜆

𝑑𝑒𝑓
= 𝑅𝜆𝑃1𝑅𝜆𝑃2 · · ·𝑅𝜆𝑃𝑘 satisfies (19). If in the left hand side of (19) we

replace 𝑀𝑛 by some natural 𝑠 : 𝑘𝑛 < 𝑠 < (𝑁 + 𝑘)𝑛 not being a multiple of 𝑛, it vanishes.

4.2. Calculations with 𝑄𝑘
𝜆. In what follows we shall make similar relations for operator

function 𝑄𝑘
𝜆

𝑑𝑒𝑓
= 𝑅2

𝜆𝑃1𝑅𝜆𝑃2 · · ·𝑅𝜆𝑃𝑘.
Applying identity (14), as above, we obtain the identity

Tr(𝑅2
𝜆𝑃 ) =

𝑡∑︁
𝑙=1

𝑁+1∑︁
𝑗=2

(𝑗 − 1)
(𝑇−𝑗𝜓𝑙, 𝜙𝑙)

𝜆𝑛𝑗
+ ̃︀𝐹𝜆, (20)

where 𝑃 is a finite-dimensional operator satisfying 𝜓𝑙 ∈ D(𝑇−(𝑁+2)), 𝑙 = 1, 2, . . . , 𝑡,

̃︀𝐹𝜆 = 𝐹 1
𝜆 + 𝐹 2

𝜆 + 𝐹 3
𝜆 +

𝑡∑︁
𝑙=1

∞∑︁
𝑘=1

(𝑁 − 1)
𝜆𝑁+1
𝑘 (𝜓𝑙, 𝑒𝑘)(𝑒𝑘, 𝜙𝑙)

𝜆(𝑁+1)𝑛
, (201)

𝐹 2
𝜆 =

𝑡∑︁
𝑙=1

∞∑︁
𝑘=1

𝜆𝑁+2
𝑘 (𝜓𝑙, 𝑒𝑘)(𝑒𝑘, 𝜙𝑙)

𝜆𝑁𝑛(𝜆𝑘 − 𝜆𝑛)2
, (21)

𝐹 1
𝜆 = −

𝑡∑︁
𝑙=1

∞∑︁
𝑘=1

𝜆𝑁+2
𝑘 (𝜓𝑙, 𝑒𝑘)(𝑒𝑘, 𝜙𝑙)

𝜆(𝑁+1)𝑛(𝜆𝑘 − 𝜆𝑛)
, 𝐹 3

𝜆 =
𝑡∑︁

𝑙=1

∞∑︁
𝑘=1

(𝑁 − 1)
𝜆𝑁+2
𝑘 (𝜓𝑙, 𝑒𝑘)(𝑒𝑘, 𝜙𝑙)

𝜆(𝑁+1)𝑛(𝜆𝑘 − 𝜆𝑛)
.

Following the same lines as in proof of Lemma 3, it is easy to show that ̃︀𝐹𝜆 = 𝑜(𝜆−𝑁𝑛) as
𝜈 → ∞ uniformly in arg 𝜆 for 𝜓𝑙 ∈ D(𝑇−(𝑁+2)), 𝑙 = 1, 2, . . . , 𝑡, and 𝜆 ∈ Γ𝜈 .

Formulae (20) have been obtained for 𝑁 > 2. As 𝑁 = 0, 1, by straightforward calculations
we get

Tr(𝑅2
𝜆𝑃 ) = 𝑜(𝜆−𝑛) 𝜈 → ∞, 𝜆 ∈ Γ𝜈 . (22)

Let 𝑘 > 2. As above, we have

Tr(𝑄𝑘
𝜆) =

∑︁
𝑙1,𝑙2,...,𝑙𝑘
06𝑙𝑗6𝑛𝑗

{︃
𝑘−1∏︁
𝑗=1

(𝑅𝜆𝜓
𝑗+1
𝑙𝑗+1

, 𝜙𝑗
𝑙𝑗

)

}︃
(𝑅2

𝜆𝜓
1
𝑙1
, 𝜙𝑘

𝑙𝑘
). (23)

Suppose that smoothness condition (17) holds true for 𝑁 > 2. In this case we can apply
formulae (15) and (20) to operator-functions (∙, 𝜙𝑗

𝑙𝑗
)𝑅𝜆𝜓

𝑗+1
𝑙𝑗+1

and (∙, 𝜙𝑘
𝑙𝑘

)𝑅2
𝜆𝜓

1
𝑙1
, respectively,
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Substituting the corresponding expressions for (𝑅𝜆𝜓
𝑗+1
𝑙𝑗+1

, 𝜙𝑗
𝑙𝑗

) and (𝑅2
𝜆𝜓

1
𝑙1
, 𝜙𝑘

𝑙𝑘
) into the right

hand side of identity (23), we obtain

Tr(𝑄𝑘
𝜆) =

∑︁
𝑙1,𝑙2,...,𝑙𝑘
06𝑙𝑗6𝑛𝑗

𝑘−1∏︁
𝑗=1

{︃
−

𝑁+1∑︁
𝑝=1

(𝑇−𝑝𝜓𝑗+1
𝑙𝑗+1

, 𝜙𝑗
𝑙𝑗

)

𝜆𝑛𝑝

}︃{︃
𝑁∑︁
𝑝=2

(𝑝− 1)
(𝑇−𝑝𝜓1

𝑙1
, 𝜙𝑘

𝑙𝑘
)

𝜆𝑛𝑝

}︃
+ 𝑜(𝜆−𝑛(𝑁+𝑘−1))

=
∑︁

𝑙1,𝑙2,...,𝑙𝑘
06𝑙𝑗6𝑛𝑗

(−1)𝑘−1
∑︁

𝑝1+𝑝2+...+𝑝𝑘=𝑀
𝑝1>2;𝑝2,...,𝑝𝑘>1

(𝑝1 − 1)𝜆−𝑀𝑛

{︃
𝑘−1∏︁
𝑗=1

(𝑇−𝑝𝑗+1𝜓𝑗+1
𝑙𝑗+1

, 𝜙𝑗
𝑙𝑗

)

}︃
(𝑇−𝑝1𝜓1

𝑙1
, 𝜙𝑘

𝑙𝑘
)

+𝐺𝑀
𝜆 + 𝑜(𝜆−𝑛(𝑁+𝑘−1)),

(24)

where natural 𝑀 satisfies the restriction 𝑘 + 1 6 𝑀 6 𝑁 + 𝑘 − 1. Symbol 𝐺𝑀
𝜆 stands for the

sum of all the terms with 𝑝1 + 𝑝2 + . . .+ 𝑝𝑘 ̸= 𝑀 . These relations yield

lim
𝜈→∞

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑀𝑛−1Tr(𝑄𝑘
𝜆)𝑑𝜆

=
∑︁

𝑙1,𝑙2,...,𝑙𝑘
06𝑙𝑗6𝑛𝑗

(−1)𝑘−1
∑︁

𝑝1+𝑝2+...+𝑝𝑘=𝑀
𝑝1>2;𝑝2,...,𝑝𝑘>1

(𝑝1 − 1)

{︃
𝑘−1∏︁
𝑗=1

(𝑇−𝑝𝑗+1𝜓𝑗+1
𝑙𝑗+1

, 𝜙𝑗
𝑙𝑗

)

}︃
(𝑇−𝑝1𝜓1

𝑙1
, 𝜙𝑘

𝑙𝑘
)

= (−1)𝑘−1
∑︁

𝑝1+𝑝2+...+𝑝𝑘=𝑀
𝑝1>2;𝑝2,...,𝑝𝑘>1

(𝑝1 − 1)Tr(𝑇−𝑝1𝑃1 · · ·𝑇−𝑝𝑘𝑃𝑘).

(25)

Let 𝑘 = 1. The smoothness condition is 𝜓𝑙 ∈ D(𝑇−(𝑁+2)), 𝑙 = 1, 2, . . . , 𝑡, 𝑁 > 1. By (20)) we
obtain

Tr(𝑅2
𝜆𝑃 ) =

𝑡∑︁
𝑙=1

𝑁+1∑︁
𝑗=2

(𝑗 − 1)
(𝑇−𝑗𝜓𝑙, 𝜙𝑙)

𝜆𝑛𝑗
+

𝑡∑︁
𝑙=1

∞∑︁
𝑘=1

𝜆𝑁+2
𝑘 (𝜓𝑙, 𝑒𝑘)(𝑒𝑘, 𝜙𝑙)

𝜆𝑁𝑛(𝜆𝑘 − 𝜆𝑛)2
+ 𝑜(𝜆−(𝑁+1)𝑛).

We consider the function

𝑓(𝜆) =
𝜆𝑠−𝑁𝑛

(𝜆𝑘 − 𝜆𝑛)2
,

where 𝑠 is a natural number, 𝑠 > 𝑁𝑛. Function 𝑓(𝜆) has poles at the points 𝜆 = 𝜂𝑘𝑙 : 𝜂𝑛𝑘𝑙 = 𝜆𝑘,
𝑙 = 1, . . . , 𝑛. The residues at these poles can be easily calculated:

Res
𝜂𝑘𝑙

𝑓(𝜆) =
𝑠− (𝑁 + 1)𝑛+ 1

𝑛2
𝜂
𝑠−(𝑁+2)𝑛+1
𝑘𝑙

𝑙 = 1, . . . , 𝑛.

Hence, it is easy to see that
𝑛∑︁

𝑙=1

Res
𝜂𝑘𝑙

𝑓(𝜆) = 0

if either 𝑠+ 1 = (𝑁 + 1)𝑛 or 𝑠+ 1 is not a multiple of 𝑛. In the former case Res
𝜂𝑘𝑙

𝑓(𝜆) vanishes

for each 𝑙 = 1, . . . , 𝑛, while in the latter
𝑛∑︁

𝑙=1

Res
𝜂𝑘𝑙

𝑓(𝜆) =
𝑠− (𝑁 + 1)𝑛+ 1

𝑛2

𝑛∑︁
𝑙=1

𝜂
𝑠−(𝑁+2)𝑛+1
𝑘𝑙

= 0,

i.e., 𝜂𝑠𝑘1 + 𝜂𝑠𝑘2 + . . .+ 𝜂𝑠𝑘𝑛 for each natural 𝑠 not being a multiple of 𝑛.
The above arguments imply that

lim
𝜈→∞

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑀𝑛−1Tr(𝑅2
𝜆𝑃 )𝑑𝜆 = 𝑁 · Tr(𝑇−(𝑁+1)𝑃 ). (26)
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as 𝑁 > 1 and 𝑀 = 𝑁 + 1.

Lemma 6. Suppose that we are given finite-dimensional operators 𝑃1, 𝑃2, . . . , 𝑃𝑘. Assume
that smoothness condition (17) is satisfied. Then

1. If 𝑘 > 2 and 𝑁 > 2, 𝑁 is the integer in the smoothness condition (17), then for each
integer 𝑀 : 𝑘 + 1 6 𝑀 6 𝑁 + 𝑘 − 1 identity (25) holds true. As 𝑀 6 𝑘, the left
hand side in (25) vanishes. If in the left hand side in (25) we replace 𝑀𝑛 by an integer
𝑠 : 𝑠 < (𝑁 + 𝑘 − 1)𝑛 not being a multiple of 𝑛, then the left hand side in (25) vanishes,
too.

2. If 𝑘 = 1, for 𝑁 > 1, where 𝑁 is the integer in condition (17), the identity (26) holds true.
If in (26) instead of (𝑁 + 1)𝑛 we substitute 𝑠 : 𝑠 < (𝑁 + 1)𝑛 not being a multiple of 𝑛,
then the left hand side in (26) vanishes.

3. If 𝑁 = 0 in (17), then

lim
𝜈→∞

∮︁
Γ𝜈

𝜆𝑛−1Tr(𝑄𝑘
𝜆)𝑑𝜆 = 0

for 𝑘 > 1.

The latter identity follows from relation (22).

5. Regularized trace formulae

In what follows we assume that natural parameter 𝑠 takes values from 𝑁𝑛 + 1 to (𝑁 +
1)𝑛, where 𝑁 > 0 is integer. Moreover, finite-dimensional operators 𝑃0, 𝑃1, . . . , 𝑃𝑛−1 satisfy
smoothness condition (17).

5.1. Calculation of lim
𝜈→∞

𝐽𝜈
1 (𝑠). We have

𝐽𝜈
1 (𝑠) =

𝑛−1∑︁
𝑗=1

𝑗

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑗+𝑠−1Tr(𝑅𝜆𝑃𝑗)𝑑𝜆.

It follows from 5 for 𝑘 = 1 and 𝑀𝑛 = 𝑗 + 𝑠 = (𝑁 + 1)𝑛 that

Lemma 7. Let 𝑁𝑛+ 1 6 𝑠 6 (𝑁 + 1)𝑛 with integer 𝑁 > 0.
1. The identity

𝐺1(𝑠)
𝑑𝑒𝑓
= lim

𝜈→∞
𝐽𝜈
1 (𝑠) = −𝑗𝑠

𝑛𝑗𝑠∑︁
𝑙=1

(𝑇−(𝑁+1)𝜓𝑗𝑠
𝑙 , 𝜙

𝑗𝑠
𝑙 ) = −𝑗𝑠Tr(𝑇−(𝑁+1)𝑃𝑗𝑠)

holds true, where 𝑗𝑠 = (𝑁 + 1)𝑛− 𝑠.
2. If 𝑠 = 𝑡𝑛 for each integer 𝑡 > 0, then 𝐺1(𝑠) = lim

𝜈→∞
𝐽𝜈
1 (𝑠) = 0.

5.2. Calculation of lim
𝜈→∞

𝐽𝜈
2 (𝑠). We have

𝐽𝜈
1 (𝑠) =

𝑛−1∑︁
𝑗=1

∞∑︁
𝑘=1

𝑗

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑗+𝑠−1Tr
(︀
𝑅𝜆𝑃𝑗(𝑅𝜆𝑃0)

𝑘
)︀
𝑑𝜆.

Lemma 5 implies

Lemma 8. Let 𝑁𝑛+ 1 6 𝑠 6 (𝑁 + 1)𝑛 with integer 𝑁 > 0.
1. The identity

𝐺2(𝑠)
𝑑𝑒𝑓
= lim

𝜈→∞
𝐽𝜈
2 (𝑠) = 𝑗𝑠

𝑁∑︁
𝑘=1

(−1)𝑘+1
∑︁

𝑝0+𝑝1+···+𝑝𝑘=𝑁+1
𝑝𝑗>0

Tr
(︀
𝑇−𝑝0𝑃𝑗𝑠𝑇

−𝑝1𝑃0 · · ·𝑇−𝑝𝑘𝑃0

)︀
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holds true, where 𝑗𝑠 = (𝑁 + 1)𝑛− 𝑠.
2. As 𝑠 = 𝑡𝑛, 𝑡 > 0 is integer, we have 𝐺2(𝑠) = lim

𝜈→∞
𝐽𝜈
2 (𝑠) = 0.

5.3. Вычисление lim
𝜈→∞

𝐽𝜈
3 (𝑠). We have

𝐽𝜈
3 (𝑠) =

𝑛−1∑︁
𝑗=1

∞∑︁
𝑘=1

𝑘(𝑛−1)∑︁
𝑚=1

𝑗

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑗+𝑠+𝑚−1Tr

(︃
𝑅𝜆𝑃𝑗

∑︁
𝑚

𝑃𝛼1...𝛼𝑘

)︃
𝑑𝜆.

It follows from (18) that

1 6 𝑘 6 𝑗 + 𝑠− 𝑛. (27)

𝑗𝑠 6 𝑗 6 𝑛− 1, where 𝑗𝑠
𝑑𝑒𝑓
= max{1, 𝑛− 𝑠+ 1}. (28)

The limit of the integral in the expression 𝐽𝜈
3 (𝑠) is non-zero if for each fixed index 𝑘 we have

(𝑘 + 𝑡+ 1)𝑛 = 𝑗 + 𝑠+𝑚 for some integer 𝑡 > 0. It is easy to obtain

𝑡0 6 𝑡 6 𝑡1, 𝑡0 = [(𝑗 + 𝑠+ 1)/𝑛− 𝑘 − 1], 𝑡1 = [(𝑗 + 𝑠− 𝑘 − 𝑛)/𝑛], (29)

where [𝑎] stands for the least integer greater or equal 𝑎.
By Lemma 5 we obtain the following result.

Lemma 9. 1. The identities

𝐽3(𝑗, 𝑘, 𝑡, 𝑠)
𝑑𝑒𝑓
= lim

𝜈→∞

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑗+𝑠+𝑚−1Tr

(︃
𝑅𝜆𝑃𝑗

∑︁
𝑚

𝑃𝛼1...𝛼𝑘

)︃
𝑑𝜆

= (−1)𝑘+1
∑︁

𝑝0+𝑝1+···+𝑝𝑘=𝑘+𝑡+1
𝑝𝑙>0;𝑙=0,1,...,𝑘

∑︁
𝛼1+···+𝛼𝑘=(𝑘+𝑡+1)−(𝑗+𝑠)

𝛼𝑙>0;𝑙=1,...,𝑘

Tr
(︀
𝑇−𝑝0𝑃𝑗𝑇

−𝑝1𝑃𝛼1 · · ·𝑇−𝑝𝑘𝑃𝛼𝑘

)︀
,

(30)

𝐺3(𝑠)
𝑑𝑒𝑓
= lim

𝜈→∞
𝐽𝜈
3 (𝑠) =

𝑛−1∑︁
𝑗=𝑗𝑠

𝑗

𝑗+𝑠−𝑛∑︁
𝑘=1

𝑡1∑︁
𝑡=𝑡0

𝐽3(𝑗, 𝑘, 𝑡, 𝑠) (31)

hold true.
2. As 𝑠 = 0, 1, the identity lim

𝜈→∞
𝐽𝜈
3 (𝑠) = 0 holds true. It follows from the fact that the set of

indices 𝑗 defined by inequlaities (28) is empty for 𝑠 = 0, 1.

5.4. Calculation of lim
𝜈→∞

𝐽𝜈
4 (𝑠). We have

𝐽𝜈
4 (𝑠) =

∞∑︁
𝑘=1

𝑛

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑛+𝑠−1Tr
(︁
𝑇𝑅𝜆 (𝑅𝜆𝑃0)

𝑘
)︁
𝑑𝜆.

We employ the obvious identity 𝑇𝑅𝜆 = 𝜆−𝑛𝑅𝜆 − 𝜆−𝑛𝐸 and substitute it into the formula for
𝐽𝜈
4 (𝑠) to obtain

𝐽𝜈
4 (𝑠) = 𝑛

∞∑︁
𝑘=1

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑠−1Tr
(︁
𝑅𝜆 (𝑅𝜆𝑃0)

𝑘
)︁
𝑑𝜆− 𝑛

∞∑︁
𝑘=1

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑠−1Tr
(︁

(𝑅𝜆𝑃0)
𝑘
)︁
𝑑𝜆.

Applying Lemma 6 to the first term and Lemma 5 to the second term, we arrive at
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Lemma 10. 1. The identities

𝐺1
4(𝑠)

𝑑𝑒𝑓
= lim

𝜈→∞
𝑛

∞∑︁
𝑘=1

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑠−1Tr
(︁
𝑅𝜆 (𝑅𝜆𝑃0)

𝑘
)︁
𝑑𝜆

= 𝑛

𝑁∑︁
𝑘=1

(−1)𝑘+1
∑︁

𝑝1+𝑝2+···+𝑝𝑘=𝑁+1
𝑝𝑙>2;𝑝2,...,𝑝𝑘>1

(𝑝1 − 1)Tr
(︀
𝑇−𝑝1𝑃0𝑇

−𝑝2𝑃0 · · ·𝑇−𝑝𝑘𝑃0

)︀
,

𝐺2
4(𝑠)

𝑑𝑒𝑓
= − lim

𝜈→∞
𝑛

∞∑︁
𝑘=1

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑠−1Tr
(︁

(𝑅𝜆𝑃0)
𝑘
)︁
𝑑𝜆

= 𝑛

𝑁+1∑︁
𝑘=1

(−1)𝑘+1
∑︁

𝑝1+𝑝2+···+𝑝𝑘=𝑁+1
𝑝𝑙,𝑝2,...,𝑝𝑘>1

Tr
(︀
𝑇−𝑝1𝑃0𝑇

−𝑝2𝑃0 · · ·𝑇−𝑝𝑘𝑃0

)︀
hold true, i.e., lim

𝜈→∞
𝐽𝜈
4 (𝑠) = 𝐺1

4(𝑠) +𝐺2
4(𝑠).

2. If parameter 𝑠 ∈ N is not a multiple of 𝑛, in particular, as 𝑠 = 0, 1, . . . , 𝑛 − 1, then
lim
𝜈→∞

𝐽𝜈
4 (𝑠) = 0.

5.5. Calculation of lim
𝜈→∞

𝐽𝜈
5 (𝑠). We have

𝐽𝜈
5 (𝑠) =

∞∑︁
𝑘=1

𝑘(𝑛−1)∑︁
𝑚=1

𝑛

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑚+𝑛+𝑠−1Tr

(︃
𝑅𝜆𝑇

∑︁
𝑚

𝑃𝛼1...𝛼𝑘

)︃
𝑑𝜆.

We apply the identity 𝑇𝑅𝜆 = 𝜆−𝑛𝑅𝜆 − 𝜆−𝑛𝐸 to obtain

𝐽𝜈
5 (𝑠) =𝑛

∞∑︁
𝑘=1

𝑘(𝑛−1)∑︁
𝑚=1

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑚+𝑠−1Tr

(︃
𝑅𝜆

∑︁
𝑚

𝑃𝛼1...𝛼𝑘

)︃
𝑑𝜆

− 𝑛
∞∑︁
𝑘=1

𝑘(𝑛−1)∑︁
𝑚=1

1

2𝜋𝑖

∮︁
Γ𝜈

𝜆𝑚+𝑠−1Tr

(︃∑︁
𝑚

𝑃𝛼1...𝛼𝑘

)︃
𝑑𝜆.

We denote by 𝐽1𝜈
5 (𝑠) and 𝐽2𝜈

5 (𝑠) the terms in the right hand side of the latter formula,
respectively.

By (6) we get the range of index 𝑘:

1 6 𝑘 6 𝑠− 𝑛. (32)

As in the proof of Lemma 10, we assume (𝑡+ 𝑘 + 1)𝑛 = 𝑚+ 𝑠 for integer 𝑡 > 0, wherẽ︀𝑡0 𝑑𝑒𝑓
= [(𝑠− (𝑘 + 1)𝑛+ 1)/𝑛] 6 𝑡 6 [(𝑠− 𝑘 − 𝑛)/𝑛]

𝑑𝑒𝑓
= ̃︀𝑡1, (33)

Applying Lemma 6, we obtain

𝐺1
5(𝑠)

𝑑𝑒𝑓
= lim

𝜈→∞
𝐽1𝜈
5 (𝑠) = 𝑛

𝑠−𝑛∑︁
𝑘=1

̃︀𝑡1∑︁
𝑡=̃︀𝑡0

(−1)𝑘+1

·
∑︁

𝑝1+...+𝑝𝑘=𝑘+𝑡+1
𝑝𝑙>2,𝑝2,...,𝑝𝑘>1

(𝑝1 − 1)
∑︁

𝛼1+...+𝛼𝑘=(𝑘+𝑡+1)𝑛−𝑠
06𝛼𝑙6𝑛−1;𝑙=1,...,𝑘

Tr
(︀
𝑇−𝑝1𝑃𝛼1 · · ·𝑇−𝑝𝑘𝑃𝛼𝑘

)︀
.

(34)

To calculate lim
𝜈→∞

𝐽2𝜈
5 (𝑠), we reproduce the same calculations but at the last step we apply

Lemma 5.
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We have 1 6 𝑘 6 𝑠. For each 𝑘, the identity holds 𝑚+ 𝑠 = (𝑘 + 𝜇)𝑛 for some integer 𝜇 > 0,
where

1 + 𝑠 6 (𝑘 + 𝜇)𝑛 6 𝑘(𝑛− 1) + 𝑠, ̃︀𝜇0
𝑑𝑒𝑓
= [(𝑠− 𝑛𝑘 + 1)/𝑛] 6 𝜇 6 [(𝑠− 𝑘)/𝑛]

𝑑𝑒𝑓
= ̃︀𝜇1. (35)

Applying Lemma 5, in view of (35) we get

𝐺2
5(𝑠)

𝑑𝑒𝑓
= lim

𝜈→∞
𝐽2𝜈
5 (𝑠) = 𝑛

𝑠∑︁
𝑘=1

̃︀𝜇1∑︁
𝜇=̃︀𝜇0

(−1)𝑘−1

·
∑︁

𝑝1+...+𝑝𝑘=𝑘+𝜇
𝑝𝑙,𝑝2,...,𝑝𝑘>1

∑︁
𝛼1+...+𝛼𝑘=(𝑘+𝜇)𝑛−𝑠
06𝛼𝑙6𝑛−1;𝑙=1,...,𝑘

Tr
(︀
𝑇−𝑝1𝑃𝛼1 · · ·𝑇−𝑝𝑘𝑃𝛼𝑘

)︀
.

(36)

Lemma 11. 1. The identity lim
𝜈→∞

𝐽𝜈
5 (𝑠) = 𝐺1

5(𝑠)+𝐺2
5(𝑠) holds true, where 𝐺1

5(𝑠) and 𝐺2
5(𝑠)

are determined by identities (34) and (36).
2. lim

𝜈→∞
𝐽𝜈
5 (0) = 0. It can be proven easily in the same way as second items in previous

lemmata 7–10.

Corollary 3. Now we can prove Lemma 4 in accordance with which function 𝐹 (𝑠) defined by
formula (11) satisfies 𝐹 (0) = 0. But in view of (13) it is implied by the identity lim

𝜈→∞
𝐽𝜈
𝑘 (0) = 0

∀𝑘 = 1, 2, 3, 4, 5. These identities were justified in Lemmata 7–11.

We summarize all the above arguments in the following theorem.

Theorem 1. Suppose that we are given operator pencil

𝐿𝜆 = 𝐸 − 𝑃0 − 𝜆𝑃1 · · ·𝜆𝑛−1𝑃𝑛−1 − 𝜆𝑛𝑇

in separable Hilbert space H, where operators 𝑃0, 𝑃1, . . . , 𝑃𝑛−1 are finite-dimensional and read
as 𝑃𝑗 =

∑︀𝑛𝑗

𝑙=1(∙, 𝜙
𝑗
𝑙 )𝜓

𝑗
𝑙 , while 𝑇 is an injective self-adjoint compact operator in H. Suppose that

the counting function of the eigenvalues of pencil 𝑇𝜆 = 𝐸 − 𝜆𝑇 satisfies “sparseness” condition
(6).

Suppose that 𝑠 ∈ N ∩ [𝑁𝑛 + 1, (𝑁 + 1)𝑛] with integer 𝑁 > 0. If (17) holds, there exists a
monotonous sequence of the natural series {𝑁𝜈}∞𝜈=𝑚0

satisfying the regularized trace formula

lim
𝜈→∞

𝑁𝜈∑︁
𝑚=1

(𝜇𝑠
𝑚 − 𝜂𝑠𝑚 − 𝑐𝑚(𝑠)) = 𝐹 (𝑠),

where 𝜇𝑚 and 𝜂𝑚 are the eigenvalues of pencils 𝐿𝜆 and 𝑇𝜆𝑛, respectively taken counting
multiplicities, 𝑐𝑚(𝑠) = 0, and

𝐹 (𝑠) = −𝐺1(𝑠) −𝐺2(𝑠) −𝐺3(𝑠) −𝐺1
4(𝑠) −𝐺2

4(𝑠) −𝐺1
5(𝑠) −𝐺2

5(𝑠),

where values 𝐺𝑖
𝑗(𝑠) are determined in Lemmata 7–11.

6. Example

We consider the second order pencil 𝐿𝜆 = 𝐸 − 𝑃0 − 𝜆𝑃1 − 𝜆2𝑇 . Assuming the hypothesis
of Theorem 1, let us write down regularized trace formulae of first, second, and third orders.
Quantities 𝐺𝑙

𝑗(𝑠) defined in Theorem 1 read as
1. 𝐺1(1) = −Tr(𝑇−1𝑃1), 𝐺2(1) = 𝐺3(1) = 𝐺1

4(1) = 𝐺2
4(1) = 𝐺1

5(1) = 0, 𝐺2
5(1) = 2Tr(𝑇−1𝑃1);

2. 𝐺1(2) = 𝐺2(2) = 𝐺1
4(2) = 𝐺1

5(2) = 0, 𝐺3(2) = Tr((𝑇−1𝑃1)
2), 𝐺2

4(2) = 2Tr(𝑇−1𝑃0),
𝐺2

5(2) = −2Tr((𝑇−1𝑃1)
2);

3. 𝐺1(3) = −Tr((𝑇−2𝑃1)
2), 𝐺2(3) = Tr(𝑇−1𝑃1𝑇

−1𝑃0), 𝐺3(3) = −Tr((𝑇−1𝑃1)
3), 𝐺1

4(3) =
𝐺2

4(3) = 0,𝐺1
5(3) = 2Tr(𝑇−2𝑃1),𝐺2

5(1) = 2Tr(𝑇−2𝑃1)−4Tr(𝑇−1𝑃1𝑇
−1𝑃0)+2Tr((𝑇−1𝑃1)

3).
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The first group of formulae by Theorem 1 implies

lim
𝜈→∞

𝑁𝜈∑︁
𝑚=1

(𝜇𝑚 − 𝜂𝑚) = −Tr(𝑇−1𝑃1). (37)

The second group of formulae yields

lim
𝜈→∞

𝑁𝜈∑︁
𝑚=1

(𝜇2
𝑚 − 𝜂2𝑚) = −Tr((𝑇−1𝑃1)

2) − 2Tr(𝑇−1𝑃0). (38)

It follows from the third group of formulae:

lim
𝜈→∞

𝑁𝜈∑︁
𝑚=1

(𝜇3
𝑚 − 𝜂3𝑚) = −Tr((𝑇−1𝑃1)

3) − 3Tr(𝑇−2𝑃1) + 3Tr(𝑇−1𝑃1𝑇
−1𝑃0). (39)

We apply the obtained result to the Sturm-Liouville problem for a loaded equation. We
consider the boundary value problem

− 𝑦′′(𝑥) + 𝑞(𝑥)𝑦(𝑥) − 𝑎(𝑥)𝑦(𝑥0) − 𝜆𝑏(𝑥)𝑦(𝑥1) − 𝜆2𝑦(𝑥) = 0, 0 < 𝑥 < 𝜋,

𝑦(0) = 𝑦(𝜋) = 0, 𝑥0, 𝑥1 ∈ (0, 𝜋).

By 𝐴 we denote the self-adjoint operator in 𝐿2(0, 𝜋): 𝐴𝑦(𝑥) = −𝑦′′(𝑥) + 𝑞(𝑥)𝑦(𝑥), 𝐷(𝐴) = {𝑦 ∈
𝑊 2

2 (0, 𝜋) : 𝑦(0) = 𝑦(𝜋)}.
Let 𝐺(𝑥, 𝜉) be the Green function of operator 𝐴. Then we have the identities

𝑦(𝑥0)𝑎(𝑥) = 𝑎(𝑥)

∫︁ 𝜋

0

𝐺(𝑥0, 𝜉)𝐴𝑦(𝜉)𝑑𝜉, 𝑦(𝑥1)𝑏(𝑥) = 𝑏(𝑥)

∫︁ 𝜋

0

𝐺(𝑥1, 𝜉)𝐴𝑦(𝜉)𝑑𝜉.

Thus, the boundary value problem generates operator pencil 𝑁𝜆 = 𝐴−𝑄0−𝜆𝑄1−𝜆2𝐸, where

𝑄0𝑦(𝑥) =

∫︁ 𝜋

0

𝑎(𝑥)𝐺(𝑥0, 𝜉)𝐴𝑦(𝜉)𝑑𝜉, 𝑄1𝑦(𝑥) =

∫︁ 𝜋

0

𝑏(𝑥)𝐺(𝑥1, 𝜉)𝐴𝑦(𝜉)𝑑𝜉.

Pencil 𝐿𝜆 = 𝑁𝜆𝐴
−1 satisfies the hypothesis of Theorem 1. Thus, if 𝑎(𝑥), 𝑏(𝑥) ∈ 𝐷(𝐴2), in

accordance with formulae (37), (38)

lim
𝜈→∞

𝑁𝜈∑︁
𝑚=1

(𝜇𝑚 − 𝜂𝑚) = −𝑏(𝑥1), lim
𝜈→∞

𝑁𝜈∑︁
𝑚=1

(𝜇2
𝑚 − 𝜂2𝑚) = 𝑏2(𝑥1) − 2𝑎(𝑥0).

If 𝑎(𝑥), 𝑏(𝑥) ∈ 𝐷(𝐴3), formula (39) implies

lim
𝜈→∞

𝑁𝜈∑︁
𝑚=1

(𝜇3
𝑚 − 𝜂3𝑚) = −𝑏3(𝑥1) − 3[−𝑏′′(𝑥1)𝑞(𝑥1)𝑏(𝑥1)] + 3𝑎(𝑥1)𝑏(𝑥0).
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