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STABILITY OF AUTORESONANCE

IN DISSIPATIVE SYSTEMS

O.A. SULTANOV

Abstract. We consider a mathematical model describing the initial stage of a capture
into autoresonance in nonlinear oscillating systems with a dissipation. Solutions whose
amplitude increases unboundedly in time correspond to a resonance. An asymptotic ex-
pansion for such solutions is constructed as a power series with constant coefficients. The
stability of autoresonance with respect to persistent perturbations is studied by means of
Lapunov’s second method. We describe the classes of perturbations for which a capture
into autoresonance occurs.
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Introduction

Formulation of problem. We consider a mathematical model describing the initial stage
of capture into autoresonance [1, 2] in nonlinear oscillating systems with a small pumping [3]
and dissipation:

dr

dτ
= f(τ) sinψ − βr, r

[dψ

dτ
− r2 + λτ

]

= g(τ) cosψ, τ > 0, λ, β = const > 0. (1)

The sought functions r(τ) and ψ(τ) correspond to a slowly changing amplitude and a phase
shift of a fast harmonic oscillation. Autoresonance is usually associated to solutions with an
unboundedly growing amplitude r(τ) ≈

√
λτ . Variable coefficients f(τ) = f0 + f1τ , g(τ) =

g0+ g1τ (f1, g1 6= 0) are responsible for the amplitude of pumping. Due to the invariance of the
system w.r.t. the change ψ ⇒ ψ + π, f, g ⇒ −f,−g, without loss of generality we can assume
f1 < 0. Parameter β corresponds to the dissipation coefficient.

System (1) emerges as the result of averaging in the small parameter [4] of nonlinear non-
isochronous oscillations with a pumping of small amplitude. As an example we consider Duffing
equation with dissipation

d2x

ds2
+ x− γx3 = −δdx

ds
+ εA(s; ε) cosφ(s;α)

A(s; ε) = A0 + A1(ε)s, φ(s;α) = s− αs2, 0 < α, δ, ε≪ 1, γ > 0.
(2)

Asymptotic ansätze

x(s; ε) = ε1/3κ · r(τ) cos[φ(s;α) + ψ(τ)] +O(ε2/3), ε→ 0, τ = ε2/3s,

for solutions to equation (2) leads us to system (1) with the coefficients λ = 2αε−4/3, β =

δε−2/3/2, f1 = g1 = −ε−2/3A1/2κ, f0 = g0 = −A0/2κ, κ = 2
√

2/3γ. We note that in the
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present problem, while studying the stability of solutions to system (1) the smallness of the
coefficients of the equation is not employed.

Let us clarify the features of the considered problem, in particular, the choice of a special
pumping in (2). We observe that the trajectories of the unperturbed equation ẍ+ x− γx3 = 0
with initial energy 0 < E < 1/(4γ) describe non-isochronous oscillations1. An essential growth
of the energy of such oscillations generated by a small (0 < ε ≪ 1) oscillating force under
the condition |x(s0)| + |ẋ(s0)| ≪ 1 is usually associated with the autoresonance. Since our
system is non-isochronous , a pumping with a constant frequency (α = 0) does not produce
an essential growth of oscillations amplitude [5]. It is obvious that one needs some adjustment
of external force to a changing eigenfrequency. Such adjustment happens to be provided by
a small change of pumping frequency. In particular, if 0 < α ≪ 1, δ = 0 and A1(ε) = 0,
solutions to equation (2) can demonstrate an essential growth of energy (Fig. 1). In this case
one says that a capture of an oscillating system into autoresonance occurs. We observe that
the phenomenon of autoresonance or self-phasing has many applications [6, 7, 8, 9].
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Fig. 1. Evolution of the energy of equation (2) with a variable frequency of pumping without dissipation:

γ = 1/6, δ = 0, ε = 10−3, A0 = 1, A1 = 0, α = 10−5. Two graphs correspond to the solutions of different kinds

captured into resonance and non-resonance.

Under the presence of the dissipation (0 < δ ≪ 1), a slowly changing force with A(s; ε) ≡ A0

produce a growth of oscillations only on a relatively small time interval, afterward the oscilla-
tions decay [10], Fig. 2a. A relatively long growth of the oscillation energy can be obtained by
means of a small change of the pumping amplitude A(s; ε) = −2κ(1 + ε2/3s), see Fig. 2b.

Such way of pumping for capturing into autoresonance of nonlinear oscillating system with
dissipation was proposed in [3], where an asymptotic analysis of system (1) was made and there
were obtained conditions of existence of a two-parametric family of solutions with a growing
amplitude.

Autoresonance solution. For considered equations (1) we can obtain no explicit solutions.
However, we can construct a formal asymptotic solution at infinity w.r.t. τ as a power series
with constant coefficients:

R0(τ) =
√
λτ +

∞
∑

k=0

rkτ
−k/2, Ψ0(τ) =

∞
∑

k=0

ψkτ
−k/2, τ → ∞. (3)

Coefficients rk, ψk are determined by recurrent formulae after substituting the series in the
equations. In this way we determine two solutions distinguished by the choice of a root to

1i.e., oscillations with the eigenfrequency depending on the amplitude.
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the equation sinψ0 = 0. The existence of partial solutions as τ > τ0, τ0 = const > 0 with
constructed asymptotics is implied by [11]. It follows from [12] that these solutions can be
continued on the whole half-line τ > 0. Below we discuss the stability of such solutions.
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Fig. 2. Evolution of amplitude r(τ) as λ = 1, β = 0.1, (a): f(τ) ≡ g(τ) ≡ 1; (b): f(τ) ≡ g(τ) ≡ −(1 + τ)

Perturbed equations of principle resonance. The aim of the work is to study the
influence of persistent perturbations on the capture into autoresonance. In order to do it, we
consider perturbed equations:

dr

dτ
= (f(τ) + µξ) sinψ − βr, r

[dψ

dτ
− r2 + λτ + µϕ

]

= (g(τ) + µη) cosψ. (4)

Here functions ξ(r, ψ, τ), η(r, ψ, τ), ϕ(r, ψ, τ) play the role of perturbations, µ ∈ R, |µ| ≪ 1 is
a small parameter controlling the perturbation [13].

An example of original problem averaging of which leads one to system (4) is the Duffing
equation with perturbed pumping amplitude and phase:

d2x

ds2
+ x− γx3 = −δdx

ds
+ ε(A+ µh) cos(φ+ µθ). (5)

The perturbation is modeled by functions h(x, ẋ, s; ε) and θ(x, ẋ, s; ε). In the particular case,
when the perturbation depends on time only, the relation between functions ξ(τ), η(τ), ϕ(τ)
and h(s; ε), θ(s; ε) is described by the following formulae:

ξ(τ) = a1h(s; ε), η(τ) = a2h(s; ε), ϕ(τ) = θ′(s; ε)ε−2/3, (6)

where a1, a2 are some constants.
For model system (1) the problem of autoresonance stability is to identify a class of pertur-

bations under which growing solution (3) is stable. In the present work we restrict ourselves by
classes of perturbations under which system (4) has a global solution with initial data in the
vicinity of solutions (3). Sufficient conditions ensuring this property are well-known (cf. [14],
[15]).

We note that the models of autoresonance without dissipation were studied a lot including
the stability (see [16, 17, 18]). However, in real physical processes there are always dissipation
phenomena [19], which should be taken into consideration together with perturbations in the
mathematical models. In the present work we propose a solution to problem of stability of
autoresonance in nonlinear oscillating systems with a dissipation.

The work consists of three parts. In the first part we discuss the Lyapunov stability of
autoresonance solutions w.r.t. initial data and we construct Lyapunov function. In the second
part of the work we study the stability of autoresonance under persistent perturbations. The
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third part is devoted to the stability of autoresonance on an asymptotically long time interval.
The main results of the work are the proof of autoresonance stability and the description of
the classes of pertubations under which the capture into autoresonance occurs.

1. Lyapunov stability

System (1) has a pair of solutions with asymptotics (3) distinguished by the choice of a root
to the equation: sinψ0 = 0. The solution with ψ0 = π happens to be unstable that follows from
the analysis of the eigenvalues of the matrix linearized on solution R0(τ), Ψ0(τ) to the system.

For the other solution determined by the choice ψ0 = 0, the eigenvalues of the linearized
system are pure imaginary. Therefore, to study the stability we need to take into consideration
nonlinear terms. We study the stability of this solution by Lyapunov’s second method.

We precise asymptotics (3) of the considered solution as τ → ∞:

R0(τ) =
√
λτ + r0 + r1τ

−1/2 +O(τ−1), Ψ0(τ) = ψ1τ
−1/2 +O(τ−1),

r0 = − g1
2λ
, r1 = − g21

8λ5/2
, ψ1 =

βλ1/2

f1
.

(7)

We have

Theorem 1. Suppose that the coefficients of system (1) satisfy inequality 1 + g1/f1 > 0.
Then solution R0(τ),Ψ0(τ) with asymptotics (7) is asymptotically stable.

Proof. In system (1) we make a change

r = R0(τ) + νRτ 1/4, ψ = Ψ0(τ) + Ψ, t =
(τ

z

)7/4

, (8)

ν =
√
−f1/(4λ)1/4, z = (−7ν/4f1)

4/7, and for new functions R(t), Ψ(t) we study the stability
of the equilibrium (0; 0). In new variables original equations (1) cast into the form

dR

dt
= −∂ΨH(R,Ψ, t),

dΨ

dt
= ∂RH(R,Ψ, t) +G(R,Ψ, t). (9)

Here Hamiltonian and non-Hamiltonian component read as1:

H =
R0(τ)

2
√
λτ
R2 +

(

1 +
f0
f1
τ−1

)

(cosΨ0 − cos(Ψ + Ψ0)−Ψ sinΨ0)+

+
νR3

6
√
λ
τ−1/4 +

(4β + τ−1)RΨ

8ν
√
λ

τ−3/4;

(10)

G =
1

2ν
√
λ

[

g(τ)
( cos(Ψ + Ψ0)

R0(τ) + νRτ 1/4
− cosΨ0

R0(τ)

)

− (4β + τ−1)
Ψ

4

]

τ−3/4. (11)

For system (9) we can construct Lyapunov function [20]. Its construction is based on the
asymptotics for Hamiltonian H(R,Ψ, t) and additional term G(R,Ψ, t) as t → ∞ and in the
vicinity of the equilibrium as ρ =

√
R2 +Ψ2 → 0.

In the Hamiltonian we can select a positive definite quadratic form as the main term of the
asymptotics:

H(R,Ψ, t) =
R2

2
+

Ψ2

2
+O(ρ3) +O(ρ2)O(t−1/7), ρ→ 0, t→ ∞.

We observe that hereinafter asymptotic estimates O(ρn) or O(t−m) (n,m = const > 0) are
uniform in (R,Ψ, t) in some domain D(ρ0, t0):

D(ρ0, t0) = {(R,Ψ, t) : ρ < ρ0, t > t0}, ρ0, t0 = const > 0.

1in the formulae we employ variable τ , at that, τ = zt4/7
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The partial derivatives of Hamiltonian H(R,Ψ, t) have the following asymptotics:

∂RH = R +
νR2

2
√
λ
τ−1/4 +O(ρ)O(τ−1/2), ∂ΨH = sinΨ +O(ρ)O(τ−1/2), ∂tH = O(ρ2)O(τ−2).

Function G(R,Ψ, t) tends to zero as t→ ∞:

G(R,Ψ, t) =
g1(cosΨ− 1)

2νλ
τ−1/4 − g1R cosΨ

2λ3/2
τ−1/2 − bΨ

2νλ1/2
[1 +O(ρ)]τ−3/4 +O(τ−1)

and b = β(1 + g1/f1) > 0.
The base of constructed Lyapunov function is Hamiltonian which is perturbed by additional

terms decaying with different rates as t→ ∞
V (R,Ψ, t) = H(R,Ψ, t) + V1(R,Ψ, t) + V2(R,Ψ, t) + V3(R,Ψ, t), (12)

V1(R,Ψ, t) =
g1R

2νλ

(

cosΨ− 1− R2

3

)

τ−1/4,

V2(R,Ψ, t) =
[ g21
4ν2λ2

(sin2Ψ

2
+ cosΨ− 1

)

+
g1

4λ3/2

(

sin2Ψ− R4

4

)]

τ−1/2,

V3(R,Ψ, t) = − bRΨ

4νλ1/2
τ−3/4.

The derivative of these functions calculated along system (9) reads as

dH

dt

∣

∣

∣

(9)
=
∂H

∂t
+
∂H

∂Ψ
G =

g1
2νλ

sinΨ(cosΨ− 1)τ−1/4 − g1
2λ3/2

R sinΨ cosΨτ−1/2

− b

2νλ1/2
Ψ2τ−3/4 +O(ρ3)O(τ−3/4) +O(ρ2)O(τ−1),

dV1
dt

∣

∣

∣

(9)
=− g1

2νλ
sin Ψ(cosΨ− 1)τ−1/4 − g1

4λ3/2
R sinΨ

[

R2 +
g1

ν2λ1/2
(cosΨ− 1)

]

τ−1/2

+O(ρ3)O(τ−3/4) +O(ρ2)O(τ−1),

dV2
dt

∣

∣

∣

(9)
=

g1
2λ3/2

R sin Ψ cosΨτ−1/2 +
g1

4λ3/2
R sinΨ

[

R2 +
g1

ν2λ1/2
(cosΨ− 1)

]

τ−1/2

+O(ρ3)O(τ−3/4) +O(ρ2)O(τ−1),

dV3
dt

∣

∣

∣

(9)
= − b

4νλ1/2
(R2 −Ψ2)τ−3/4 +O(ρ3)O(τ−3/4) +O(ρ2)O(τ−1).

It implies the expression for the derivative of function V (R,Ψ, t), which happens to have a
sign-definite leading term in the asymptotics:

dV

dt

∣

∣

∣

(9)
= −ω

2
t−3/7(R2 +Ψ2) +O(ρ3)O(t−3/7) +O(ρ2)O(t−4/7),

ω = b(2νλ1/2z3/4)−1 > 0. Since the estimates in the last expression can be arbitrarily small, for
each σ > 0 there exist constants ρ1 > 0, t1 > 0 such that in neighborhood D(ρ1, t1) the upper
estimate

dV

dt

∣

∣

∣

(9)
6 −(ω − σ)

2
t−3/7(R2 +Ψ2), ω − σ > 0,

holds true. In the same way we obtain the estimates for function V (R,Ψ, t): ∀ σ > 0 there
exist ρ2 > 0, t2 > 0:

(1− σ)

2
(R2 +Ψ2) 6 V (R,Ψ, t) 6

(1 + σ)

2
(R2 +Ψ2) (13)
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as (R,Ψ, t) ∈ D(ρ2, t2). We choose σ ∈ (0,min{1, ω}), the in the domain D(ρ0, t0), ρ0 =
min(ρ1, ρ2), t0 = max(t1, t2), we have the estimate

dV

dt

∣

∣

∣

(9)
6 −ω0t

−3/7V 6 0, ω0 =
ω − σ

1 + σ
> 0. (14)

We fix a small ǫ > 0 and we define δǫ = ǫ
√
1− σ/(2

√
1 + σ). Then Lyapunov function satisfies

the inequalities:

sup
ρ6δǫ,t>t0

V (R,Ψ, t) 6 (1 + σ)
δ2ǫ
2

6 (1− σ)
ǫ2

2
6 inf

ρ=ǫ,t>t0
V (R,Ψ, t).

Since the derivative of Lyapunov function is negative, it follows that each trajectory R(t), Ψ(t)
with initial data R2(t0) + Ψ2(t0) 6 δ2ǫ does not leave ǫ-neighborhood of the equilibrium R = 0,
Ψ = 0 as t > t0. Moreover, it also follows from (14) that Lyapunov function decays on the
trajectories of system (9):

0 6 V (R(t),Ψ(t), t) 6 C exp

(

−7ω0

4
t4/7

)

, t > t0.

Constant C > 0 depends on the trajectory. By means of change of variables (8) we obtain

estimates for the solutions to system (1) as τ > τ0, τ0 = zt
4/7
0 :

|r(τ)−R0(τ)| 6 ντ 1/4
√

2C

1− σ
exp

(

− 7ω0

8z
τ
)

, |ψ(τ)−Ψ0(τ)| 6
√

2C

1− σ
exp

(

− 7ω0

8z
τ
)

.

These inequalities imply the asymptotic stability of solution R0(τ), Ψ0(τ).

Remark 1. In applications functions f(τ) and g(τ) are usually equal. In this case the
statement of theorem becomes unconditional since 1 + g1/f1 ≡ 2 > 0.

2. Stability under persistent perturbations

In this section we study the stability of solution R0(τ), Ψ0(τ) w.r.t. persistent perturbations.
Together with equations (1) we consider the perturbed system:

dr

dτ
= (f(τ) + µξ) sinψ − βr, r

[dψ

dτ
− r2 + λτ + µϕ

]

= (g(τ) + µη) cosψ. (15)

Functions ξ(r, ψ, τ), η(r, ψ, τ), ϕ(r, ψ, τ) correspond to perturbations, µ is a small parameter.
Let us give the definition of stability we shall use in this section.

Definition 1. Solution R0(τ),Ψ0(τ) of system (1) is stable w.r.t. persistent perturbations
B if ∀ ǫ > 0 ∃ δǫ,∆ǫ > 0:

∀ τ0 > 0 ∀̺0, φ0 : |̺0 − R0(τ0)| 6 δǫ, |φ0 −Ψ0(τ0)| 6 δǫ,

∀ |µ| < ∆ǫ, ∀ (ξ, η, ϕ) ∈ B solution rµ(τ), ψµ(τ) of perturbed equations (15) with initial data
rµ|τ=τ0 = ̺0, ψµ|τ=τ0 = φ0 satisfy the inequalities

|rµ(τ)−R0(τ)|τ−1/4 < ǫ, |ψµ(τ)−Ψ0(τ)| < ǫ ∀τ > τ0.

A class of perturbations B, under which the autoresonance is stable, will be called admissible.
We observe that Definition 1 weakens slightly a classical definition of stability [21, 22] because

of the presence of the factor τ−1/4 in the inequality for the amplitude. This inequality can be
regarded as the estimate for the norm in the space of continuous functions with the weight
τ−1/4:

‖u(τ)‖C
τ1/4

= sup
τ>τ0

|u(τ)|τ−1/4.
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On the other hand, the stability by Definition 1 is in some sense stronger than the stability
w.r.t. part of variables [23], for which one needs the smallness of deviations only for some of the
components of solution. The considered case corresponds to ψ-stability. Thus, for the stability
we need to keep the rate of growth for the leading term of the asymptotics for the amplitude
of perturbed solutions.

Remark 2. It follows from [3] that if 1 + f1/g1 > 0, then there exists a two-parametric

family of solutions to equations (1) with the asymptotics r(τ) =
√
λτ + O(τ 1/4), ψ(τ) = o(1)

as τ → ∞. Perturbed system (15) can also have autoresonance solutions with such amplitude.
This is why the presence of the factor τ−1/4 in the estimate for the amplitude in the definition
of stability seems to be quite reasonable.

From the practical point of view, the above definition allows us to describe a wider class of
perturbations under which the capture into autoresonance occurs.

Let a, b, c = const > 0. We define the class of perturbations Pa,b,c as a set of functions
(ξ, η, ϕ) with a finite quantity

sup
(r,ψ)∈R2,τ>0

|ξ(r, ψ, τ)|τ−a + |η(r, ψ, τ)|τ−b + |ϕ(r, ψ, τ)|τ−c <∞.

For each m > 0 we define also Pm
a,b,c as the subset of functions (ξ, η, ϕ) ∈ Pa,b,c satisfying the

inequality

|ξ(r, ψ, τ)|τ−a + |η(r, ψ, τ)|τ−b + |ϕ(r, ψ, τ)|τ−c 6 m, ∀ (r, ψ) ∈ R
2, τ > 0.

The study of stability for solution R0(τ),Ψ0(τ) is reduced to the stability of the equilibrium
(0; 0) of system (9) under persistent perturbations. In order to do it, in perturbed equations
(15) we make the change of variables (8) and the system becomes

dR

dt
= −∂ΨH(R,Ψ, t) + µp(R,Ψ, t),

dΨ

dt
= ∂RH(R,Ψ, t) +G(R,Ψ, t) + µq(R,Ψ, t). (16)

Hamiltonian H(R,Ψ, t) and function G(R,Ψ, t) are determined by formulae (10) and (11).
Persistent perturbations of system (9) are described by functions p(R,Ψ, t) and q(R,Ψ, t):

p(R,Ψ, t) = − ξ̂

zf1
t−4/7, q(R,Ψ, t) = − ν

z3/4f1

( η̂ cos(Ψ + Ψ0)

R0 + νRz1/4t1/7
− ϕ̂

)

t−3/7. (17)

Functions ξ̂(R,Ψ, t), η̂(R,Ψ, t), ϕ̂(R,Ψ, t) appears as a result of substituting (8) into ξ(r, ψ, τ),
η(r, ψ, τ), ϕ(r, ψ, τ), respectively, for instance,

ξ̂(R,Ψ, t) = ξ(R0(τ) + νRτ 1/4,Ψ0(τ) + Ψ, τ), τ = zt4/7.

We consider the auxiliary problem on stability of the trivial solution to system (9) under
persistent perturbations (p, q). We introduce a class K of perturbations of system (9) as the
set of functions (p, q) satisfying

sup
(R,Ψ)∈R2,t>0

|p(R,Ψ, t)|t3/7 + |q(R,Ψ, t)|t3/7 <∞.

For each fixed m > 0, the set of functions (p, q) ∈ K satisfying the estimate

|p(R,Ψ, t)|t3/7 6 m, |q(R,Ψ, t)|t3/7 6 m ∀(R,Ψ) ∈ R
2, t > 0,

is denoted by Km.
In studying systems (9) and (16) we employ the classical definition of stability [21].
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Definition 2. Solution R(t) ≡ 0, Ψ(t) ≡ 0 of system (9) is stable w.r.t. persistent pertur-
bations K if ∀ ǫ > 0 ∃ δǫ,∆ǫ > 0 :

∀ t0 > 0 ∀̺0, φ0 : ̺20 + φ2
0 6 δ2ǫ , ∀ |µ| < ∆ǫ, ∀ (p, q) ∈ K,

solution Rµ(t), Ψµ(t) to perturbed equations (16) with initial data Rµ|t=t0 = ̺0, Ψµ|t=t0 = φ0

satisfies the inequality:

R2
µ(t) + Ψ2

µ(t) < ǫ2 ∀ t > t0.

We have

Lemma 1. If the coefficients of system (9) satisfy inequality 1 + g1/f1 > 0, then ∀m > 0
the trivial solution R(t) ≡ 0, Ψ(t) ≡ 0 is stable under persistent perturbations (p, q) ∈ Km.

Proof. The proof is based on Lyapunov function (12) constructed in Theorem 1 for unperturbed
system (9). We calculate the total derivative of function V (R,Ψ, t) along the perturbed system
(16):

dV

dt

∣

∣

∣

(16)
=
dV

dt

∣

∣

∣

(9)
+ µ(p∂RV + q∂ΨV ).

The first term in the right hand side of this identity satisfies estimate (14) in domain D(ρ0, t0)
with constants σ, ω, ω0 > 0. Partial derivatives of function V are bounded in the vicinity of
zero R = 0, Ψ = 0 as t > t0: |∂RV | 6 ℓ, |∂ΨV | 6 ℓ. We fix parameters ǫ > 0 and m > 0 and
let ǫ be sufficiently small. We define ∆ǫ = ǫ2ω0(1 − σ)2/(32mℓ(1 + σ)). Then as |µ| < ∆ǫ for
an appropriate choice of δǫ ∈ (0, ρ0) the inequalities

dV

dt

∣

∣

∣

(16)
6 −ω0t

−3/7
[

V − ǫ2(1− σ)2

16(1 + σ)

]

< 0, δǫ =
ǫ

2

√

1− σ

1 + σ
< ǫ (18)

hold true in domain D(ρ0, t0)\D(δǫ, t0). Estimates (13) for Lyapunov function imply the in-
equalities

sup
ρ6δǫ,t>t0

V (R,Ψ, t) 6 (1 + σ)
δ2ǫ
2
< (1− σ)

ǫ2

2
6 inf

ρ=ǫ,t>t0
V (R,Ψ, t) (19)

Together with the negativeness of the total derivative of function V (R,Ψ, t) it yields that for
each T0 > t0, solution to system (16) with initial conditions R2

µ(T0) + Ψ2
µ(T0) = δ2ǫ stays in the

ǫ-neighborhood of zero, i.e., R2
µ(t) + Ψ2

µ(t) < ǫ2 as t > T0.
For the trajectories of perturbed system (16) with initial conditions Rµ(T0), Ψµ(T0) in the

circle ρ < δǫ, where the negativeness of the derivative of Lyapunov function is not ensured, there
are two possibilities: either R2

µ(t) +Ψ2
µ(t) < δ2ǫ for each t > T0 or there exists tǫ > T0 such that

R2
µ(tǫ) + Ψ2

µ(tǫ) = δ2ǫ . In the latter case estimates (18) and (19) imply that R2
µ(t) + Ψ2

µ(t) < ǫ2

as t > tǫ.
Thus, we have proven the stability of the trivial solution in the neighborhood of the infinity

t > t0. The stability on a finite segment 0 6 t 6 t0 follows from the theorem on continuity of
solution to Cauchy problem w.r.t. the parameters of equations (cf. [14]).

Let us specify class of perturbations P of system (1). We choose parameters a = 1/4, b = 1/2,
c = 0, then functions p and q determined by formulae (17) belong to class K.

Theorem 2. Suppose that the coefficients of system (1) satisfy inequality 1 + g1/f1 > 0.
Then ∀m > 0 solution R0(τ), Ψ0(τ) with asymptotics (7) is stable w.r.t. persistent perturba-
tions (ξ, η, ϕ) ∈ Pm

1/4,1/2,0:

|ξ(r, ψ, τ)| 6 mτ 1/4, |η(r, ψ, τ)| 6 mτ 1/2, |ϕ(r, ψ, τ)| 6 m, τ > 0. (20)
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Proof. We observe that functions ξ̂(R,Ψ, t), η̂(R,Ψ, t), ϕ̂(R,Ψ, t) satisfy the estimates:

|ξ̂(R,Ψ, t)| 6 m̂t1/7, |η̂(R,Ψ, t)| 6 m̂t2/7, |ϕ̂(R,Ψ, t)| 6 m̂ ∀(R,Ψ), t > t0,

m̂ = m · max{1, z1/4, z1/2}. In view of the structure of functions p(R,Ψ, t) and q(R,Ψ, t) it
implies the inequalities |p(R,Ψ, t)| 6 Mt−3/7, |q(R,Ψ, t)| 6 Mt−3/7 with a positive constant
M = mz−3/4 max{1, |ν|(1 + λ−1/2)}/|f1|, i.e., (p, q) ∈ K. Then in accordance with Lemma 1
the trivial solution to system (9) is stable w.r.t. persistent perturbations (in the sense of
Definition 2) and for the trajectories of system (16) with initial conditions in the vicinity of the
infinity the estimate

R2
µ(t) + Ψ2

µ(t) < ǫ2

holds true as t > 0. Therefore, ∀ τ0 > 0 in view of change (8) the solutions to system (15) with
initial conditions close to R0(τ0), Ψ0(τ0) the inequalities

|rµ(τ)− R0(τ)|τ−1/4 < νǫ, |ψµ(τ)−Ψ0(τ)| < ǫ, τ > τ0,

hold true. It implies the stability of solution R0(τ), Ψ0(τ) in the sense of Definition 1.

3. Stability on asymptotically long time interval

In the previous section we have described the class of perturbations under which the solution
to system (1) with asymptotics (7) is stable for each τ > 0. However, to study the capture into
autoresonance by the averaged equations it is sufficient to restrict ourselves by a finite time
interval on which the mathematical model is still appropriate [1]: 0 < τ 6 O(ε−1/3), where
0 < ε ≪ 1 is a small parameter of pumping in the original equation, see, for instance, (2).
In the subsequent time the capture into autoresonance is described by other equations [24].
Hence, in the considered case, a more appropriate problem is on the stability under persistent
perturbation on a finite but an asymptotically long time interval 0 < τ 6 O(|µ|−κ), where
|µ| ≪ 1 is the perturbation parameter. A similar formulation was considered, for instance,
in [13]. It is obvious that the stability of solution on the half-line under the perturbations in
class P implies the stability on each finite interval. The attempt to restrict the considered
time interval is motivated by the hope to find weaker conditions (in comparison with (20))
for admissible classes of perturbations. A similar approach happened to be quite successful in
analyzing stability for dynamical systems perturbed by “white noise” [25].

Let us formulate the definition of stability.

Definition 3. Solution R0(τ),Ψ0(τ) to system (1) is stable w.r.t. persistent perturbations
B on an asymptotically long time interval if there exists κ > 0 such that ∀ ǫ > 0 ∃ δǫ,∆ǫ > 0 :

∀̺0, φ0 : |̺0 −R0(0)| 6 δǫ, |φ0 −Ψ0(0)| 6 δǫ, ∀ |µ| < ∆ǫ, ∀ (ξ, η, ϕ) ∈ B
solution rµ(τ), ψµ(τ) to perturbed equations (15) with initial data rµ|τ=0 = ̺0, ψµ|τ=0 = φ0

satisfy the inequalities

|rµ(τ)− R0(τ)|τ−1/4 < ǫ, |ψµ(τ)−Ψ0(τ)| < ǫ

as 0 < τ 6 O(|µ|−κ).

We shall consider class of perturbations Pa,b,c introduced in the previous section but with
other parameters: a = 1 + ϑ, b = 5/4 + ϑ, c = 3/4 + ϑ, ϑ > 0.

Theorem 3. Suppose that the coefficients in system (1) satisfy the inequality 1 + g1/f1 > 0.
Then ∀m > 0, ϑ > 0 solution R0(τ),Ψ0(τ) with asymptotics (7) is stable w.r.t. persistent
perturbations (ξ, η, ϕ) ∈ Pm

1+ϑ,5/4+ϑ,3/4+ϑ:

|ξ(r, ψ, τ)| 6 mτ 1+ϑ, |η(r, ψ, τ)| 6 mτ 5/4+ϑ, |ϕ(r, ψ, τ)| 6 mτ 3/4+ϑ
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on an asymptotically long time interval 0 < τ 6 O(|µ|−κ), 0 < κ < κ0, κ0 = 4/(4ϑ+ 3).

Proof. As in the proof of Theorem 2, we first study perturbed system (16) and then we conclude
on the stability of solutions to original equations (1).

Under above restrictions and in view of (17) functions p(R,Ψ, t) and q(R,Ψ, t) satisfy
the estimates |p(R,Ψ, t)| 6 Mt4ϑ/7, |q(R,Ψ, t)| 6 Mt4ϑ/7 with a positive constant M =
mzϑmax{1, |ν|(1 + λ−1/2)}/|f1|. Let us calculate the derivative of Lyapunov function (12)
along system (16):

dV

dt

∣

∣

∣

(16)
=
dV

dt

∣

∣

∣

(9)
+ µ(p∂RV + q∂ΨV ).

In domain D(ρ0, t0) the derivative satisfies the estimate

dV

dt

∣

∣

∣

(16)
6 −ω0t

−3/7V + 2|µ|ℓMt4ϑ/7.

The first term in the right hand side emerges because of estimate (14) for the total derivative
of function V (R,Ψ, t). The boundedness of perturbations p(R,Ψ, t), q(R,Ψ, t) and partial
derivatives of function V (R,Ψ, t) in domain D(ρ0, t0): |∂RV | 6 ℓ, |∂ΨV | 6 ℓ lead us to the
other term in the estimate. We fix ǫ > 0, m > 0, 0 < κ < 7/(4ϑ+ 3) and choose

∆ǫ = (2t0)
−(4ϑ+3)/κ0

[ ǫ2ω0(1− σ)2

32Mℓ(1 + σ)

]7/κ0
, κ0 = 7− (4ϑ+ 3)κ > 0.

Then as |µ| < ∆ǫ and for an appropriate choice of δǫ ∈ (0, ρ0) the estimates

dV

dt

∣

∣

∣

(16)
6 −ω0t

−3/7
[

V − (1− σ)
δ2ǫ
4

]

< 0, δǫ =
ǫ

2

√

1− σ

1 + σ
< ǫ

hold true in the bounded domain δǫ < ρ < ρ0, 0 < t − t0 6 t0|µ|−κ. We note that for
chosen δǫ Lyapunov function satisfies inequalities (19). Together with the negativeness of total
derivative of function V (R,Ψ, t) it follows that each solution to system (16) with initial data
R2
µ(t0) + Ψ2

µ(t0) = δ2ǫ stays in ǫ-neighborhood of zero, i.e., R2
µ(t) + Ψ2

µ(t) < ǫ2 as 0 6 t − t0 6

t0|µ|−κ.
In circle ρ < δǫ the negativeness of the total derivative of function V (R,Ψ, t) is not ensured.

This is why the trajectories of system (16) with initial data R2
µ(t0) + Ψ2

µ(t0) < δ2ǫ either stay

bounded R2
µ(t)+Ψ2

µ(t) < δ2ǫ on the interval 0 6 t− t0 6 t0|µ|−κ or there exists tǫ : 0 < tǫ− t0 <
t0|µ|−κ such that R2

µ(tǫ)+Ψ2
µ(tǫ) = δ2ǫ . In the latter case the estimates (18) and (19) imply that

R2
µ(t) + Ψ2

µ(t) < ǫ2 as t ∈ [tǫ, t0 + t0|µ|−κ]. Thus, R2
µ(t) + Ψ2

µ(t) < ǫ2 as 0 6 t− t0 6 t0|µ|−κ.
By means of change of variables (8) we obtain the estimates for the solutions to original

system (15):

|rµ(τ)−R0(τ)|τ−1/4 < νǫ, |ψµ(τ)−Ψ0(τ)| < ǫ

as 0 6 τ − τ0 6 O(|µ|−4κ/7). Theorem on continuity of solution to Cauchy problem w.r.t. the
parameters of equations implies the stability of solution to equation for τ ∈ (0; τ0). Therefore,
∀m > 0 and ϑ > 0 solution R0(τ),Ψ0(τ) to system (1) is stable under persistent perturbations
on an asymptotically long time interval 0 < τ 6 O(|µ|−κ), ∀κ ∈ (0;κ0) uniformly in (ξ, η, ϕ) ∈
Pm.

Remark 3. Theorem 3 and formulae (6) imply the stability of autoresonance solutions to
Duffing equations with external pumping (2). If µ = ε1/3, h(s; ε) = ε5/6s5/4, θ(s; ε) = ε4/3s2

(that corresponds to ϑ = 1/4), perturbed equation (5) have trajectories captured into autoreso-
nance as s 6 O(ε−5/6).
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4. Conclusion

We study a system of model equations describing the initial stage of the capture into au-
toresonance in nonlinear oscillating systems with dissipation. We prove the Lyapunov stability
of solutions with growing amplitude r(τ) ≈

√
λτ and under persistent perturbations. We de-

scribe admissible classes of perturbations. The obtained results give a hope for the existence
of rather long autoresonance regimes in real physical processes. The question on influence of
random perturbations on the capture into autoresonance in systems with dissipation remains
open. This subject requires a special attention and will be discussed in a separate work.

The author thanks L.A. Kalyakin for useful discussion and valuable comments.
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