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SPECTRAL PROPERTIES OF TWO PARTICLE

HAMILTONIAN ON ONE-DIMENSIONAL LATTICE

M.E. MUMINOV, A.M. KHURRAMOV

Abstract. We consider a system of two arbitrary quantum particles on a one-dimensional
lattice with special dispersion functions (describing site-to-site particle transport), where
the particles interact by a chosen attraction potential. We study how the number of eigen-
values of operator family ℎ(𝑘) depends on the particle interaction energy and the total
quasimomentum 𝑘 ∈ T (where T is a one-dimensional torus). Subject to the particle inter-
action energy, we obtain conditions for existence of multiple eigenvalues below the essential
spectrum of operator ℎ(𝑘).
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1. Introduction

In the continuous case the study of spectral properties of the complete Hamiltonian for a
two-particle system is reduced to the study of a two-particle Schrödinger operator by means of
choosing the energy of the mass center so that one-particle bound states are eigenfunctions for
the energy operator with a separated complete momentum (in fact, such operator is independent
of total momentum) [1]. Dealing with a lattice, “choosing of the mass center” corresponds to
the realization of the Hamiltonian as “fibered operator”, i.e., the “direct integral” of the family
of operators ℎ(𝑘) describing the energy of two particles depending on total quasi-momentum
𝑘∈T𝑑 (T𝑑 is a 𝑑-dimensional torus) [2, 3]. Discrete Hamiltonians were studied in works [4, 5].
In work [4] the emergence of bound states levels was shown for some values of quasi-momentum
and these levels were separated from the continuous spectrum by a certain distance. Spectral
properties of a two-particle operator depending on the total quasi-momentum were studied in
[5].

It was shown in work [3] that in the case when operator ℎ(0) has a virtual level at the left
threshold of the essential spectrum, the discrete spectrum of operator ℎ(𝑘) located to the left
of the essential spectrum is always non-empty for each 𝑘∈T𝑑 ∖ {0}. Assuming that dispersion
laws of particles 𝜀1(·) and 𝜀2(·) were linearly dependent functions, in work [6] there was shown
that the positivity of ℎ(0) implies the positivity of ℎ(𝑘) for each 𝑘 ∈ T3 ∖ {0}.

In [7] there was studied a system of two particles on a three-dimensional lattice with some
dispersion law describing the transport of the particle from a note to a neighboring site inter-
acting by an attractive potential only on the closest neighboring sites. The spectral properties
of operator family ℎ(𝑘) we studied subject to the particles interaction energy and total quasi-
momentum 𝑘∈T3 (T3 is a 3-dimensional torus).

In the work we consider a two-particle Schrödinger operator ℎ(𝑘), 𝑘 ∈ T, associated with a
system of two particles on the one-dimensional lattice, where the potential is described by some
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(2𝑁 + 1)-dimensional integral operator and the dispersion law is studied depending on 𝑁 . We
study the existence of eigenvalues for operator family ℎ(𝑘) depending on particles interaction
energy and total quasi-momentum 𝑘.

2. Formulation of main results

Let Z be the one-dimensional integer lattice, (Z)2 = Z×Z be the Cartesian power of Z, and
ℓ2((Z)2) be the Hilbert space of square integrable functions defined on (Z)2.

We consider the coordinate representation for the Hamiltonian of the system of two arbitrary
particles interacting with a pair short range potential 𝑣(·) on the one-dimensional lattice acting
in space ℓ2((Z)2) by the formula

ℎ̂ = ℎ̂0 − 𝑣,

where the action of ℎ̂0 and 𝑣 is described by the rules:

(ℎ̂0𝜓)(𝑛1, 𝑛2) =
∑︁
𝑠∈Z

[𝜀1(𝑠)𝜓(𝑛1 + 𝑠, 𝑛2) + 𝜀2(𝑠)𝜓(𝑛1, 𝑛2 + 𝑠)],

(𝑣𝜓)(𝑛1, 𝑛2) = 𝑣(𝑛1 − 𝑛2)𝜓(𝑛1, 𝑛2).

Here 𝜀1(𝑠) and 𝜀2(𝑠) are real-valued even functions describing the transport of a particle from
the site to the neighboring site; these functions are defined as

𝜀𝑖(𝑠) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

𝑚𝑖

as 𝑠 = 0,

− 1

2𝑚𝑖

as𝑠 = ±2𝑛,

0 otherwise

and

𝑣(𝑠) =

⎧⎪⎨⎪⎩
2𝜋𝜇0 as 𝑠 = 0,

𝜋𝜇𝑙 as 𝑠 = ±𝑙, 𝑙 = 1, 𝑁,

0 otherwise,

where 𝑚𝑖 > 0 is the mass of 𝑖th particle, 𝑖 = 1, 2, 𝜇𝑙 > 0, 𝑛 is a natural number.
We introduce the polynomials

𝑃0(𝑥) ≡ 0, 𝑃1(𝑥) = 𝑥,

𝑃𝑘(𝑥) = 𝑃1(𝑃𝑘−1(𝑥)) + 2𝑃𝑘−1(𝑥) − 𝑃𝑘−2(𝑥) + 2𝑃1(𝑥), 𝑘 = 2, 3, 4, . . .

Let ∆ be the discrete Laplacian on the one-dimensional lattice. It acts in ℓ2(Z) by the
formula

(∆𝑓)(𝑠) = 𝑓(𝑠+ 1) + 𝑓(𝑠− 1) − 2𝑓(𝑠).

Proposition 1. For each 𝑓 ∈ ℓ2(Z) the identity

𝑓(𝑠+ 𝑘) + 𝑓(𝑠− 𝑘) − 2𝑓(𝑠) = (𝑃𝑘(∆)𝑓)(𝑠), 𝑘 = 2, 3, 4, . . .

holds true.

Proof. Assume that as 𝑘 = 𝑙, 𝑙 > 2, the identity

𝑓(𝑠+ 𝑙) + 𝑓(𝑠− 𝑙) − 2𝑓(𝑠) = (𝑃𝑙(∆)𝑓)(𝑠)

is valid. Then we have

(𝑃1(𝑃𝑙(∆))𝑓)(𝑠) =[𝑓(𝑠+ 𝑙 + 1) + 𝑓(𝑠− (𝑙 − 1)) − 2𝑓(𝑠+ 1)]

+ [𝑓(𝑠− (𝑙 + 1)) + 𝑓(𝑠+ (𝑙 − 1)) − 2𝑓(𝑠− 1)] − 2(𝑃𝑙(∆)𝑓)(𝑠)

=(𝑃𝑙+1(∆)𝑓)(𝑠) + (𝑃𝑙−1(∆)𝑓)(𝑠) − 2(𝑃1(∆)𝑓)(𝑠) − (𝑃𝑙(∆)𝑓)(𝑠).
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It yields that

𝑓(𝑠+ 𝑙 + 1) + 𝑓(𝑠− (𝑙 + 1)) − 2𝑓(𝑠) =(𝑃1(∆)𝑓)(𝑠) + 2(𝑃𝑙(∆)𝑓)(𝑠)

− (𝑃𝑙−1(∆)𝑓)(𝑠) + 2(𝑃1(∆)𝑓)(𝑠) = (𝑃𝑙+1(∆)𝑓)(𝑠).

We observe that free hamiltonian ℎ̂0 of two arbitrary particles system on the one-dimensional
lattice acts in the space ℓ2(Z

2) by the formula

ℎ̂0 =
1

2𝑚1

𝑃2𝑛(∆) × 𝐸 +
1

2𝑚2

𝐸 × 𝑃2𝑛(∆),

where 𝐸 is the identity mapping in ℓ2(Z).

We note that considered operator ℎ̂ is bounded and self-adjoint in ℓ2((𝑍)2).
Let T = (−𝜋, 𝜋], 𝐿2(T) be the Hilbert space of square integrable functions defined on T. By

means of Fourier transform [3], [6]

ℑ : ℓ2((Z)2) → 𝐿2((T)2), (ℑ𝑓)(𝑝) =
1

2𝜋

∑︁
𝑠∈(Z)2

𝑓(𝑠)𝑒−𝑖(𝑝,𝑠),

we obtain the momentum representation ℎ of operator ℎ̂, i.e., ℎ = ℑℎ̂ℑ−1. Then we expand
operator ℎ into the direct operator integral

ℎ =

∫︁
T

⊕ℎ(𝑘)𝑑𝑘,

where ℎ(𝑘), 𝑘 ∈ T, is the self-adjoint operator acting in 𝐿2(T) by the formula

ℎ(𝑘) = ℎ0(𝑘) − v.

Here ℎ0(𝑘) the operator of multiplication by the function

ℰ𝑘(𝑝) =
1

𝑚1

𝜀(𝑝) +
1

𝑚2

𝜀(𝑝− 𝑘), 𝜀(𝑝) =
∑︁
𝑠∈𝑍

𝜀(𝑠)𝑒𝑖𝑝𝑠 = 1 − cos 2𝑛𝑝

and v is an integral operator with the kernel

𝑣(𝑝− 𝑞) =
1

2𝜋

∑︁
𝑠∈𝑍

𝑣(𝑠)𝑒−𝑖(𝑝−𝑞)𝑠 =
𝑁∑︁
𝑙=0

𝜇𝑙 cos 𝑙(𝑝− 𝑞).

We note that Weyl theorem on essential spectrum [8] implies that the essential spectrum
𝜎𝑒𝑠𝑠(ℎ(𝑘)) of operator ℎ(𝑘) does not change under compact perturbation v and coincides with
the spectrum of unperturbed operator ℎ0(𝑘). At that, 𝜎𝑒𝑠𝑠(ℎ(𝑘)) consists of the range of function
ℰ𝑘(·), i.e.,

𝜎𝑒𝑠𝑠(ℎ(𝑘)) = 𝜎(ℎ0(𝑘)) = [𝑚(𝑘),𝑀(𝑘)],

where 𝑚(𝑘) = min
𝑝∈T

ℰ𝑘(𝑝), 𝑀(𝑘) = max
𝑝∈T

ℰ𝑘(𝑝).

Since v > 0, then

sup(ℎ(𝑘)𝑓, 𝑓) 6 sup(ℎ0(𝑘)𝑓, 𝑓) = 𝑀(𝑘)(𝑓, 𝑓), 𝑓 ∈ 𝐿2(T).

This is why operator ℎ(𝑘) has no eigenvalues to right of the essential spectrum, i.e.,

𝜎(ℎ(𝑘)) ∩ (𝑀(𝑘),∞) = ∅.
In what follows we assume that

𝑛 =

{︂
LCF{2, 4, ..., 2(𝑁 − 1)} as 𝑁 > 1,

1, as 𝑁 = 1,



102 M.E. MUMINOV, A.M. KHURRAMOV

where LCF stands for the lowest common factor. It should be mentioned that if 𝑁 is a power
of a prime number, then number 𝑛

2𝑁
is fractional. Otherwise number 𝑛

2𝑁
is natural.

We introduce the notations

𝑑(𝑘; 𝑧) =

∫︁
T

𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧
, 𝑐𝑁(𝑘; 𝑧) =

∫︁
T

cos2𝑁𝑠𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧
,

𝑠𝑁(𝑘; 𝑧) =

∫︁
T

sin2𝑁𝑠𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧
, 𝑧 < 𝑚(𝑘),

(1)

ℰ̃𝑘(𝑝) =
1

𝑚1

+
1

𝑚2

−

√︃
1

𝑚2
1

+
2

𝑚1𝑚2

cos 2𝑛𝑘 +
1

𝑚2
2

cos 2𝑛𝑝.

The representation for ℰ̃𝑘(𝑝) implies that min
𝑝∈[−𝜋,𝜋]

ℰ̃𝑘(𝑝) is attained at zero only. This is why

the integral
∫︀
T

sin2 𝑁𝑠𝑑𝑠
ℰ̃𝑘(𝑠)−𝑚(𝑘)

converges and is positive.

We denote

𝜇0(𝑘) =
1

𝑠𝑁(𝑘;𝑚(𝑘))
. (2)

Assumption 1. Assume that 𝑚 = 𝑚1 = 𝑚2 and 𝑘 = ± 𝜋
2𝑛
.

We note that if 𝑛
2𝑁

is a natural (fractional) number, then 𝑐𝑁(𝑘; 𝑧) = 𝑠𝑁(𝑘; 𝑧)
(︁
𝑐𝑁(𝑘; 𝑧) >

𝑠𝑁(𝑘; 𝑧)
)︁

.

Theorem 1. Suppose that Assumption 1 fails. Then the following statements hold true:
1. If 𝑛

2𝑁
is a natural number, then for each 𝜇 = (𝜇0, . . . , 𝜇𝑁) ∈ R𝑁+1

+ operator ℎ(𝑘) has
exactly 2𝑁 + 1 eigenvalues (counting multiplicty) to the left of the essential spectrum.
2. If 𝑛

2𝑁
is a fractional number, then for each 𝜇 = (𝜇0, . . . , 𝜇𝑁−1) ∈ R𝑁

+ and 𝜇𝑁 ∈ 𝑀𝛼,
operator ℎ(𝑘) has exactly 2𝑁 + 𝛼 eigenvalues (counting multiplicity) to the left of the essential
spectrum, where 𝑀0 = (0;𝜇0(𝑘)], 𝑀1 = (𝜇0(𝑘);∞), 𝛼 ∈ {0, 1}.

Theorem 2. Suppose Assumption 1 holds. Then ℰ̃𝑘(𝑝) ≡ 2
𝑚
and for each 𝜇 = (𝜇0, . . . , 𝜇𝑁) ∈

R𝑁+1
+ operator ℎ(𝑘) has exactly 2𝑁 + 1 eigenvalues reading as: 𝑧0 = 2

𝑚
− 2𝜇0𝜋, 𝑧𝑙 = 2

𝑚
− 𝜇𝑙𝜋,

𝑙 = 1, 𝑁 . At that, 𝑧0 is a simple eigenvalue and 𝑧𝑙, 𝑙 > 1, is a double eigenvalue.

Remark. It should be mentioned that if 1− 𝜇*

2
𝑑(𝑘, 𝑧*) = 0, 𝑧* < 𝑚(𝑘), 𝜇* > 0 (see Lemma 2)

and 𝜇𝑙 = 𝜇* for each 𝑙 ∈ {1, 2, 3, ..., 𝑁 − 1}, then number 𝑧 = 𝑧* an eigenvalue of operator ℎ(𝑘)
having the multiplicity at least 2𝑁 − 2.

3. Eigenvalues of ℎ(𝑘)

We introduce an operator ℎ̃(𝑘) acting in 𝐿2(T) by the rule

ℎ̃(𝑘) = ℎ̃0(𝑘) − v,

where ℎ̃0(𝑘) is the operator of multiplication by the function

ℰ̃𝑘(𝑝) =
1

𝑚1

+
1

𝑚2

−

√︃
1

𝑚2
1

+
2

𝑚1𝑚2

cos 2𝑛𝑘 +
1

𝑚2
2

cos 2𝑛𝑝.

Suppose that the unitary operator 𝑈 : 𝐿2(T) → 𝐿2(T) is defined by the formula

(𝑈𝑓)(𝑝) = 𝑓(𝑝− 1

2𝑛
𝜃(𝑘)),
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where

𝜃(𝑘) = arccos
1
𝑚1

+ 1
𝑚2

cos 2𝑛𝑘√︁
1
𝑚2

1
+ 2

𝑚1𝑚2
cos 2𝑛𝑘 + 1

𝑚2
2

.

Then

(𝑈−1𝑓)(𝑝) = 𝑓(𝑝+
1

2𝑛
𝜃(𝑘)), 𝑓 ∈ 𝐿2(T).

Lemma 1. Operator ℎ(𝑘) is unitarily equivalent to operator ℎ̃(𝑘), i.e.,

ℎ̃(𝑘) = 𝑈−1ℎ(𝑘)𝑈.

Proof. Since the representation

ℰ𝑘(𝑝) =
1

𝑚1

+
1

𝑚2

−

√︃
1

𝑚2
1

+
2

𝑚1𝑚2

cos 2𝑛𝑘 +
1

𝑚2
2

cos(2𝑛𝑝− 𝜃(𝑘))

holds true, then

(ℎ0(𝑘)𝑈𝑓)(𝑝) =

(︃
1

𝑚1

+
1

𝑚2

−

√︃
1

𝑚2
1

+
2

𝑚1𝑚2

cos 2𝑛𝑘 +
1

𝑚2
2

cos(2𝑛𝑝− 𝜃(𝑘))

)︃
𝑓

(︂
𝑝− 1

2𝑛
𝜃(𝑘)

)︂
.

It is easy to check that

(𝑈−1ℎ0(𝑘)𝑈𝑓)(𝑝) =
(︁ 1

𝑚1

+
1

𝑚2

−

√︃
1

𝑚2
1

+
2

𝑚1𝑚2

cos 2𝑛𝑘 +
1

𝑚2
2

cos 2𝑛𝑝
)︁
𝑓(𝑝),

i.e.,

𝑈−1ℎ0(𝑘)𝑈 = ℎ̃0(𝑘).

It is clear that

(𝑈−1v𝑈𝑓)(𝑝) =𝑈−1

⎛⎝∫︁
T

𝑣(𝑠− 𝑝)𝑓(𝑠− 1

2𝑛
𝜃(𝑘))𝑑𝑠

⎞⎠
=

∫︁
T

𝑣

(︂
𝑠−

(︂
𝑝+

1

2𝑛
𝜃(𝑘)

)︂)︂
𝑓

(︂
𝑠− 1

2𝑛
𝜃(𝑘)

)︂
𝑑𝑠.

In this latter integral we make the change 𝑠− 1
2𝑛
𝜃(𝑘) = 𝑡 and get

(𝑈−1v𝑈𝑓)(𝑝) =

∫︁
T

𝑣(𝑡− 𝑝)𝑓(𝑡)𝑑𝑡,

i.e.,
𝑈−1v𝑈 = v.

The proof is complete.

Lemma 2. A number 𝑧, 𝑧 < 𝑚(𝑘) is an eigenvalue of operator ℎ̃(𝑘) if and only if ∆(𝑘; 𝑧) =
0, where

∆(𝑘; 𝑧) = (1 − 𝜇0𝑑(𝑘; 𝑧))
𝑁∏︁
𝑙=1

(︁
1 − 𝜇𝑙

2
𝑑(𝑘; 𝑧)

)︁2
for natural 𝑛

2𝑁
, and

∆(𝑘; 𝑧) = (1 − 𝜇0𝑑(𝑘; 𝑧))
𝑁−1∏︁
𝑙=1

(︁
1 − 𝜇𝑙

2
𝑑(𝑘; 𝑧)

)︁2
(1 − 𝜇𝑁𝑐𝑁(𝑘; 𝑧)) (1 − 𝜇𝑁𝑠𝑁(𝑘; 𝑧))
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for fractional 𝑛
2𝑁

. At that, the order of zero of function ∆(𝑘; ·) coincides with the multiplicity
of the eigenvalue of operator ℎ(𝑘).

Proof. Let 𝑧 < 𝑚(𝑘) be an eigenvalue of operator ℎ̃(𝑘) and 𝑓 the associated eigenvector, i.e.,
the equation

ℎ̃(𝑘)𝑓 = 𝑧𝑓

has a non-trivial solution 𝑓 . Then

𝑓 = 𝑟0(𝑧)v𝑓, (3)

where 𝑟0(𝑧) is the operator of multiplication by function 1
ℰ̃𝑘(𝑝)−𝑧

. Introducing the notations

𝜙𝑙 =

∫︁
T

cos 𝑙𝑠𝑓(𝑠)𝑑𝑠, (4)

𝜓𝑙 =

∫︁
T

sin 𝑙𝑠𝑓(𝑠)𝑑𝑠, (5)

we rewrite identity (3) as

𝑓(𝑝) =
1

ℰ̃𝑘(𝑝) − 𝑧

𝑁∑︁
𝑙=0

𝜇𝑙(𝜙𝑙 cos 𝑙𝑝+ 𝜓𝑙 sin 𝑙𝑝). (6)

Substituting (6) into (4) and (5) and employing the evenness of function ℰ̃𝑘(·), we obtain the
system of linear equations

𝜙𝑙 =

∫︁
T

𝑁∑︁
𝑟=1

𝜇𝑟𝜙𝑟
cos 𝑙𝑠 cos 𝑟𝑠

ℰ̃𝑘(𝑠) − 𝑧
𝑑𝑠, 𝑙 = 0, . . . , 𝑁, (7)

𝜓𝑙 =

∫︁
T

𝑁∑︁
𝑟=1

𝜇𝑟𝜓𝑟
sin 𝑙𝑠 sin 𝑟𝑠

ℰ̃𝑘(𝑠) − 𝑧
𝑑𝑠, 𝑙 = 1, . . . , 𝑁. (8)

It follows from the definition of number 𝑛 that number 𝑛
2𝑙

is natural for each 𝑙 = 1, . . . , 𝑁−1.

It implies that function ℰ̃𝑘(·) is periodic with the period 𝜋
2𝑙

for each 𝑙 = 1, . . . , 𝑁 − 1. Let us
show that for each 𝑙 = 1, . . . , 2𝑁 − 1 the identity∫︁

T

cos 𝑙𝑠

ℰ̃𝑘(𝑠) − 𝑧
𝑑𝑠 = 0 (9)

holds true. Indeed, if 𝑙 an odd (even) number, we make the change of variable 𝑠 = 𝑡+𝜋(𝑠 = 𝑡+𝜋
𝑙
)

in the integral in the left hand side of identity (9) and we have

𝐼𝑙(𝑧) = −
∫︁
T

cos 𝑙𝑡

ℰ̃𝑘(𝑡) − 𝑧
𝑑𝑡 = −𝐼𝑙(𝑧).

It yields identity (9). By the primitive identities

cos 𝑙𝑠 cos 𝑟𝑠 =
1

2
(cos(𝑙 + 𝑟)𝑠+ cos(𝑙 − 𝑟)𝑠), sin 𝑙𝑠 sin 𝑟𝑠 =

1

2
(cos(𝑙 − 𝑟)𝑠− cos(𝑙 + 𝑟)𝑠),

and (9) we obtain that∫︁
T

cos 𝑙𝑠 cos 𝑟𝑠

ℰ̃𝑘(𝑠) − 𝑧
𝑑𝑠 = 0,

∫︁
T

sin 𝑙𝑠 sin 𝑟𝑠

ℰ̃𝑘(𝑠) − 𝑧
𝑑𝑠 = 0, 𝑙 ̸= 𝑟, 𝑙, 𝑟 = 1, . . . , 𝑁. (10)
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In view of (10), identities (7) and (8) cast into the form

𝜙𝑙 = 𝜇𝑙𝜙𝑙

∫︁
T

cos2 𝑙𝑠

ℰ̃𝑘(𝑠) − 𝑧
𝑑𝑠, 𝑙 = 0, . . . , 𝑁,

𝜓𝑙 = 𝜇𝑙𝜓𝑙

∫︁
T

sin2 𝑙𝑠

ℰ̃𝑘(𝑠) − 𝑧
𝑑𝑠, 𝑙 = 1, . . . , 𝑁.

The determinant of the system of linear equations w.r.t. unknowns 𝜙0, 𝜙1,. . . , 𝜙𝑁 , 𝜓1, . . . , 𝜓𝑁

reads as

∆(𝑘; 𝑧) =
𝑁∏︁
𝑙=0

⎛⎝1 − 𝜇𝑙

∫︁
T

cos2 𝑙𝑠𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧

⎞⎠ 𝑁∏︁
𝑙=1

⎛⎝1 − 𝜇𝑙

∫︁
T

sin2 𝑙𝑠𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧

⎞⎠ .

At that, if 𝑧 < 𝑚(𝑘) is an eigenvalue of operator ℎ̃(𝑘), then

∆(𝑘; 𝑧) = (1 − 𝜇0𝑑(𝑘; 𝑧))
𝑁∏︁
𝑙=1

⎛⎝1 − 𝜇𝑙

∫︁
T

cos2 𝑙𝑠𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧

⎞⎠⎛⎝1 − 𝜇𝑙

∫︁
T

sin2 𝑙𝑠𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧

⎞⎠ = 0.

It is easy to show that in accordance with (10), for each 𝑙 6 𝑁 under natural 𝑛/2𝑁 the identity∫︁
T

cos2 𝑙𝑠𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧
=

∫︁
T

sin2 𝑙𝑠𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧
=

1

2

∫︁
T

𝑑𝑠

ℰ̃𝑘(𝑠) − 𝑧
=

1

2
𝑑(𝑘; 𝑧)

holds true. Hence, the identity

∆(𝑘; 𝑧) = (1 − 𝜇0𝑑(𝑘; 𝑧))
𝑁∏︁
𝑙=1

(︁
1 − 𝜇𝑙

2
𝑑(𝑘; 𝑧)

)︁2
is valid.

Vice versa, suppose that ∆(𝑘; 𝑧) = 0. Then for some 𝑙 ∈ {0, ..., 𝑁} and 𝑧 < 𝑚(𝑘) at least

one of the factors in ∆(𝑘; 𝑧) vanishes, i.e., either 1 − 𝜇0

∫︀
T

𝑑𝑠
ℰ̃𝑘(𝑠)−𝑧

= 0 or
(︀
1 − 𝜇𝑙

2
𝑑(𝑘; 𝑧)

)︀2
= 0.

And it is easy to make sure that number 𝑧 < 𝑚(𝑘) is an eigenvalue of operator ℎ̃(𝑘) and either

1

ℰ̃𝑘(𝑝) − 𝑧
or

cos 𝑙𝑝

ℰ̃𝑘(𝑝) − 𝑧
and

sin 𝑙𝑝

ℰ̃𝑘(𝑝) − 𝑧

are the associated eigenfunctions.
For a fractional 𝑛

2𝑁
we argue in the same way.

We observe that the order of zero of function ∆(𝑘; ·) coincides with the multiplicity of the

eigenvalue of operator ℎ̃(𝑘). The proof is complete.

Proof of Theorem 1. Suppose that Assumption 1 fails. Then for each 𝑘 ∈ T number 𝜇0(𝑘)
defined by formula (2) is finite.
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The relations

1 − 𝜇0𝑑(𝑘; 𝑧) =

⎧⎪⎨⎪⎩
1 as 𝑧 → −∞,

−∞ as 𝑧 → 𝑚(𝑘),

decays monotonously 𝑧 ∈ (−∞,𝑚(𝑘)),

1 − 𝜇𝑙

2
𝑑(𝑘; 𝑧) =

⎧⎪⎨⎪⎩
1 as 𝑧 → −∞,

−∞ as 𝑧 → 𝑚(𝑘),

decays monotonously 𝑧 ∈ (−∞,𝑚(𝑘)),

1 − 𝜇𝑁𝑐𝑁(𝑘; 𝑧) =

⎧⎪⎨⎪⎩
1 as 𝑧 → −∞,

−∞ as 𝑧 → 𝑚(𝑘),

decays monotonously 𝑧 ∈ (−∞,𝑚(𝑘)),

1 − 𝜇𝑁𝑠𝑁(𝑘; 𝑧) =

⎧⎪⎨⎪⎩
1 as 𝑧 → −∞,

> 0 as 𝜇𝑁 ∈ (0, 𝜇0(𝑘)] for each 𝑧 ∈ (−∞,𝑚(𝑘)),

< 0 as 𝜇𝑁 > 𝜇0(𝑘), 𝑧 = 𝑚(𝑘).

hold true.
We observe that functions 𝑑(𝑘; ·), 𝑐𝑁(𝑘; ·), 𝑠𝑁(𝑘; ·) defined by formula (1) are positive and

monotonically increasing on (−∞,𝑚(𝑘)). This is the above relations imply

1 − 𝜇0𝑑(𝑘; ·) has the unique zero for each 𝜇0 > 0,

1 − 𝜇𝑙

2
𝑑(𝑘; ·) has the unique zero for each 𝜇𝑙 > 0,

1 − 𝜇𝑁𝑐𝑁(𝑘; ·) has the unique zero for each 𝜇𝑁 > 0,

1 − 𝜇𝑁𝑠𝑁(𝑘; ·) =

{︃
has no zeroes as 𝜇𝑁 ∈ (0;𝜇0(𝑘)],

has the unique zero as 𝜇𝑁 ∈ (𝜇0(𝑘);∞).

By applying Lemmata 2 and 1 we complete the proof.

Proof of Theorem 2. Suppose that Assumption 1 holds true. Then ℰ̃𝑘(𝑝) ≡ 2
𝑚

and

∆(𝑘; 𝑧) =(1 − 𝜇0𝑑(𝑘; 𝑧))
𝑁∏︁
𝑙=1

⎛⎝1 − 𝜇𝑙

∫︁
T

cos2 𝑙𝑠

ℰ̃𝑘(𝑠) − 𝑧
𝑑𝑠

⎞⎠⎛⎝1 − 𝜇𝑙

∫︁
T

sin2 𝑙𝑠

ℰ̃𝑘(𝑠) − 𝑧
𝑑𝑠

⎞⎠
=

(︂
1 − 2𝜇0𝜋

2
𝑚
− 𝑧

)︂ 𝑁∏︁
𝑙=1

(︂
1 − 𝜇𝑙𝜋

2
𝑚
− 𝑧

)︂2

= 0.

It allows us to find easily the zeroes of function ∆(𝑘; ·): 𝑧0 = 2
𝑚

− 2𝜇0𝜋 is a simple zero,

𝑧𝑙 = 2
𝑚

− 𝜇𝑙𝜋 is a double zero, 𝑙 ∈ {1, ..., 𝑁}. In accordance with Lemmata 1 and 1 these
numbers are eigenvalues of ℎ(𝑘). It is easy to check that the associated eigenfunctions read as

𝜙0 =
1

2𝜇0𝜋
, 𝜙+

𝑙 =
cos 𝑙𝑝

𝜇𝑙𝜋
, 𝜙−

𝑙 =
sin 𝑙𝑝

𝜇𝑙𝜋
, 𝑙 = 1, 𝑁.

The proof is complete.

The authors thank the referee for careful reading of the paper and useful remarks.
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