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HELLY’S THEOREM AND SHIFTS OF SETS. II.
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ENTIRE FUNCTIONS

B.N. KHABIBULLIN

Abstract. Let 𝒮 be a family of sets in R𝑛, 𝑆 be the union of all these sets and 𝐶 be
a convex set in R𝑛. In terms of support functions of sets in 𝒮 and set 𝐶 we establish
necessary and sufficient conditions under which a parallel shift of set 𝐶 covers set 𝑆. We
study independently the two-dimensional case, when sets are unbounded, by employing
additional characteristics of sets. We give applications of these results to the problems of
incompleteness of exponential systems in function spaces.
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1. Introduction and some key results

We use the notations of first part of work [1] and quite often, not mentioning separately,
we employ known facts and notations from [2]–[6]. Nevertheless, in Section 1.1, for the sake
of convenience, we recall elementary properties of support functions. Given 𝑆 ⊂ R𝑛, by cl𝑆,
int𝑆, co𝑆 we denote respectively closure, interior, convex hull/ of set 𝑆; 𝐵(𝑥, 𝑟) stands for the
open ball of radius 𝑟 > 0 in R𝑛 centered at 𝑥.

1.1. For an arbitrary set 𝑆 ⊂ R𝑛,

𝐻𝑆 : R𝑛 → [−∞,+∞], 𝐻𝑆(𝑎) := sup
𝑠∈𝑆

⟨𝑎, 𝑠⟩, 𝑎 ∈ R𝑛,

indicates the support function of set 𝑆 ⊂ R𝑛, where ⟨·, ·⟩ denotes the scalar product in R𝑛. In
particular, if 𝑆 = ∅ is the empty set in R𝑛, then 𝐻∅(𝑎) ≡ −∞, 𝑎 ∈ R𝑛, and in accordance
with usual convention sup∅ = −∞ and inf ∅ = +∞ for the empty subset in [−∞,+∞]. Vice
versa, if 𝐻𝑆(𝑎) = −∞ for at least one 𝑎 ∈ R𝑛, then 𝑆 = ∅. Thus, if 𝑆 ̸= ∅, then is the image
𝐻𝑆(R𝑛) ⊂ (−∞,+∞]. Finally, set 𝑆 ⊂ R𝑛 is bounded if and only if 𝐻𝑆(R𝑛) ⊂ R.

Support function is positively homogeneous, i.e.,

𝐻𝑆(𝜆𝑎) ≡ 𝜆𝐻𝑆(𝑎), 𝜆 ∈ (0,+∞), 𝑎 ∈ R𝑛, 𝜆 · (±∞) := ±∞, (1)

is sub-additive, i.e., 𝐻𝑆(𝑎 + 𝑎′) 6 𝐻𝑆(𝑎) + 𝐻𝑆(𝑎′) for each 𝑎, 𝑎′ ∈ R𝑛, is lower-semicontinuous
and is even continuous, if 𝑆 is bounded and possesses topological-algebraic properties 𝐻𝑆 =
𝐻cl𝑆 = 𝐻co𝑆 = 𝐻cl co𝑆, 𝑆 ⊂ R𝑛, which can be complemented by the identities 𝐻int𝑆 = 𝐻int cl𝑆 =
𝐻𝑆 = 𝐻cl int𝑆 for convex 𝑆 as int𝑆 ̸= ∅. It is clear that for a one-point set 𝑆 = {𝑥}, 𝑥 ∈ R𝑛

for each 𝑎 ∈ R𝑛 we have 𝐻{𝑥}(𝑎) = ⟨𝑥, 𝑎⟩ = ⟨𝑎, 𝑥⟩.
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For a convex set 𝐶 ⊂ R𝑛, set 𝑆 ⊂ R𝑛 is contained in 𝐶 for a closed 𝐶 or open 𝑆, if and only
if 𝐻𝑆(𝑎) 6 𝐻𝐶(𝑎) for each 𝑎 ∈ R𝑛.

A set 𝑆 ⊂ 𝐶 ⊂ R𝑛 is precompactly embedded into an open set 𝐶 if and only if the closure
cl𝑆 in the sense of the topology on 𝐶 inherited from R𝑛 is a compact set in 𝐶 (we write 𝑆 b 𝐶).

1.2. The main studied problem for 𝑆 ⊂ R𝑛 and a convex 𝐶 ⊂ R𝑛 is to provide necessary
and sufficient conditions ensuring that some shift of 𝑆 is contained in 𝐶, when 𝑆 is a union of
arbitrary sets. At that, these conditions are to be given first of all in terms of support functions
or in some functional way. The basis of our study is the following elementary

Proposition 1. Let 𝐶 be a non-empty convex set in R𝑛, 𝑆 ⊂ R𝑛.
If 𝐶 is closed or 𝑆 is open, then some shift of set 𝑆 is contained in 𝐶 if and only if there

exists 𝑥 ∈ R𝑛 such that ⟨𝑎, 𝑥⟩ + 𝐻𝑆(𝑎) 6 𝐻𝐶(𝑎) for each 𝑎 ∈ R𝑛.
For open 𝐶 some shift of 𝑆 is precompactly embedded into 𝐶 if and only if 𝑆 is bounded, i.e.,

𝐻𝑆(R𝑛) ⊂ R and there exists 𝑥 ∈ R𝑛 such that ⟨𝑎, 𝑥⟩ + 𝐻𝑆(𝑎) < 𝐻𝐶(𝑎) for each 𝑎 ∈ R𝑛.

Proof. Some shift of 𝑆 is contained in 𝐶 if and only if there exists 𝑥 ∈ R𝑛 such that 𝑆 +𝑥 ⊂ 𝐶.
It yields ⟨𝑎, 𝑥⟩+𝐻𝑆(𝑎) = 𝐻𝑆+𝑥(𝑎) 6 𝐻𝐶(𝑎) for each 𝑎 ∈ R𝑛. And vice versa, if 𝐶 is closed or 𝑆
is open, then, as it was mentioned above, inclusion 𝑆 + 𝑥 ⊂ 𝐶 means 𝐻𝑆+𝑥(𝑎) 6 𝐻𝐶(𝑎), where
the left hand side if ⟨𝑎, 𝑥⟩ + 𝐻𝑆(𝑎). It completes the proof of the first part of the Proposition.

If 𝑆 is bounded, then 𝐻𝑆 is a continuous function and at that, ⟨·, 𝑥⟩ + 𝐻𝑆 −𝐻𝐶 is upper
semicontinuous function and it attains its maximum −𝜀 < 0 on the unit sphere centered at 0.
By the positive homogeneity of the support function it implies ⟨𝑎, 𝑥⟩+𝐻cl𝑆(𝑎) + 𝜀|𝑎| 6 𝐻𝐶(𝑎)
for each 𝑎 ∈ R𝑛. Therefore, we have the inclusion 𝑥+ cl𝑆 + 𝜀𝐵(0, 1) ⊂ 𝐶 and the compactness
of cl𝑆 in 𝐶. The proof is complete.

1.3. In this subsection we provide some specific results for the case of a convex compact set
𝐶 ⊂ R𝑛 which is considered rather in details (see Theorems 1, 2 in the Introduction). Because
of many possible subcases, the situation with an unbounded set 𝐶 ⊂ R𝑛 is considered only
for some particular case (see Section 3, Subsection 3.1) and in more details for the planar
case 𝑛 = 2, i.e., for 𝐶 ⊂ C, where the complex plane C is identified with R2 (see Section 3,
Subsection 3.2). Cases of non-closed and non-open convex set 𝐶 are not touched at all as
rather complicated even under the choice of an appropriate terminology. In Section 4 we prove
theorems on incompleteness of exponential systems in various functional spaces demonstrating
the importance of possibility of covering some union of sets by a shift of a convex set.

Theorem 1 (For convex sets 𝐶 b R𝑛). Let 𝑛 ∈ N, 𝐶 be a convex bounded set in R𝑛, S be
the family of sets in R𝑛, and 𝑆 be the union of all sets in S . We assume that 𝐶 is closed or
𝑆 is open. Then the following four statements are mutually equivalent:

1. some shift of set 𝑆 is contained in 𝐶;
2. for each 𝑛+ 1 sets 𝑆1, . . . , 𝑆𝑛+1 in family S and each 𝑛+ 1 closed half-spaces 𝐶1, . . . 𝐶𝑛+1

containing 𝐶 and bounded by support hyperplanes of set 𝐶, there exists a vector 𝑥 such
that each shift 𝑆𝑘 + 𝑥 is contained in closed half-space 𝐶𝑘 for each 𝑘 = 1, . . . , 𝑛 + 1;

3. for each 𝑛+ 1 sets 𝑆1, . . . , 𝑆𝑛+1 in family S and each 𝑛+ 1 vectors 𝑎1, . . . , 𝑎𝑛+1 ∈ R𝑛 and
numbers 𝑝1, . . . , 𝑝𝑛+1 > 0, the identity

𝑛+1∑︁
𝑘=1

𝑝𝑘𝐻𝑆𝑘
(𝑎𝑘) 6

𝑛+1∑︁
𝑘=1

𝑝𝑘𝐻𝐶(𝑎𝑘)

holds true under condition
𝑛+1∑︁
𝑘=1

𝑝𝑘𝑎𝑘 = 0;



124 B.N. KHABIBULLIN

4. for each 𝑛 + 1 sets 𝑆1, . . . , 𝑆𝑛+1 in family S and each 𝑛 + 1 vectors⎧⎪⎨⎪⎩
𝑎1 = (𝑎11, . . . , 𝑎1𝑛) ∈ R𝑛,

. . . . . . . . . . . . . . . . . . . . ,

𝑎𝑛+1 = (𝑎𝑛+1,1, . . . , 𝑎𝑛+1,𝑛) ∈ R𝑛

(2)

of rank 𝑟 > 0 there exists a non-zero minor

∆ =

⃒⃒⃒⃒
⃒⃒𝑎𝑘1𝑗1 · · · 𝑎𝑘1𝑗𝑟

...
...

𝑎𝑘𝑟𝑗1 · · · 𝑎𝑘𝑟𝑗𝑟

⃒⃒⃒⃒
⃒⃒ (3)

or 𝑟th order satisfying inequalities (𝑘 = 1, . . . , 𝑛 + 1)

1

∆

⃒⃒⃒⃒
⃒⃒⃒⃒𝑎𝑘1𝑗1 · · · 𝑎𝑘1𝑗𝑟 𝐻𝑆𝑘1

(𝑎𝑘1)
...

...
...

𝑎𝑘𝑟𝑗1 · · · 𝑎𝑘𝑟𝑗𝑟 𝐻𝑆𝑘𝑟
(𝑎𝑘𝑟)

𝑎𝑘𝑗1 · · · 𝑎𝑘𝑗𝑟 𝐻𝑆𝑘
(𝑎𝑘)

⃒⃒⃒⃒
⃒⃒⃒⃒ 6 1

∆

⃒⃒⃒⃒
⃒⃒⃒⃒𝑎𝑘1𝑗1 · · · 𝑎𝑘1𝑗𝑟 𝐻𝐶(𝑎𝑘1)

...
...

...
𝑎𝑘𝑟𝑗1 · · · 𝑎𝑘𝑟𝑗𝑟 𝐻𝐶(𝑎𝑘𝑟)
𝑎𝑘𝑗1 · · · 𝑎𝑘𝑗𝑟 𝐻𝐶(𝑎𝑘)

⃒⃒⃒⃒
⃒⃒⃒⃒ . (4)

In the planar case 𝑛 = 2 we identify R2 with the complex plane C:

R2 ∋ (𝑥, 𝑦) ↦→ 𝑥 + 𝑖𝑦 =: 𝑧 := 𝑟𝑒𝑖𝜃 ∈ C, 𝑖 is the imaginary unit, 𝑟 > 0, 𝜃 ∈ R.

At that, it is a tradition [7], [8] that instead of support 𝐻𝑆 one considers a 2𝜋-periodic function
ℎ𝑆 : R → [−∞,+∞] called also support function for 𝑆 ⊂ C and defined by the restriction of
𝐻𝑆 on the unit circle

ℎ𝑆(𝜃) := 𝐻𝑆(𝑒𝑖𝜃) = sup
𝑠∈𝑆

Re 𝑠𝑒−𝑖𝜃, 𝜃 ∈ R. (5)

In view of positive homogeneity (1) of function 𝐻𝑆, it is uniquely recovered by function ℎ𝑆,
and Theorem 1 casts into the form:

Theorem 2 (for convex sets 𝐶 b C). Let 𝐶 be a convex bounded set in C, S is a family of
sets in C, and 𝑆 is the union of all sets in S . Suppose that 𝐶 is closed or 𝑆 is open. Then the
following four statements are mutually equivalent:

1. some shift of set 𝑆 is contained in 𝐶;
2. for each three sets 𝑆1, 𝑆2, 𝑆3 in S and each closed non-empty triangle1 enveloping 𝐶,

there exists a point 𝑧 ∈ C such that all three shifts 𝑆1 + 𝑧, 𝑆2 + 𝑧, 𝑆3 + 𝑧 are contained in
this triangle;

3. for each three sets 𝑆1, 𝑆2, 𝑆3 ∈ S and each three numbers 𝜃1, 𝜃2, 𝜃3 ∈ R and numbers
𝑞1, 𝑞2, 𝑞3 > 0 the inequality

𝑞1ℎ𝑆1(𝜃1) + 𝑞2ℎ𝑆2(𝜃2) + 𝑞3ℎ𝑆3(𝜃3) 6 𝑞1ℎ𝐶(𝜃1) + 𝑞2ℎ𝐶(𝜃2) + 𝑞3ℎ𝐶(𝜃3)

holds true under the condition

𝑞1𝑒
𝑖𝜃1 + 𝑞2𝑒

𝑖𝜃2 + 𝑞3𝑒
𝑖𝜃3 = 0;

4. for each three sets 𝑆1, 𝑆2, 𝑆3 ∈ S and each numbers 𝜃1, 𝜃2, 𝜃3 ∈ R both the conditions hold:
(a) if each difference of the above numbers is a multiple of 𝜋, then for each pair 𝑘, 𝑗 ∈

{1, 2, 3} whose difference 𝜃𝑗 − 𝜃𝑘 is not a multiple of 2𝜋, the inequality

ℎ𝑆1(𝜃𝑘) + ℎ𝑆2(𝜃𝑗) 6 ℎ𝐶(𝜃𝑘) + ℎ𝐶(𝜃𝑗) (6)

holds true;

1As a triangle we also treat a non-degenerate segment (just one side of zero length), a point (all sides have
zero length and all the vertices coincide), and a figure bounded by parallel lines and an intersecting them line
(one vertex is point ∞, two sides are of infinite length).
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(b) if, possibly after renumbering, the difference 𝜃2 − 𝜃1 is not a multiple of 𝜋, then the
inequality

ℎ𝑆1(𝜃1)
sin(𝜃3 − 𝜃2)

sin(𝜃2 − 𝜃1)
+ ℎ𝑆3(𝜃3)+ℎ𝑆2(𝜃2)

sin(𝜃1 − 𝜃3)

sin(𝜃2 − 𝜃1)

6ℎ𝐶(𝜃1)
sin(𝜃3 − 𝜃2)

sin(𝜃2 − 𝜃1)
+ ℎ𝐶(𝜃3) + ℎ𝐶(𝜃2)

sin(𝜃1 − 𝜃3)

sin(𝜃2 − 𝜃1)
.

(7)

holds true.

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. The implication 1⇒2 is obvious.
In order to prove the implication 2⇒1, for each vector 𝑎 ∈ R𝑛, 𝑎 ̸= 0, by 𝐶𝑎 we denote the

closed half-space containing 𝐶 and bounded by the support hyperplane to convex set 𝐶 in the
direction of 𝑎, i.e.,

𝐶𝑎 := {𝑥 : ⟨𝑥, 𝑎⟩ 6 𝐻𝐶(𝑎)}.
Here 𝐶𝑎 = 𝐶𝑎′ if vectors 𝑎 and 𝑎′ are codirectional, i.e., 𝑎 = 𝛼𝑎′ for some 𝛼 > 0. We consider
the family of half-spaces C :=

{︀
𝐶𝑎 : 𝑎 ∈ R𝑛 ∖ {0}

}︀
, where the intersection 𝐶 =

⋂︀
�̸�=0 𝐶𝑎 is

bounded. Statement 2 of the theorem means that for each 𝑛 + 1 sets 𝑆1, . . . , 𝑆𝑛+1 in family S
and each 𝑛+ 1 closed subspaces𝐶𝑎1 , . . . 𝐶𝑎𝑛+1 there exists a vector 𝑥 such that each shift 𝑆𝑘 +𝑥
is contained in closed half-space 𝐶𝑎𝑘 for each 𝑘 = 1, . . . , 𝑛 + 1, i.e., the intersection

𝑛+1⋂︁
𝑘=1

(𝑆𝑘 −* 𝐶𝑎𝑘)

of the geometric differences 𝑆𝑘 −* 𝐶𝑎𝑘 is non-empty. Then [1, Thm. 1, Rem. 2, Implication
(CS)⇒(T)] implies the implication 2⇒1 of the theorem.

In order to prove the equivalence 2⇔3, we rewrite statement 2 as a system of 𝑛 + 1 linear
inequalities. By Proposition 1, Statement 2 is equivalent to an infinite series of inequalities

⟨𝑎, 𝑥⟩ + 𝐻𝑆𝑘
(𝑎) 6 𝐻𝐶𝑎𝑘

(𝑎) for each 𝑎 ∈ R𝑛, 𝑘 = 1, . . . , 𝑛 + 1. (8)

But in accordance with the definition of closed subspaces 𝐶𝑎𝑘 , for each vector 𝑎 not codirectional
with 𝑎𝑘, we have 𝐻𝐶𝑎𝑘

(𝑎) = +∞. Therefore, infinite system of inequalities (8) is equivalent to
the finite system 𝑛 + 1 of linear inequalities

⟨𝑎𝑘, 𝑥⟩ + 𝐻𝑆𝑘
(𝑎𝑘) 6 𝐻𝐶𝑎𝑘

(𝑎𝑘) for each 𝑎𝑘 ∈ R𝑛, 𝑘 = 1, . . . , 𝑛 + 1,

or in the traditional notation

⟨𝑎𝑘, 𝑥⟩ −
(︀
𝐻𝐶𝑎𝑘

(𝑎𝑘) −𝐻𝑆𝑘
(𝑎𝑘)

)︀
6 0 for each 𝑎𝑘 ∈ R𝑛, 𝑘 = 1, . . . , 𝑛 + 1. (9)

By the known Aleksandrov-Fan-Chi theorem [9, Thm. 2.3] is equivalent to the statement: for
each 𝑛 + 1 numbers 𝑝1, . . . , 𝑝𝑛+1 > 0, under the condition

𝑛+1∑︁
𝑘=1

𝑝𝑘𝑎𝑘 = 0,

the inequality
𝑛+1∑︁
𝑘=1

𝑝𝑘
(︀
𝐻𝑆𝑘

(𝑎𝑘) −𝐻𝐶(𝑎𝑘)
)︀
6 0

holds true. The latter is equivalent to statement 3 of the theorem.
Returning back to finite system of 𝑛 + 1 linear inequalities (9) (for each fixed set of vectors

𝑎1, . . . , 𝑎𝑛+1 ∈ R𝑛) by S.N. Chernikov solvability criterion [9, Thm. 1.5] for finite system of
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linear inequalities, in notations and conventions (2)–(3), system (9) is solvable if and only if
the inequality ⃒⃒⃒⃒

⃒⃒⃒⃒𝑎𝑘1𝑗1 · · · 𝑎𝑘1𝑗𝑟 𝐻𝐶(𝑎𝑘1) −𝐻𝑆𝑘1
(𝑎𝑘1)

...
...

...
𝑎𝑘𝑟𝑗1 · · · 𝑎𝑘𝑟𝑗𝑟 𝐻𝐶(𝑎𝑘𝑟) −𝐻𝑆𝑘𝑟

(𝑎𝑘𝑟)
𝑎𝑘𝑗1 · · · 𝑎𝑘𝑗𝑟 𝐻𝐶(𝑎𝑘) −𝐻𝑆𝑘

(𝑎𝑘)

⃒⃒⃒⃒
⃒⃒⃒⃒ > 0, 𝑘 = 1, . . . , 𝑛 + 1,

holds true that coincides with inequality (4). The proof is complete.

Proof of Theorem 2. It is easy to see that statements 1 and 2 are exactly statements 1 and 2 of
Theorem 1. In order to obtain statement 3 of Theorem 2, in view of (5) we write statement 3
of Theorem 1 for 𝑛 = 2 as follows: for each three sets 𝑆1, 𝑆2, 𝑆3 ∈ S and each three numbers
𝑎1 = 𝑡1𝑒

𝑖𝜃2 , 𝑎2 = 𝑡2𝑒
𝑖𝜃2 , 𝑎3 = 𝑡3𝑒

𝑖𝜃3 ∈ C, where 𝑡1, 𝑡2, 𝑡3 > 0, and 𝑝1, 𝑝2, 𝑝3 > 0, under the
condition

𝑝1𝑡1𝑒
𝑖𝜃1 + 𝑝2𝑡2𝑒

𝑖𝜃2 + 𝑝3𝑡3𝑒
𝑖𝜃3 = 0

the inequality

𝑝1𝑡1ℎ𝑆1(𝜃1) + 𝑝2𝑡2ℎ𝑆2(𝜃2) + 𝑝3𝑡3ℎ𝑆3(𝜃3) 6 𝑝1𝑡1ℎ𝐶(𝜃1) + 𝑝2𝑡2ℎ𝐶(𝜃2) + 𝑝3𝑡3ℎ𝐶(𝜃3)

holds true. Letting 𝑞1 = 𝑝1𝑡1, 𝑞2 = 𝑝2𝑡2, 𝑞3 = 𝑝3𝑡3, by the positive homogeneity (1) we make
sure that the latter statement is equivalent to statement 3 of Theorem 2.

Let us prove that statement 4 of Theorem 1 as 𝑛 = 2 coincides with statement 4 of Theorem 2.
We can treat three vectors 𝑎1, 𝑎2, 𝑎3 ∈ R2 in (2) as three complex numbers⎧⎪⎨⎪⎩

𝑎1 := 𝑡1𝑒
𝑖𝜃1 = 𝑡1 cos 𝜃1 + 𝑖 · 𝑡1 sin 𝜃1, 𝑡1 > 0,

𝑎2 := 𝑡2𝑒
𝑖𝜃2 = 𝑡2 cos 𝜃2 + 𝑖 · 𝑡2 sin 𝜃2, 𝑡2 > 0,

𝑎3 := 𝑡3𝑒
𝑖𝜃3 = 𝑡3 cos 𝜃3 + 𝑖 · 𝑡3 sin 𝜃3, 𝑡3 > 0.

(10)

The rank is considered over field R.
Case of rank 𝑟 = 1. In this case radius vectors of the point are codirectional or opposite
directed. In the case when the radius vecotrs are codirectional, all the six differences 𝜃𝑗 − 𝜃𝑘,
𝑗, 𝑘 = 1, 2, 3, 𝑗 ̸= 𝑘, are multiples of 2𝜋, both sides of inequality (4) vanish by 2𝜋-periodicity of
function (5) and inequality (4) holds true immediately. Suppose that at least two vectors are
opposite directed. For the sake of definiteness assume that these are 𝑎1 and 𝑎2, i.e., 𝜃2 − 𝜃1 is
a multiple of 𝜋 but not a multiple of 2𝜋 and again for simplicity ∆ = 𝑡1 cos 𝜃1 ̸= 0. Then (4) is
rewritten as

1

𝑡1 cos 𝜃1

⃒⃒⃒⃒
𝑡1 cos 𝜃1 𝐻𝑆1(𝑡1𝑒

𝑖𝜃1)
𝑡𝑘 cos 𝜃𝑘 𝐻𝑆𝑘

(𝑡𝑘𝑒
𝑖𝜃𝑘)

⃒⃒⃒⃒
6

1

𝑡1 cos 𝜃1

⃒⃒⃒⃒
𝑡1 cos 𝜃1 𝐻𝐶(𝑡1𝑒

𝑖𝜃1)
𝑡𝑘 cos 𝜃𝑘 𝐻𝐶(𝑡𝑘𝑒

𝑖𝜃𝑘)

⃒⃒⃒⃒
,

where 𝑘 = 2, 3, or, in view of (5),

1

cos 𝜃1

⃒⃒⃒⃒
cos 𝜃1 ℎ𝑆1(𝜃1)
cos 𝜃𝑘 ℎ𝑆𝑘

(𝜃𝑘)

⃒⃒⃒⃒
6

1

cos 𝜃1

⃒⃒⃒⃒
cos 𝜃1 ℎ𝐶(𝜃1)
cos 𝜃𝑘 ℎ𝐶(𝜃𝑘)

⃒⃒⃒⃒
. (11)

If 𝜃3 − 𝜃1 is a multiple of 2𝜋, then both sides of the latter inequality vanish and it obviously
holds. If the difference 𝜃𝑘 − 𝜃1 is a multiple of 𝜋 but not of 2𝜋, then cos 𝜃𝑘 = − cos 𝜃1. Thus in
this case it follows from (11) that

ℎ𝑆𝑘
(𝜃𝑘) − cos 𝜃𝑘

cos 𝜃1
ℎ𝑆1(𝜃1) 6 ℎ𝐶(𝜃𝑘) − cos 𝜃𝑘

cos 𝜃1
ℎ𝑆1(𝜃1). (12)

It implies inequality (6) with 𝑗 = 1. Since 𝑆1, 𝑆2, 𝑆3 are arbitrary, in the left hand side of
(12) we can take each of the sets 𝑆1, 𝑆2, 𝑆3 instead of 𝑆𝑘 and 𝑆1. In the same way we proceed
if cos 𝜃1 = 0, but we use sin 𝜃1 ̸= 0. The search of the other cases for 𝑟 = 1 is reduced to
renumeration of numbers and sets. Hence, we arrive at item 4(a).
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Case of rank 𝑟 = 2. Suppose that two radius vectors of the points in (10) are linearly inde-
pendent, say, 𝑎1 and 𝑎2. It means that

∆ :=

⃒⃒⃒⃒
𝑡1 cos 𝜃1 𝑡2 sin 𝜃2
𝑡1 cos 𝜃1 𝑡2 sin 𝜃2

⃒⃒⃒⃒
= 𝑡1𝑡2 sin(𝜃2 − 𝜃1) ̸= 0.

At that, inequality (4) is written as

1

𝑡1𝑡2 sin(𝜃2 − 𝜃1)

⃒⃒⃒⃒
⃒⃒𝑡1 cos 𝜃1 𝑡1 sin 𝜃1 𝑡1ℎ𝑆1(𝜃1)
𝑡2 cos 𝜃2 𝑡2 sin 𝜃2 𝑡2ℎ𝑆2(𝜃2)
𝑡3 cos 𝜃3 𝑡3 sin 𝜃3 𝑡3ℎ𝑆3(𝜃3)

⃒⃒⃒⃒
⃒⃒

6
1

𝑡1𝑡2 sin(𝜃2 − 𝜃1)

⃒⃒⃒⃒
⃒⃒𝑡1 cos 𝜃1 𝑡1 sin 𝜃1 𝑡1ℎ𝐶(𝜃1)
𝑡2 cos 𝜃2 𝑡2 sin 𝜃2 𝑡2ℎ𝐶(𝜃2)
𝑡3 cos 𝜃3 𝑡3 sin 𝜃3 𝑡3ℎ𝐶(𝜃3)

⃒⃒⃒⃒
⃒⃒ ,

or

1

sin(𝜃2 − 𝜃1)

⃒⃒⃒⃒
⃒⃒cos 𝜃1 sin 𝜃1 ℎ𝑆1(𝜃1)
cos 𝜃2 sin 𝜃2 ℎ𝑆2(𝜃2)
cos 𝜃3 sin 𝜃3 ℎ𝑆3(𝜃3)

⃒⃒⃒⃒
⃒⃒ 6 1

sin(𝜃2 − 𝜃1)

⃒⃒⃒⃒
⃒⃒cos 𝜃1 sin 𝜃1 ℎ𝐶(𝜃1)
cos 𝜃2 sin 𝜃2 ℎ𝐶(𝜃2)
cos 𝜃3 sin 𝜃3 ℎ𝐶(𝜃3)

⃒⃒⃒⃒
⃒⃒

Expanding two latter determinants along the last columns, we obtain (7) that completes the
proof of Theorem 2.

3. Unbounded convex closed set 𝐶

3.1. Case 𝑛 > 1. In particular rather simple situations analogues of Theorems 1 and 2 can
be established for an unbounded domain 𝐶 ⊂ R𝑛. We recall [1, Def. 1] that a non-zero vector
𝑦 ∈ R𝑛 a star-shapedness direction (w.r.t. the infinity), or is called a recession direction if for
each point 𝑐 ∈ 𝐶 the ray 𝑟𝑦(𝑐) := {𝑐 + 𝑡𝑦 : 𝑡 > 0} is contained in 𝐶. A vector 𝑦 ∈ R𝑛 is called
linearity direction if both 𝑦 and the opposite vector −𝑦 are star-shapedness directions for set
𝐶, i.e., for each point 𝑐 ∈ 𝐶 the straight line

𝑙𝑦(𝑐) := {𝑐 + 𝑡𝑦 : 𝑡 ∈ R} = 𝑟𝑦(𝑐) ∪
(︀
𝑟−𝑦(𝑐)

)︀
= 𝑙−𝑦(𝑐)

is contained in 𝐶. Set 𝐶 is polyhedral, if 𝐶 is the intersection of a finite number of closed
half-spaces defined by a finite system of linear inequalities

⟨𝑎, 𝑥⟩ − 𝑏 6 0 for some 𝑎 ∈ R𝑛, 𝑏 ∈ R. (13)

At that, the half-space defined by (13) are called determining half-spaces of polyhedral set 𝐶.

Theorem 3 (for unbounded convex closed sets). Let 𝐶 be a convex unbounded closed set in
R𝑛, 𝑛 ∈ N, S be a family of sets in R𝑛, and 𝑆 be the union of all sets in S . Suppose that family
S is finite, i.e., card S < ∞, and set 𝐶 is polyhedral or each star-shapedness direction for 𝐶
is the linearity direction for 𝐶. Then the following four statements are mutually equivalent:

1. some shift of set 𝑆 is contained in 𝐶;
2. for each 𝑛+ 1 sets 𝑆1, . . . , 𝑆𝑛+1 in family S and each 𝑛+ 1 closed half-spaces (only deter-

mining if 𝐶 is polyhedral ) 𝐶1, . . . 𝐶𝑛+1 containing 𝐶 and bounded by support hyperplanes
to convex set 𝐶, there exists a vector 𝑥 such that each shift 𝑆𝑘 + 𝑥 is contained in closed
half-space 𝐶𝑘 for each 𝑘 = 1, . . . , 𝑛 + 1;

3. statement 3 of Theorem 1 holds true;
4. statement 4 of Theorem 1 holds true.

Proof. Let C be a finite family of all determining half-spaces when 𝐶 is a polyhedral set,
or, otherwise, be the family of all closed half-spaces containing 𝐶 and bounded by support
hyperplanes to convex set 𝐶. Applying [1, Thm. 1 on covering by shifts, Cond. (F)], under
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the finiteness condition (𝐶 is a polyhedral set, family S is finite), the equivalence (ST)⇔(T)
in [1, Thm. 1] implies the equivalence 1⇔2. Under our assumptions for the star-shapedness
conditions we employ [1, Thm. 1 on covering by shifts, Cond. (d) with card S < ∞] and again
the equivalence (ST)⇔(T) in [1, Thm. 1] yields the equivalence 1⇔2. The rest of the proof
(of the equivalence 2⇔3 and 2⇔4 of the theorem reproduces the proof of similar equivalence
in Theorem 1 with no major changes.

3.2. Planar case. We recall that the breadth 𝐵𝑆(𝜃) (see [10, 33], [11, 4.1.1], [12, Ch. I, Sect.
4]) of an arbitrary set 𝑆 ⊂ C in the direction of 𝜃 ∈ R is the distance between two support
lines to 𝑆 orthogonal to the radius vector 𝑒𝑖𝜃. In terms of the support function we have

𝐵𝑆(𝜃) = ℎ𝑆(𝜃) + ℎ𝑆(𝜃 + 𝜋) = 𝐻𝑆(𝑒𝑖𝜃) + 𝐻𝑆(−𝑒𝑖𝜃).

The smallest breadth 𝑏𝑆 := inf𝜃∈R𝐵𝑆(𝜃) is called width [12, Ch I, Sect. 4] or thickness (germ.
‘dicke’) [11, 4.1.1] of set 𝑆. If 𝑒𝑖𝜃 is the star-shapedness direction for a convex set 𝐶 ⊂ C, then
it is convenient to call number 𝜃 ∈ R the star-shapedness direction as well. This is how we
shall treat the star-shapedness direction in the planar case. Under such definition, number 𝜃 is
a linearity direction if both 𝜃 and 𝜃 + 𝜋 are star-shapedness directions. If each star-shapedness
direction of a convex unbounded closed set 𝐶 ⊂ C is a linearity direction, then it is either the
empty set or whole complex plane or a strip of a finite width, i.e., in each case 𝐶 is a polyhedral
set or a convex polygon in a general sense (respectively, either with no vertices and sides, or
one-angle with the vertex at ∞ and the side of zero length, or two-angle with the vertices ∞ and
two-sides of infinite length). Thus, in Theorem 3 condition for the star-shapedness directions
of set 𝐶 is included in the case of its polyhedrality and as 𝑛 = 2, Theorem 3 becomes shorter:

Theorem 4 (for unbounded convex sets 𝐶 ⊂ C). Let 𝐶 be a convex unbounded closed poly-
gon in C (in the general sense, with a finite amount of sides among those there can be sides
of infinite length, i.e., rays or straight lines), S be a finite family of sets in C, and 𝑆 be the
union of all sets in family S . Then the following four statements are mutually equivalent:

1. some shift of set 𝑆 is contained in 𝐶;
2. for all sets 𝑆1, 𝑆2, 𝑆3 in family S and each closed triangle (in the general sense, with

sides determining polyhedral set 𝐶) there exists a point 𝑧 ∈ C such that shifts 𝑆𝑘 + 𝑧,
𝑘 = 1, 2, 3, are contained in this triangle;

3. statement 3 of Theorem 2 holds true;
4. statement 4 of Theorem 2 holds true.

But there are a lot situations when instructive statements are possible in a simpler form or not
for a polyhedral unbounded convex set 𝐶. Some of them were employed, sometimes implicitly,
in works [13], [14, Sect. 7], [15, Sect. 4] (see also [16, Subsect. 3.2.1–3.2.3]) in studying of
completeness of exponential systems in the spaces of functions on unbounded convex sets.

Given a convex set 𝐶 ⊂ C, its recession arc or star-shapedness arc (w.r.t. the infinity) is the
arc of the unit circumference formed by intersection of this unit circumference with the set of
all the star-shapedness directions for 𝐶 [2, Ch. II, Sect. 8]. The star-shapedness arc is denoted
by 0+𝐶. Set 𝐶 is bounded if and only if its star-shapedness arc is an empty set [2, Ch. II,
Thm. 8.4]. If the star-shapedness arc of a convex set 𝐶 involves an arc of angle > 𝜋, then
𝐶 = C. For an arbitrary set 𝑆 ⊂ C we also define the star-shapedness arc 0+𝑆 := 0+ co𝑆.

Let 𝑆 ⊂ C. We define functions of cut upper and lower width of set 𝑆 w.r.t. a point 𝑠 in the
direction 𝜃 = 0 by the rule{︃

𝑊 ↑
𝑆(𝑥; 𝑠) := sup{Im 𝑧 − Im 𝑠 : 𝑧 ∈ 𝑆, Im 𝑧 > Im 𝑠,Re 𝑧 = 𝑥}, 𝑥 ∈ R,

𝑊 ↓
𝑆(𝑥; 𝑠) := sup{Im 𝑠− Im 𝑧 : 𝑧 ∈ 𝑆, Im 𝑧 6 Im 𝑠,Re 𝑧 = 𝑥}, 𝑥 ∈ R,

(14)

where, as usually, sup∅ := −∞ for the empty subset ∅ ⊂ [−∞,+∞].
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𝐶

Figure 1. To definition (14) and the proof of Theorem 5, Part (4)

For an unbounded convex set 𝐶 ⊂ C star-shaped in the direction 𝜃 = 0, the definition of
functions 𝑊 ↑

𝐶(·; 𝑐) and 𝑊 ↓
𝐶(·; 𝑐) w.r.t. a point 𝑐 ∈ 𝐶 in the direction 𝜃 = 0 is demonstrated on

Fig. 1.

Theorem 5. Let 𝑆 ⊂ C, 𝐶 be a convex set in C.

1. If 𝐶 has at least two star-shapedness directions 𝜃1, 𝜃2 ∈ R and the difference 𝜃1 − 𝜃2 is not
a multiple of 𝜋, and 𝑆 is bounded, then some shift of set 𝑆 is contained in 𝐶.

2. If 0 < 𝜃2 − 𝜃1 6 𝜋 and the arc ⌣ (𝜃1, 𝜃2) := {𝑒𝑖𝜃 : 𝜃1 < 𝜃 < 𝜃2}, is contained in 0+𝐶 and
also ⌣ (𝜃′1, 𝜃

′
2) ⊃ 0+𝑆 and 𝜃1 < 𝜃′1 < 𝜃′2 < 𝜃2, then some shift of set 𝑆 is contained in 𝐶.

3. If set 𝐶 is closed and has two different star-shapedness directions 𝜃1 and 𝜃2 up to an
additive term multiple of 2𝜋 and the difference 𝜃2−𝜃1 is a multiple of 𝜋, but not a multiple
of 2𝜋 (for the sake of definiteness we consider 𝜃1 = 0 and 𝜃2 = 𝜋) then 𝐶 is a horizontal
strip of finite width 𝑏𝐶 = 𝐵𝐶(𝜋/2) and some shift of set 𝑆 is contained in 𝐶 if and only if
breadth 𝐵𝑆(𝜋/2) of set 𝑆 in the direction 𝜋/2 does not exceed width 𝑏𝐶 of strip 𝐶.

4. If set 𝐶 is closed and has one star-shapedness direction 𝜃 = 0 up to an additive term
multiple of 2𝜋, then some shift of set 𝑆 is contained in 𝐶 if and only if there exist number
𝑠 ∈ C, 𝑐 ∈ 𝐶 and 𝑥0 ∈ R such that the inequalities{︃

𝑊 ↑
𝑆(𝑥; 𝑠) 6 𝑊 ↑

𝐶(𝑥 + 𝑥0; 𝑐) for each 𝑥 ∈ R,
𝑊 ↓

𝑆(𝑥; 𝑠) 6 𝑊 ↓
𝐶(𝑥 + 𝑥0; 𝑐) for each 𝑥 ∈ R,

(15)

hold true.

Proof. 1. By the assumption of first statement of Theorem 5, convex set 𝐶 contains a non-zero
angle in which we can always put bounded set 𝑆 by a parallel shift.
2. Under the hypothesis of statement 2 we consider numbers 𝜃′′1 , 𝜃′′2 satisfying inequalities

𝜃1 < 𝜃′′1 < 𝜃′1 < 𝜃′2 < 𝜃′′2 < 𝜃2. By the definition of star-shapedness direction, it is easy to see
that set 𝐶 contains some shift of angle ∠ [𝜃′′1 , 𝜃

′′
2 ] := {𝑟𝑒𝑖𝜃 : 𝑟 > 0, 𝜃′′1 6 𝜃 6 𝜃′′2}, while some shift

of set 𝑆 is contained in the angle ∠ [𝜃′1, 𝜃
′
2] ⊂ ∠ [𝜃′′1 , 𝜃

′′
2 ]. The proof of statement 2 is complete.

3. Under the hypothesis of statement 3, for each point 𝑐 ∈ 𝐶 closed convex set 𝐶 contains
straight line 𝑙0(𝑐), i.e., the horizontal straight line passing point 𝑐 [2, Thm. 8.3], [1, Prop. 1].
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Such property is possessed only the plane, a half-plane with the boundary parallel to the real
axis, and horizontal strip of finite width. But the plane and half-plane have more than two
star-shapedness directions (up to a number multiple of 2𝜋). Thus, 𝐶 is indeed a horizontal
strip of finite width 𝑏𝐶 = 𝐵𝐶(𝜋/2). Now the concluding part of statement 3 on the shift of set
𝑆 is obvious.
4. Under the hypothesis of statement 4 (it is useful to bear Fig. 1 in mind), let us prove the

sufficiency. At the first step a shift of plane C together with set 𝑆 by the number 𝑐− 𝑠 overlap
points 𝑠 and 𝑐, while set 𝑆 is shifted into the set 𝑆 ′ := 𝑆 + (𝑐 − 𝑠), which by (15) satisfies
inequalities {︃

𝑊 ↑
𝑆′(𝑥; 𝑐) 6 𝑊 ↑

𝐶(𝑥 + 𝑥0; 𝑐) for each 𝑥 ∈ R,
𝑊 ↓

𝑆′(𝑥; 𝑐) 6 𝑊 ↓
𝐶(𝑥 + 𝑥0; 𝑐) for each 𝑥 ∈ R.

(16)

for some 𝑥0 ∈ R.
We observe that by the convexity of 𝐶, functions of cut upper and lower width 𝑊 ↑

𝐶(𝑥, 𝑠) and

𝑊 ↑
𝐶(𝑥, 𝑐) increase w.r.t. 𝑥 in the general sense:

(︀
𝑥1 6 𝑥2

)︀
=⇒

(︀
𝑊 ↑

𝐶(𝑥1, 𝑐) 6 𝑊 ↑
𝐶(𝑥2, 𝑐)

)︀
and

the same is true for 𝑊 ↓
𝐶(·, 𝑐). Hence, by shifting set 𝑆 ′ = 𝑆 + (𝑐 − 𝑠) for a sufficiently great

number 𝑥′
0 > 𝑥0, by condition (16) we put the shift 𝑆 + (𝑐− 𝑠) + 𝑥′

0 into 𝐶.
The necessity of (15) for some 𝑠 ∈ C, 𝑐 ∈ 𝐶, 𝑥0 ∈ R is rather obvious in view of definition

(14) for functions of cut upper and lower width. The proof is complete.

Example 1. This example shows that in statement 4 of Theorem 5 cut upper and lower
width of sets 𝑆 and 𝐶 can not be replaced by the length of cross-sections

𝑊𝑆(𝑥) := sup{| Im 𝑧1 − Im 𝑧2| : 𝑧1, 𝑧2 ∈ 𝑆, Re 𝑧1 = Re 𝑧2 = 𝑥}
and 𝑊𝐶(𝑥) even for a convex set 𝑆. It is sufficient to consider the sets

𝑆 := {𝑥 + 𝑖𝑦 ∈ C : 𝑥, 𝑦 ∈ R, 𝑥 > 0, 0 6 𝑦 6 arctan𝑥},
𝐶 := {𝑥 + 𝑖𝑦 ∈ C : 𝑥, 𝑦 ∈ R, 𝑥 > 0, − arctan𝑥 6 𝑦 6 0},

having the unique star-shapedness direction 𝜃 = 0 (up to a number multiple of 2𝜋) and the width
𝜋/2. At that, 𝑊𝑆(𝑥) = 𝑊𝐶(𝑥) = arctan𝑥 as 𝑥 > 0 and 𝑊𝑆(𝑥) = 𝑊𝐶(𝑥) ≡ −∞ as 𝑥 < 0. But
none of shifts of 𝑆 is contained in 𝐶.

4. Incompleteness of exponential systems and entire functions of
exponential type

In this section we demonstrate a connection between previous results on shifts of sets with
incompleteness of exponential systems in spaces of functions.

4.1. General case C𝑛, 𝑛 > 1. Let 𝑛 ∈ N, C𝑛 be an 𝑛-dimensional complex space over field
C equipped by the Euclidean metrics of space R2𝑛, i.e., C𝑛 is identified with R2𝑛: each point

𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛, 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘, 𝑥𝑘, 𝑦𝑘 ∈ R
is associated with the point (𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛) ∈ R2𝑛; 𝑧 := (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛. For
𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ C𝑛 we let

⟨𝜆, 𝑧⟩ := 𝜆1𝑧1 + . . . 𝜆𝑛𝑧𝑛 ∈ C, |𝑧| :=
√︀

⟨𝑧, 𝑧⟩
is the norm in C𝑛. Given an open set Ω ⊂ C𝑛, by Hol(Ω) we denote the space of holomorphic
in Ω functions equipped with the topology of uniform convergence on compact sets, while for a
compact set 𝐶 ⊂ C𝑛 by CHol(𝐶) we denote the Banach space of functions 𝑓 : 𝐶 → C continuous
on 𝐶 and holomorphic in the interior int𝐶, if it is non-empty, with the standard norm

‖𝑓‖CHol(𝐶) := sup
{︀
|𝑓(𝑧)| : 𝑧 ∈ C

}︀
.
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The space of linear continuous functions on CHol(𝐶) is formed by complex-valued of Radon
measures 𝜇 with support supp𝜇 ⊂ 𝐶 [17, Appendix A]. Such measure is not unique for each
functional. Moreover, as 𝑛 > 1, one can not state that given a linear continuous functional on
CHol(𝐶), there exists a measure with the smallest support (w.r.t. the inclusion) representing
this functional [18, Ch. 8]. The characteristic function (Fourier-Borel transform, or Fourier-
Laplace transform, or Laplace transform) of functional-measure 𝜇 is the function

𝐿𝜇(𝜆) := 𝜇
(︀
𝑒⟨𝜆,·⟩

)︀
=

∫︁
𝑒⟨𝜆,𝑧⟩ 𝑑𝜇(𝑧), 𝜆 ∈ C𝑛. (17)

This is an entire function of exponential type, i.e.,

lim sup
|𝜆|→∞

log |𝐿𝜇(𝜆)|
|𝜆|

< ∞.

The class of all entire functions of exponential type is indicated by Ent[1,∞). If characteristic
function 𝐿𝜇 is non-zero, then the functional generated by measure 𝜇 on CHol(𝐶) is non-zero.

Let Z+ := {0} ∪N. Function-divisor on C𝑛 is the mapping Λ: C𝑛 → Z+ and the support of
divisor is indicated as usually by supp Λ ⊂ C𝑛. Let

𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ Z𝑛
+, 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛, 𝑧𝑝 :=

𝑛∏︁
𝑘=1

𝑧𝑝𝑘𝑘 .

Under these notations each divisor Λ on C𝑛 (cf. [16, Ch. 4]) is associated with the system of
(multiple) exponentials on C𝑛

ExpΛ := {𝑧𝑝𝑒⟨𝜆,𝑧⟩ : 𝑧 ∈ C𝑛, 𝜆 ∈ supp Λ, 𝑝1 + · · · + 𝑝𝑛 6 Λ(𝜆) − 1}.
A function 𝐿 ∈ Ent[1,∞) can be associated with zeroes divisor Zero𝐿 : C𝑛 → Z+ which is equal
to the order of zero of function 𝐿 at 𝑧 ∈ C𝑛 for each point 𝑧. Given an arbitrary divisor Λ,
in what follows we write Λ 6 Zero𝐿𝜇 if Λ(𝜆) 6 Zero𝐿𝜇(𝜆) for each 𝜆 ∈ C𝑛. It is well-known
([16, Thm. 1.1.2]) that if there exists a measure 𝜇 with supp𝜇 ⊂ 𝐶 and non-zero characteristic
function 𝐿𝜇 defined by (17) such that Λ(𝜆) 6 Zero𝐿𝜇(𝜆) for each 𝜆 ∈ C𝑛, then system ExpΛ is
incomplete in space CHol(𝐶) 1

A complex-valued measure 𝜇 defined on C𝑛 is concentrated on set 𝑆 ⊂ C𝑛 if for each 𝐴 ⊂ C𝑛

the identity 𝜇(𝐴) = 𝜇(𝐴 ∩ 𝑆) holds true.

Theorem 6. Let 𝑛 ∈ N, 𝐶 be a convex compact set in C𝑛, and 𝜇1, 𝜇2, . . . be at most count-
able sequence of complex-valued Radon measures concentrated respectively on sets 𝑆1, 𝑆2, · · · ⊂
C𝑛. If the family S = {𝑆1, 𝑆2, . . . } satisfies at least on four equivalent statements of Theo-
rem 1, the series

∑︀
𝑘>1 𝜇𝑘 *-weakly converges (in the space of continuous functions) to measure

𝜇, and ∑︁
𝑘>1

𝜇𝑘(C𝑛) ̸= 0, (18)

then under notations (17), for each divisor Λ 6 Zero𝐿𝜇 exponential system ExpΛ is incomplete
in space CHol(𝐶).

Proof. Under *-weak convergence of series
∑︀

𝑘>1 𝜇𝑘 to measure 𝜇, the support of measure 𝜇 is
contained in the closure of union 𝑆 =

⋃︀
𝑘>1 𝑆𝑘 and it is easy to show that in notations (17) the

series ∑︁
𝑘>1

𝐿𝜇𝑘
= 𝐿𝜇 (19)

1A system of vectors is incomplete in a topological vector space if the closure of its linear span does not
coincide with the space.
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converges to function 𝐿𝜇 ∈ Ent[1,∞) uniformly on compact sets in C𝑛 and by (18) we have
𝐿𝜇(0) ̸= 0. If a shift 𝐶 + 𝑎 of set 𝐶 covers all 𝑆𝑘 simultaneously, the same shift 𝐶 + 𝑎 covers
also cl𝑆. Then the non-zero function

𝑒⟨−𝑎,·⟩ · 𝐿𝜇 ∈ Ent[1,∞) (20)

is the characteristic function of measure 𝜇𝑎 defined by the rule 𝜇𝑎(𝐴) = 𝜇(𝐴 − 𝑎), where 𝐴 is
an arbitrary Borel set in C𝑛, and measure 𝜇𝑎 with support supp𝜇𝑎 ⊂ 𝐶 generates a non-zero
functional. This functional annihilates the exponential system with the divisor of exponents
coinciding with the divisor of zeroes of function (20), which is equal Zero𝐿𝜇 . This functional thus

annihilates exponential system ExpΛ since Λ 6 Zero𝐿𝜇 . Therefore, system ExpΛ is incomplete
in CHol(𝐶) [16, Thm. 1.1.2].

Remark 1. For arbitrary 𝜆0 ∈ C𝑛 condition (18) can be replaced by∑︁
𝑘>1

∫︁
𝑒⟨𝜆0,𝑧⟩ 𝑑𝜇𝑘(𝑧) ̸= 0.

We can also formulate a weaker theorem similar to Theorem 6, but this theorem can be
formulated only in terms of entire functions of exponential type and their radial regularized
growth indicators.

First of all we note that the opposite to (17) is valid: if 𝐿 ∈ Ent[1,∞), then for 𝐿 there
exists a (non-unique) measure 𝜇 with a compact support in C𝑛 such that 𝐿 = 𝐿𝜇 in notations
(17). For each function 𝐿 ∈ Ent[1,∞), we introduce an upper semi-continuous function [18,
Ch. I, Sect. 8]

ℎ*
𝑟(𝑧, 𝐿) := lim sup

𝑧′→𝑧
lim sup
𝑡>0,𝑡→+∞

log |𝐿(𝑡𝑧′)|
𝑡

(21)

called radial regularized growth indicator as entire function 𝐿 has order 1. If for a compact set
𝐶 ⊂ C𝑛 with the support function 𝐻𝐶 (we identify C𝑛 with R2𝑛) and function 𝐿 ∈ Ent[1,∞) the
inequality ℎ*

𝑟(𝑧, 𝐿) 6 𝐻𝐶(𝑧), 𝑧 ∈ C𝑛, holds true, then by Martino-Erenpreiss-Polya theorem
[18, Thm. 8.9], [19, Thm. 12.3], for each domain Ω ⊃ 𝐶, function 𝐿 is the characteristic
function of some measure 𝜇 with compact support supp𝜇 ⊂ Ω.

Theorem 7. Let 𝑛 ∈ N, 𝐶 be a compact set in C𝑛,

𝐿1, 𝐿2, . . . ∈ Ent[1,∞) (22)

be a finite sequence of non-zero function on C𝑛 with radial regularized growth indicators
ℎ*
𝑟(·, 𝐿𝑘), 𝑘 = 1, 2, . . . , and for each 𝑘 and for some continuous positive homogeneous sub-

linear function on R2𝑛 identified with C𝑛, i.e., for support function 𝐻𝑆𝑘
of some convex closed

set 𝑆𝑘 the inequality ℎ*
𝑟(𝑧, 𝐿𝑘) 6 𝐻𝑆𝑘

(𝑧) holds true for each 𝑧 ∈ C𝑛. If family S = {𝑆1, 𝑆2, . . . }
satisfies at least one of four equivalent statement of Theorem 1 and∑︁

𝑘>1

𝐿𝑘 = 𝐿 (23)

is a non-zero function, then for each divisor Λ 6 Zero𝐿, system ExpΛ is incomplete in space
Hol(Ω) for each domain Ω ⊃ 𝐶.

Proof. Let a shift 𝐶 + 𝑎 of compact set 𝐶 covers all 𝑆𝑘, and the domain Ω + 𝑎 contains
𝐶+𝑎. Then by Martino-Erenpreiss-Polya theorem, for some measure 𝜇 with a compact support
supp𝜇 ⊂ Ω+𝑎 in notations (17) 𝐿 = 𝐿𝜇. Therefore, exponential system ExpZero𝐿 is annihilates
by a non-zero functional-measure 𝜇 on Hol(Ω + 𝑎). It means that system ExpΛ as Λ 6 Zero𝐿

is incomplete in space Hol(Ω + 𝑎). Hence, system ExpΛ is incomplete in Hol(Ω). The proof is
complete.
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Remark 2. In Theorem 7, the sequence of functions in (22) can be infinite (countable), but
at that one should assume rather strict convergence of the series in (23). For instance, it is
sufficient to assume that this series converges uniformly on compact sets in C𝑛 and the estimate⃒⃒⃒ ∑︁

16𝑘6𝑁

𝐿𝑘(𝑧)
⃒⃒⃒
6 𝑀 exp

(︀
𝐻co

⋃︀
𝑘 𝑆𝑘

(𝑧)
)︀
, 𝑧 ∈ C𝑛, 𝑀 is a constant.

holds true uniformly in 𝑁 . We can strengthen Theorem 7 in another direction, namely: system
ExpΛ is incomplete in space Hol(𝐶) of functions holomorphic in the vicinity of compact set 𝐶
with the natural topology of inductive limit (cf. [16], [18], [19]).

4.2. Planar case 𝑛 = 1. As 𝑛 = 1, the treatment of some objects appearing in the formu-
lation of Theorems 6 and 7 is slightly simplified.

Instead of the divisor function, it is reasonable to consider at most countable sequence of
points Λ = {𝜆𝑘}𝑘>1 ⊂ C, among which there can be repeating ones, but sequence Λ has no
limiting points in C. With sequence Λ, we associate the system of (multiple) exponentials

ExpΛ := {𝑧𝑝𝑒𝜆𝑘𝑧 : 𝑧 ∈ C, 0 6 𝑝 6 𝑛Λ(𝜆𝑘) − 1},
where 𝑛Λ(𝜆) is the amount of repetitions of a point 𝜆 ∈ C in sequence Λ. To a non-zero function
𝐿 ∈ Ent[1,∞), a sequence of zeroes Zero𝐿 counted with orders taken into account. At that,
Λ 6 Zero𝐿 means 𝑛Λ(𝜆) 6 𝑛Zero𝐿(𝜆) for each 𝜆 ∈ C. Under such treatment the phrase “. . . for
each divisor Λ 6 Zero𝐿𝜇 . . . ” in the conclusion of Theorem 6 should be replaced by “. . . for each
sequence Λ 6 Zero𝐿𝜇 . . . ”.

Concerning Theorem 7, instead of radial regularized growth indicator as entire function
𝐿 ∈ Ent[1,∞) has order 1, we can consider the growth indicator

ℎ(𝜃, 𝐿) := lim sup
𝑡>0,𝑡→+∞

log |𝐿(𝑡𝑒𝑖𝜃)|
𝑡

, 𝜃 ∈ R, (24)

which is a continuous 2𝜋-periodic trigonometrically convex function [7], [8], [16], which the
support function of some convex compact set (indicator diagram), or is the support function
ℎ𝑆(𝜃) ≡ ℎ(−𝜃, 𝐿) of the adjoint diagram 𝑆 of function 𝐿. Then Theorem 7 can be reformulated
as

Theorem 8. Let 𝐶 be a convex compact set in C, (22) be a finite sequence of non-zero
functions on C with adjoint diagrams 𝑆𝑘, 𝑘 = 1, 2, . . . , respectively. If family S = {𝑆1, 𝑆2, . . . }
satisfies at least one of four equivalent statements of Theorem 2 and function 𝐿 in (23) is a
non-zero function, then for each sequence Λ 6 Zero𝐿, system ExpΛ is incomplete in Hol(Ω) for
each domain Ω ⊃ 𝐶.

Remark 3. Remark 2 is still valid for Theorem 8.

The author is deeply grateful to A.S. Krivosheev for useful discussions of certain issues related
with entire functions of many variables.
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