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BOUNDARY VALUE PROBLEMS FOR EQUATIONS OF
VISCOUS HEAT-CONDUCTING GAS
IN TIME-INCREASING NON-CYLINDRICAL DOMAINS

I.LA. KALIEV, A.A. SHUKHARDIN, G.S. SABITOVA

Abstract. In this paper we prove global solvability of the initial-boundary value problems
for the complete system of equations describing one-dimensional non-stationary flow of the
viscous heat-conducting gas in time-increasing non-cylindrical domains. Local existence
and uniqueness of these problems are proved in earlier articles by Kazhikhov A.V. and
Kaliev I.A. This is why, the proof of the global in time existence and uniqueness theorem
is connected with obtaining a priori estimates, in which the constant depend only on the
data of the problem and the value of the time interval T, but do not depend on the period
of existence of a local solution. The study is made in terms of Eulerian variables.
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1. INTRODUCTION

The complete system of equations of viscous heat-conduction gas motion, or Navier-Stokes system
of equations is an interesting and important class of partial differential equations. In the theory of
such systems, one of the central problems is the unique solvability “in general” both in time and the
data.

The study of issues on well-definiteness of initial-boundary value problems for Navier-Stokes system
of equations began with the work by J. Serrin in 1959 [I]. There were formulation the main boundary
value problems and proven uniqueness theorems in the class of smooth functions. We also mention an
earlier paper by D. Graffi in 1953 [2] on the uniqueness of classical solutions for a barotropic gas.

The first result on solvability of Navier-Stokes equations was obtained by J. Nash in 1962 [3]. He
showed the existence of classical solution to Cauchy problem for small times. By other methods, this
result was reproduced and generalized in works by N. Itaya [4], A.I. Volpert and S.I. Khudyaev [5].

For initial boundary value problems theorem on local in time existence and uniqueness were proven
by V.A. Solonnikov [6] and A. Tani [7].

The first result on the unique global solvability in time and in data was established by Ya.l. Kanel in
1968 [§] for the Cauchy problem for the equations of one-dimensional viscous barotropic gas (p = Rp”?).
For the Biirgers model (p = const) the solvability of Cauchy problem and initial boundary value
problems was proven in works by N. Itaya [9], [I0] and A. Tani [I1].

In 1976, A.V. Kazhikhov [I2] first obtained the result on global solvability for the equations of
one-dimensional viscous heat-conducting gas. In what follows in a series of works by A.V. Kazhikhov
[13]-[16], V.V. Shelukhin [I7]-[19], S.Ya. Belov [20], V.A. Vaigant [2I], [22] there was constructed
a rather complete theory on global solvability of main initial boundary value problems and Cauchy
problem for equations of viscous gas motion.
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In works by I.A. Kaliev and A.V. Kazhikhov [23], [24] there were studied issues on the unique
solvability of a problem with a free boundary modeling the process of phase transition between a
viscous gas and a solid state. At that, there appears an auxiliary problem describing the motion of
a viscous heat-conducting gas in a curvilinear domain and the existence and the unique solvability of
local solution was proven.

As a rule, the domain in which one proves the global existence in time, is either the strip {(x,t)| —
00 < x < 00,0<t<T}ora cylinder {(z,t))a <z <b,0<t<T} a, b, T are given constants.
In our work, for the complete system of equations of one-dimensional non-stationary motion of a
viscous heat-conducting gas, we prove the global solvability of initial boundary value problems in
non-cylindrical domains {(z,%)|0 < z < s(t),0 < t < T'} increasing with time; here x = s(t) is a given
smooth increasing function.

For a viscous gas, the results on global solvability are known for the problem with a free boundary
on gas outflow into vacuum [12], [25] and for the problem on a piston moving by a prescribed law
[25]. In both the problems the velocity of boundary s(¢) of domain occupied by the gas coincided with
the velocity of the with the coordinates s(t), i.e., u(s(t),t) = ds(t)/dt, 0 < t < T. In other words,
the gas did not flow through the boundary s(¢) and this fact played an essential role in the proof
of the existence theorems since the domain of the solution becomes a fixed cylinder in Lagrangian
coordinates.

In the present work u(s(t),t) = 0,ds(t)/dt > 0, i.e., u(s(t),t) — ds(t)/dt < 0, and the gas inflows
via the moving boundary of the domain x = s(t). We make the study in terms of Eulerian variables.

The case ds(t)/dt < 0 was considered in works by I.A. Kaliev and M.S. Pokuiko [26], [27].

2. FORMULATION OF THE PROBLEM AND THE MAIN RESULTS

Given a smooth function z = s(t), we suppose that a non-cylindrical domain Qp = {(z,¢) |0 < z <
s(t), 0 < t < T}, is occupied by a viscous heat-conducting gas. In the work we study the case when
the domain widens in time, i.e., ds(t)/dt > 0. The one-dimensional non-stationary motion of a viscous
heat-conducting gas in domain )7 is described by the system of equations [25]

dp  O(pu) _

5ty =0 (@i)eor (1)
ou ou 0%u  Op

p(5i+ o) =ne g p=Re w0 )
00 06 9% ou\?  Ou

Here p(z,t), u(z,t), p(z,t) and O(x,t) are the density, velocity, pressure and absolute temperature
of the gas; u, R, k are positive constants denoting the viscosity, gas constant, and heat conductivity
factor, respectively.

At the initial time we specify u, 0, p:

u(w,t)HtZO = ug(z), O(x,t)‘tzo = 6p(x), p(m,t)}tzo = po(x), =z €]0,s0], (4)

where sp = s(0). On the known boundaries z = 0 and = = s(t) we impose the conditions
u(z,t)|,_, =0, u(m,t)‘xzs(t) =0, te]l0,T], (5)
H(x,t)‘xzo =0.(t), 9($,t)‘xzs(t) =0y(t), te[0,T], (6)
p(x7t)‘w:5(t) =p2(t), tel0,T] (7)

We assume that the inequalities
0<m< po(l‘),pg(t),90(%‘),91@),92@) <M < 400, (8)
d

0<so, 0<m< ()< M, (9)

hold true for each ¢ € [0,7] and x € [0, so], where m, M are some positive constants.
Problem Gas. Find functions p(z,t), u(z,t), 6(z,t) solving system of equations (I)—(3), if the
initial conditions and boundary conditions f are satisfied.
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Theorem 1. Suppose that initial and boundary data in problem Gas belong to Holder spaces
po(x) € CT([0, 50]), up(x) € C*2([0, 50)), Oo(x) € C*([0, s0)),
s(t), pa(t) € C*H([0, 7)), 01(1), 62(t) € CPH/2([0, 7)),

0 < a = const < 1; conditions , @D and conditions of zero order and first order matching at the
points (0,0), (s9,0) are satisfied. Then problem Gas has the unique classical solution possessing the
properties

plz,t) € CQr), wu(x,t) e C2HCTI2(Qr), 0(x,t) € CPFCHI2(Qp),
at that,

0<my <plx,t) < My <400, 0<mg<O(x,t) < My <+o0, (z,t) € Qp; (10)
where my1, M1, ma, My are some positive constants.

Local existence and uniqueness theorem for problem Gas was proven in [23], [24]. This is why the
proof of the above theorem is related with obtaining apriori estimates, where constants depend only
on data of the problem and time interval T" but are independent of the existence interval for the local
solution.

3. AUXILIARY PROPOSITIONS AND APRIORI ESTIMATES

We assume that p(z,t) > 0, 6(z,t) > 0 (there is a local in time existence theorem with appropriate
estimates) [23], [24].

Lemma 1. For each t € [0,T], the estimates

s(t) S0 t d
| otwae = [" e+ [ o= <,
0 0 0 T

where

S0 T ds(T
MO = / p[)(.’L')dI' +/ pQ(T) d( )dT
0 0 T

Proof. Employing conditions , , integrate equation w.r.t.  from 0 to s(t):

d [0 ds
— t)dz — pa(t)— =

Integrating w.r.t. ¢, we complete the proof:
s(t) S0 t ds
[ otetin = [ powe + [ B ar <,
0 0 0 T

50 T s(T
Mo:/o po(a:)dx—i-/o pQ(T)dd(T)dT.

0.

O

In what follows, while obtaining estimates for functions p, u, 6 in a domain occupied by a viscous
gas, we employ the methods developed by B.A. Vaigant [2I]. We observe that in [2I] the domain
occupied by gas is the rectangle (0,1) x (0,7"), while in our case the domain occupied by gas is the
curvilinear trapezoid Qr = {(z,?)[0 < =z < s(t),0 < t < T}, where z = s(¢) is a given increasing
function. Nevertheless, we succeed to prove all desired apriori estimates.

In Q7 we introduce an auxiliary function B(z,t) as follows:

0B 1 0B oOu 1 1

97 o, = SRy
ox ,upu, ot Odr  p P M,ou,

B|,_, = Bolx) = i/o po(E)uo(€)de, 0<x < s,
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In [21] for function B(z,t) there were obtained the identities

B d

at(B+lnp)+u8—(B+lnp)+ Rp9—0 (11)
d

a(pe )+ u%(pe )+ ﬁszee =0, (12)

% <;6—B) +u% (;e_B) - ;Rﬂe_B = 0. (13)

Lemma 2. There exists a constant C' depending on boundary data and T' such that for each (x,t) €
Qr the inequality

s(t) 1/2 ¢ ps(r) ¢ ps(r)
|B(z,t)| <C |1+ / pu’dx + / / pOdxdr + / / pudxdr
0 0 JO 0 JO

holds true.

Proof. We integrate function 0B/0t over the domain € = {(z,7)[0 <z < s(7), 0 < 7 < t}. Some-
times it will be more convenient for us to write domain Q; as Q; = {(z,7)|0 < = < s(t), h(z) < T < t},
where h(z) =0 as z € [0, so] and s(h(z)) = = as sp < = < s(t). We have

S0 T=1 s(t)
// Bidrdx :/ B(z, ) d$+/ B(z,T) dx
Q4 0

7=0 S0 TZh(.’E)

:/OSOB(a;tda:—/ BatOdac—l—/ th)dx—/S(t)B(a:h( ))dx

s(t)
:/ xtda:—/ /po uo( dﬁdaz—/ B(z, h(x
0

On the other hand,

// Bidzxdr = // <ux — lRp9 — 1pu2> dxdr
Q Q H H
t ps(T) 1 rt s
=— R/ / pdzdr — / / puldxdr.
K Jo Jo HJo Jo

s(t) 1 [s0 [® s(t)
| Bands = [ [ m@ui@dgar + [ Blah()is
0 wJo Jo 50
t  ps(T) 1 rt ps(m)
— R/ / pldxdr — / / puldzdr.
B Jo Jo KJo Jo

By , @ it implies the inequality
s(7)
U + — Odxdr
2u max lup(§)] / / p

/ B(xz,t)d
1 rt s(7) s(t)
+/ / puldzdr + / B(z,h(zx))dx
wJo Jo 50

In the latter integral we change the variable x = s(7), dx = j—f_dr, B(x,h(z)) = B(s(7),7) and we

employ @D:
<CH — / / pOdzdr + — / / ,OUdedT—i-M/ |B(s(),7)|dr. (14)

s(t)
/ B(z,t)dz
0

Hereinafter by C' we denote constants depending on boundary data and 7.

T=t

As a result we get

\
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Since for each ¢ € [0, T there exists a point zg = xo(t) € [0, s(¢)] such that

B(i[}o / B iL‘ t
we obtain

s(t)
Bz, )| < |Blao(t),0)] + / By |de
0

) s(t) 1/2 0 1/2
+; /0 pdz /0 pudx (15)

1/2
My is a constant in Lemma 1.

Employing Cauchy inequality, for x = s(7) and t = 7 by we have

(z,t)dx

IB(s(r),7)| < —
50

M, s(7)
+— + / pu’dz. (16)
0

We substitute into :

s(t) t ps(r) t ps(r) t
/ B(z,z)| < C’—FE / / pOdxdr + (1 + M) / / pu2d$d7+%
0 KJo Jo K 0 J0 50 Jo

By Gronwall inequality for the function

s(7)
/ B(x,7)dz| dT.
0

it implies the estimate

s(t) t ps(T) t rs(T)
/ B(z,t)dz| < C |1+ / / puldzdr + / / pbdzdr | .
0 0 Jo 0 JO

Substituting this inequality in , we complete the proof:
¢ ps(r) ¢t ps(r) s(t) 1/2
|B(z,t)| < C |1 +/ / puzd:ndT—i-/ / pOdxdr + / pu’dx
0 Jo 0 Jo 0

Lemma 3. There exists a constant C' depending on boundary data and T such that for each t €
[0,T7] the inequality

O

s(t) t ps(r)
/ (plnp—p+1)dr + R/ / p*0dzdr < O(1+ max |B(z,7)|). (17)
0 K Jo Jo (z,7) e

holds true.

Proof. We multiply equation by p(z,t) and integrate w.r.t. x from 0 to s(t). Then by equation

we get

s(t) s
% /0 p(B +1n p)dz — 2 d(f) p2(t) [B(s(t),t) + In pa(t)]

w=st) p s d 50 ds(t) d 50
2
R 4 L0 pat) £ = =0,
+M/0 podz dt/o pe + =g p() dt/o =0

x=0

+ [pu (B + In p)]
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By and it yields
d 5@

s(t)
— (pB+plnp—p+1)dx+R/ p*0dx
dt Jo w Jo

B B0, 1)+ mpls(t)0) 1) + 1} =0,

Integrating w.r.t. the time, we obtain

s(t) R t ps(T)
/ (plnp—p+1)dx + — / / p*0dxdr
0 Kk Jo Jo

tds(r S(t)
:/0 dd(T)[pz(T)lnm(T)—102(7)+1]d7_/0 pBdz

50 tds(T)
+ [ (poBo + polnpo — po + 1)dz + 5 p2(T)B(s(7), T)dr.
0 0

We denote

T ds(T) S0
C = o [p2(7) In pa(T) — pa(T) + 1]dT + (poBo + polnpg — po + 1)dz.
0 0

Taking into consideration that plnp — p+1 >0, ds/dt > 0, we get

s(t) t ps(T) s(t) t
[ omp—pa e 2 [ poteir <o [T piplar+ [ molBGs(r).7lir
0 ®Jo Jo 0 o dr

<C (1 + max ]B(x,7)]> .
({L’,T)EQt
It completes the proof. O

Lemma 4. For each t € [0,T] the estimates

<M 2 B(x, , 18
Ogrgg(t)p(w ) exp{ (I{I;)fgﬂtl (z, 7)I} (18)
1 t
max < Clexp{2 max |B(xz,7)|} +exp{4 max |B(x,T max O(x,7)dr 19
s A [ p{ (M)Egtl (, 7)|} + exp{ (m)em| (z, 7)[} | onax (z,7) } (19)
hold true.

Proof. We multiply identity by p(peP)"~1, where n is a natural number and integrate w.r.t. =
from 0 to s(t) employing (T)):

1d [*® 1ds(t) . 1 v=s) R rs)
e n - (s(t),t)1n - B\n b 2 B\n _
ndi ), ppe”)"dx o P22 (t)e " + —pu(pe”) » + M/o p~(pe”)"fdx = 0.
By () and (7) we get
1d [*® 5 1 ds(t) B R [*®)
- @ n = (s(t),t)1n LU 2 B\n —
nd ), plpe”)"dz — —— = pa(t)[p2(t)e "+ H/o p~0(pe”)"dx = 0.
The third term is non-negative and thus
d [*® ds(t
e~ P o)7L <0

dt Jo

Integrating w.r.t. the time from 0 to ¢, we obtain

s(t) S0 td
/ pn+lean$ < / p’(r)H-lenBodx 4 / Mpg+l(7)€nB(s(T)’T)dT
0 0 0 dr

n
gM”“(so—i—TM)[ max eB(x’T)] :
(z,7)EQ
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Then

n

s(t) n -n
/ p"Hde < M [ max eB(x’T)} [ min eB(z’T)} <cMmmH [exp{Q max |B(z,7)|}
0 (z,7)EQ (z,7)EQ: (z,7)EQ:

Passing to the limit as n — oo and employing the identity

lim blf(fﬂ)l"dl‘ " = max [f(z)],
(f o)

n—00 z€|a,b|

we obtain estimate ([18)):

max p(z,t) < Mexp {2( max \B(m,r)\} .

0<z<s(t) x,T)EQ:

In order to prove estimate , we multiply identity by p(pe)™™, where n is a natural number,
and integrate w.r.t.  from 0 to s(t) employing , :

1 i s(t) L n+1 . 1 ds(t) (t) 1 n+1
ntidt )y P\ peB n+1 at P2\ p()eBGOH

1 1 n+1 |z=s(t) R s(t) B
+ — = — e Bo(peP)"du.
n+1pu <p€B> =0 K /O P (p )
By and we get

s(t) n n s(t) n—1
4 L id:c = ds(t) ! L + Rln+1) / e 2By L dx.
dt J, peb ) eB dt  \ pa(t)eB®)1) | Bls(t)t) L 0 peB

Integrating w.r.t. the time from 0 to ¢, we arrive at

S(t) 1 n 1 1 n n+1 1 n B n+1
/ <B> —5dr <s9 <> [ max eB(w’T)] +MT <> [ max e (x’T)]
0 pe e m (z,7)E m (z,7)eQ

t rs(T) n—1
_'_R(n—l—l)[ max 6_23(9”)]// <1B> Odxdr.
M (z,7)EQ 0 Jo pe
Then

s(t) 1 n 1\" n+1
/ <B> dr <(so+ MT) <> [ max eB(x’T)] [ max @B(%T)]
0 pe m (z,7)EQ: (z,7)EQ

s(T) n—1
+W[ max 6B(:I:,T)} [ max 6—23(%7)}/ / <1B) Odxdr
U (z,7)EQ (z,7)EQ 0 Jo pe

t
<c (o) eo{w+) mu B} + S g {3 max 5.0l
m (z,7)EQ M

(z,7)EQ:
t s(7) 1 n—1
max 6(z,T) / <B) dxdr.
0 0<z<s(7) 0 pe

0= ([ () )

Applying Holder inequality to the last integral in (20]), employing the inequalitys(r) < s(T°), we obtain

(20)
We denote
1/n

n—1

s(t)( 1 )nld s(t)( 1 )<n1>-n”1d = /s<t>1 ] " 0 3/5
— T < — T . "dx <y () - Us(T).
/0 peP /0 peP 0 Y
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Substituting the obtained estimate into (20)), we have
1 n
n(t) <O | — P Bz,
y"(t) <m> exp{(n+ >(£?>a§gt’ (z T)!}

R 1) /s(T
NUESINCGN

W
In order to estimate function y(t) we make use of the following lemma.

(21)

t
3 max ]B(:U,T)]} max_ §(z, 7)y" " (7)dr.
0

(z,7)EQ 0<e<s(r)

Lemma 5 ([22]). If a continuous non-negative on [0, T] function y(t) satisfies the inequality

Yy (t) <a+ b/o C(T)ynil(T)dT,

where a, b = const > 0, n = const > 1, c(t) is a given non-negative function in class L1]0,T], then
the estimate

b t
y(t) < Va+ / c(r)dr (22)
nJo
holds true.
If we apply estimate to inequality , we obtain

y(t) <<f exp { (1 + 2) Jma |B(z, T)|}

n x,T)EQ
RY/s(T 1 t
+ RYs(T) <1 + > exp {3 max |B(z, 7‘)|} max 6(x,7)dr.
Hu n (z,7)EQ 0 0<z<s(r)
Passing to the limit as n — oo, we get
11 R t
max — <—expq max |B(z,7)| ¢+ —exp{3 max |B(z,7)| max 0(z,T)dr.
0<z<s(t) pe m (z,7)EQ: ) (z,7)EQ 0 0<z<s(r)
It implies estimate ([19). The proof is complete. ]

Lemma 6 (Estimate of total energy). There exists a constant C' > 0 depending on boundary data

and T such that
s(t) pu2
max/ (p9+2 )da:gC.
0

o<t<T

Proof. In order to estimate the total energy, we introduce the auxiliary function A(x,t) as solution to
the boundary value problem

p(Ar + uAy) = KAy, (x,t) € Qp, (23)

A’x:O =01(1), A‘x:s(t) = 0s(t), A‘t:O = bOp(z).
By the maximum principle we obtain

0<m< Az, t) < M < +oo. (24)
The function
p(x,t) = 0z, ) A~ (2,1),
which takes values
‘p‘xzo = SD‘ac:s(t) = 1=‘p|t:0 =1
satisfies by and the equation
Ap(pr + ups) = K(Aps)e + KAzps + pu2 — RpApu,.

We multiply this equation by (1 — é) and integrate w.r.t. x from 0 to s(¢). Employing , we obtain

d s(t) s(t) s02 s(t) 1
/ Ap(¢ —Inp — 1)dx + / kA=Sdr + / —puldz
dt Jo 0 @ o ¥

s(t)

50 . (25)
= / (nu? — RpAguy)dx + / ;RpAgouxdx.
0 0
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Multiplying equation by u(x,t) and integrating w.r.t. x from 0 to s(t) employing , we find

1d 5@ ) s(t)
—— pudx+/ Uz (puy — p)dx = 0.
2dt 0 ( )

We sum up the obtained identity with

d s(t) 2 s(t) 2 s(t) 2 s(t)
e <Ap(g0 1)+ pu) dz + / KALE g 4 / 12 gy = / RpAugdz.  (26)
dt Jo 2 0 © 0 @ 0

Let us estimate the terms in the right hand side:

s(t) s(t) 24 s(t) ,,2 20 s(t)
/ RpAugdr < / <,uu R p2A¢> dr < ,u/ Yz g + R / p*0dz.
0 0 20 2p 2Jo ¥ 2 Jo

As a result, we arrive at the inequality

d s(t) ( pu2 s(t) 302 m s(t s(t)
— Ap(p—Inp—1 +>da;+/ mA“’dx+/ C’/ p*0dz.
i |, plep p—1) 5 ; 2 3 ),

Integrating this inequality w.r.t. the time, we get

s(t)
/ <Ap( —Inp—1) +2 > dx—I—/ / /@A(pxd:vd7+ / / xdach
0
<C (1+// p29dl’d7’>.
0 Jo

1
—ln¢—1>§¢—1n2

In view of the inequality

and the boundedness of A(m t), by (24) and Lemma 1 we obtain

1 S(t) 1 S
- / pOdz + - / puldz + / / A%‘dxdﬂr / / fda:dr
2 0 2 0

s(7)
Cl1 +/ / p*0dzdr | .
0o Jo
By estimate in Lemma 3 we have

t s(T)
/ / pQdedT <C (1 + max ]B(m,T)]) .
0 Jo (2,7)EQ

Employing the inequality in Lemma 2, we obtain

t ps(r) s(7) 1/2 t ps(r) ¢t ps(r)
/ / p*0dzdr < C | 1+ max / pulds + / / pOdxdr + / / puldedr
0o Jo os7<t \ Jo 0o Jo 0o Jo

By applying this estimate and neglecting in the left hand side of the integrals involving the
derivatives, we get

1 5@ 1 5@ )
2/0 pOdx + 2/0 pu“dx

s(T) 1/2 t ps(T) t  ps(T)
<C |1+ max / puldz + / / pOdzdr + / / pudzdr
os7<t \ Jo 0o Jo 0o Jo

We introduce two functions on [0, T):

(27)

(28)

() s(7)
a(t) = max/o p(x, )u?(z, 7)dz, b(t) = max/o p(z, 7)0(x, 7)dx.

o<t
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Then by we get
1 t
3 a(t )+ b (1 ++Va —i—/ T)dT —i—/ b(T)dT) . (29)
0
Since C' \/7 , it follows from (129)) that

a(t) + b(t) < C (1 + /O ta(T)dT + /0 tb(r)d¢> .

By Gronwall inequality it yields a(t) < C, b(t) < C for each t € [0,T], where C is a positive constant.
Returning back to inequality , we obtain the following series of estimates

s(t)
2
<
Oréltzg%/o p(x, t)u”(x,t)dx < C, (30)
" 0 dr < C 1
<
Org%,/ p(z,t)0(z,t)dx < C, (31)
s(t) ©
/ / <A$+ >dd7’ C. (32)
Estimates (30)), (31]) provide the estimate for the total energy. O

4. UPPER AND LOWER BOUNDS FOR DENSITY AND LOWER BOUNDS FOR TEMPERATURE

Lemma 7. There exists a constant My > 0 depending on boundary data and T such that

) < M. 33

. p(z,t) < M (33)

Proof. Lemma 2 and estimate , imply the boundedness of function B(z,t). The inequality

in Lemma 4 completes the proof. O
Lemma 8. There exists a constant mo > 0 depending on boundary data and T such that

O(x,t 34

e, 0 2 o

Proof. We write equation for the temperature as follows

Rpb 2 R?p%6?
24 dp
Dividing by pf?, in domain {27 we obtain the equation for the function q(x,t) = 1/0(x,):

K R?p 2K W Rpo 2
Gt T UQy — —Qgz = ——— — 70(];% + *92 <Ux Y5
p P p Iz

p(0r + uby) = KOpy + 11 <uz -

i (35)

We pass from function ¢(z,t) to a new function v(z,t), by the identity

q(z,t) = v(, t)e’
Thanks to (35), function v(x,t) satisfies the equation

R? 2 Rpf\ 2
vy + UV — Evm + v = —pe_t — —Héviet + Evzet (ur - '0>
p 4p p p 2p

By Lemma 7 and the non-negativeness of terms in the square brackets for function v(z,t) we have the
differential inequality

v + UV, — va +ov < Cet, (36)
p

Suppose that function v(z,t) attains its positive maximum at an interior point (zg, tp) in domain Qp
or as tg = 1. Then at this point

v =20, v,=0, vz <O0. (37)
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By , we obtain the estimate

max v(z,t) < Ce " < C.
(z,t)EQr

Therefore, for each (z,t) € Qr the inequalities

t 1
U0 6 g, t) < Ot < T, < e’
et 0(x,t)
hold true or .
H(x,t) > mo = W
The proof is complete. ]

Lemma 9. There exists a constant mq > 0 depending on boundary data and T such that

min T, t m
(CE t)GQT p( ) I

t ps(t) @2
/ / %5 edr < C. (38)
0 Jo ¥

By Lemma 4, the estimate |B(z,t)| < C and in view of we have

1 t
max —— <C <1 + max 0(m,7‘)d7‘>
0<z<s(t) p(x, t) 0 0<z<s(T)

Proof. Estimates , yield

(39)
t t
<C <1 + max Az, 7)p(z, T)dT) <C+CM max @(x,7)dr.
0 0<z<s(r) 0 0<z<s(T)
Taking into consideration the inequalities
=t (1o [ iwo) < (102 [0 a)
p(x,t) = (Velx,t)” < —i—/ p)zldr ] < —|—/ —|dz
0 2Jo Ve
2
1[0 2 V2 /st 1/2 s(t) 2 s()
< |1+ = / —gd:c / pdx <2 1+/ gdx/ pdx |,
2\Jo ¥ 0 0o ¢ 0
s(t) s(t) 1 1 s(t) 1
/ o(z,t)dx :/ p@d < — max / pfdr < C max ,
0 0o pA m o<z<s(t) p(x,t) Jo o<e<s(t) p(z,1)
by and we arrive at the inequality
¢
max <C+C max L dr
o<w<s(t) p(z,t) 0 0<a<s(r) p(, T)
Applying Gronwall inequality, we complete the proof. O
In the above proof there were obtained the estimates
t 0, r)ir <C+C [ L [ enar <o !
max z,7)dT < C + max ———dr, / p(x,t)dx < max ,
0 0<z<s(7) o O<z<s(r) p(x,T) 0 o<a<s(t) p(x,t)
which imply
T
/ max 0z, )dt < C, (40)
0 0<z<s(t)
s(t) s(t)
/ O(x,t)dx = Az, t)p( M/ < C, (41)
0

T
/ / (x,t)dzdt < / max 0(zx, t)/ O(z,t)dxdt < C. (42)
0 0<z<s(t) 0



92 I.A. KALIEV, A.A. SHUKHARDIN, G.S. SABITOVA

ESTIMATES FOR DERIVATIVES

Lemma 10. There exists a constant C > 0 depending on boundary data and T such that
s(t)
max / plx, t)u”(x, t)dx —i—/ / (x,t)dxdt < C. (43)
t€[0,T]

Proof. We multiply equation (2)) by u(z,t) and integrate it w.r.t. = from 0 to s(¢) employing , ,

and :

1d r5®
2dt
Applying Young inequality with € and integrating w.r.t. t, we get

1 s(T)
2/ pu2dx+,u/ / uldrdr < Oy + / / 202dxd7'—|—6/ / uldrdr.
0

Choosing ¢ sufficiently small and applying Lemma 7 and inequality (42 ., we obtain

s(t) t ps(T)
/ qudx +/ / uidade < C.
0 0o Jo

The proof is complete. ]

s(t) s(t)
puldx + ,u/ udx — Rpbu,dx = 0.
0 0

As a corollary of Lemmata 9 and 10 we obtain the estimate

s(t)
max / (x,1) d:c+/ / (x,t)dxdt < C. (44)
t€[0,T

Lemma 11. For each t € [0 T] the inequality

s(t)
/ xtdw—i—/ / (z,7) +u2,(z, T))dxdT
0

s(7) (45)
<C 1+/ / 02 (x, 7)dxdr + max 62(35,7')/ p2(z, 7)dxdr
0 z€[0,s(7)] 0
holds true.
Proof. We represent equation as
1 1
PUp — —— Mgy = —+/putly — R\/pB, — —Rp,0.
Vpu 7 VP VP N
Hence,
s(t) 1 s(t) 1 2
/ (put + u2u — Quutum> dr = / <\/ﬁuum + R\/ply + Rpx9> dzx.
0 p 0 VP

Thus,

s(t) s(t) 1 d 5@

| e [ Sl e = (0. Ouss(0).0) + iy [ o
0 ] ot P 0 1 0 (46)
— ‘zl(t )ufc(s(t),t) < 3/ <pu2ui + R?pb? + pRprﬁQ) dx.
0
Since u(s(t),t) = 0, then
ds(t
uals().) W = (50, 0),

and by it implies the inequality

s(t) s(t) 1 ds(t)

/ puidx + p* / —umdm‘—i—u / uzdr + p——u2(s(t),t)

3/ <pu2u2 + R2p92 R2p§02> dx.
0
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We have
) ) s ) s(t)
ul(x,t) < ul(zo,t / ‘ ’ dr < ui(zo,t) + / |(ux)x‘ dx = ui(xo,t) + 2/ [Ugptyy | da.
0 0

Given any e > 0, we integrate this inequality w.r.t. z¢ from 0 to s(t)

) 1 s(t) ) s(t)
uz(z,t) < / ui(z, t)dr + 2/ |Uup sy | dz
s(t) Jo 0

1 1 s(t) s(t)
< < + > / uZdx + 6/ u, d.
so &/ Jo 0

Taking into consideration (48], the non-negativeness of the term Mdil—(pu%(s(t), t), the estimate

(48)

s(t) s(t) s(t)
/ putuldr < C max wul(x,t) < C/ uidw%—C’e/ u, de,
0 0<z<s(t) € Jo 0

Lemma 10 and the boundedness of p(z,t) from above and below, by we obtain under
appropriate choice of £ > 0. O

Lemma 12. For each t € [0,T] the inequality
s(t)
/ p2(z,t)de < C + C/ / —dxdT + Cs/ / ul, dadr
0
holds true.

Proof. By equation we have
(Inp)¢ + u(ln p); + uz = 0.
Then equation casts into the form

(pu)e + (pu®)e = —pl(In p)s + u(lnp)yle — po.

p[<u+up§> +u<u—|—upg> }—sz:O.
P t P T

We multiply this identity by (u + pp./p?) and integrate w.r.t. x from 0 to s():

1d [*® Pz 1ds(t) pe\”
el d Pz
2dt Jo <u+up> YT p<u+“p2>

1 p 2 jz=s(t)
+pu<u+,u x)
2 p?

Hence,

+
z=s(t)
z=s(t)

s(t) Pu
+ / (Rpf), p—5dz = 0.
0 P

/ Rpugzdx + Rpbu

=0
Since u =0 as x = s(t) and = = 0, the obtained identity becomes

1d s(t) - s(t) s(t) 002
—— (pu2 + 2;1% + 2'0$> dx — / Rpbu,dx + Ru/ %dw
0 P p? 0 0 P

2dt
s(t) g 2 ds o2
pr [ o)
0 p z=s(t)

Employing Lemma 7, the replace the third term in the left hand side by a smaller one:

1d [5® s(t) s(t)
—— (pu® + 2u—2 UPa —i—,quz)d —/ RpOu,dr + R'l;/ Op2dx
2dt p p 0 M Jo (49)
s(t)
+Ru/ buba g _ “—@p—f <0.

Let us estimate some of the terms. By equation for z = s(t), and , , we obtain

pe(s(t), ) = —pa(t)ua(s(t), ).
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On the other hand, differentiating w.r.t. t, we have

ol 02D 4 sty = 22O (s, B0 = 20 (o). ),

Then by condition @D, we get

2
260,050 = (20 4 p0unls(0.0) 7o

<o (PO) L2 . < 0 (1ao00.0).

dt m

By it yields

s(t) s(t)
P2 (s(t),1) <O+ C/ utdx + EC/ u de.

Thus,

2 1 2 s(t) s(t)
U S(t) /)x(S(t), t) C / 2 / 2
— AL NSS4 + — dr + ¢ dx.
2 dt pS(S(t),t) = ¢ € Jo Ya ¢ 0 Yaa ¥

Due to the boundedness of p(x,t) from above and below, , , Lemma 10, and the estimates

s(T)
/ / RpOudrdr < C / / 0?dzdr + C / / uldzdr < C,

s(t) g
— Ru / 202 1z < ¢ —dx + 610/ Op2dz,
0 P €1 Jo 6
s(t) s(t)
— ,u/ 9Pz e < ¢ wldr + 620/ pidz,
0 P €2 Jo 0

we integrate (49) w.r.t. the time and for an appropriate choice of €1, €2 we arrive at the statement of
the lemma. The proof is complete. O

ESTIMATE FOR TEMPERATURE

Lemma 13. There exists a constant C > 0 such that for each t € [0,T] the estimate
s(T) t ps(T)
max/ 6dx +/ / 02dxdr < C
0s7<t Jo 0o Jo

Proof. We write the equation for the energy 6 + 5 142, In order to do it, we multiply equation (2} . ) by u
and sum up with .

holds true.

2 2
p <9 + 1;) + pu (9 + u2> = p (ugw), + Kbpz — (Rpbu), . (50)
t x

We multiply this identity by
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and integrate w.r.t. x from 0 to s(t):

1d [*® 2\ 2 1d
1d (e T “) dr — 140 e3e)
0

2dt 2 2 dt
Lo D o o
) 4

+ /OS“) (6+ 2) e (1- ) Hl(t)]td:c—kw /Os“)pu <9+“22> s

s(t) s(t) _ s(t) s(t)
= —,u/ U0, dx — ,u/ uQuida: + /LM / uydr — /@/ 0§dx
0 0 0 0

s(t)
s(t) _ s(t) s(t)
- /{/ uuglydx + mw (02(t) — 01(t)) + R/ pOub,dr + R/ pOutugdr
0 § 0 0
_ s(t)
_ g~ 0i(t) / phuds.
s(t) 0

Let us estimate some terms in ((51f):

_ s(t) 2 s(t) s(t) 2\ 2
w/ pu<9+u)daz<C’ u2dx+C/ p(¢9+u> dr,
s(t) 0 2 0 0 2
s(t) s(t) s(t)
/ uug O dr < / wuldr + 8/ 02dz,
0 €Jo 0

s(t) s(t) s(t)
R/ poul dr < f/ p*0%u da —f-é‘R/ 02dz,
0 0 0

s(t) s(t) s(t)
R/ pOutuyde < R/ p?0%ulde + R/ uzuidx.
0 0 0

95

Other terms can be estimated in obvious way. Integrating w.r.t. the time, we obtain the inequality

1 S(t) U 9
4/0 (0—1— 2> dr + — // 0 dxdr
2
<C+M3// 2d1:dT+C// p260%u 2d:cd7-—|—C’// (9+ >dxd7-,
0 JO

where C, M3 are positive constants depending on 7', initial and boundary data.
We multiply by 4u?, integrate w.r.t. = from 0 to s(¢) and employ

d 5@
dt
We apply Cauchy inequality to the right hand side

d s(t) s(t) s(t) 6R2 s(t)
— putds + 12u/ wruldr < ,u/ wulde + / p20%u2d.
dt Jo 0 0 wJo

We integrate w.r.t. the time to obtain

s(t) t ps(T)
/ pu4da:+6u/ / v uldrdr < C+C’/ / 202 udxdr.
0 0 Jo

We multiply by M3 /i and sum up with

1 s(t) U2 5 4 2

1 ; plO+ — 5 d:U—i— 9 da:dT—i—f pu dx—|—5M3 “dxdr
C—I—C/ / p20%u 2dwd7‘+0/ / <0—|— > dxdr.

s(t) s(t)
putds + 12,u/ u2u§dx = 12R/ pOuu,dz.
0 0

(52)

(53)

(54)

(55)
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In what follows we shall make use of the estimates

s(t) s(t) s(t)
02(z,t) = 6(t) +/ (62)dz < 03(t )+2/ 00, |dx < 03(t) + i/ 92dx+a/ 02dz.
0 0 0 0

Integrating w.r.t. the time and employing , we get

t t ps(T)
max 6%(x,7)dr < C(e) + 6/ / 02dzdr. (56)
0o Jo

0 0<z<s(T)

Then employing and we estimate as follows

t ps(t) t s(7)
/ / p?0*uldrdr <M12/ max 92(93,7')/ w?(z, 7)dx | dr
0 Jo 0 |0<sz<s(T) 0

s(T) t t prs(r)
<M? max / u?(z,7)dx - max 0%(z,7)dr < C + Cs/ / 02dzdr.
0 0 0

0<r<t 0<z<s(T)

Employing this estimate for an appropriate choice of ¢ and applying Gronwall inequality, by we
complete the proof. O

Lemma 14. There exist constants C1, Cy, C3, My > 0 depending on T', initial and boundary data
such that for each t € [0,T] the estimates

S(t) t 5(7') t S(T
/ ui(x,t)dx—l—// u%d:z:deL// ul dedr < O, (57)
0 0 Jo o Jo

s(t) s(t)
| s [ i< oo

s(¢)
/ 02(x,t)dx + / / 02dxdr + / / 62, dxdr < Cs, (58)
0

9.t 59
(hax (z,1) < (59)

hold true.

Proof. Thanks to the boundedness of §(x,t) from below, by employing Lemma 13 we have

/ / % war < C.

Substituting this estimate into the statement of Lemma 12, we obtain

s(t) t ps(T)
/ p2(z,t)de < C + 08/ / u dxdr. (60)
0 0o Jo

Now estimate 1} follows from Lemmata 11, 13, , .
By (60) and (57)) for each ¢ € [0,T] we have

s(t)
/ p2(x,t)dx < C.
0

Equation (1)) yields that for each ¢ € [0, T
s(t)
/ p2(z,t)dx < C.
0

Estimates , can be obtained from equation in the standard way by employing obtained
estimates for p and wu. O

Once we have apriori estimates proven in Lemmata 1-14, the estimates in the theorem in Holder
norms can be obtained by the approach presented in [25].
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