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INVERTIBILITY OF LINEAR RELATIONS GENERATED BY

INTEGRAL EQUATION WITH OPERATOR MEASURES

V.M. BRUK

Abstract. We investigate linear relations generated by an integral equation with operator
measures on a segment in the infinite-dimensional case. In terms of boundary values,
we obtain necessary and sufficient conditions under which these relations 𝑆 possess the
properties: 𝑆 is a closed relation; 𝑆 is an invertible relation; the kernel of 𝑆 is finite-dimen-
sional; the range of 𝑆 is closed; 𝑆 is a continuously invertible relation and others. The
results are applied to a system of integral equations becoming a quasi-differential equation
whenever the operator measures are absolutely continuous as well as to an integral equation
with multi-valued impulse action.
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quasi-derivative, impulse action.
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1. Introduction

Integral equations with operator measures are rather general. For instance, they cover
integral-differential equations with Stiltjes integral [1], differential equations with the coeffi-
cients being generalized functions [2] (the way for reducing an integral equation to the equation
in [2] was provided in [3]).

In the present work, on the segment [𝑎, 𝑏] we consider the integral equation

𝑦(𝑡) = 𝑦0 − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑p)𝑦(𝑠) − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑m)𝑓(𝑠), (1)

where
∫︀ 𝑡

𝑡0
stands for

∫︀
[𝑡0,𝑡)

, if 𝑡0 < 𝑡; for −
∫︀
[𝑡,𝑡0)

if 𝑡0 > 𝑡; and for 0 if 𝑡0 = 𝑡. Here p, m are

operator-valued measures defined on Borel sets ∆ ⊂ [𝑎, 𝑏] and taking values in the set of linear
bounded operators acting in a separable Hilbert space 𝐻, at that, measure m is non-negative
(these measures are extended to a segment [𝑎0, 𝑏0] ⊃ (𝑎0, 𝑏0) ⊃ [𝑎, 𝑏] in the way indicated in
what follows); 𝐽 is an operator in 𝐻 with the properties: 𝐽* = 𝐽 , 𝐽2 = 𝐸 (𝐸 indicates the
identical mapping), 𝑦0 ∈ 𝐻; 𝑦 is an unknown function, 𝑓 ∈ H = 𝐿2(𝐻, 𝑑m; 𝑎, 𝑏) (H is defined
below). Measures p, m are assumed to have a bounded variation in [𝑎, 𝑏].

We note that the case of an infinite dimensional 𝐻 differs essentially from the finite-
dimensional one. It is explained by the fact that the space H = 𝐿2(𝐻, 𝑑m; 𝑎, 𝑏) has a rather
complicated structure. The elements of this space are not necessary functions with values in
𝐻.

In general, equation (1) together with boundary conditions generates not linear operators but
linear relations (multi-valued operators). If the boundary conditions are zero, the associated
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relation is called minimal, while in the absence of boundary conditions it is called maximal. Each
linear relation being a restriction of a maximal relation 𝐿 and an extension of a minimal relation
𝐿0 can be defined by means of a linear relation 𝜃 involved in the boundary conditions. At that,
there is a one-to-one correspondence between such relations 𝜃 and the generated relations 𝐿𝜃,
𝐿0 ⊂ 𝐿𝜃 ⊂ 𝐿. In connection with this fact the problem appears: to select boundary conditions
(i.e., relations 𝜃) determining relations 𝐿𝜃 with prescribed properties.

In the present work we consider properties (called states) in works [4], [5] and it is found
that relation 𝐿𝜃 possesses an appropriate property if and only if the same is true for relation
𝜃. Among these properties are invertibility, continuous invertibility, Fredholm property and
others. The proofs are based on the statements on abstract spaces of boundary conditions in
works [6], [7].

As an application, we consider a system of integral equations and in the case of absolutely
continuous measures this system becomes a quasi-differential equation with quasi-derivatives
in the sense of works [8], [9]. In the last section we study an integral equation with an impulse
action. Such equations describe the behavior of evolution processes involved by short-time
perturbations. A mathematical model of such processes is provided in the monograph [10, Ch.
1, Sect. 1]. In the present work the impulse action is defined by a linear relation, i.e., the
action is multi-valued. In work [11] there were considered differential operators generated by
a strongly continuous family of evolution operators in Banach space and necessary and there
were established sufficient conditions for continuous invertibility and Fredholm property of such
differential operators with multi-valued impulse actions . Up to minor changes, the approach
in this work is applicable to the operators considered in [11].

We note that linear relations were first employed in work [12] for the description of extensions
of differential operators in terms of boundary conditions.

2. Auxiliary statements

Let 𝐻 be a separable Hilbert space with scalar product (·, ·) and norm ‖·‖. We consider a
function ∆ → P(∆) defined on Borel sets ∆ ⊂ [𝑎, 𝑏] and taking values in the set of bounded
linear operators acting in 𝐻. Function P is called an operator-valued measure on [𝑎, 𝑏] (see, for
instance, [13, Ch. 5, Sect. 1]) if P vanishes on the empty set and for all non-intersecting Borel
sets ∆𝑛 the identity

P

(︃
∞⋃︁
𝑛=1

∆𝑛

)︃
=

∞∑︁
𝑛=1

P(∆𝑛)

holds true, where the series converges in the weak operator topology. By VΔ(P) we denote

VΔ(P) = 𝜌(∆) = sup
∑︁
𝑗

‖P(∆𝑗)‖ ,

where sup is taken over finite sums of non-intersecting Borel sets ∆𝑗 ⊂ ∆. The number VΔ(P)
is called the variation of measure P on Borel set ∆.

Let measure P have a bounded variation in [𝑎, 𝑏]. Then for 𝜌-almost each 𝜉 ∈ [𝑎, 𝑏] there
exists an operator-valued function 𝜉 → Ψ(𝜉) with values in the set of linear bounded operators
in 𝐻, ‖Ψ(𝜉)‖ = 1, such that for each Borel set ∆ ⊂ [𝑎, 𝑏] the identity

P(∆) =

∫︁
Δ

Ψ(𝜉)𝑑𝜌 (2)

holds true. Function Ψ is uniquely determined up to values on a set of zero 𝜌-measure. Integral
(2) converges in the sense of usual operator norm ([13, Ch. 5, Thm. 1.2]). It follows from (2)
that bounded functions with values in 𝐻 measurable in the Borel sense are integrable w.r.t.
measure P.
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Given a measure P with a bounded variation, we extend it on the segment [𝑎0, 𝑏0] ⊃ (𝑎0, 𝑏0) ⊃
[𝑎, 𝑏] letting P(∆) = 0 for each Borel sets ∆ ⊂ [𝑎0, 𝑏0]∖[𝑎, 𝑏].

We introduce the quasi-scalar product

(𝑥, 𝑦)m =

∫︁ 𝑏0

𝑎0

((𝑑m)𝑥(𝑡), 𝑦(𝑡))

on the set of step-like functions with values in 𝐻 defined on the segment [𝑎0, 𝑏0]. Identifying
with zero functions 𝑦 obeying (𝑦, 𝑦)m = 0 and making the completion, we arrive at the Hilbert
space denoted by H = 𝐿2(𝐻, 𝑑m; 𝑎, 𝑏). The elements of H are the classes of functions identified

w.r.t. the norm ‖𝑦‖m = (𝑦, 𝑦)
1/2
m . In order not to complicate the terminology, the class of

functions with a representative 𝑦 is indicated by the same symbol and we write 𝑦 ∈ H. The
identities of the functions in H are understood as the identity for associated equivalence classes.
The description of space H is provided in [14] (see also the references therein).

Space H and linear relations considered in what follows do not change once we replace interval
(𝑎0, 𝑏0) by (𝑎′0, 𝑏

′
0), where points 𝑎′0, 𝑏

′
0 are introduced as points 𝑎0, 𝑏0, i.e., [𝑎′0, 𝑏

′
0] ⊃ (𝑎′0, 𝑏

′
0) ⊃

[𝑎, 𝑏] and p(∆) = m(∆) = 0 for each Borel set ∆ ⊂ [𝑎′0, 𝑏
′
0]∖[𝑎, 𝑏].

We consider equations

𝑦(𝑡) = 𝑦0 − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑p)𝑦(𝑠) − 𝑖𝜆𝐽

∫︁ 𝑡

𝑡0

(𝑑m)𝑦(𝑠) − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑m)𝑓(𝑠), (3)

𝑧(𝑡) = 𝑧0 − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑p*)𝑧(𝑠) − 𝑖�̄�𝐽

∫︁ 𝑡

𝑡0

(𝑑m)𝑧(𝑠) − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑m)𝑔(𝑠), (4)

where 𝑦0, 𝑧0 ∈ 𝐻, 𝑓, 𝑔 ∈ H, 𝜆 ∈ C, 𝑡, 𝑡0 ∈ [𝑎0, 𝑏0]. We note that as 𝜆 = 0, equation (3) becomes
equation (1).

It follows from [3], [14] that for each 𝑦0, 𝑧0 ∈ 𝐻, 𝑓, 𝑔 ∈ H, 𝜆 ∈ C equations (3), (4) have
unique solutions. These solutions are left continuous and 𝑦0 = 𝑦(𝑡0), 𝑧0 = 𝑧(𝑡0). By 𝑊 (𝑡, 𝜆),
𝑈(𝑡, �̄�) we denote operator solutions to equations

𝑊 (𝑡, 𝜆)𝑥0 = 𝑥0 − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑p)𝑊 (𝑠, 𝜆)𝑥0 − 𝑖𝜆𝐽

∫︁ 𝑡

𝑡0

(𝑑m)𝑊 (𝑠, 𝜆)𝑥0,

𝑈(𝑡, �̄�)�̃�0 = �̃�0 − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑p*)𝑈(𝑠, �̄�)�̃�0 − 𝑖�̄�𝐽

∫︁ 𝑡

𝑡0

(𝑑m)𝑈(𝑠, �̄�)�̃�0,

where 𝑥0, �̃�0 ∈ 𝐻. It follows from [3], [14] that 𝑈*(𝑡, �̄�)𝐽𝑊 (𝑡, 𝜆) = 𝐽 , 𝑊 (𝑡, 𝜆)𝐽𝑈*(𝑡, �̄�) = 𝐽
and functions 𝜆 → 𝑊 (𝑡, 𝜆), 𝜆 → 𝑈(𝑡, 𝜆) are holomorphic in 𝜆 ∈ C for each fixed 𝑡 ∈ [𝑎0, 𝑏0].
Reproducing the proof of similar statements in [3], [14], we arrive at the following lemma.

Lemma 1. Functions 𝑦, 𝑧 solve equations (3), (4), respectively, if and only if 𝑦, 𝑧 read as

𝑦(𝑡) = 𝑊 (𝑡, 𝜆)𝑦0 −𝑊 (𝑡, 𝜆)𝑖𝐽

∫︁ 𝑡

𝑡0

𝑈*(𝑠, �̄�)(𝑑m)𝑓(𝑠), (5)

𝑧(𝑡) = 𝑈(𝑡, �̄�)𝑧0 − 𝑈(𝑡, �̄�)𝑖𝐽

∫︁ 𝑡

𝑡0

𝑊 *(𝑠, 𝜆)(𝑑m)𝑔(𝑠). (6)

3. Maximal and minimal relations

Let B1, B2 be Banach spaces. By a linear relation T we mean any linear manifold T ⊂
B1 × B2. The terminology on linear relations can be found, for instance, in [4], [5]. In what
follows we make use of the following notations: {·, ·} is an ordered pair; ker T is the set of
elements 𝑥 ∈ B1 such that {𝑥, 0} ∈ T; KerT is the set of ordered pairs {𝑥, 0} ∈ T; 𝒟(T)
is the domain of T, i.e., the set of the elements 𝑥 ∈ B1 such that for each of them there
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exists an element 𝑥′ ∈ B2 such that {𝑥, 𝑥′} ∈ T; ℛ(T) is the range of T, i.e., the set of
the elements 𝑥′ ∈ B2 such that for each of them there exists an element 𝑥 ∈ B1 such that
{𝑥, 𝑥′} ∈ T; T−1 is the relation inverse for T, i.e., the relation formed by the pairs {𝑥′, 𝑥},
where {𝑥, 𝑥′} ∈ T. Relation T is called surjective if ℛ(T) = B2. It is called invertible or
injective if ker T = {0} (i.e., the relation T−1 is an operator); it is called continuously invertible
if it is closed, invertible and surjective (i.e., T−1 is a bounded everywhere defined operator).
The sum of relations T1,T2 ⊂ B1 ×B2 is the relation T1 + T2 consisting of pair {𝑥, 𝑥1 + 𝑥2},
where 𝑥 ∈ 𝒟(T1) ∩ 𝒟(T2), {𝑥, 𝑥1} ∈ T1, {𝑥, 𝑥2} ∈ T2. The product of relations T ⊂ B1 ×B2,
S ⊂ B2 ×B3 is the relation ST formed by the pairs {𝑥1, 𝑥3} ∈ B1 ×B3 such that for each of
them there exists an element 𝑥2 obeying {𝑥1, 𝑥2} ∈ T, {𝑥2, 𝑥3} ∈ S.

In what follows 𝜌(T) indicates the resolvent set of a closed relation T, i.e., the set of points
𝜆 ∈ C such that the relation (T − 𝜆𝐸)−1 is a bounded everywhere defined operator; 𝜎𝑐(T)
(𝜎𝑟(T)) is the continuous (residual) spectrum of relation T, i.e., the set of points 𝜆 ∈ C such
that relation (T − 𝜆𝐸)−1 is a densely defined and unbounded (non-densely defined) operator.
Symbol 𝜎𝑝(T) denotes the point spectrum of relation T, i.e., the set of points 𝜆 ∈ C such that
the relation (T − 𝜆𝐸)−1 is not an operator. Linear operators are treated as linear relations,
this is why the notation {𝑥1, 𝑥2} ∈ T is used also for operator T. Since all considered relations
are linear, we shall often omit word “linear”.

Let 𝐿′ be the relation consisting of the pairs {𝑦, 𝑓} ∈ H×H such that for each of them there

exists a pair {𝑦, 𝑓} identified with {𝑦, 𝑓} in H×H and satisfying equation (1). By 𝐿 we denote
the closure of 𝐿′ and we call 𝐿 the maximal relation generated by equation (1). Generally
speaking, relation 𝐿 is not an operator since function 𝑦 can happen to be identified with zero
in H, while 𝑓 is non-zero. We define the minimal relation 𝐿0 as the restriction of 𝐿′ to the set
of functions 𝑦 such that 𝑦(𝑎0) = 𝑦(𝑏0) = 0, where 𝑦 is a solution to (1).

Remark 1. The definition of points 𝑎0, 𝑏0 and identities p(∆) = m(∆) = 0 valid for each
Borel set ∆ ⊂ [𝑎0, 𝑏0]∖[𝑎, 𝑏] yield 𝑦(𝑎0) = lim

𝑡→𝑎−0
𝑦(𝑡), 𝑦(𝑏0) = lim

𝑡→𝑏+0
𝑦(𝑡). The maximal and

minimal relations do not change if we replace the interval (𝑎0, 𝑏0) by (𝑎′0, 𝑏
′
0), where points 𝑎′0,

𝑏′0 are defined in the same way as 𝑎0, 𝑏0, and measures p, m are extended to the interval (𝑎′0, 𝑏
′
0)

in the same way as (𝑎0, 𝑏0). This is why minimal relation 𝐿0 can be defined as the restriction
of 𝐿′ to the set of functions 𝑦 compactly supported in (𝑎0, 𝑏0), where 𝑦 solves (1).

We denote by 𝑄0 (by ̂︀𝑄0) the set of elements 𝑥 ∈ 𝐻 such that as 𝜇 ∈ C, the function
𝑡 → 𝑊 (𝑡, 𝜇)𝑥 (𝑡 → 𝑈(𝑡, 𝜇)𝑥, respectively) is identified with zero in H. We let 𝑄 = 𝐻 ⊖𝑄0 and̂︀𝑄 = 𝐻 ⊖ ̂︀𝑄0. Sets 𝑄0, ̂︀𝑄0 (and hence 𝑄, ̂︀𝑄) are independent of changing point 𝜇 to another
point 𝜆 ∈ C. It is implied by the identities

𝑊 (𝑡, 𝜆)𝑐 = 𝑊 (𝑡, 0)𝑐− 𝜆𝑊 (𝑡, 0)𝑖𝐽

∫︁ 𝑡

𝑡0

𝑈*(𝑠, 0)(𝑑m)𝑊 (𝑠, 𝜆)𝑐, (7)

𝑊 (𝑡, 0)𝑐 = 𝑊 (𝑡, 𝜆)𝑐 + 𝜆𝑊 (𝑡, 𝜆)𝑖𝐽

∫︁ 𝑡

𝑡0

𝑈*(𝑠, �̄�)(𝑑m)𝑊 (𝑠, 0)𝑐, 𝑐 ∈ 𝐻, (8)

followed by (5), (6). Similar identities for 𝑈(𝑡, 𝜆), 𝑈(𝑡, 0) are obtained from (7), (8) by replacing
𝑊 by 𝑈 and 𝑈 by 𝑊 .

On linear manifolds 𝑄 and ̂︀𝑄 we introduce the norms

‖𝑐‖− =

(︂∫︁ 𝑏0

𝑎0

((𝑑m)𝑊 (𝑠, 𝜇)𝑐,𝑊 (𝑠, 𝜇)𝑐)

)︂1/2

, 𝜇 ∈ C, 𝑐 ∈ 𝑄, (9)

‖̂︀𝑐 ‖− =

(︂∫︁ 𝑏0

𝑎0

((𝑑m)𝑈(𝑠, 𝜇)̂︀𝑐, 𝑈(𝑠, 𝜇)̂︀𝑐 )

)︂1/2

, 𝜇 ∈ C, ̂︀𝑐 ∈ ̂︀𝑄. (10)
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Replacing measure P by m in formula (2), we get

‖𝑐‖− =

(︂∫︁ 𝑏0

𝑎0

(Ψ(𝑠)𝑊 (𝑠, 𝜇)𝑐,𝑊 (𝑠, 𝜇)𝑐) 𝑑𝜌

)︂1/2

6 𝛾 ‖𝑐‖ , 𝛾 > 0, 𝑐 ∈ 𝑄. (11)

By 𝑄−, ̂︀𝑄− we denote the completion of 𝑄, ̂︀𝑄 in norms (9), (10), respectively. It follows from

(7), (8) that replacing 𝜇 by 𝜆 ∈ C in (9) (or in (10)) leads to the same set 𝑄− ( ̂︀𝑄−, respectively)
with an equivalent norm. It follows from (11) and similar inequality for norm (10) that spaces

𝑄−, ̂︀𝑄− can be treated as spaces with negative norm w.r.t. 𝑄 [13, Ch. 1, Sect. 1]. By 𝑄+, ̂︀𝑄+

we denote the associated spaces with positive norm. The definition of spaces with positive and

negative norms imply that 𝑄+ ⊂ 𝑄, ̂︀𝑄+ ⊂ 𝑄.

Suppose that sequences {𝑐𝑛} and {̂︀𝑐𝑛} (𝑐𝑛 ∈ 𝑄,̂︀𝑐𝑛 ∈ ̂︀𝑄) converge respectively in 𝑄− and̂︀𝑄− to 𝑐0 ∈ 𝑄− and ̂︀𝑐0 ∈ ̂︀𝑄−. Then sequences {𝑊 (·, 𝜆)𝑐𝑛}, {𝑈(·, 𝜆)̂︀𝑐𝑛} are fundamental in H
and hence, they converge to some elements in H. By 𝑊 (·, 𝜆)𝑐0 and 𝑈(·, 𝜆)̂︀𝑐0 we denote these
elements and 𝒲(𝜆), 𝒰(𝜆) stand for the operators 𝑐 → 𝑊 (·, 𝜆)𝑐 and ̂︀𝑐 → 𝑈(·, 𝜆)̂︀𝑐, respectively,

where 𝑐 ∈ 𝑄−, ̂︀𝑐 ∈ ̂︀𝑄−. Operators 𝒲(𝜆) : 𝑄− → H, 𝒰(𝜆) : ̂︀𝑄− → H are continuous, one-to-one
and their domains are closed. Thus, adjoint operators 𝒲*(𝜆), 𝒰*(𝜆) map continuously H on

𝑄+, ̂︀𝑄+, respectively. For each 𝑥 ∈ 𝑄, 𝑓 ∈ H we have

(𝑓,𝒲(𝜆)𝑥)m =

∫︁ 𝑏0

𝑎0

((𝑑m)𝑓(𝑠),𝑊 (𝑠, 𝜆)𝑥) =

∫︁ 𝑏0

𝑎0

(𝑊 *(𝑠, 𝜆)(𝑑m)𝑓(𝑠), 𝑥) = (𝒲*(𝜆)𝑓, 𝑥).

Similar identity holds for operator 𝒰(𝜆). Due to the dense embedding of 𝑄, ̂︀𝑄 into 𝑄−, ̂︀𝑄−,
respectively, we obtian

𝒲*(𝜆)𝑓 =

∫︁ 𝑏0

𝑎0

𝑊 *(𝑠, 𝜆)(𝑑m)𝑓(𝑠), 𝒰*(𝜆)𝑔 =

∫︁ 𝑏0

𝑎0

𝑈*(𝑠, 𝜆)(𝑑m)𝑔(𝑠). (12)

Hence, we have proven the following lemma.

Lemma 2. Operators 𝒲*(𝜆), 𝒰*(𝜆) map continuously H onto 𝑄+, ̂︀𝑄+, respectively and are
given by (12).

The next theorem and corollaries are proven in the same way as similar statements in [3],
[14], [15].

Theorem 1. A pair {𝑦, 𝑓} ∈ H×H belongs to the relation 𝐿−𝜆𝐸 if and only if there exists

a pair {𝑦, 𝑓} identified with {𝑦, 𝑓} in H × H such that this pair satisfies identity (5), where
𝑦0 ∈ 𝑄−, 𝑓 ∈ H.

Corollary 1. Relation 𝐿0 is closed.

Corollary 2. The range of the relation 𝐿0 − 𝜆𝐸 consists of the elements 𝑓 ∈ H satisfying
the identity

𝒰*(�̄�)𝑓 =

∫︁ 𝑏0

𝑎0

𝑈*(𝑠, �̄�)(𝑑m)𝑓(𝑠) = 0.

Corollary 3. Operator 𝒲(𝜆) is a continuous one-to-one mapping of 𝑄− onto ker(𝐿− 𝜆𝐸).

4. Spaces of boundary values and states of linear relations

In what follows we shall make use of space of boundary values (SBV) for the relation 𝐿−𝜆𝐸.
Let B1, B2, 𝐵1, 𝐵2 be Banach spaces, 𝑇 ⊂ B1×B2 be a closed linear relation 𝛿 : 𝑇 → 𝐵1×𝐵2

be a linear operator, 𝛿𝑗 = 𝑃𝑗𝛿, 𝑗 = 1, 2 (𝑃𝑗 indicates the natural projection on set 𝐺𝑗 in
the Cartesian product 𝐺 = 𝐺1 × 𝐺2). A quadruple (𝐵1, 𝐵2, 𝛿1, 𝛿2) is called SBV for relation
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𝑇 (cf. [6], [7] and the references therein), if 𝛿 maps continuously 𝑇 onto 𝐵1 × 𝐵2 and the
restriction of 𝛿1 onto Ker𝑇 is a one-to-one mapping of Ker𝑇 onto 𝐵1. We define an operator
Φ𝛿 : 𝐵1 → 𝐵2 and a relation 𝑇0 by the identities Φ𝛿 = 𝛿2(𝛿1 |KerT)−1, 𝑇0 = ker 𝛿. We note that
operator Φ𝛿 is bounded. It follows from the definition of SBV that there exists a one-to-one

correspondence between relations ̂︀𝑇 with the property 𝑇0 ⊂ ̂︀𝑇 ⊂ 𝑇 and relations 𝜃 ⊂ 𝐵1 × 𝐵2

and this correspondence is determined by identity 𝛿 ̂︀𝑇 = 𝜃. In this case we denote ̂︀𝑇 = 𝑇𝜃.
Similar notations are also used below.

Let 𝑆 be a linear relation, 𝑆 ⊂ 𝐵′
1 × 𝐵′

2, where 𝐵′
1, 𝐵

′
2 are Banach spaces. The following

conditions are borrowed from [4], [5]: 1) 𝑆 is closed; 2) ker𝑆 = {0}; 3) dim ker𝑆 < ∞;

4) relation 𝑆 is well-defined; 5) ℛ(𝑆) = ℛ(𝑆); 6) ℛ(𝑆) is a closed subspace in 𝐵′
2 of finite

codimension; 7) ℛ(𝑆) = 𝐵′
2; 8) 𝑆 is continuously invertible.

Following [4], [5], we shall say that relation 𝑆 is in state 𝑘 if it satisfies condition 𝑘). Condition
4) means the invertibility of relation 𝑆 and the closeness of range of ℛ(𝑆) [5]. Relation 𝑆 is
called Fredholm if it satisfies Conditions 3), 6).

Theorem 2. Let ℛ(𝑇 ) = B2. Relation 𝑇𝜃 is in state 𝑘 (1 6 𝑘 6 8) if and only if the same
is true for the relation 𝜃 − Φ𝛿.

The proof is implied by the following lemma established in [7].

Lemma 3. Relation 𝑇𝜃 is closed if and only if the same is true for relation 𝜃. Let ℛ(𝑇 ) = B2.
The following statements hold true:

1) the range of ℛ(𝑇𝜃) is closed if and only if the range of ℛ(𝜃 − Φ𝛿) is closed;

2) dimB2/ℛ(𝑇𝜃) = dim𝐵2/ℛ(𝜃 − Φ𝛿);
3) dim ker𝑇𝜃 = dim ker(𝜃 − Φ𝛿).

Let us construct the space of boundary values for relation 𝐿. We denote 𝑄𝑏 = 𝑊 (𝑏0, 0)𝐽 ̂︀𝑄+.
Operator 𝑊 (𝑏0, 0) is a one-to-one mapping of 𝐻 onto 𝐻. Employing the latter identity, in 𝑄𝑏

we introduce the norm of space 𝑄+. Without loss of generality we can assume that 𝑡0 = 𝑎0,
𝑊 (𝑎0, 𝜆) = 𝐸.

In accordance with Theorem 1, a pair {𝑦, 𝑓} ∈ H× H belongs to the relation 𝐿− 𝜆𝐸 if and

only if there exists a pair {𝑦, 𝑓} identified with {𝑦, 𝑓} in H× H and satisfying

𝑦(𝑡) = 𝑊 (𝑡, 𝜆)𝑐𝜆 + 𝐹𝜆(𝑡), (13)

where 𝑐𝜆 ∈ 𝑄−,

𝐹𝜆(𝑡) = −𝑊 (𝑡, 𝜆)𝑖𝐽

∫︁ 𝑡

𝑎0

𝑈*(𝑠, �̄�)(𝑑m)𝑓(𝑠)𝑑𝑠. (14)

With each pair {𝑦, 𝑓} represented by (13) as 𝜆 = 0 we associated a pair of boundary values

Y = 𝛿1{𝑦, 𝑓} = 𝑐0 ∈ 𝑄−, Y′ = 𝛿2{𝑦, 𝑓} = −𝑊 (𝑏0, 0)𝐽

∫︁ 𝑏0

𝑎0

𝑈*(𝑠, 0)(𝑑m)𝑓(𝑠)𝑑𝑠 ∈ 𝑄𝑏.

It follows from (13), (14) that if pairs {𝑦, 𝑓}, {𝑦, 𝑓} ∈ 𝐿 are identified in H×H, their boundary
values coincide.

We note that if 𝑐0 ∈ 𝑄 (i.e., {𝑦, 𝑓} ∈ 𝐿′), then

Y = 𝑦(𝑎0), Y′ = 𝑦(𝑏0) −𝑊 (𝑏0, 0)𝑦(𝑎0). (15)

We let 𝛿{𝑦, 𝑓} = {Y,Y′}. Theorem 1, Lemma 2, and Corollary 3 imply that a quadruple

(𝑄−, 𝑄𝑏, 𝛿1, 𝛿2) is a SBV for relation 𝐿; at that, ker 𝛿 = 𝐿0. As above, 𝐿𝜃 is a linear relation

such that 𝐿0 ⊂ 𝐿𝜃 ⊂ 𝐿 and 𝛿𝐿𝜃 = 𝜃 ⊂ 𝑄− ×𝑄𝑏.



54 V.M. BRUK

Let {𝑦, 𝑓} ∈ 𝐿. Then {𝑦, 𝑓 − 𝜆𝑦} ∈ 𝐿 − 𝜆𝐸. We let 𝛿(𝜆){𝑦, 𝑓 − 𝜆𝑦} = 𝛿{𝑦, 𝑓} and
𝛿𝑗(𝜆) = 𝑃𝑗𝛿(𝜆), where 𝑃1, 𝑃2 are natural projections of 𝑄− ×𝑄𝑏 on 𝑄−, 𝑄𝑏, respectively. It is

clear that 𝛿 = 𝛿(0).

Operator 𝛿 maps continuously 𝐿 onto 𝑄−×𝑄𝑏, while operator mapping each pair {𝑦, 𝑓} ∈ 𝐿
into pair {𝑦, 𝑓 − 𝜆𝑦} ∈ 𝐿 − 𝜆𝐸 is continuous and a one-to-one correspondence between 𝐿
and 𝐿 − 𝜆𝐸. Hence, operator 𝛿(𝜆) maps continuously 𝐿 − 𝜆𝐸 onto 𝑄− × 𝑄𝑏. It follows from
(7), (8) that the restriction of 𝛿1(𝜆) to Ker(𝐿 − 𝜆𝐸) is a one-to-one correspondence between
Ker(𝐿− 𝜆𝐸) and 𝑄−. Thus, for each 𝜆 ∈ C, a quadruple (𝑄−, 𝑄𝑏, 𝛿1(𝜆), 𝛿2(𝜆)) is SBV for the
relation 𝐿− 𝜆𝐸. The operator Φ𝛿(𝜆) = 𝛿2(𝜆)(𝛿1(𝜆) |Ker(𝐿−𝜆𝐸))

−1 reads as

Φ𝛿(𝜆) = −𝜆𝑊 (𝑏0, 0)𝐽

∫︁ 𝑏0

𝑎0

𝑈*(𝑠, 0)(𝑑m)𝑊 (𝑠, 𝜆)𝑑𝑠.

If 𝑐0 ∈ 𝑄, then
Φ𝛿(𝜆)𝑐0 = (𝑊 (𝑏0, 𝜆) −𝑊 (𝑏0, 0))𝑐0. (16)

Theorem 2 implies the following statement.

Theorem 3. Relation 𝐿𝜃 − 𝜆𝐸 is in state 𝑘 if and only if the same is true for the relation
𝜃 − Φ𝛿(𝜆).

Corollary 4. Suppose that relation 𝜃 is closed. A point 𝜆 belongs to point spectrum 𝜎𝑝(𝐿𝜃)
of relation 𝐿𝜃 if and only if ker(𝜃−Φ𝛿(𝜆)) ̸= {0}. A point 𝜆 belongs to residual spectrum 𝜎𝑟(𝑇𝜃)
(to continuous spectrum 𝜎𝑐(𝐿𝜃)) if and only if relation (𝜃 − Φ𝛿(𝜆))

−1 if a non-densely defined
(densely defined and unbounded) operator. A point 𝜆 belongs to resolvent set 𝜌(𝐿𝜃) if and only
if (𝜃 − Φ𝛿(𝜆))

−1 is a bounded everywhere defined operator.

In conclusion of this section we consider a system integral equations becoming quasi-
differential equation in the case of absolute continuity of operator measures.

Let ℋ be a finite-dimensional Hilbert space. On the segment [𝑎, 𝑏] we consider the system of
𝑟 > 2 equations

𝑢𝑗−1(𝑡) = 𝑢𝑗−1(𝑡0) +

𝑗+1∑︁
𝑘=1

∫︁ 𝑡

𝑡0

(𝑑p𝑗,𝑘)𝑢𝑘−1(𝑠), 𝑗 = 1, . . . , 𝑟 − 1,

𝑢𝑟−1(𝑡) = 𝑢𝑟−1(𝑡0) +
𝑟∑︁

𝑘=1

∫︁ 𝑡

𝑡0

(𝑑p𝑟,𝑘)𝑢𝑘−1(𝑠) + 𝜆𝑖−𝑟

∫︁ 𝑡

𝑡0

(𝑑m1)𝑢0(𝑠) + 𝑖−𝑟

∫︁ 𝑡

𝑡0

(𝑑m1)𝑓(𝑠), (17)

where p𝑗,𝑘, m1 are operator measures on [𝑎, 𝑏] whose values are linear operators in ℋ, at that,
measure m1 is non-negative; 𝑓 ∈ 𝐿2(ℋ, 𝑑m1; 𝑎, 𝑏); 𝜆 ∈ C; 𝑢 = 𝑢0, 𝑢1,. . . ,𝑢𝑟−1 are unknown
functions. Measures p𝑗,𝑘 are assumed to satisfy the conditions: (a) p𝑗,𝑘 = 0 as 𝑘 > 𝑗 + 1;
(b) there exist operator-valued functions 𝑡 → 𝑝𝑗,𝑗+1(𝑡) with norms 𝑡 → ‖𝑝𝑗,𝑗+1(𝑡)‖ ∈ 𝐿1(𝑎, 𝑏)
such that p𝑗,𝑗+1(∆) =

∫︀
Δ
𝑝𝑗,𝑗+1(𝑡)𝑑𝑡 for each Borel set ∆ (i.e., measures p𝑗,𝑗+1 are absolutely

continuous) and operators 𝑝𝑗,𝑗+1(𝑡) have inverse for each 𝑡 ∈ [𝑎, 𝑏].
Let us reduce system (17) to first order equations. We denote p = 𝑖𝐽P, where P is a

matrix of order 𝑟 with entries p𝑗,𝑘, 𝐽 = 𝑖𝑟+1Λ, Λ is the matrix whose secondary diagonal is
−𝐸,𝐸, ..., (−1)𝑟𝐸 (from up to down), while all other entries are zero, m is the matrix of order
𝑟 having m1 at the intersection of the first row and the first column, while other elements are
zero. We also let ̂︀𝑢 = col(𝑢0, ..., 𝑢𝑟−1), 𝑓 = col(𝑓, 0, ..., 0) (the column of length 𝑟). In column

𝑓 there can be arbitrary functions instead of zeroes.
In terms of the above notations, system (17) casts into the form (3), where 𝑦 = ̂︀𝑢, 𝐻 = ℋ𝑟:

̂︀𝑢(𝑡) = ̂︀𝑢(𝑡0) − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑p)̂︀𝑢(𝑠) − 𝑖𝜆𝐽

∫︁ 𝑡

𝑡0

(𝑑m)̂︀𝑢(𝑠) − 𝑖𝐽

∫︁ 𝑡

𝑡0

(𝑑m)𝑓(𝑠). (18)
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Functions 𝑢𝑘 (𝑘 = 0, ..., 𝑟 − 1) solving system (17) are called quasi-derivatives of function
𝑢 = 𝑢0 and we denote 𝑢𝑘 = 𝑢[𝑘]. By (17) we obtain∫︁ 𝑡

𝑡0

𝑝𝑗,𝑗+1(𝑠)𝑢𝑗(𝑠)𝑑𝑠 = 𝑢𝑗−1(𝑡) − 𝑢𝑗−1(𝑡0) −
𝑗∑︁

𝑘=1

∫︁ 𝑡

𝑡0

(𝑑p𝑗,𝑘)𝑢𝑘−1(𝑠)

for each 𝑎0 6 𝑡 6 𝑏0, 𝑗 = 1, ..., 𝑟 − 1.
The left hand side (and thus the right hand side) of the latter identity is an absolutely

continuous function. Hence,

𝑢𝑗(𝑡) = 𝑝−1
𝑗,𝑗+1(𝑡)

𝑑

𝑑𝑡

(︃
𝑢𝑗−1(𝑡) − 𝑢𝑗−1(𝑡0) −

𝑗∑︁
𝑘=1

∫︁ 𝑡

𝑡0

(𝑑p𝑗,𝑘)𝑢𝑘−1(𝑠)

)︃
(19)

as 𝑗 = 1, ..., 𝑟 − 1. Identity (19) holds true on the segment [𝑎, 𝑏]. It follows from (19) that
quasi-derivatives 𝑢𝑗 are determined uniquely by function 𝑢 = 𝑢0. We call function 𝑢 a solution
to (17) if the system of functions ̂︀𝑢 solves (18).

Let 𝑊𝑚(𝑡, 𝜆) be an operator solution to (17) as 𝑓 = 0, 𝑡0 = 𝑎0, satisfying the condition

𝑊
[𝑗−1]
𝑚 (𝑎0, 𝜆) = 𝛿𝑗𝑚𝐸 (𝛿𝑗𝑚 is the Kronecker delta, 𝑗,𝑚 = 1, ..., 𝑟); ̂︁𝑊 (𝑡, 𝜆) is the matrix with

the entries 𝑊
[𝑗−1]
𝑚 (𝑡, 𝜆). Then th function 𝑡 → ̂︁𝑊 (𝑡, 𝜆) is a solution to equation (18) as 𝑓 = 0.

Spaces H = 𝐿2(𝐻, 𝑑m; 𝑎, 𝑏) and 𝐿2(ℋ, 𝑑m1; 𝑎, 𝑏) coincide. Each function col(0, 𝑦2, ..., 𝑦𝑟−1)
with values in 𝐻 = ℋ𝑟 is identified with zero in H. In the finite-dimensional case 𝑄− = 𝑄, the
maximal and minimal relations generated by system (17) are defined as follows.

Maximal relation 𝐿 is the set of pairs {�̃�, 𝑓} ∈ H×H such there exists a pair {𝑢, 𝑓} identified

with {�̃�, 𝑓} in H×H and satisfying system (17) as 𝜆 = 0. Minimal relation 𝐿0 is the restriction
of 𝐿 to the set of functions 𝑢 such that ̂︀𝑢(𝑎0) = ̂︀𝑢(𝑏0) = 0, where 𝑢 is the solution to (17).

The boundary values are defined by formulae (15)

Y = 𝛿1{𝑢, 𝑓} = ̂︀𝑢(𝑎0), Y′ = 𝛿2{𝑢, 𝑓} = ̂︀𝑢(𝑏0) −̂︁𝑊 (𝑏0, 0)̂︀𝑢(𝑎0).

Then Φ𝛿(𝜆) = ̂︁𝑊 (𝑏0, 𝜆) −̂︁𝑊 (𝑏0, 0).
System of integral equations (17) satisfy the statement similar to Theorem 3. We note that

in the finite-dimensional case Conditions 1), 3), 5), 6) hold true immediately.

Remark 2. Let all the measures p𝑗,𝑘 be absolutely continuous, i.e., p𝑗,𝑘(∆) =
∫︀
Δ
𝑝𝑗,𝑘(𝑡)𝑑𝑡,

‖𝑝𝑗,𝑘(𝑡)‖ ∈ 𝐿1(𝑎, 𝑏), and m1(∆) = 𝜇(∆)𝐸, where 𝜇 is the usual Lebesgue measure on [𝑎, 𝑏], i.e.,
𝜇([𝛼, 𝛽)) = 𝛽 − 𝛼, 𝛼, 𝛽 ∈ R, 𝛼 < 𝛽 (as above, we let 𝜇(∆) = 0 for each Borel set ∆ such that
[𝑎, 𝑏] ∩ ∆ = ∅). Then 𝑢[𝑗] are quasi-derivatives in the sense of [8], [9]. At that, 𝑢[𝑟] = 𝑖−𝑟𝑓 ,
where

𝑢[𝑟] = (𝑢[𝑟−1])′ −
𝑟∑︁

𝑘=1

𝑝𝑟,𝑘(𝑡)𝑢[𝑘−1].

5. Integral equations with impulse actions

In this section 𝐻 stands for a separable Hilbert space and m(∆) = 𝜇(∆)𝐸, where 𝜇 is the
usual Lebesgue measure on [𝑎, 𝑏]. In this case relation 𝐿 (and hence, 𝐿0) is operator 𝑄− = 𝑄+ =
𝐻. Boundary values are defined by identities (15), while operator Φ𝛿(𝜆) is introduced by identity
(16). Moreover, for each 𝜏 ∈ [𝑎0, 𝑏0], the operator {𝑦, 𝑓} → 𝑦(𝜏) maps continuously 𝐿 onto
𝐻. This is why the boundary values can be determined by the formulae Y = 𝑦(𝑎0),Y

′ = 𝑦(𝑏0).
Then Φ𝛿(𝜆) = 𝑊 (𝑏0, 𝜆). Thus, in Theorem 3 and Corollary 4, as Φ𝛿(𝜆) we can take the operator
defined by identity (16) or operator 𝑊 (𝑏0, 𝜆) (subject to the choice of SBV).

We note that in paper [16], in other way there were obtained statements similar to Theo-
rem 3 and Corollary 4 for the differential operator generated by a strongly continuous family
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of evolution operators 𝒰(𝑡, 𝑠) in a Banach space. These statements in [16] can be proven by a
slight modification of the approach employed in the present work in view of Theorem 2 valid
for Banach spaces (at that, as operator Φ𝛿(𝜆) = 𝑊 (𝑏0, 𝜆) we take 𝑒𝜆(𝑏−𝑎)𝒰(𝑏, 𝑎) ).

We proceed to considering equation (1) with a multi-valued impulse action assuming that
m(∆) = 𝜇(∆)𝐸, 𝑡0 = 𝑎0, in (1).

We fix a point 𝑡1 ∈ [𝑎, 𝑏]. We define a possible change of the solution at point 𝑡1 as follows.
We let

𝑦(𝑡) = 𝑊 (𝑡, 0)𝑐1 −𝑊 (𝑡, 0)𝑖𝐽

∫︁ 𝑡

𝑎0

𝑈*(𝑠, 0)𝑓(𝑠)𝑑𝑠, 𝑎0 6 𝑡 6 𝑡1, (20)

𝑦(𝑡) = 𝑊 (𝑡, 0)𝑊−1
+ (𝑡1, 0)𝑐2 −𝑊 (𝑡, 0)𝑖𝐽

∫︁ 𝑡

𝑡1

𝑈*(𝑠, 0)𝑓(𝑠)𝑑𝑠, 𝑡1 < 𝑡 6 𝑏0, (21)

where 𝑓 ∈ H, 𝑐1, 𝑐2 ∈ 𝐻, 𝑊+(𝑡1, 0) = lim
𝑡→𝑡1+0

𝑊 (𝑡, 0). Generally speaking, function 𝑦 has a

jump at point 𝑡1 because element 𝑐2 ∈ 𝐻 is chosen arbitrarily. We observe that 𝑐1 = 𝑦(𝑎0),
𝑐2 = lim

𝑡→𝑡1+0
𝑦(𝑡).

We define operator ℒ as follows. We assume that domain 𝒟(ℒ) of operator ℒ consists of
functions 𝑦 satisfying (20), (21) and we suppose that ℒ𝑦 = 𝑓 . Operator ℒ is closed.

In the definition of SBV we let 𝐵1 = 𝐵2 = 𝐻 × 𝐻 and we define boundary values by the
identities

𝛾1{𝑦, 𝑓} = Y = {𝑦(𝑎0), 𝑦
+(𝑡1)}, 𝛾2{𝑦, 𝑓} = Y′ = {𝑦(𝑡1), 𝑦(𝑏0)},

where 𝑦+(𝑡1) = lim
𝑡→𝑡1+0

𝑦(𝑡). Lemma 2, Corollary 3, and the continuous invertibility of operator

𝑊 (𝑡, 0) : 𝐻 → 𝐻 yield that the quadruple (𝐻 ×𝐻,𝐻 ×𝐻, 𝛾1, 𝛾2) is a SBV for operator ℒ. We
let 𝛾{𝑦, 𝑓} = {Y,Y′}.

Operator Φ𝛾 is defined by the identity

Φ𝛾({𝑐1, 𝑐2}) = {𝑊 (𝑡1, 0)𝑐1,𝑊 (𝑏0, 0)𝑊−1
+ (𝑡1, 0)𝑐2}, {𝑐1, 𝑐2} ∈ 𝐻 ×𝐻. (22)

Here we have taken into consideration that the function 𝑡 → 𝑊 (𝑡, 0) is left continuous. In this
case minimal operator ℒ0 is introduced as the restriction of operator ℒ to the set of functions
𝑦 ∈ 𝒟(ℒ) obeying 𝑦(𝑎0) = 𝑦(𝑏0) = 𝑦(𝑡1) = 𝑦+(𝑡1) = 0.

Let 𝜃 be a linear relation, 𝜃 ⊂ (𝐻×𝐻)× (𝐻×𝐻), ℒ𝜃 be an operator such that ℒ0 ⊂ ℒ𝜃 ⊂ ℒ
and 𝛾ℒ𝜃 = 𝜃. Operator ℒ𝜃 satisfy the statements similar to Theorem 3 and Corollary 4.

We consider the important particular case when relation 𝜃 is determined by two relations
𝜃12 and 𝜃21 consisting of the pairs of boundary values at the discontinuity point 𝑡1 and the
pairs of boundary values at the end-points 𝑎0, 𝑏0, respectively. We denote by 𝐻1, 𝐻2 the first
and second copy of space 𝐻 in the Cartesian product 𝐻 ×𝐻 and we assume that the relation
𝜃 ⊂ (𝐻1 ×𝐻2) × (𝐻1 ×𝐻2) consists of pairs

{col(𝑥1, 𝑥2), col(𝑥12, 𝑥21)}, (23)

where {𝑥2, 𝑥12} ∈ 𝜃12 ⊂ 𝐻2 × 𝐻1, {𝑥1, 𝑥21} ∈ 𝜃21 ⊂ 𝐻1 × 𝐻2 (hereinafter it is convenient
to denote a pair {𝑧1, 𝑧2} ∈ 𝐻1 ×𝐻2 as the column col(𝑧1, 𝑧2) to track the analogy with the
operators defined by matrices). Thus, the domain of operator ℒ𝜃 consists of functions 𝑦 defined
by (20), (21) and satisfying the boundary conditions

{𝑦(𝑎0), 𝑦(𝑏0)} ∈ 𝜃21, {𝑦+(𝑡1), 𝑦(𝑡1)} ∈ 𝜃12.

We note that relation 𝜃 is closed if and only if relations 𝜃12 and 𝜃21 closed. In what follows we
assume that relation 𝜃 is closed.

For the sake of shortening the notations we denote 𝜔1 = 𝑊 (𝑡1, 0), 𝜔2 = 𝑊 (𝑏0, 0)𝑊−1
+ (𝑡1, 0).

Let 𝜔 : 𝐻1 ×𝐻2 → 𝐻1 ×𝐻2 be the operator defined by the identity 𝜔{𝑥1, 𝑥2} = {𝜔1𝑥1, 𝜔2𝑥2},
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where 𝑥1 ∈ 𝐻1 = 𝐻, 𝑥2 ∈ 𝐻2 = 𝐻. It follows from (22), (23) that the relation 𝜃 − Φ𝛾 consists
of pairs

{col(𝑥1, 𝑥2), col(−𝜔1𝑥1 + 𝑥12, 𝑥21 − 𝜔2𝑥2)}, (24)

where {𝑥2, 𝑥12} ∈ 𝜃12, {𝑥1, 𝑥21} ∈ 𝜃21.
Operator 𝜔 is a continuous one-to-one mapping of 𝐻1 × 𝐻2 onto 𝐻1 × 𝐻2. This is why

the relations 𝜃 − Φ𝛾 and 𝜁 = 𝜔−1(𝜃 − Φ𝛾) are simultaneously either in state or not in state 𝑘
(1 6 𝑘 6 8). We denote 𝜁12 = 𝜔−1

1 𝜃12, 𝜁21 = 𝜔−1
2 𝜃21. It follows from (24) that relation 𝜁 consists

of pair

{col(𝑔1, 𝑔2), col(−𝑔1 + 𝑔12, 𝑔21 − 𝑔2)}, (25)

where {𝑔2, 𝑔12} ∈ 𝜁12, {𝑔1, 𝑔21} ∈ 𝜁21.

Lemma 4. The following statements hold true: a) dim ker 𝜁 < ∞ if and only if
dim ker(𝜁12𝜁21 − 𝐸) < ∞ and dim ker(𝜁21𝜁12 − 𝐸) < ∞; b) dim ker 𝜁 = 0 if and only if
dim ker(𝜁12𝜁21 − 𝐸) = 0 and dim ker(𝜁21𝜁12 − 𝐸) = 0.

Proof. Let col(𝑔1, 𝑔2) ∈ ker 𝜁. It follows (25) that there exist elements 𝑔12, 𝑔21 ∈ 𝐻 such that
{𝑔2, 𝑔12} ∈ 𝜁12, {𝑔1, 𝑔21} ∈ 𝜁21 and 𝑔1 = 𝑔12, 𝑔2 = 𝑔21. It yields that {𝑔1, 𝑔12} ∈ 𝜁12𝜁21 and
𝑔1 ∈ ker(𝜁12𝜁21 − 𝐸). In the same way we obtain {𝑔2, 𝑔21} ∈ 𝜁21𝜁12 and 𝑔2 ∈ ker(𝜁21𝜁12 − 𝐸).

On the other hand, if 𝑔1 ∈ ker(𝜁12𝜁21 − 𝐸), there exist elements 𝑔21 and 𝑔12 such that
{𝑔1, 𝑔21} ∈ 𝜁21, {𝑔21, 𝑔12} ∈ 𝜁12 and 𝑔12 = 𝑔1. Together with (25) it implies col(𝑔1, 𝑔21) ∈ ker 𝜁.
In the same way we obtain that if 𝑔2 ∈ ker(𝜁21𝜁12 − 𝐸), there exists an element 𝑔12 with the
property col(𝑔12, 𝑔2) ∈ ker 𝜁. The above arguments imply the statement of the lemma. The
proof is complete.

We denote 𝑍1 = ℛ(𝜁12𝜁21 − 𝐸), 𝑍2 = ℛ(𝜁21𝜁12 − 𝐸).

Lemma 5. Relation 𝜁 is surjective if and only if the relations 𝜁12𝜁21 −𝐸 and 𝜁21𝜁12 −𝐸 are
surjective.

Proof. Suppose that relation 𝜁 is surjective. It follows from (25) that for each 𝑧1, 𝑧2 ∈ 𝐻 there
exist pairs {𝑔2, 𝑔12} ∈ 𝜁12, {𝑔1, 𝑔21} ∈ 𝜁21 such that −𝑔1 + 𝑔12 = 𝑧1, 𝑔21− 𝑔2 = 𝑧2. We let 𝑧2 = 0.
Then 𝑔2 = 𝑔21. This is why {𝑔1, 𝑔12} ∈ 𝜁12𝜁21 and 𝑧1 ∈ 𝑍1 = ℛ(𝜁12𝜁21−𝐸). By the arbitrariness
of 𝑧1 we obtain 𝑍1 = 𝐻. In the same way we prove that 𝑍2 = ℛ(𝜁21𝜁12 − 𝐸) = 𝐻. Thus,
relations 𝜁12𝜁21 − 𝐸, 𝜁21𝜁12 − 𝐸 are surjective.

Let us prove the opposite statement. We have 𝑧2 ∈ 𝑍2 if and only if there exists an element
𝑔2 such that {𝑔2, 𝑧2} ∈ 𝜁21𝜁12 −𝐸. It is equivalent to the existence of elements 𝑔12, 𝑔21 with the
properties

{𝑔2, 𝑔12} ∈ 𝜁12, {𝑔12, 𝑔21} ∈ 𝜁21, 𝑔21 − 𝑔2 = 𝑧2. (26)

In the same way, 𝑧1 ∈ 𝑍1 if and only if there exist elements 𝑔1, 𝑔
′
12, 𝑔

′
21 with the properties

{𝑔1, 𝑧1} ∈ 𝜁12𝜁21 − 𝐸, {𝑔1, 𝑔′21} ∈ 𝜁21, {𝑔′21, 𝑔′12} ∈ 𝜁12, 𝑔′12 − 𝑔1 = 𝑧1. (27)

By (26), (27) we obtain that {𝑔2 + 𝑔′21, 𝑔12 + 𝑔′12} ∈ 𝜁12, {𝑔12 + 𝑔1, 𝑔21 + 𝑔′21} ∈ 𝜁21. Together
with (25) it yields {col(𝑔12 + 𝑔1, 𝑔2 + 𝑔′21), col(𝑔′12− 𝑔1, 𝑔21− 𝑔2)} ∈ 𝜁. Identities (26), (27) imply
{col(𝑔12 + 𝑔1, 𝑔2 + 𝑔′21), col(𝑧1, 𝑧2)} ∈ 𝜁. Hence, col(𝑧1, 𝑧2) ∈ ℛ(𝜁).

Thus, if the relations 𝜁12𝜁21 − 𝐸 and 𝜁21𝜁12 − 𝐸 are surjective, then relation 𝜁 is surjective.
The proof is complete.

Remark 3. In the proof of the second part of Lemma 5 we have in fact established the
following statement: if 𝑧1 ∈ 𝑍1, 𝑧2 ∈ 𝑍2, then col(𝑧1, 𝑧2) ∈ ℛ(𝜁).
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Theorem 4. Operator ℒ𝜃 is continuously invertible if and only if the relations

𝑊−1(𝑡1, 0)𝜃12𝑊+(𝑡1, 0)𝑊−1(𝑏0, 0)𝜃21 − 𝐸, 𝑊+(𝑡1, 0)𝑊−1(𝑏0, 0)𝜃21𝑊
−1(𝑡1, 0)𝜃12 − 𝐸 (28)

are continuously invertible.

Proof. Relations (28) are equal to 𝜁12𝜁21 − 𝐸 and 𝜁21𝜁12 − 𝐸, respectively. It was established
above that ℒ𝜃, 𝜃−Φ𝛾, 𝜁 are simultaneously in state 𝑘 (1 6 𝑘 6 8). Now the desired statement
follow from Lemmata 4, 5.

Lemma 6. If range ℛ(𝜁) is closed and has a finite codimension, then the ranges 𝑍1 =
ℛ(𝜁12𝜁21 − 𝐸) and 𝑍2 = ℛ(𝜁21𝜁12 − 𝐸) have a finite codimension. If 𝑍1, 𝑍2 have a finite
codimension, the same is true for ℛ(𝜁).

Proof. Suppose that ℛ(𝜁) is closed and has a finite codimension. Then ℛ(𝜁) ∩ (𝐻 × {0}) has
a finite codimension. Let col(𝑧1, 0) ∈ ℛ(𝜁) ∩ (𝐻 × {0}). As in the proof of the first part of
Lemma 5 we obtain 𝑧1 ∈ 𝑍1. It yields that 𝑍1 has a finite codimension. The required statement
on 𝑍2 can be proven in the same way.

Suppose that 𝑍1 and 𝑍2 have finite codimension 𝑧1 ∈ 𝑍1, 𝑧2 ∈ 𝑍2. By Remark 3 we obtain
col(𝑧1, 𝑧2) ∈ ℛ(𝜁). Hence, ℛ(𝜁) has a finite codimension. The proof is complete.

Theorem 5. Operator ℒ𝜃 is Fredholm if and only if relations (28) are Fredholm.

Proof. Operator ℒ𝜃 and relations 𝜃−Φ𝛾, 𝜁 are simultaneously either Fredholm or not. Suppose
that relation 𝜁 is Fredholm. Then range ℛ(𝜁) is closed. Let us prove the same for 𝑍1 =
ℛ(𝜁12𝜁21 − 𝐸). Suppose that 𝑧1,𝑛 ∈ 𝑍1 and sequence {𝑧1,𝑛} converges to 𝑧. It follows from
Remark 3 that col(𝑧1,𝑛, 0)} ∈ ℛ(𝜁). Closeness of ℛ(𝜁) implies col(𝑧, 0) ∈ ℛ(𝜁). By the proof
of the first part of Lemma 5 we obtain that 𝑧 ∈ 𝑍1. The closeness of 𝑍2 = ℛ(𝜁12𝜁21 − 𝐸)
can be established in the same way. Now the Fredholm property for relations (28) follow from
Lemmata 4, 6.

Vice versa, let relations (28) be Fredholm. These relations are equal to 𝜁12𝜁21 − 𝐸 and
𝜁21𝜁12 − 𝐸, respectively. Therefore, 𝑍1, 𝑍2 closed. This set 𝑍1 × 𝑍2 is closed. It has a finite
codimension in 𝐻 ×𝐻, since by the assumption 𝑍1, 𝑍2 have a finite codimension. Therefore,
there exists a linear manifold 𝑀 ⊂ 𝐻 × 𝐻 such that dim𝑀 < ∞, (𝑍1 × 𝑍2) ∩ 𝑀 = {0, 0}
and 𝐻 × 𝐻 = (𝑍1 × 𝑍2) u 𝑀 . By Remark 3 we obtain 𝑍1 × 𝑍2 ⊂ ℛ(𝜁). Hence, ℛ(𝜁) =
(𝑍1×𝑍2)u (𝑀 ∩ℛ(𝜁)). It follows from [17, Ch. 1, Prop. 3.3] that ℛ(𝜁) is closed. By applying
Lemmata 4, 6 we complete the proof.
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