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EXISTENCE OF SOLUTION FOR PARABOLIC EQUATION

WITH NON-POWER NONLINEARITIES

E.R. ANDRIYANOVA, F.KH. MUKMINOV

Abstract. We consider the first mixed problem for a class of parabolic equation with
double non-power nonlinearities in a cylindrical domain 𝐷 = (𝑡 > 0) × Ω. By Galerkin’s
approximations we prove the existence of strong solutions in Sobolev-Orlicz space.
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1. Introduction

Let Ω be a bounded domain in space R𝑛 = {𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)}, 𝑛 > 2. In the cylindrical
domain 𝐷 = {𝑡 > 0} × Ω we consider the equation

(𝛽(𝑥, 𝑢))′𝑡 =
𝑛∑︁

𝑖=1

(𝑎𝑝𝑖(𝑥, 𝑢,∇𝑢))𝑥𝑖
− 𝑏(𝑥, 𝑢,∇𝑢), where 𝑎(𝑥, 𝑢,∇𝑢) = 𝑎(𝑥, 𝑢, 𝑝)

⃒⃒⃒
𝑝=∇𝑢

, (1)

with a monotonous operator in the right hand side. The boundary conditions are homogeneous:

𝑢(𝑡, 𝑥)
⃒⃒⃒
𝑆

= 0, 𝑆 = {𝑡 > 0} × 𝜕Ω; (2)

𝑢(0, 𝑥) = 𝑢0(𝑥). (3)

Function 𝑎(𝑥, 𝑢, 𝑝), 𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑛), satisfies Carathéodory condition as 𝑝 ∈ R𝑛 and 𝑥 ∈ Ω.
Function 𝛽(𝑥, 𝑢), 𝛽(𝑥, 0) = 0, is absolutely continuous and grows w.r.t. 𝑢, as well as it is
measurable w.r.t. 𝑥 ∈ Ω as 𝑢 ∈ R.

In the present work we prove the existence of a strong solution to problem (1)–(3) with
nonlinearities defined by 𝑁 -functions. Existence of solution to parabolic equations with double
nonlinearities were considered in works [1]–[11] and others. An essential progress was made in
work [3], where there was also considered the uniqueness of the solution. Usually the existence
of solution was proven by discretization in time and nonlinearities were governed by power
estimates. Work [4] was devoted to the existence of weak solutions to quasilinear second
order parabolic equations with double nonlinearities in a bounded domain by the Galerkin’s
approximations methods. In work [5] a solution in unbounded domain was obtained as a limit
of solutions in a sequence of bounded domains. The existence of weak solution to parabolic
equation with two variable nonlinearities in appropriate Sobolev-Orlicz spaces independent
variables for a bounded domain Ω was proven in [6]. The existence of 𝑊 - and 𝐻-solutions to
second order parabolic equations with a variable nonlinearity order was proven in work [8].
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Existence of a strong solution to problem (1)–(3) for an isotropic parabolic equation with
a double power nonlinearity was established in [9]. There were also obtained exact two-sided
estimates for the power decay of norm of solution in time. In [18] there was also considered the
case of anisotropic parabolic equations.

In work [10] there was proven the existence of a strong solution to a model parabolic equations
with non-power nonlinearities under the boundedness of the derivative 𝛽′(𝑢) in the vicinity of
zero.

In works concerning the uniqueness of solution to problem (1)–(3) there were considered only
the equations with power nonlinearities. In work [11] the uniqueness to problem (1)–(3) was
proven in the case 𝛽 = |𝑢|𝛼−2𝑢, 𝛼 ∈ (1, 2) under the assumption (𝛽(𝑢))′𝑡 ∈ 𝐿1(𝐷

𝑇 ), 𝑢0 > 0.
Similar results for equation (1) written in another form were established in [12, 13]. The
uniqueness of a renormalized solution to elliptic-parabolic problem with power nonlinearities
was established in [14].

2. Notations and conditions for the functions involved in equation

Here we define some functional spaces we employ in the work and we recall some known facts
in the theory of Sobolev-Orlicz spaces [21].

We introduce the notations

⟨𝑓(𝑡)⟩ =

∫︁
Ω

𝑓(𝑡, 𝑥)𝑑𝑥, [𝑓 ] =

∫︁
𝐷𝑇

𝑓(𝑡, 𝑥)𝑑𝑥𝑑𝑡, 𝑓(𝜑) = (𝑓, 𝜑)Ω.

In this identity we write the value of a distribution 𝑓 on an element 𝜑.
For convex functions 𝐵(𝑠), 𝑠 > 0, the function

𝐵(𝑧) = sup
𝑠>0

(𝑠|𝑧| −𝐵(𝑠))

is called complementary. The following Young inequality

|𝑧𝑠| 6 𝐵(𝑧) + 𝐵(𝑠)

is obvious.
𝑁 -function 𝐵(𝑠) is said to satisfy ∆2-condition if one of three equivalent conditions holds:
1) there exists a number 𝑘 > 0 such that 𝐵(2𝑠) 6 𝑘𝐵(𝑠), ∀𝑠 > 0;
2) there exist numbers 𝑙 > 1, 𝑚 > 0 such that

𝐵(𝑙𝑠) 6 𝑘𝑙𝑚𝐵(𝑠), ∀𝑠 > 0;

3) there exists a number 𝛼𝐵 > 0 such that 𝑠𝐵′(𝑠) 6 𝛼𝐵𝐵(𝑠), ∀𝑠 > 0.
Hereinafter 𝐵′(𝑠) denotes the right derivative of a convex function. We also note that the
known identity 𝑢𝐵′(𝑢) = 𝐵(𝑢) + 𝐵(𝐵′(𝑢)) [21, Ch. 1, Formula (2.7)] implies the estimate

𝐵(𝐵′(𝑢)) 6 𝑐𝐵(𝑢). (4)

We shall denote all 𝑁 -functions by capital Latin letters. All constants in the work are positive.
We assume that there exists an absolutely continuous odd increasing function 𝛾(𝑢) satisfying

inequalities

𝛾(𝑢)/𝑐𝛾 6 𝑢𝛾′(𝑢) 6 𝑐𝛾𝛾(𝑢), 𝛾′(𝑢) 6 𝛽′(𝑥, 𝑢) 6 𝑐𝛽𝛾
′(𝑢). (5)

as 𝑢 ∈ R, 𝑥 ∈ Ω. Hereinafter by 𝛽′, 𝛾′, 𝑔′ we shall denote the derivatives 𝛽′
𝑢(𝑥, 𝑢), 𝛾′

𝑢(𝑥, 𝑢),
𝑔′𝑢(𝑥, 𝑢) of absolutely continuous in 𝑢 functions and 𝑢′, 𝑣′, 𝑤′ will stand for the derivatives
𝑢′
𝑡(𝑡, 𝑥), 𝑣′𝑡(𝑡, 𝑥), 𝑤′

𝑡(𝑡, 𝑥). We shall write function 𝑢(𝑡, 𝑥) as 𝑢 or 𝑢(𝑡) once it produces no ambi-
guity. The arguments of functions 𝑎 = 𝑎(𝑥, 𝑢,∇𝑢), 𝑏 = 𝑏(𝑥, 𝑢,∇𝑢), 𝑎𝑝𝑖 = 𝑎𝑝𝑖(𝑥, 𝑢,∇𝑢) will be
also sometimes omitted.
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We also suppose that the integral

𝐺(𝑢) =

𝑢∫︁
0

𝑠𝛾′(𝑠)𝑑𝑠

defines an 𝑁 -function and in what follows it will be shown that it satisfies ∆2-condition.
The monotonicity condition is imposed via the inequality

(𝑏(𝑥, 𝑢, 𝑝) − 𝑏(𝑥, 𝑣, 𝑞))(𝑢− 𝑣) +
𝑛∑︁

𝑖=1

(𝑎𝑝𝑖(𝑥, 𝑢, 𝑝) − 𝑎𝑝𝑖(𝑥, 𝑣, 𝑞))(𝑝𝑖 − 𝑞𝑖) > 0 (6)

valid for each 𝑢, 𝑣 ∈ R, 𝑝, 𝑞 ∈ R𝑛 and almost each 𝑥 ∈ Ω. Suppose also that the condition

𝑏(𝑥, 𝑢, 𝑝)𝑢 +
𝑛∑︁

𝑖=1

𝑎𝑝𝑖(𝑥, 𝑢, 𝑝)𝑝𝑖 > 𝑆(𝑝) − 𝑐(𝐺(𝑢) + 𝑓(𝑥)), 𝑓 ∈ 𝐿1(Ω), (7)

holds true, where 𝑆(𝑝) =
∑︀𝑛

𝑖=1𝐵𝑖(𝑝𝑖), 𝐵𝑖 are some 𝑁 -functions.
By 𝐿𝐵(𝑄) we denote the Orlicz space associated with 𝑁 -function 𝐵(𝑠) with the Luxembourg

norm

‖𝑢‖𝐿𝐵(𝑄) = ‖𝑢‖𝐵,𝑄 = inf

⎧⎨⎩𝑘 > 0 :

∫︁
𝑄

𝐵

(︂
𝑢(𝑥)

𝑘

)︂
𝑑𝑥 6 1

⎫⎬⎭ .

In what follows as 𝑄 there can serve domains Ω, 𝐷𝑇 and other, at that, the subscript 𝑄 = Ω
can be omitted.

We also define the anisotropic Sobolev-Orlicz space 𝑊̊ 1
𝐺,𝐵(Ω) as the completion of 𝐶∞

0 (Ω) in
the norm

‖𝑢‖𝑊 1
𝐺,𝐵(Ω) =

𝑛∑︁
𝑖=1

‖𝑢𝑥𝑖
‖𝐵𝑖,Ω + ‖𝑢‖𝐺,Ω.

By 𝑉 (𝐷𝑇 ) we indicate the completion of 𝐶∞
0 (𝐷𝑇 ) in the norm

‖𝑢‖𝑉 (𝐷𝑇 ) =
𝑛∑︁

𝑖=1

‖𝑢𝑥𝑖
‖𝐵𝑖,𝐷𝑇 + ‖𝑢‖𝐺,𝐷𝑇 .

It is known (cf. [21]) that as 𝜈 ≡ ‖𝑢‖𝐵,𝑄 > 1, Luxembourg norm satisfies the inequality
‖𝑢‖𝐵,𝑄 6

∫︀
𝑄

𝐵(𝑢)𝑑𝑥. As 𝜈 > 1, we have∫︁
𝑄

𝐵(𝑢)𝑑𝑥 =

∫︁
𝑄

𝐵(𝜈𝑢/𝜈)𝑑𝑥 6 𝑘𝜈𝑚

∫︁
𝑄

𝐵(𝑢/𝜈)𝑑𝑥 6 𝑘𝜈𝑚.

Thus, we always have ∫︁
𝑄

𝐵(𝑢)𝑑𝑥 6 𝑓𝐵(‖𝑢‖𝐵,𝑄), 𝑓𝐵(𝑠) = 𝑘𝑠𝑚 + 𝑠. (8)

For anisotropic Sobolev-Orlicz spaces the Korolev embedding theorem is known [22]. In order
to formulate it, we define function Θ(𝑠) as follows:

Θ(𝑠) = 𝑠−
1
𝑛

𝑛∏︁
𝑖=1

(︀
𝐵−1

𝑖 (𝑠)
)︀ 1

𝑛 .

The integral
1∫︁

0

Θ(𝑠)

𝑠
𝑑𝑠 (9)
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can happen to diverge at zero, then while calculating Θ(𝑠) we replace functions 𝐵𝑖 by ̃︀𝐵𝑖 by
the formula ̃︀𝐵𝑖(𝑠) =

{︂
𝐵𝑖(𝑠), as |𝑠| > 1,

𝑠𝜅𝐵𝑖(1), as |𝑠| 6 1.

We note that since functions 𝐵𝑖 are convex, the inequality 𝐵′
𝑖(1) > 𝐵𝑖(1) holds true. We choose

𝜅 ∈ (1, 𝑛) so that the inequalities

𝐵′
𝑖(1) > 𝜅𝐵𝑖(1), 𝑖 = 1, 2, . . . , 𝑛,

are satisfied. The convergence of integral (9) at zero is ensured by the inequality 𝜅 < 𝑛.
We introduce an 𝑁 -function 𝐵*(𝑧) by the formula

(𝐵*)−1(𝑧) =

|𝑧|∫︁
0

Θ(𝑠)

𝑠
𝑑𝑠

assuming that the integral

𝐼(Θ) =

∞∫︁
0

Θ(𝑠)

𝑠
𝑑𝑠 = ∞ (10)

converges at infinite. There known the Korolev embedding theorem [22] implied by the inequal-
ity

‖𝑢‖𝐵*,Ω 6 𝐶
𝑛∑︁

𝑖=1

‖𝑢𝑥𝑖
‖ ̃︀𝐵𝑖,Ω

(11)

valid for the functions 𝑢 ∈ 𝐶∞
0 (Ω).

By 𝜒(𝑀) we denote the characteristic function of a set 𝑀 . We suppose the following condi-
tions

̃︀𝑏2𝜒(|𝑢| < 1) + 𝐺

(︃ ̃︀𝑏2
𝛽′(𝑥, 𝑢)𝐺′(𝑢)

)︃
+

𝑛∑︁
𝑖=1

𝐵𝑖(𝑎𝑝𝑖(𝑥, 𝑢, 𝑝)) 6 𝑐(𝜑(𝑥, 𝑢) + 𝑆(𝑝)), (12)

for each 𝑢 ∈ R, 𝑝 ∈ R𝑛 and almost each 𝑥 ∈ Ω, where ̃︀𝑏(𝑥, 𝑢, 𝑝) = 𝑏(𝑥, 𝑢, 𝑝) − 𝑎𝑢(𝑥, 𝑢, 𝑝),

𝜑(𝑥, 𝑢) = 𝑓(𝑥) + 𝐺(𝑢) +
𝑛∑︁

𝑖=1

𝐵𝑖(𝑐
𝑖
Ω𝑢).

Here constants 𝑐𝑖Ω are so that the inequalities

𝑛∑︁
𝑖=1

⟨𝐵𝑖(𝑐
𝑖
Ω𝑢)⟩ 6 ⟨𝑆(∇𝑢)⟩, 𝑢 ∈ 𝐶∞

0 (Ω), (13)

Γ1𝑎(𝑥, 𝑢, 𝑝) + 𝑐𝜑(𝑥, 𝑢) > 𝑏(𝑥, 𝑢, 𝑝)𝑢 +
𝑛∑︁

𝑖=1

𝑎𝑝𝑖(𝑥, 𝑢, 𝑝)𝑝𝑖, 𝑐 ∈ [0, 1/2], (14)

𝑏(𝑥, 𝑢, 𝑝)𝑢 +
𝑛∑︁

𝑖=1

𝑎𝑝𝑖(𝑥, 𝑢, 𝑝)𝑝𝑖 > 𝛿1𝑎(𝑥, 𝑢, 𝑝) − 𝑐𝜑(𝑥, 𝑢), (15)

|𝑏(𝑥, 𝑢, 𝑝)| 6 𝑐𝐺
−1

(𝑆(𝑝) + 𝜑(𝑥, 𝑢)) + 𝑐Λ(𝑢, 𝑝) (16)

hold true, cf. Lemma 1, where Λ(𝑢, 𝑝) = 𝐵*−1
(𝑆(𝑝) + 𝐵*(𝑢)). Hereinafter by 𝑐, 𝑐1, 𝑐2, . . . we

denote constant which can be different even for the same subscript.
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Theorem 1. Suppose that 𝑢0 ∈ 𝑊̊ 1
𝐺,𝐵(Ω) and conditions (5)–(7), (10), (12)–(16) hold true.

Then there exists a generalized solution to problem (1)–(3) satisfying the relations

𝑢(𝑡) ∈ 𝐿∞,loc([0,∞);
∘
𝑊

1
𝐺,𝐵(Ω)), (𝛽′(𝑥, 𝑢))

1
2 𝑢′ ∈ 𝐿2(𝐷

𝑇 ), 𝛽(𝑥, 𝑢(𝑡, 𝑥)) ∈ 𝐶𝑤([0,∞);𝐿𝐺(Ω)),

where the continuity is understood in the sense of weak topology of space 𝐿𝐺(Ω)).

The uniqueness of solution to problem (1)–(3) with the properties established in Theorem 1
will be proven in another work.

3. Auxiliary statements

Suppose that for almost each 𝑥 ∈ Ω function 𝑔(𝑥, 𝑢) is absolutely continuous in 𝑢 ∈ R and
is defined by the identity

𝑔′(𝑥, 𝑢) = 𝑢𝛽′(𝑥, 𝑢), 𝑔(𝑥, 0) = 0. (17)

Let us make sure that it satisfies the inequality

𝑢𝑔′(𝑥, 𝑢) 6 𝛼𝑔(𝑥, 𝑢), ∀𝑢 ∈ R, 𝑥 ∈ Ω, (18)

for some 𝛼 > 0. We mention an inequality implied by (5)

𝑢𝛾(𝑢) =

𝑢∫︁
0

(𝑠𝛾(𝑠))′𝑑𝑠 =

𝑢∫︁
0

𝛾(𝑠)𝑑𝑠 + 𝐺(𝑢) 6 (𝑐𝛾 + 1)

𝑢∫︁
0

𝛾(𝑠)𝑑𝑠, 𝑢 > 0. (19)

Hence,

𝑢𝐺′(𝑢) = 𝑢2𝛾′(𝑢) 6 𝑐𝛾𝑢𝛾(𝑢) 6 𝑐𝛾(𝑐𝛾 + 1)𝐺(𝑢),

i.e., 𝐺(𝑢) satisfies ∆2-condition. By (5) it yields (18).
We observe that if 𝑢𝑚 → 𝑢 in 𝐿𝐵(Ω) and 𝐵 satisfies ∆2-condition, then there exists 𝐶 such

that ⟨𝐵(𝑢𝑚)⟩ 6 𝐶. Indeed, a converging sequence in bounded ‖𝑢𝑚‖𝐿𝐵(Ω) 6 𝑐, 𝑚 = 1, 2, . . .
This is why the desired estimate follows easily from (8).

Let us show that

𝐼𝐷 =

𝑇∫︁
0

‖𝑢(𝑡)‖𝐵*,Ω𝑑𝑡 < ∞, 𝑢 ∈ 𝑉 (𝐷𝑇 ). (20)

We write the relations

‖𝑢𝑥𝑖
‖ ̃︀𝐵𝑖(Ω) 61 + ⟨ ̃︀𝐵𝑖(𝑢𝑥𝑖

)⟩ 6 1 + ⟨𝐵𝑖(𝑢𝑥𝑖
)𝜒(|𝑢𝑥𝑖

| > 1)⟩ + ⟨𝐵𝑖(1)𝜒(|𝑢𝑥𝑖
| 6 1)⟩)

61 + ⟨𝐵𝑖(𝑢𝑥𝑖
)⟩ + ⟨𝐵𝑖(1)⟩.

(21)

We make use of inequalities (11) and (21)

‖𝑢‖𝐵*,Ω 6 𝐶
𝑛∑︁

𝑖=1

‖𝑢𝑥𝑖
‖ ̃︀𝐵𝑖,Ω

6 𝑐2 + 𝐶
𝑛∑︁

𝑖=1

⟨𝐵𝑖(𝑢𝑥𝑖
)⟩.

It implies (20). Moreover, by (8) we obtain

⟨𝐵*(𝑢)⟩ 6 𝑐3(𝑘), if⟨𝑆(∇𝑢)⟩ 6 𝑘. (22)

Lemma 1. Suppose that domain Ω is located in the half-space 𝑥1 > 0. Then for an arbitrary
𝑁-function 𝐵 the inequality∫︁

Ω𝑟

𝐵(𝑢(𝑥))𝑑𝑥 6
∫︁
Ω𝑟

𝐵(𝑟𝑢𝑥1(𝑥))𝑑𝑥, 𝑢 ∈ 𝐶∞
0 (Ω), (23)

holds true.



36 E.R. ANDRIYANOVA, F.KH. MUKMINOV

Proof. Let 𝑓(𝑥1) ∈ 𝐶1[0, 𝑟], 𝑓(0) = 0. By the Newton-Leibnitz formula we obtain

|𝑓(𝑥1)| =

⃒⃒⃒⃒
⃒⃒

𝑥1∫︁
0

𝑓 ′(𝑥1)𝑑𝑥1

⃒⃒⃒⃒
⃒⃒ 6

𝑟∫︁
0

|𝑓 ′(𝑥1)|𝑑𝑥1, 𝑥1 ∈ [0, 𝑟].

Now we apply Jensen integral inequality (see [21, Ch. 2, Sect. 8.2, Ineq. (8.2)]):

𝐵

(︂
𝑓(𝑥1)

𝑟

)︂
6 𝐵

⎛⎝𝑟−1

𝑟∫︁
0

|𝑓 ′(𝑥1)|𝑑𝑥1

⎞⎠ 6
1

𝑟

𝑟∫︁
0

𝐵(𝑓 ′(𝑥1))𝑑𝑥1.

We integrate the latter inequality w.r.t. 𝑥1

𝑟∫︁
0

𝐵

(︂
𝑓(𝑥1)

𝑟

)︂
𝑑𝑥1 6

𝑟∫︁
0

𝐵(𝑓 ′(𝑥1))𝑑𝑥1.

After the substitution 𝑓(𝑥1) = 𝑟𝑢(𝑥) and integrating w.r.t. 𝑥′ = {𝑥2, ..., 𝑥𝑛} we arrive at
(23).

A corollary of Lemma 1 is, in particular, inequality (13) in the case of a bounded domain Ω.

By the passage to a limit we also establish it for functions in 𝑊̊ 1
𝐺,𝐵(Ω). By employing (8) it is

easy to prove the inequality
⟨𝜑(𝑥, 𝑢)⟩ 6 𝑐(‖𝑢‖𝑊̊ 1

𝐺,𝐵(Ω)). (24)

The case of a power function 𝐺(𝑢), 𝐺(𝑢) = |𝑢|𝑝, was considered in work [16]. At that, as
𝑝 > 2 and 𝑝 < 2, there were employed different techniques of passing to the limit in Galerkin’s
approximations. In the case of 𝑁 -functions 𝐺(𝑢) it can have different power behavior different
𝑝 on different intervals. The passages to the limit happen to be made in the sign-definiteness
intervals of the function 𝑦(𝑢) = 𝑢(𝛾(𝑢) − 𝑢𝛾′(𝑢)). At that, different signs require different
techniques of the passage to the limit.

We shall assume that the ray (0,+∞) is partitioned into disjoint connected intervals 𝐼1, 𝐼2,
. . . without finite accumulation points. In each of these intervals is in turns either 𝑦(𝑢) 6 0 or
𝑦(𝑢) > 0. We let 𝑁+ = {𝑘|𝑢 ∈ 𝐼𝑘 ⇒ 𝑦(𝑢) > 0}, 𝑁− = {𝑘|𝑢 ∈ 𝐼𝑘 ⇒ 𝑦(𝑢) 6 0}. Sets 𝑁+, 𝑁−

can be empty, finite, or countable.
Let 𝛼(𝑡) be the inverse function to 𝛾(𝑢). We let 𝑗(𝑡) = 𝐺(𝛼(

√︀
|𝑡|)), 𝑗(𝛾2(𝑢)) = 𝐺(𝑢).

Lemma 2. Let 𝐼𝑘 = [𝑎𝑘, 𝑏𝑘] be the closure of segment 𝐼𝑘. If 𝑘 ∈ 𝑁+, then function 𝑗(𝑢) is
convex on 𝐼𝛾𝑘 = (𝛾2(𝑎𝑘), 𝛾2(𝑏𝑘)) and function 2𝑗(𝑢) − 𝑗(𝑎𝑘) is linearly extended to a convex on
[0,∞) function 𝑗𝑘(𝑢). At that,

𝑠2

𝛽′(𝑥, 𝑢)
6 𝑐(𝐺(𝑢) + 𝐽𝑘(𝑠)), |𝑢| ∈ 𝐼𝑘, 𝑠 > 0, (25)

where 𝐽𝑘(𝑠) = 𝑗𝑘(𝑠2) is an 𝑁-function.
If 𝑘 ∈ 𝑁−, there exists 𝑁-function 𝐻𝑘(𝑢) such that

𝑠2𝛾′(𝑢) 6 𝑐(𝐺(𝑢) + 𝐻𝑘(𝑠)), |𝑢| ∈ 𝐼𝑘, 𝑠 > 0. (26)

Proof. The graph of convex function 𝑓(𝑠), 𝑠 > 0 is located above the tangent 𝑓(𝑠) > 𝑓 ′(𝑡)(𝑠−
𝑡) + 𝑓(𝑡), for instance, with the right derivative 𝑓 ′(𝑡), and thus

𝑠𝑓 ′(𝑡) 6 𝑓(𝑠) − 𝑓(𝑡) + 𝑡𝑓 ′(𝑡). (27)

Let 𝑘 ∈ 𝑁+. Then as 𝑢 ∈ 𝐼𝑘(︂
𝛾(𝑢)

𝑢

)︂′

=
𝑢𝛾′(𝑢) − 𝛾(𝑢)

𝑢2
= −𝑦(𝑢)

𝑢3
< 0,
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i.e., function 𝛾(𝑢)/𝑢 decreases. Then (5) with 1 ∈ 𝑁+ implies the inequality

1

𝛽′(𝑥, 𝑢)
6 𝑐, 𝑢 ∈ (0, 𝑏1), 𝑥 ∈ Ω. (28)

Let us check that 𝑗(𝑡) is a convex function on the interval 𝐼𝛾𝑘

𝑗′(𝑡) = 𝑢𝛾′(𝑢)
1

𝛾′(𝑢)

⃒⃒
𝑢=𝛼(

√
|𝑡|)

1

2
√︀

|𝑡|
=

𝛼(
√︀

|𝑡|)
2
√︀
|𝑡|

=
𝑢

2𝛾(𝑢)
.

The convexity is proven since 𝑢/𝛾(𝑢) is an increasing function. In view of (19),

𝑗′(𝑡)𝑡

𝑗(𝑡)

⃒⃒
𝑡=𝛾2(𝑢)

=
𝑢𝛾(𝑢)

2𝐺(𝑢)
>

1

2
.

Hence, function 𝑗𝑘(𝑡) = 2𝑗(𝑡) − 𝑗(𝛾2(𝑎𝑘)), 𝑡 ∈ [𝛾2(𝑎𝑘), 𝛾2(𝑏𝑘)], can be extended from segment
𝐼𝛾𝑘 to a convex on [0,∞) function by the formulae 𝑗𝑘(𝑡) = 𝑡𝑗(𝛾2(𝑎𝑘))/𝛾2(𝑎𝑘), 𝑡 ∈ [0, 𝛾2(𝑎𝑘)],
𝑗𝑘(𝑡) = (𝑡− 𝛾2(𝑏𝑘))𝑗′𝑘(𝛾2(𝑏𝑘)) + 𝑗𝑘(𝛾2(𝑏𝑘)), 𝑡 ∈ [𝛾2(𝑏𝑘),∞). We let 𝐽𝑘(𝑠) = 𝑗𝑘(𝑠2).

In the case when, for instance, 𝐼1 = (0,∞), there is no need to extend function 𝑗1(𝑠) and we
just assume that 𝐽1(𝑠) satisfies the conditions of 𝑁 -function at the vicinity of zero and infinity.
Here it is sufficient to assume that

lim
𝑠→0

𝛾(𝑠)

𝑠
= 0, lim

𝑠→∞

𝛾(𝑠)

𝑠
= ∞.

Let us show that inequality (5) ensures ∆2-condition for function 𝐽𝑘(𝑢). Indeed, in view of
(19) we have

𝐺(𝑢) >
1

𝑐𝛾

𝑢∫︁
0

𝛾(𝑠)𝑑𝑠 >
𝑢𝛾(𝑢)

𝑐𝛾(𝑐𝛾 + 1)
.

Then
𝑗′𝑘(𝑡)𝑡

𝑗𝑘(𝑡)
|𝑡=𝛾2(𝑢) 6

2𝑗′(𝑡)𝑡

𝑗(𝑡)

⃒⃒
𝑡=𝛾2(𝑢)

=
𝑢𝛾(𝑢)

𝐺(𝑢)
6 𝑐2, |𝑢| ∈ 𝐼𝑘.

This inequality implies ∆2-condition for function 𝐽𝑘(𝑠).
Let us prove (25). Since by (5) we have 𝑐𝛾𝛽

′(𝑢) > 𝑐𝛾𝛾
′(𝑢) > 𝛾(𝑢)/𝑢, |𝑢| ∈ 𝐼𝑘, then

1

𝑐𝛾𝛽′(𝑢)
6

𝑢

𝛾(𝑢)

⃒⃒
𝑢=𝛼(

√
|𝑡|) = 𝑗′𝑘(𝑡).

Applying (27), we get

𝑠

𝑐𝛾𝛽′(𝑢)
6 𝑡𝑗′𝑘(𝑡) + 𝑗𝑘(𝑠) 6 𝑐2𝑗𝑘(𝑡)

⃒⃒
𝑡=𝛾2(𝑢)

+ 𝑗𝑘(𝑠) 6 2𝑐2𝐺(𝑢) + 𝑗𝑘(𝑠),

that yields (25).
Let 𝑘 ∈ 𝑁−. We define a function

ℎ(𝑢) =

√
|𝑢|∫︁

0

𝛾(𝑠)𝑑𝑠.

Then ℎ′(𝑢) =
𝛾(
√

|𝑢|)

2
√

|𝑢|
is an increasing function as 𝑢 ∈ 𝐼𝑘, i.e., ℎ(𝑢) is a convex function. At

that, due to (19),

ℎ′(𝑢)𝑢

ℎ(𝑢)
=

√︀
|𝑢|𝛾(

√︀
|𝑢|)

2

√
|𝑢|∫︀

0

𝛾(𝑠)𝑑𝑠

>
1

2
.
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Hence, function ℎ𝑘(𝑢) = 2ℎ(𝑢) − ℎ(𝑎𝑘), 𝑢 ∈ [𝑎𝑘, 𝑏𝑘], can be extended from the segment 𝐼𝑘 to
a convex on [0,∞) function by the formulae ℎ𝑘(𝑢) = 𝑢ℎ(𝑎𝑘)/𝑎𝑘, 𝑢 ∈ [0, 𝑎𝑘], ℎ𝑘(𝑢) = (𝑢 −
𝑏𝑘)ℎ′

𝑘(𝑏𝑘) + ℎ𝑘(𝑏𝑘), 𝑢 ∈ [𝑏𝑘,∞). By inequality (19),

ℎ′
𝑘(𝑢)𝑢

ℎ𝑘(𝑢)
6

2ℎ′(𝑢)𝑢

ℎ(𝑢)
6 𝑐𝛾 + 1.

Inequality ℎ𝑘(𝑢2) 6 2𝑐𝛾𝐺(𝑢), 𝑢2 ∈ 𝐼𝑘 follows from the definition of function ℎ𝑘 and (5). We let
𝐻𝑘(𝑠) = ℎ𝑘(𝑠2). Applying (27) to function ℎ𝑘, we have

𝑠𝛾(𝑢)/𝑢 = 𝑠ℎ′
𝑘(𝑢2) 6 𝑢2ℎ′

𝑘(𝑢2) + ℎ𝑘(𝑠) 6 (𝑐𝛾 + 1)ℎ𝑘(𝑢2) + ℎ𝑘(𝑠) 6 𝑐3(𝐺(𝑢) + 𝐻𝑘(
√
𝑠))

Now (26) follows from (5).

4. Proof of existence theorem

A generalized solution to problem (1)–(3) is a function 𝑢(𝑡, 𝑥) belonging to spaces

𝐿∞((0, 𝑇 ); 𝑊̊ 1
𝐺,𝐵(Ω)) ⊂ 𝑉 (𝐷𝑇 ) for each𝑇 > 0 and satisfying the identity

[−𝛽(𝑥, 𝑢)𝜙′ + 𝑏(𝑥, 𝑢,∇𝑢)𝜙] +
𝑛∑︁

𝑖=1

[𝑎𝑝𝑖(𝑥, 𝑢,∇𝑢)𝜙𝑥𝑖
] = ⟨𝛽(𝑥, 𝑢0)𝜙(0)⟩. (29)

for 𝜙(𝑡, 𝑥) ∈ 𝐶∞
0 (𝐷𝑇

−1).
Let us show that the functional

̃︀𝑎(𝑢) = 𝑏(𝑥, 𝑢,∇𝑢) −
𝑛∑︁

𝑖=1

𝜕

𝜕𝑥𝑖

𝑎𝑝𝑖(𝑥, 𝑢,∇𝑢)

is bounded on the unit ball in space 𝑉 (𝐷𝑇 )

(̃︀𝑎(𝑢), 𝑣)𝐷𝑇 = [𝑏(𝑥, 𝑢,∇𝑢)𝑣] +
𝑛∑︁

𝑖=1

[𝑎𝑝𝑖(𝑥, 𝑢,∇𝑢)𝑣𝑥𝑖
] = 𝐼1 + 𝐼2.

Let us estimate integral 𝐼2 by means (12), (24), and by of Young inequality for ‖𝑣‖𝑉 (𝐷𝑇 ) 6 1:

|𝐼2| 6

[︃
𝑆(∇𝑣) +

𝑛∑︁
𝑖=1

𝐵𝑖(𝑎𝑝𝑖(𝑥, 𝑢,∇𝑢))

]︃
6 𝑐1 + 𝑐 [𝑆(∇𝑢) + 𝜑(𝑥, 𝑢)] 6 𝑐2.

We estimate integral 𝐼1 employing (16)

|𝐼1| 6
[︁
𝑐𝐺

−1
(𝑆(∇𝑢) + 𝜑(𝑥, 𝑢)) |𝑣|

]︁
+ 𝑐 [Λ(𝑢,∇𝑢)|𝑣|]

6𝑐[2𝑆(∇𝑢) + 𝐺(𝑢) + 2𝐺(𝑣)] + [Λ(𝑢,∇𝑢)|𝑣|] + 𝑐3 6 𝑐4.

In the latter inequality we have employed relations (20), (22), and

[Λ(𝑢,∇𝑢)|𝑣|] 6
𝑇∫︁

0

‖𝑣(𝑡)‖𝐵*,Ω‖Λ(𝑢,∇𝑢)‖𝐵*
,Ω𝑑𝑡 6 𝑐5

𝑇∫︁
0

‖𝑣(𝑡)‖𝐵*,Ω𝑑𝑡 6 𝑐6.

Thus, we have proven the boundedness of functional ̃︀𝑎(𝑢).
We proceed to constructing Galerkin’s approximations, We choose a sequence 𝜔𝑘 ∈ 𝐶∞

0 (Ω)

of linearly independent functions whose linear span is dense in 𝑊̊ 1
𝐺,𝐵(Ω). We let 𝛽𝑚(𝑥, 𝑢) =

𝑢∫︀
0

𝛽′
𝑚(𝑥, 𝑠)𝑑𝑠, where

𝛽′
𝑚(𝑥, 𝑢) = 𝜀𝑚 + 𝛽′(𝑥, 𝑢) + 𝑐+(𝛽′(𝑥, 𝜀𝑚) − 𝛽′(𝑥, 𝑢))𝜒(0 < |𝑢| < 𝜀𝑚),

𝑐+ = 1 if 1 ∈ 𝑁+, and 𝑐+ = 0 if 1 ∈ 𝑁−.
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We introduce the functions 𝑔𝑚(𝑥, 𝑢) =
𝑢∫︀
0

𝑠𝛽′
𝑚(𝑥, 𝑠)𝑑𝑠. Numbers 𝜀𝑚 > 0 will be chosen later.

As 𝑢 > 0, we mention the inequality

𝑔(𝑥, 𝑢) − 𝑔𝑚(𝑥, 𝑢) =

𝑢∫︁
0

𝑠(𝛽′(𝑥, 𝑠) − 𝛽′
𝑚(𝑥, 𝑠))𝑑𝑠 6

𝜀𝑚∫︁
0

𝑠𝛽′(𝑥, 𝑠)𝑑𝑠 = 𝑔(𝑥, 𝜀𝑚) 6 𝑐𝛽𝐺(𝜀𝑚). (30)

A similar inequality is valid also for 𝑢 < 0. In the same way, by (18) we establish that

𝑔𝑚(𝑥, 𝑢) − 𝑔(𝑥, 𝑢) 6 𝜀𝑚𝑢
2/2 +

𝜀𝑚∫︁
0

𝑠𝛽′(𝑥, 𝜀𝑚)𝑑𝑠 6 𝜀𝑚𝑢
2/2 + 𝑐𝛽𝐺(𝜀𝑚). (31)

We shall seek Galerkin’s approximation for the solution as

𝑢𝑚(𝑡, 𝑥) =
𝑚∑︁
𝑘=1

𝑐𝑚𝑘(𝑡)𝜔𝑘(𝑥),

where functions 𝑐𝑚𝑘(𝑡) are determined by the equations⟨
𝜔𝑗

𝜕

𝜕𝑡
(𝛽𝑚(𝑥, 𝑢𝑚)) +

𝑛∑︁
𝑖=1

𝑎𝑝𝑖(𝑥, 𝑢𝑚,∇𝑢𝑚)(𝜔𝑗)𝑥𝑖
+ 𝑏(𝑥, 𝑢𝑚,∇𝑢𝑚)𝜔𝑗

⟩
= 0, (32)

where 𝑗 = 1, 2, . . . ,𝑚.
Let us make sure that equations (32) are solvable w.r.t. the derivatives 𝑐′𝑚𝑘. It is obvious

that they read as
𝑚∑︁
𝑘=1

𝐴𝑗𝑘(𝑡)𝑐′𝑚𝑘 = 𝐹𝑗(𝑐𝑚1, 𝑐𝑚2, ..., 𝑐𝑚𝑚).

For each 𝑡, the matrix of the coefficients 𝐴𝑗𝑘(𝑡) = ⟨𝛽′
𝑚(𝑥, 𝑢𝑚)𝜔𝑗𝜔𝑘⟩ is the Gram matrix of

the system of linearly independent vectors 𝜔𝑘, 𝑘 = 1, 2, . . . ,𝑚 and thus it has an inverse. By

equations (32) and initial conditions 𝑐𝑚𝑘(0) chosen so that 𝑢𝑚(0, 𝑥) → 𝑢0(𝑥) in
∘
𝑊 1

𝐺,𝐵(Ω) we find
functions 𝑐𝑚𝑘(𝑡). First we find these functions on a small time interval, but the boundedness
of Galerkin’s approximations to be established below will allow to define these approximations
on the infinite time interval.

We multiply equations (32) by 𝑐𝑚𝑗(𝑡), sum up, and employ the definition of function 𝑔𝑚:

⟨𝑔′𝑚(𝑥, 𝑢𝑚)𝑢′
𝑚 + 𝑏(𝑥, 𝑢𝑚,∇𝑢𝑚)𝑢𝑚⟩ +

𝑛∑︁
𝑖=1

⟨𝑎𝑝𝑖(𝑥, 𝑢𝑚,∇𝑢𝑚)𝑢𝑚𝑥𝑖
⟩ = 0.

Employing inequality (7), we get⟨︀
(𝑔𝑚(𝑥, 𝑢𝑚))′𝑡 + 𝑆(∇𝑢𝑚(𝑡)

⟩︀
6 𝑐⟨𝐺(𝑢𝑚(𝑡)) + 𝑓(𝑥)⟩.

Integrating w.r.t. 𝑡 and using (13), we obtain

⟨𝑔𝑚(𝑥, 𝑢𝑚(𝑡))⟩ +

∫︁
𝐷𝑡

0

𝑆(∇𝑢𝑚)𝑑𝑥𝑑𝑡 6 ⟨𝑔𝑚(𝑥, 𝑢𝑚(0))⟩ + 𝑐

∫︁
𝐷𝑡

0

𝐺(𝑢𝑚)𝑑𝑥𝑑𝑡 + 𝑐1𝑡.

We choose 𝜀𝑚 so that

𝐺(𝜀𝑚)𝑐𝛽mes(Ω) 6
1

2𝑚
, (33)

and

⟨𝜀𝑚𝑢2
𝑚(0)⟩ 6 1

𝑚
, 𝑚 = 1, 2, . . .
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Then by (30) we obtain the inequality

⟨𝑔(𝑥, 𝑢𝑚(𝑡)) − 𝑔𝑚(𝑥, 𝑢𝑚(𝑡))⟩ 6
∫︁
Ω

𝑐𝛽𝐺(𝜀𝑚)𝑑𝑥 6 𝑐𝛽𝐺(𝜀𝑚)mes(Ω) 6
1

2𝑚
.

It follows from (31) that the integrals

⟨𝑔𝑚(𝑥, 𝑢𝑚(0))⟩ 6 𝑐, 𝑚 = 1, 2, . . .

are bounded. Then by means of (5) we establish the inequality

⟨𝐺(𝑢𝑚(𝑡))⟩ +

∫︁
𝐷𝑡

0

𝑆(∇𝑢𝑚)𝑑𝑥𝑑𝑡 6 𝐶(1 + 𝑡) + 𝑐

∫︁
𝐷𝑡

0

𝐺(𝑢𝑚)𝑑𝑥𝑑𝑡.

By Gröwnwall’s lemma we obtain the following estimate

⟨𝐺(𝑢𝑚(𝑡))⟩ + [𝑆(∇𝑢𝑚)] 6 𝐶(𝑇 ), ∀𝑡 ∈ [0, 𝑇 ]. (34)

By (34) we arrive at the boundedness of sequence 𝑢𝑚 in space 𝑉 (𝐷𝑇 ) for each 𝑇 > 0 and in
space 𝐿∞([0, 𝑇 ];𝐿𝐺(Ω)).

We multiply equations (32) by 𝑐′𝑚𝑗(𝑡) and sum up to obtain

⟨𝛽′
𝑚(𝑥, 𝑢𝑚(𝑡, 𝑥))(𝑢′

𝑚)2 + 𝑏(𝑥, 𝑢𝑚,∇𝑢𝑚)𝑢′
𝑚⟩ +

𝑛∑︁
𝑖=1

⟨𝑎𝑝𝑖(𝑥, 𝑢𝑚,∇𝑢𝑚)𝑢′
𝑚𝑥𝑖

⟩ = 0,

or ⟨︀
𝛽′
𝑚(𝑥, 𝑢𝑚(𝑡, 𝑥))(𝑢′

𝑚)2 + (𝑎(𝑥, 𝑢𝑚,∇𝑢𝑚))′𝑡
⟩︀

= ⟨(𝑎𝑢 − 𝑏)(𝑥, 𝑢𝑚,∇𝑢𝑚)𝑢′
𝑚⟩.

We integrate the latter inequality w.r.t. 𝑡:

[𝛽′
𝑚(𝑥, 𝑢𝑚)(𝑢′

𝑚)2] + ⟨𝑎(𝑥, 𝑢𝑚(𝑇, 𝑥),∇𝑢𝑚(𝑇, 𝑥))⟩
= ⟨𝑎(𝑥, 𝑢𝑚(0),∇𝑢𝑚(0))⟩ + [(𝑎𝑢 − 𝑏)(𝑥, 𝑢𝑚,∇𝑢𝑚)𝑢′

𝑚] = 𝐼Ω + 𝐼𝐷.
(35)

We employ conditions (15), (16), (12), (13):

𝐼Ω = ⟨𝑎(𝑥, 𝑢𝑚(0),∇𝑢𝑚(0))⟩ 6 𝑐(⟨𝜑(𝑥, 𝑢𝑚(0)) + 𝑆(∇𝑢𝑚(0))⟩ 6 𝑐1.

In what follows we shall show the boundedness of the sequence fo integrals

𝐼𝛽 = [𝛽′
𝑚(𝑥, 𝑢𝑚)(𝑢′

𝑚)2] 6 𝑐. (36)

To estimate integral 𝐼𝐷, we write the inequalities

[|𝑢′
𝑚𝜙|] 6

[︃
(𝛽′

𝑚(𝑥, 𝑢𝑚))
1
2 |𝑢′

𝑚|
|𝜙|

(𝛽′
𝑚(𝑥, 𝑢𝑚))

1
2

]︃
6 𝐼𝛽/2 +

[︂
𝜙2𝜒(|𝑢𝑚| > 0)

2𝛽′
𝑚(𝑥, 𝑢𝑚)

]︂
. (37)

We estimate the second integral in the right hand side of the latter inequality by means of
Young inequality, relation (28) and the formula for 𝛽𝑚[︂

𝜙2𝜒(|𝑢𝑚| > 0)

𝛽′
𝑚(𝑥, 𝑢𝑚)

]︂
6

[︂
𝜙2𝜒(|𝑢𝑚| > 0)

𝛽′(𝑥, 𝑢𝑚)

]︂
+ 𝑐+

[︂
𝜙2𝜒(𝜀𝑚 > |𝑢𝑚| > 0)

𝛽′(𝑥, 𝜀𝑚)

]︂
6

[︂
𝐺(𝑢𝑚𝛾

′(𝑢𝑚)) + 𝐺

(︂
𝜙2

𝑢𝑚𝛽′(𝑥, 𝑢𝑚)𝛾′(𝑢𝑚)

)︂]︂
+ 𝑐[𝜙2𝜒(𝜀𝑚 > |𝑢𝑚| > 0)].

Hence, substituting 𝜙 = (𝑏− 𝑎𝑢)(𝑥, 𝑢𝑚,∇𝑢𝑚), 𝑢𝑚𝛾
′(𝑢𝑚) = 𝐺′(𝑢𝑚) and employing (4),(12), we

have

[|𝑢′
𝑚𝜙|] 6 𝑐1(𝑇 ) + 𝐼𝛽/2 + 𝑐2[𝜑(𝑥, 𝑢𝑚) + 𝑆(∇𝑢𝑚)].

Applying (13) as well as (34), we obtain

𝐼𝐷 6 𝑐3(𝑇 ) + 𝐼𝛽/2.
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Combining estimates for the integrals and identity (35) and employing (14),(7), we have

1

2
[𝛽′

𝑚(𝑥, 𝑢𝑚)(𝑢′
𝑚)2] + ⟨𝑆(∇𝑢𝑚(𝑇 ))/Γ1⟩ 6 𝑐4 +

⟨
1

2Γ1

𝜑(𝑥, 𝑢𝑚(𝑇, 𝑥))

⟩
6 𝑐5 +

1

2Γ1

⟨𝑆(∇𝑢𝑚(𝑇 ))⟩.

The latter inequality and (34) follow the boundedness of sequence (𝛽′
𝑚)

1
2𝑢′

𝑚 in 𝐿2(𝐷
𝑇 ). Se-

quence 𝑢𝑚 is also bounded in space 𝐿∞([0, 𝑇 ];
∘
𝑊 1

𝐺,𝐵(Ω)) for each 𝑇 > 0.
By means of the diagonal process we choose a subsequence 𝑢𝑚𝑘

weakly converging in the
below mentioned spaces. For the sake of simplicity of notations we shall omit the subscript 𝑘
in the subsequences. We have

𝑢𝑚 → 𝑢 weakly in 𝑉 (𝐷𝑇 ), (𝛽′
𝑚(𝑥, 𝑢𝑚))

1
2 𝑢′

𝑚 → 𝑢̃ weakly in 𝐿2(𝐷
𝑇 ), ∀𝑇 > 0.

Since 𝑢𝑚 is a bounded sequence in 𝐿∞((0, 𝑇 ); 𝑊̊ 1
𝐺,𝐵(Ω)), ̃︀𝑎(𝑢𝑚) is a bounded sequence in space

(𝑉 (𝐷𝑇 ))′ and it contains a weakly convergent subsequence: 𝑎̃(𝑢𝑚) → 𝜒 weakly in (𝑉 (𝐷𝑇 ))′.
The convergence holds for each 𝑇 = 1, 2, . . . , at that, the limiting functions coincide in common
domain. Then, in fact, the convergence holds true for each 𝑇 > 0.

In what follows we shall show that 𝑢̃ = (𝛽′(𝑥, 𝑢))
1
2 𝑢′, 𝜒 = 𝑎̃(𝑢), and function 𝑢 is a generalized

solution to problem (1)–(3). We split our arguments into three steps.

Step 1. Sequence 𝑢𝑚(𝑡) is bounded in space
∘
𝑊 1

𝐺,𝐵(Ω) on each finite segment 𝑡 ∈ [0, 𝑇 ]:

‖𝑢𝑚(𝑡)‖𝑊 1
𝐺,𝐵(Ω) 6 𝐶(𝑇 ), 𝑚 = 1, 2, . . .

We fix a countable dense subset {𝑡𝑠} ⊂ [0,∞]. We can assume that 𝑡0 = 0. For a bounded

domain Ω we know that the embedding 𝑊̊ 1
1 (Ω) ⊂ 𝐿1(Ω) is compact. Since 𝑊̊ 1

𝐺,𝐵(Ω) ⊂ 𝑊̊ 1
1 (Ω),

by the diagonal process we can choose a subsequence such that 𝑢𝑚𝑘
(𝑡𝑠) → ℎ𝑠 strongly in

𝐿1(Ω) for each natural 𝑠. Choosing a subsequence once again, we can suppose that (omitting
subscripts), that 𝑢𝑚(𝑡𝑠, 𝑥) → ℎ𝑠(𝑥) almost everywhere in Ω for each 𝑡𝑠. In particular, as 𝑡0 = 0,
we have 𝑢𝑚(0, 𝑥) → 𝑢0(𝑥) almost everywhere in Ω.

In the next step we employ a lemma proven in [16].

Lemma 3. Suppose that a sequence 𝑣𝑚(𝑡) ∈ 𝐶([0, 𝑇 ];𝐿2(Ω)) possesses the properties
1) 𝑣𝑚(𝑡𝑠, 𝑥) converges almost everywhere in Ω for each 𝑡𝑠;
2) sequence 𝑣′𝑚 is bounded in 𝐿2(𝐷

𝑇 ).
Then we can choose a subsequence 𝑣𝑚𝑘

converging to a function 𝑣 in space 𝐶([0, 𝑇 ];𝐿1(Ω))
and 𝑣𝑚𝑘

→ 𝑣 almost everywhere in (0, 𝑇 ) × Ω.

Step 2. We apply Lemma 3 to the sequence 𝑣𝑚 = 𝑓𝑚(𝑥, 𝑢𝑚) =
𝑢𝑚∫︀
0

(𝛽′
𝑚(𝑥, 𝜏) − 𝜀𝑚)

1
2𝑑𝜏 .

At that, the sequence 𝑣′𝑚 = (𝛽′
𝑚 − 𝜀𝑚)

1
2𝑢′

𝑚 is bounded due to (36). In what follows we shall

establish the uniform convergence 𝑓𝑚(𝑥, 𝑢) → 𝑓(𝑥, 𝑢) =
𝑢∫︀
0

(𝛽′(𝑥, 𝜏))
1
2𝑑𝜏,𝑚 → ∞ w.r.t. 𝑢 for

almost each fixed 𝑥 ∈ Ω that will imply the first statement of the lemma. The belonging of
𝑣𝑚(𝑡) to 𝐿2(Ω) follows from its smoothness and the boundedness of 𝛽𝑚(𝑥, 𝑢) on finite intervals
w.r.t. 𝑢:

𝑣2𝑚 6 |𝑢𝑚|
|𝑢𝑚|∫︁
0

(𝛽′
𝑚(𝑥, 𝜏) − 𝜀𝑚)𝑑𝜏 6 |𝑢𝑚|

|𝑢𝑚|∫︁
0

𝑐𝛽𝛾
′(𝜏)𝑑𝜏.

The aforementioned uniform convergence 𝑓𝑚(𝑥, 𝑢) → 𝑓(𝑥, 𝑢) w.r.t. 𝑢 as 𝑥 ∈ Ω follows easily
from the identity

𝑓𝑚(𝑥, 𝑢) − 𝑓(𝑥, 𝑢) =

𝜀𝑚∫︁
0

((𝛽′
𝑚(𝑥, 𝜏) − 𝜀𝑚)

1
2 − (𝛽′(𝑥, 𝜏))

1
2 )𝑑𝜏
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and Cauchy-Schwarz inequality⎛⎝ 𝜀𝑚∫︁
0

(𝛽′(𝑥, 𝜏))
1
2𝑑𝜏

⎞⎠2

6 𝜀𝑚

𝜀𝑚∫︁
0

𝛽′(𝑥, 𝜏)𝑑𝜏 → 0.

Employing Lemma 3 and the arbitrariness of 𝑟 > 0, 𝑇 = 1, 2, . . . , by the diagonal process we
choose a subsequence 𝑣𝑚𝑘

converging in 𝐷 almost everywhere. Since 𝑓(𝑥, 𝑢) is an increasing in 𝑢
continuous function having the inverse, by the identity 𝑣𝑚 = (𝑓𝑚(𝑥, 𝑢𝑚)−𝑓(𝑥, 𝑢𝑚))+𝑓(𝑥, 𝑢𝑚) =
𝜈𝑚 + 𝑓(𝑥, 𝑢𝑚), 𝜈𝑚 → 0, we find that 𝑢𝑚 = 𝑓−1(𝑥, 𝑣𝑚 − 𝜈𝑚). Then the convergence of sequence
𝑣𝑚𝑘

follows the convergence of sequence 𝑢𝑚𝑘
almost everywhere in 𝐷 to 𝑢. The fact that the

limiting function is exactly 𝑢 is followed by

Lemma 4. Suppose that sequence 𝑧𝑚 converges to 𝑧 almost everywhere in 𝑄 and is bounded
in 𝐿𝐵(𝑄). Then 𝑧𝑚 → 𝑧 weakly in 𝐿𝐵(𝑄).

The proof of this lemma provided in [2, Ch. 1, Sect. 1.4, Lm. 1.3]) for 𝐿𝑞(𝑄), 𝑞 > 1, is
obviously transferred to the general case.

Thanks to the weak convergence 𝑢𝑚 → 𝑢 in 𝑉 (𝐷𝑇 ) and the continuity of the embedding
𝑉 (𝐷𝑇 ) ⊂ 𝐿1([0, 𝑇 ] × Ω) the weak convergence 𝑢𝑚 → 𝑢 holds true in 𝐿1([0, 𝑇 ] × Ω). It also
follows from Lemma 4 that 𝑣𝑚𝑘

→ 𝑣 = 𝑓(𝑥, 𝑢) weakly in 𝐿2(𝐷
𝑇 ) for each 𝑇 > 0.

By Lemma 3 we know that 𝑣𝑚𝑘
(𝑇 ) → 𝑣(𝑇 ) in 𝐿1(Ω). Then we can choose a subsequence

convergent almost everywhere in Ω: 𝑣𝑚𝑘
(𝑇, 𝑥) → 𝑣(𝑇, 𝑥) ⇒ 𝑢𝑚𝑘

(𝑇, 𝑥) → 𝑢(𝑇, 𝑥) almost
everywhere in Ω. In the same way we establish that 𝑢𝑚𝑘

(0, 𝑥) → 𝑢(0, 𝑥) almost everywhere in
Ω, i.e.,

𝑢(0, 𝑥) = 𝑢0(𝑥).

The boundedness of sequence 𝑢𝑚(𝑇 ) in space 𝑊̊ 1
𝐺,𝐵(Ω) by a constant 𝐶(𝑇 ) allows us to choose

a subsequence such that 𝑢𝑚𝑘
(𝑇 ) → 𝑢(𝑇 ) weakly in 𝑊̊ 1

𝐺,𝐵(Ω) for a fixed 𝑇 . Since constant 𝐶(𝑇 )

increases in 𝑇 , it yields that 𝑢 ∈ 𝐿∞,loc([0,∞); 𝑊̊ 1
𝐺,𝐵(Ω)).

We have (𝑣′𝑚, 𝜙)𝐷𝑇 = −(𝑣𝑚, 𝜙
′)𝐷𝑇 , 𝜙 ∈ 𝐶∞

0 (𝐷𝑇 ). Passing to the limit, we obtain

(𝑢̃, 𝜙)𝐷𝑇 = −(𝑣, 𝜙′)𝐷𝑇 .

It follows that 𝑢̃ = 𝑣′ = (𝛽′(𝑥, 𝑢))
1
2𝑢′.

Let us show that sequence 𝛽(𝑥, 𝑢𝑚(𝑡)) is bounded in 𝐿𝐺(Ω) by a constant independent of
𝑡 ∈ [0, 𝑇 ]. We first establish an inequality by employing (5):

𝐺

(︂
𝛽(𝑥, 𝑢𝑚)

𝑐𝛽𝑐𝛾

)︂
6 𝐺

(︂
𝛾(𝑢𝑚)

𝑐𝛾

)︂
6 𝐺(𝑢𝛾′(𝑢𝑚)) = 𝐺(𝐺′(𝑢𝑚)) 6 𝑐𝐺(𝑢𝑚).

The boundedness of sequence 𝛽(𝑥, 𝑢𝑚(𝑡)) is proven. In particular, it is bounded in space
𝐿𝐺(𝐷𝑇 ). Then we can choose a subsequence weakly converging to function 𝛽(𝑥, 𝑢) in 𝐿𝐺(𝐷𝑇 ).
Indeed, sequence 𝑢𝑚 converges to 𝑢 almost everywhere in 𝐷𝑇 and Lemma 4 ensures the desired
fact.

For further limiting passages we define the operator 𝑇𝑘𝑢 = 𝑢(𝑎𝑘,𝑏𝑘), where

𝑢(𝑎,𝑏) =

⎧⎪⎨⎪⎩
0, as |𝑢| 6 𝑎,

𝑢− 𝑎 sign𝑢, as 𝑎 < |𝑢| < 𝑏,

(𝑏− 𝑎) sign𝑢, as |𝑢| > 𝑏.

We also let

𝑇 𝛽
𝑘 𝛽(𝑥, 𝑢𝑚) = 𝛽(𝑥, 𝑎𝑘sign𝑢𝑚 + 𝑇𝑘𝑢𝑚) − 𝛽(𝑥, 𝑎𝑘sign𝑢𝑚), 𝑇 𝛽

𝑘 𝛽(𝑥, 𝑢𝑚) ∈ 𝐿𝐺(𝐷𝑇 ).
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We observe obvious formulae which will be employed in what follows:

(𝑇 𝛽
𝑘 𝛽(𝑥, 𝑢𝑚))′ = 𝛽′(𝑥, 𝑢𝑚)(𝑇𝑘𝑢𝑚)′ = 𝛽′(𝑥, 𝑢𝑚)𝑢′

𝑚𝜒(|𝑢𝑚| ∈ 𝐼𝑘)), 𝑢𝑚 =
∑︁
𝑘

𝑇𝑘𝑢𝑚.

Let us show that the sequence

𝛽′(𝑥, 𝑢𝑚)𝑢′
𝑚𝜒(|𝑢𝑚| ∈ 𝐼𝑘) = 𝛽′(𝑥, 𝑢𝑚)(𝑇𝑘𝑢𝑚)′, 𝑘 ∈ 𝑁−,

is bounded in 𝐿𝐻𝑘
(𝐷𝑇 ). Indeed by (36), (5), and Lemma 2

|[𝛽′(𝑥, 𝑢𝑚)𝑢′
𝑚𝜙𝜒(|𝑢𝑚| ∈ 𝐼𝑘)]| 6𝑐[(𝛽′)

1
2 |𝑢′

𝑚𝜙|(𝛾′(𝑢𝑚))
1
2𝜒(|𝑢𝑚| ∈ 𝐼𝑘)]

6𝑐1‖𝜙(𝛾′(𝑢𝑚))
1
2𝜒(|𝑢𝑚| ∈ 𝐼𝑘)‖𝐿2(𝐷𝑇 )

6𝑐2[𝐻𝑘(𝜙) + 𝐺(𝑢𝑚)]
1
2 6 𝑐3 as [𝐻𝑘(𝜙)] 6 1.

Therefore, we can choose a weakly convergent subsequence

𝛽′(𝑥, 𝑢𝑚)𝑢′
𝑚𝜒(|𝑢𝑚| ∈ 𝐼𝑘) → 𝑢 ∈ 𝐿𝐻𝑘

(𝐷𝑇 ).

Applying the diagonal process, we can get the weak convergence of a chosen sequence for each
𝑘 ∈ 𝑁−. Passing to the limit in the identity

[𝑇 𝛽
𝑘 𝛽(𝑥, 𝑢𝑚)𝜙′] = −[𝛽′(𝑥, 𝑢𝑚)(𝑇𝑘𝑢𝑚)′𝜙], 𝜙 ∈ 𝐶∞

0 (𝐷𝑇 ),

we obtain that [𝑇 𝛽
𝑘 𝛽(𝑥, 𝑢)𝜙′] = −[𝑢𝜙], i.e.,

(𝑇 𝛽
𝑘 𝛽(𝑥, 𝑢))′𝑡 = 𝑢 ∈ 𝐿𝐻𝑘

(𝐷𝑇 ), 𝑘 ∈ 𝑁−. (38)

Let us prove the boundedness of sequence (𝑇𝑘𝑢𝑚)′ = 𝑢′
𝑚𝜒(|𝑢𝑚| ∈ 𝐼𝑘) in space 𝐿𝐽𝑘

(𝐷𝑇 ) as
𝑘 ∈ 𝑁+. Indeed, by (37), (36), and Lemma 2,

[|𝑢′
𝑚𝜙|𝜒(|𝑢𝑚| ∈ 𝐼𝑘)] 6 𝐼𝛽/2 + [𝐽𝑘(𝜙) + 𝐺(𝑢𝑚)] 6 𝑐1, as [𝐽𝑘(𝜙)] 6 1.

By analogy with (38) we find that

(𝑇𝑘𝑢)′ = 𝑢′𝜒(|𝑢| ∈ 𝐼𝑘) ∈ 𝐿𝐽𝑘
(𝐷𝑇 ), 𝑘 ∈ 𝑁+. (39)

Step 3. We proceed to the proof of identity 𝜒 = 𝑎̃(𝑢). We multiply equation (32) by a
smooth function 𝑑𝑗(𝑡) and integrate w.r.t. 𝑡 denoting 𝑑𝑗(𝑡)𝜔𝑗(𝑥) by 𝜙 in the final expression

[𝛽′
𝑚(𝑥, 𝑢𝑚)𝑢′

𝑚𝜙] + (𝑎̃(𝑢𝑚), 𝜙)𝐷𝑇 = 0. (40)

We rewrite the first term

[𝛽′
𝑚(𝑥, 𝑢𝑚)𝑢′

𝑚𝜙] = [𝛽′(𝑥, 𝑢𝑚)𝑢′
𝑚𝜙] + 𝐴𝑚,

where

𝐴𝑚 = [(𝜀𝑚 + 𝑐+(𝛽′(𝑥, 𝜀𝑚) − 𝛽′(𝑥, 𝑢𝑚))𝜒(0 < |𝑢𝑚| < 𝜀𝑚)))𝑢′
𝑚𝜙] = −[(𝜇𝑚)′𝜙],

𝜇𝑚 = (𝑐+𝛽(𝑥, 𝑢𝑚) − (𝜀𝑚 + 𝑐+𝛽
′(𝑥, 𝜀𝑚))𝑢𝑚) as |𝑢𝑚| < 𝜀𝑚.

Let us show that 𝐴𝑚 → 0 as 𝑚 → ∞. Indeed,

𝐴𝑚 = [𝜇𝑚𝜙
′] − ⟨𝜇𝑚(𝑇 )𝜙(𝑇 )⟩ + ⟨𝜇𝑚(0)𝜙(0)⟩ → 0.

The latter follows from (5) since 𝜙 is compactly supported and

|𝜇𝑚 + 𝜀𝑚𝑢𝑚| 6 𝛾(𝜀𝑚) + 𝜀𝑚𝛾
′(𝜀𝑚) → 0.

After the integration by parts in formula (40) we have

𝐴𝑚 − [𝛽(𝑥, 𝑢𝑚)𝜙′] + ⟨𝛽(𝑥, 𝑢𝑚(𝑇 ))𝜙(𝑇 )⟩ − ⟨𝛽(𝑥, 𝑢𝑚(0))𝜙(0)⟩ + (𝑎̃(𝑢𝑚), 𝜙)𝐷𝑇 = 0.

We have mentioned above the weak convergence of sequences 𝛽(𝑥, 𝑢𝑚), 𝛽(𝑥, 𝑢𝑚(𝑇 )) in spaces
𝐿𝐺(𝐷𝑇 ), 𝐿𝐺(Ω), respectively. Then by passing to the limit, we obtain

− [𝛽(𝑥, 𝑢)𝜙′] + ⟨𝛽(𝑥, 𝑢(𝑇 ))𝜙(𝑇 )⟩ − ⟨𝛽(𝑥, 𝑢(0))𝜙(0)⟩ + (𝜒, 𝜙)𝐷𝑇 = 0. (41)
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In particular, it yields that 𝛽(𝑥, 𝑢) = 𝜒 in the distribution sense and thus 𝛽(𝑥, 𝑢) ∈
𝐶𝑤([0,∞);𝐿𝐺(Ω)).

Hence, 𝑢 is a generalized solution to problem (1)–(3) if 𝜒 = 𝑎̃(𝑢). Let us justify the possibility
of substitution 𝜙 = 𝑢 into formula (41). In order to od it, we first substitute function 𝜙 ∈
𝐶∞

0 (𝐷𝑇+1
−1 ) vanishing as |𝑢| 6 𝜀 and we integrate by parts:

−[𝑇 𝛽
𝑘 𝛽(𝑥, 𝑢)𝜙′]+⟨𝑇 𝛽

𝑘 𝛽(𝑥, 𝑢(𝑇 ))𝜙(𝑇 )⟩−⟨𝑇 𝛽
𝑘 𝛽(𝑥, 𝑢(0))𝜙(0)⟩ = [(𝑇 𝛽

𝑘 𝛽(𝑥, 𝑢))′𝜙] = [𝛽′(𝑥, 𝑢)(𝑇𝑘𝑢)′𝜙].

The convergence of the integral in the right hand side follows from (38), (39) and inequality
(see (5))

𝛽′(𝑥, 𝑢) 6 𝑐𝛽𝛾
′(|𝑢|) 6 𝑐1𝛾(|𝑢|)/|𝑢| 6 𝑐2, |𝑢| ∈ [𝜀, 𝑏𝑘].

Thus, (41) casts into the form

[𝛽′(𝑥, 𝑢)𝑢′𝜙] + (𝜒, 𝜙)𝐷𝑇 = 0. (42)

By passing to the limit we justify the substitution in (42) of a bounded function 𝜙 = 𝑢(𝜀,𝑘)𝜉,
where 𝜉(𝑥) is a Lipschitz function with a bounded support. We have

[𝛽′(𝑥, 𝑢)𝑢′𝑢(𝜀,𝑘)𝜉] + (𝜒, 𝑢(𝜀,𝑘)𝜉)𝐷𝑇 = 0. (43)

Let 𝑤𝑚 = (𝑔(𝑥, 𝑢𝑚))
1
2 , 𝑤𝑚 → 𝑤 = (𝑔(𝑥, 𝑢))

1
2 almost everywhere in 𝐷𝑇 . If we prove that

𝑤 ∈ 𝐿2(𝐷
𝑇 ) has a generalized derivative 𝑤𝑡 ∈ 𝐿2(𝐷

𝑇 ), then the identity

[𝛽′(𝑥, 𝑢)𝑢′𝑢] =

𝑇∫︁
0

𝜕

𝜕𝑡
‖𝑤‖22𝑑𝑡 = ‖𝑤(𝑇 )‖𝐿2(Ω) − ‖𝑤(0)‖𝐿2(Ω) (44)

holds true. We employ (5) to obtain∫︁
Ω

𝑔(𝑥, 𝑢𝑚(𝑇, 𝑥))𝑑𝑥 6 𝑐1

∫︁
Ω

𝐺(𝑢𝑚(𝑇, 𝑥))𝑑𝑥 < 𝑐2. (45)

Hence, sequence 𝑤𝑚(𝑇 ) is bounded in 𝐿2(Ω) and by Lemma 4 we can choose a subse-
quence converging to 𝑤(𝑇 ) weakly in 𝐿2(Ω). We observe that then ‖𝑤‖22 = lim(𝑤,𝑤𝑚) 6
lim inf ‖𝑤‖2‖𝑤𝑚‖2. It implies the inequality

lim inf ‖𝑔(𝑥, 𝑢𝑚(𝑇 ))‖𝐿1(Ω) > ‖𝑔(𝑥, 𝑢(𝑇 ))‖𝐿1(Ω). (46)

Integrating inequality (45) w.r.t. 𝑇 , we obtain the sequence 𝑤𝑚 is bounded in 𝐿2(𝐷
𝑇 ) and by

Lemma 4 we can choose a subsequence converging to 𝑤 weakly in 𝐿2(𝐷
𝑇 ).

In order to prove that 𝑤′ ∈ 𝐿2(𝐷
𝑇 ), we apply condition (18):[︂(︁

(𝑔
1
2 (𝑥, 𝑢𝑚))′

)︁2]︂
=

⎡⎣(︃𝑔′(𝑥, 𝑢𝑚)𝑢′
𝑚

2𝑔
1
2 (𝑥, 𝑢𝑚)

)︃2
⎤⎦ 6

[︂
𝛼(𝑔′(𝑥, 𝑢𝑚))2(𝑢′

𝑚)2

2𝑢𝑔′(𝑥, 𝑢𝑚)

]︂
=
𝛼

2

[︀
𝛽′(𝑥, 𝑢𝑚)(𝑢′

𝑚)2
]︀

=
𝛼

2
𝐼𝛽 < 𝑐3.

Hence, 𝑤′
𝑚 converges weakly to 𝑤 in 𝐿2(𝐷

𝑇 ). Then, [𝑤𝑚𝜙
′] = −[𝑤′

𝑚𝜙], 𝜙 ∈ 𝐶∞
0 (𝐷𝑇 ). Passing

to the limit, we obtain [𝑤𝜙′] = −[𝑤𝜙]. Thus, 𝑤 = 𝑤′ = (𝑔
1
2 (𝑥, 𝑢))′𝑡, (44) is proven and

𝛽′(𝑥, 𝑢)𝑢′𝑢 ∈ 𝐿1(𝐷
𝑇 ).

We let 𝑢(ℎ) = 𝑢(ℎ,∞). By Lebesgue dominated convergence theorem we can pass to the limit
in (43) first as 𝑘 → ∞

[𝛽′(𝑥, 𝑢)𝑢′𝑢(𝜀)𝜉] + (𝜒, 𝑢(𝜀)𝜉)𝐷𝑇 = 0,

and the as 𝜀 → 0. We obtain (𝑢(0) = 𝑢)

[𝛽′(𝑥, 𝑢)𝑢′𝑢𝜉] + (𝜒, 𝑢𝜉)𝐷𝑇 = 0.
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Since 𝛽′(𝑥, 𝑢)𝑢′𝑢 ∈ 𝐿1(𝐷
𝑇 ), passing to the limit by an appropriate non-decreasing sequence

𝜉𝑚 → 1, such that 𝑢𝜉𝑚 → 𝑢 in 𝑉 (𝐷𝑇 ), we obtain

[𝛽′(𝑥, 𝑢)𝑢′𝑢] + (𝜒, 𝑢)𝐷𝑇 = 0.

Applying (44), we get

(−𝜒, 𝑢)𝐷𝑇 = [𝛽′(𝑥, 𝑢)𝑢′𝑢] = ⟨𝑔(𝑥, 𝑢(𝑇 )) − 𝑔(𝑥, 𝑢(0))⟩. (47)

We then employ the monotonicity of operator 𝑎̃:

𝑋𝑚 = (𝑎̃(𝑢𝑚) − 𝑎̃(ℎ), 𝑢𝑚 − ℎ)𝐷𝑇 > 0, ∀ℎ ∈ 𝑉 (𝐷𝑇 ).

Equations (40) as 𝜙 = 𝑢𝑚 imply easily the relations

(𝑎̃(𝑢𝑚), 𝑢𝑚)𝐷𝑇 = ‖𝑔𝑚(𝑥, 𝑢𝑚(0))‖𝐿1(Ω) − ‖𝑔𝑚(𝑥, 𝑢𝑚(𝑇 ))‖𝐿1(Ω).

Hence,

𝑋𝑚 = ‖𝑔𝑚(𝑥, 𝑢𝑚(0))‖𝐿1(Ω) − ‖𝑔𝑚(𝑥, 𝑢𝑚(𝑇 ))‖𝐿1(Ω) − (𝑎̃(𝑢𝑚), ℎ)𝐷𝑇 − (𝑎̃(ℎ), 𝑢𝑚 − ℎ)𝐷𝑇 .

It follows from (46) that

0 6 lim sup𝑋𝑚 6 ‖𝑔(𝑥, 𝑢(0))‖𝐿1(Ω) − ‖𝑔(𝑥, 𝑢(𝑇 ))‖𝐿1(Ω) − (𝜒, ℎ)𝐷𝑇 − (𝑎̃(ℎ), 𝑢− ℎ)𝐷𝑇 .

Applying (47), we get
(𝜒− 𝑎̃(ℎ), 𝑢− ℎ)𝐷𝑇 > 0.

We let ℎ = 𝑢− 𝜆𝜔, 𝜆 > 0, 𝜔 ∈ 𝐿∞((0, 𝑇 ); 𝑊̊ 1
𝐺,𝐵(Ω)), then

𝜆(𝜒− 𝑎̃(𝑢− 𝜆𝜔), 𝜔)𝐷𝑇 > 0.

Letting 𝜆 → 0, we obtain (𝜒− 𝑎̃(𝑢), 𝜔)𝐷𝑇 > 0, ∀𝜔 ∈ 𝐿∞((0, 𝑇 ); 𝑊̊ 1
𝐺,𝐵(Ω)). Thus, 𝜒 = 𝑎̃(𝑢).

5. Examples

We provide examples of equations satisfying assumptions in the Introduction.

5.1. Example 1. Let us consider the equation

(𝛾(𝑢))𝑡 =
𝑛∑︁

𝑖=1

(𝐵′
𝑖(𝑢𝑥𝑖

) + Ψ𝑖(𝑥))𝑥𝑖
+ Φ(𝑥), (48)

where 𝐵𝑖 are 𝑁 -functions, Ψ𝑖(𝑥) ∈ 𝐿𝐵𝑖
(Ω), Φ(𝑥) ∈ 𝐿𝐺(Ω), 𝛾′(𝑢) is an even unbounded function

decaying on (0,∞) such that the condition (5) holds true. Then 𝑁− is empty and 𝑁+ = {1}.
It is easy to make sure that conditions (7), (12)–(16) are satisfied and Theorem 1 hold true.
Despite of a long list of conditions in the Introduction, there is a wide class of equations

satisfying these conditions. However, we restrict ourselves by a particular example.

5.2. Example 2. We introduce the notation

𝑡[𝑎,𝑏] =

{︃
|𝑡|𝑎, as |𝑡| < 1,

|𝑡|𝑏, as |𝑡| > 1.

Let 𝑛 = 2 and domain Ω be bounded. We choose 𝑁 -functions 𝐵1(𝑠), 𝐵2(𝑠), 𝐺(𝑠), as well as
functions 𝛽1(𝑥, 𝑢), 𝛾(𝑥, 𝑢), 𝑎(𝑥, 𝑢, 𝑝), 𝑏(𝑥, 𝑢, 𝑝) as follows:

𝐵1(𝑠) = 𝑠5/2, 𝐵2(𝑠) = 𝑠3/2, 𝐺(𝑠) = |𝑠|3/2 + |𝑠|5/2, 𝛾′(𝑠) =
3

2
|𝑠|−1/2 +

5

2
𝑠1/2,

𝑎(𝑥, 𝑢, 𝑝) = 2/5𝐵1(𝑝1) + 2/3𝐵2(𝑝2)
2 + |𝑥|
1 + |𝑥|

+
𝑝21 + |𝑝2|5/4

|𝑢| + 1
+ 𝑢2,

𝑏(𝑥, 𝑢, 𝑝) = 𝑎𝑢(𝑥, 𝑢, 𝑝) + 𝑢|𝑝1|[2,1/2], 𝛽(𝑥, 𝑢) = (3|𝑢|1/2 +
5

3
|𝑢|3/2)sgn𝑢

2 + |𝑥|
1 + |𝑥|

.
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Let us check that operator ̃︀𝑎 is monotonous. Calculating the Hessian of the function
𝑝21

|𝑢|+1
,

we see that it is nonnegative and the function is thus convex. Function |𝑝2|5/4
|𝑢|+1

is also convex.

Let us prove the inequality

𝐹 = (|𝑠1|3/2sign𝑠1 − 𝑠
3/2
2 sign𝑠2)(𝑠1 − 𝑠2) + (𝑢1 − 𝑢2)

2 + (|𝑠1|[2,1/2] − |𝑠2|[2,1/2])(𝑢1 − 𝑢2) > 0

which together with the convexity of the functions mentioned above ensure monotonicity con-
dition (6).

1) Suppose first that 𝑠1𝑠2 6 0. Then it is sufficient to establish the inequality

(|𝑠1|5/2 + |𝑠2|5/2) + (𝑢1 − 𝑢2)
2 + (|𝑠1|[2,1/2] − |𝑠2|[2,1/2])(𝑢1 − 𝑢2) > 0,

which can be easily checked by considering the cases |𝑠1| < 1 and |𝑠1| > 1 and employing
inequalities 𝐵2 < 4𝐴𝐶, 𝐴 > 0 ⇒ 𝐴 + 𝐵 + 𝐶 > 0.

2) Suppose that 𝑠1, 𝑠2 have the same sign. After redenoting we can assume that these
numbers are nonnegative and 𝑠1 > 𝑠2. Then

(|𝑠1|3/2𝑠1 − |𝑠2|3/2𝑠2)(𝑠1 − 𝑠2) > (𝑠1 − 𝑠2)
2(𝑠21 + 𝑠22)/(|𝑠1|3/2 + |𝑠2|3/2) > (𝑠1 − 𝑠2)

2|𝑠1|1/2/2;

|𝑠1|[2,1/2] − |𝑠2|[2,1/2] 6 2(𝑠1 − 𝑠2)|𝑠1|[1,−1/2].

Now it is easy to make sure that function 𝐹 is nonnegative.
Employing the established relations, we complete the proof of the monotonicity of operator̃︀𝑎. By direct calculations we find that Θ(𝑠) = 𝑠1/30, integral (10) diverges and 𝐵*(𝑠) = (𝑠/30)30.

It is easy to check that these functions satisfy conditions (5), (7), (12)–(16) and Theorem 1
holds true.
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