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TWO-SIDED K-ORDER ESTIMATE FOR DIRICHLET SERIES

IN A HALF-STRIP
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Abstract. We study Dirichlet series convergent only in a half-plane and whose sequence
of exponents can be extended to some “regular” sequence. We establish the best possible
k-order estimates for the sum of the Dirichlet series in the half-strip whose width depends
on a special distribution density of the exponents.
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Let Λ = {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞) be a sequence satisfying the condition

lim
𝑛→∞

ln𝑛

𝜆𝑛

= 𝐻 < ∞. (1)

While studying entire functions

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠 (𝑠 = 𝜎 + 𝑖𝑡) (2)

defined everywhere by convergent Dirichlet series, the notion of 𝑅-order was introduced by
J.F. Ritt. Let us recall its definition.

Ritt order (𝑅-order) of entire function 𝐹 defined by series (2) is the quantity [1]

𝜌𝑅 = lim
𝜎→+∞

ln ln𝑀(𝜎)

𝜎
,

where 𝑀(𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎+𝑖𝑡)|. We note that by condition (1), the series converges absolutely in

the whole plane. It is known that ln𝑀(𝜎) is an increasing convex function of 𝜎, lim
𝜎→+∞

ln𝑀(𝜎) =

+∞.
We consider the strip 𝑆(𝑎, 𝑡0) = {𝑠 = 𝜎+𝑖𝑡 : |𝑡−𝑡0| 6 𝑎}. We let 𝑀𝑠(𝜎) = max

|𝑡−𝑡0|6𝑎
|𝐹 (𝜎 + 𝑖𝑡)|.

The quantity

𝜌𝑠 = lim
𝜎→+∞

ln+ ln𝑀𝑠(𝜎)

𝜎
(𝑎+ = max(𝑎, 0))

is called 𝑅-order of function 𝐹 in strip 𝑆(𝑎, 𝑡0).
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Let

lim
𝑛→∞

𝑛

𝜆𝑛

= 𝐷 < ∞, 𝐷* = lim
𝜆→+∞

1

𝜆

𝜆∫︁
0

𝐷(𝑥)𝑑𝑥,

where 𝐷(𝑥) = 𝑛(𝑥)
𝑥
, 𝑛(𝑥) =

∑︀
𝜆𝑛6𝑥

1 (𝐷 is the upper density, 𝐷* is the averaged upper density of

sequence Λ). It is known that 𝐷* 6 𝐷 6 𝑒𝐷* [2]. It was shown in [2] that if

lim
𝑛→∞

(𝜆𝑛+1 − 𝜆𝑛) = ℎ > 0,

then 𝑅-order 𝜌𝑠 of function 𝐹 in strip 𝑆(𝑎, 𝑡0) as 𝑎 > 𝜋𝐷* is equal to 𝑅-order 𝜌𝑅 in the whole
plane. The most general result on the relation between quantities 𝜌𝑅 and 𝜌𝑠 was established
by A.F. Leontiev [3].

Similar question in the case when 𝐻 = 0 and the convergence domain of series (2) is the
half-plane Π0 = {𝑠 = 𝜎 + 𝑖𝑡 : 𝜎 < 0} were studied by A.M. Gaisin in [4].

As 𝐻 = 0, if series (2) converges in the half-plane Π0, it converges in Π0 absolutely. Then
the sum of series 𝐹 is analytic in this half-plane. We denote by 𝐷0(Λ) the class of all analytic
functions represented by Dirichlet series (2) convergent only in half-plane Π0.

Let 𝑆(𝑎, 𝑡0) = {𝑠 = 𝜎 + 𝑖𝑡 : |𝑡− 𝑡0| 6 𝑎, 𝜎 < 0} be a half-strip. The quantities

𝜌𝑅 = lim
𝜎→0−

ln+ ln𝑀(𝜎)

|𝜎|−1
, 𝜌𝑠 = lim

𝜎→0−

ln+ ln𝑀𝑠(𝜎)

|𝜎|−1

are called Ritt orders of function 𝐹 in half-plane Π0 and half-strip 𝑆(𝑎, 𝑡0) [4]. In what follows,
we call 𝜌𝑅 and 𝜌𝑠 orders in the half-plane and half-strip. If necessary, instead of 𝜌𝑅 and 𝜌𝑠 we
shall write 𝜌𝑅(𝐹 ) and 𝜌𝑠(𝐹 ).

It was shown in [4] that if

lim
𝑛→∞

ln𝜆𝑛

𝜆𝑛

ln𝑛 = 0,

then order 𝜌𝑅 of each function 𝐹 ∈ 𝐷0(Λ) is equal to

𝜌𝑅 = lim
𝑛→∞

ln𝜆𝑛

𝜆𝑛

ln+ |𝑎𝑛|. (3)

Let sequence Λ have a finite upper density 𝐷. Then

𝐿(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜆2
𝑛

)︂
(𝑧 = 𝑥 + 𝑖𝑦)

is an entire function of exponential type. Let ℎ(𝜙) be the growth indicatrix of function 𝐿(𝑧).
Then 𝜏 = ℎ(+−

𝜋
2
) 6 𝜋𝐷* [2]. It is obvious that 𝜏 is a type of function 𝐿(𝑧). Let

|𝐿(𝑥)| 6 𝑒𝑔(𝑥) (𝑥 > 0), lim
𝑥→+∞

𝑔(𝑥) ln𝑥

𝑥
= 0, (4)

where 𝑔 is a non-negative on R+ = [0,∞) function. In this case ℎ(0) = ℎ(𝜋) = 0. Therefore,
the adjoint diagram of function 𝐿(𝑧) is the segment 𝐼 = [−𝜏𝑖, 𝜏 𝑖], ℎ(𝜙) = 𝜏 | sin𝜙|.

In [4] there was proven the following
Theorem I. Suppose that function 𝐿(𝑧) satisfies conditions (4) and has type 𝜏 , (0 6 𝜏 < ∞).

We let 𝑞 = 𝑞(𝐿), where

𝑞(𝐿) = lim
𝑛→∞

ln𝜆𝑛

𝜆𝑛

ln

⃒⃒⃒⃒
1

𝐿′(𝜆𝑛)

⃒⃒⃒⃒
. (5)

Then order 𝜌𝑠 in the strip 𝑆(𝑎, 𝑡0) as 𝑎 > 𝜏 and order 𝜌𝑅 of each function 𝐹 ∈ 𝐷0(Λ) in
half-plane Π0 satisfy the estimates

𝜌𝑠 6 𝜌𝑅 6 𝜌𝑠 + 𝑞. (6)
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As 𝑎 < 𝜏 , for half-strip 𝑆(𝑎, 𝑡0) the right estimate in (6) is generally speaking not valid [4].
It is clear that the left estimate in (6) is exact. Indeed, if 𝑡0 = 0 and 𝑎𝑛 > 0, then 𝑀(𝜎) =

𝑀𝑠(𝜎) and 𝜌𝑅 = 𝜌𝑠. It was shown in [4] that if Λ is a sequence of all zeroes for a function like
sine, then there exists a function 𝐹 ∈ 𝐷0(Λ) such that 𝜌𝑅 = 𝜌𝑠 + 𝑞 as 𝑎 > 𝜏 . In the general
situation the right estimate in (6) is not exact, moreover, the pair of conditions (4) can fail.
However, there can exist an entire function of exponential type 𝑄 with simple zeroes at points
of sequence Λ satisfying conditions (4), at that 𝑞(𝑄) = 𝑞*, where

𝑞* = lim
𝑛→∞

ln𝜆𝑛

𝜆𝑛

1∫︁
0

𝑛(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡,

𝑞(𝑄) is the quantity defined in the same way as 𝑞(𝐿) in (5), and 𝑛(𝜆𝑛; 𝑡) is the number of points
𝜆𝑘 ̸= 𝜆𝑛 in the segment {𝑥 : |𝑥 − 𝜆𝑛| 6 𝑡}. Paper [5] was devoted to constructing such entire
functions 𝑄 with a prescribed zero set Λ and given asymptotics on the real axis. It happened to
be possible to provide general but simple and observable conditions in terms of special density
𝐺(𝑅) of distribution of sequence Λ under which the estimate

𝜌𝑅 6 𝜌𝑠 + 𝑞*

holds true (𝜌𝑠 is the order in the half-strip 𝑆(𝑎, 𝑡0) of the width large than 2𝜋𝐺(𝑅)) and this
estimate is not improvable in class 𝐷0(Λ) [6]. The aim of paper is to generalize and specify the
results of works [6], [4] for the case of 𝑘-orders.

1. Preliminaries and lemmata

10. Special distribution densities for sequence Λ. Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a
sequence having a finite upper density, 𝐿 be the class of positive continuous and unboundedly
increasing on [0,∞) functions. By 𝐾 we denote the subclass of functions ℎ in 𝐿 such that

ℎ(0) = 0, ℎ(𝑡) = 𝑜(𝑡) as 𝑡 → ∞, ℎ(𝑡)
𝑡

↓ as 𝑡 ↑ (ℎ(𝑡)
𝑡

decays monotonically as 𝑡 > 0). In particular,
if ℎ ∈ 𝐾, then ℎ(2𝑡) 6 2ℎ(𝑡) (𝑡 > 0), ℎ(𝑡) 6 ℎ(1)𝑡 as 𝑡 > 1.

𝐾-density of sequence Λ is the quantity

𝐺(𝐾) = inf
ℎ∈𝐾

lim
𝑡→∞

𝜇Λ(𝜔(𝑡))

ℎ(𝑡)
, (7)

where 𝜔(𝑡) = [𝑡, 𝑡 + ℎ(𝑡)) is a semi-interval, 𝜇Λ(𝜔(𝑡)) is the number of points in Λ located in
semi-interval 𝜔(𝑡).

Let Ω = {𝜔} be the family of semi-intervals 𝜔 = [𝑎, 𝑏). By |𝜔| we denote the length of 𝜔.
Each sequence Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) generates an integer-valued counting measure 𝜇Λ:

𝜇Λ(𝜔) =
∑︁
𝜆𝑛∈𝜔

1, 𝜔 ∈ Ω.

Let 𝜇Γ be a counting measure generated by sequence Γ = {𝜇𝑛}, (0 < 𝜇𝑛 ↑ ∞.) Then
inclusion Λ ⊂ Γ means that 𝜇Λ(𝜔) 6 𝜇Γ(𝜔) for each 𝜔 ∈ Ω. In this case we say that 𝜇Γ

majorizes measure 𝜇Λ.
By 𝐷(𝐾) we denote the infimum of numbers 𝑏, (0 6 𝑏 < ∞) such that there exists measure

𝜇Γ majorizing 𝜇Λ such that for some function ℎ ∈ 𝐾

|𝑀(𝑡) − 𝑏𝑡| 6 ℎ(𝑡) (𝑡 > 0). (8)

Here Λ = {𝜆𝑛}, Γ = {𝜇𝑛}, 𝑀(𝑡) =
∑︀
𝜇𝑛6𝑡

1.

Lemma 1 ([6]). Quantities 𝐷(𝐾) and 𝐺(𝐾) coincide: 𝐷(𝐾) = 𝐺(𝐾).
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20. Existence of entire function with regular behavior on the real axis. Let 𝐿 and
𝐾 be the classes of functions introduced above,

𝑆 =

{︃
ℎ ∈ 𝐾 : 𝑑(ℎ) = lim

𝑥→∞

ℎ(𝑥) lnℎ(𝑥)

𝑥 ln 𝑥
ℎ(𝑥)

< ∞

}︃
.

Theorem II [6]. Let Λ = {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞) be a sequence having a finite 𝑆-density 𝐺(𝑆).
Then for each 𝑏 > 𝐺(𝑆) there exists a sequence Γ = {𝜇𝑛} (0 < 𝜇𝑛 ↑ ∞) containing Λ and
having density 𝑏 such that the entire function of exponential type 𝜋𝑏

𝑄(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜇2
𝑛

)︂
(𝑧 = 𝑥 + 𝑖𝑦) (9)

possesses the properties:
1) 𝑄(𝜆𝑛) = 0, 𝑄′(𝜆𝑛) ̸= 0 for each 𝜆𝑛 ∈ Λ;
2) there exists 𝐻 ∈ 𝑆 such that

ln |𝑄(𝑥)| 6 𝐴𝐻(𝑥) ln+ 𝑥

𝐻(𝑥)
+ 𝐵; (10)

3) if Λ(𝑥) =
∑︀

𝜆𝑛6𝑥

1 and

Λ(𝑥 + 𝜌) − Λ(𝑥) 6 𝑎𝜌 + 𝑏 +
𝜙(𝑥)

ln+ 𝜌 + 1
(𝜌 > 0) (11)

(𝜙 is an arbitrary nonnegative non-decaying function defined on the ray [0,∞), 1 6 𝜙(𝑥) 6
𝛼𝑥 ln+ 𝑥+ 𝛽), then there exists a sequence {𝑟𝑛}, 0 < 𝑟𝑛 ↑ ∞, 𝑟𝑛+1 − 𝑟𝑛 = 𝑂(𝐻(𝑟𝑛)) as 𝑛 → ∞
such that for 𝑥 = 𝑟𝑛, (𝑛 > 1)

ln |𝑄(𝑥)| > −𝐶𝐻(𝑥) ln+ 𝑥

𝐻(𝑥)
− 2𝜙(𝑥) −𝐷; (12)

4) if

∆ = lim
𝑛→∞

1

𝜆𝑛

1∫︁
0

𝑛(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡 < ∞,

then under condition (11)⃒⃒⃒⃒
⃒⃒ln ⃒⃒⃒⃒

1

𝑄′(𝜆𝑛)

⃒⃒⃒⃒
−

1∫︁
0

𝑛(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6𝐸𝐻(𝜆𝑛) ln+ 𝜆𝑛

𝐻(𝜆𝑛)

+ 2𝜙(𝜆𝑛) + 𝐹 ln𝜆𝑛 + 𝐿 (𝑛 > 1),

(13)

where 𝑛(𝜆𝑛; 𝑡) is the number of points 𝜆𝑘 ̸= 𝜆𝑛 in the segment {𝑥 : |𝑥− 𝜆𝑛| 6 𝑡}.
Here all the constants are positive and finite.
We note that condition ∆ < ∞ is not an implication of estimate (11) even if function 𝜙 is

bounded. Indeed, let sup
𝑥>0

𝜙(𝑥) < ∞, 0 6 𝜌 6 1. Then it follows from (11) that Λ(𝑥+𝜌)−Λ(𝑥) 6

𝐶 < ∞, (𝑥 > 0). Thus, if ℎ𝑛 = min
𝑘 ̸=𝑛

|𝜆𝑘 − 𝜆𝑛|, then

ln+ 1

ℎ𝑛

6

1∫︁
0

𝑛(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡 6 2𝐶 ln+ 1

ℎ𝑛

.

Since in this case ∆ < ∞ if and only if

lim
𝑛→∞

1

𝜆𝑛

ln+ 1

ℎ𝑛

< ∞.



22 N.N. AITKUZHINA, A.M. GAISIN

If function 𝜙 is unbounded, under condition (11) there possible the situation

sup
𝑥>0

[Λ(𝑥 + 1) − Λ(𝑥)] = ∞.

Let us prove several technical lemmata. In order to do it we introduce the following notations:
ln0 𝑡 = 𝑡, exp0 𝑡 = 𝑡, ln𝑘 𝑡 = ln ln . . . ln⏟  ⏞  

𝑘

𝑡, exp𝑘 𝑡 = exp exp . . . exp⏟  ⏞  
𝑘

𝑡 (𝑘 > 1).

We consider the series
∞∑︁
𝑛=1

𝑒−𝜀 𝜆𝑛
ln𝑚 𝜆𝑛 , 𝜆𝑛 ↑ ∞, 𝜀 > 0, 𝑚 > 1. (14)

Lemma 2. Series (14) converges for each 𝜀 > 0 if and only if

lim
𝑛→∞

ln𝑛 ln𝑚 𝜆𝑛

𝜆𝑛

= 0.

Proof. 20. Necessity. Suppose that series (14) converges for each 𝜀 > 0. Since the terms of the
series decays monotonically as 𝑛 > 𝑛0, then, as it is known,

lim
𝑛→∞

𝑛𝑒−𝜀 𝜆𝑛
ln𝑚 𝜆𝑛 = 0.

Thus, for each 𝜀 > 0 there exists 𝑁(𝜀) such that for each 𝑛 > 𝑁(𝜀) the estimate

𝑛𝑒−𝜀 𝜆𝑛
ln𝑚 𝜆𝑛 < 1

is valid. Hence, as 𝑛 > 𝑁(𝜀)

ln𝑛 < 𝜀
𝜆𝑛

ln𝑚 𝜆𝑛

that completes the proof.
20. Sufficiency. Suppose that

lim
𝑛→∞

ln𝑛 ln𝑚 𝜆𝑛

𝜆𝑛

= 0.

Then for each 𝜀 > 0 there exists 𝑁(𝜀) such that as 𝑛 > 𝑁(𝜀)

ln𝑛 ln𝑚 𝜆𝑛

𝜆𝑛

6
𝜀

2
.

Then for each 𝑛 > 𝑁(𝜀)

𝑒−𝜀 𝜆𝑛
ln𝑚 𝜆𝑛 6

(︂
1

𝑛

)︂2

.

Hence, series (14) converges for each 𝜀 > 0. The proof is complete.

We consider the function

𝜙𝑚(𝑡) = 𝑞
𝑡

ln𝑚 𝑡
− 𝑡𝜎 (𝑚 > 1, 𝑞, 𝜎 > 0).

This function is defined for 𝑡 > exp𝑚−1(0) except the point 𝑝0 = exp𝑚(0) at which the logarithm
vanishes.

Let 𝑡0 the a solution to the equation
𝑞

ln𝑚 𝑡0
= 𝜎 (0 < 𝜎 6 1),

and max
𝑡>𝑝

𝜙𝑚(𝑡) = 𝜙(𝑡∋), where 𝑝 = exp𝑚 𝑞. Since 𝑞
ln𝑚 𝑝

= 1, then 𝑝 6 𝑡∋ 6 𝑡0. Thus,

𝜙𝑚(𝑡∋) 6 𝑞 𝑡∋
ln𝑚 𝑡∋

6 𝑡∋ 6 𝑡0 = exp𝑚

(︀
𝑞
𝜎

)︀
.

Therefore,

max
𝑡>𝑝

𝜙𝑚(𝑡) 6 exp𝑚

(︁ 𝑞

𝜎

)︁
.
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Hence, we have proven

Lemma 3. As 0 < 𝜎 6 1, function 𝜙𝑚(𝑡) satisfies the estimate

max
𝑡>𝑝

𝜙𝑚(𝑡) 6 exp𝑚

(︁ 𝑞

𝜎

)︁
, 𝑝 = exp𝑚 𝑞.

Let 𝑄 be an entire functions of exponential type (9), and 𝛾 be the function associated with
it in Borel sense. The following lemma holds true.

Lemma 4. There exists a nonnegative majorant 𝑔 for the function ln |𝑄(𝑥)| on [𝑎,∞) sat-
isfying the condition

lim
𝑥→∞

𝑔(𝑥) ln𝑘−1 𝑥

𝑥
= 0 (𝑘 > 2), (15)

if and only if
lim
𝛿→0+

𝛿 ln𝑘 |𝛾(𝑡)| 6 0 (𝑘 > 2), 𝛿 = |Re 𝑡|. (16)

Proof. 10. Necessity. As 𝑥 > 𝑥0 > 1 for each 𝜀 > 0 we have

|𝑄(𝑥)| 6 exp

(︂
𝜀

𝑥

ln𝑘−1 𝑥

)︂
.

Therefore, letting 𝛿 = |Re 𝑡|, we obtain

|𝛾(𝑡)| 6
∞∫︁
0

|𝑄(𝑥)|𝑒−𝛿𝑥𝑑𝑥 6 𝐴 + 𝐵

∞∫︁
𝑥0

exp

(︂
𝜀

𝑥

ln𝑘−1 𝑥
− 𝛿𝑥

)︂
𝑑𝑥.

It implies

|𝛾(𝑡)| 6 𝐴 + 𝐵 exp

[︂
max
𝑥>𝑥0

(︂
𝜀

𝑥

ln𝑘−1 𝑥
+ 2 ln𝑥− 𝛿𝑥

)︂]︂
. (17)

But

exp

[︂
max
𝑥>𝑥0

(𝜀
𝑥

ln𝑘−1 𝑥
+ 2 ln𝑥− 𝛿𝑥)

]︂
6

6 𝐵1(𝜀) exp

[︂
max
𝑥>𝑥0

(2𝜀
𝑥

ln𝑘−1 𝑥
− 𝛿𝑥)

]︂
.

Applying Lemma 3 to the expression in the square brackets, by (17) we finally get

|𝛾(𝑡)| 6 𝐶(𝜀) exp𝑘

(︂
2𝜀

𝛿

)︂
(0 < 𝛿 6 1).

Thus, condition (16) indeed holds true.
20. Sufficiency. The sequence of all zeroes of function 𝑄 has density 𝑏. Therefore, the type of

function 𝑄 is equal to 𝜋𝑏 (the adjoint diagram of 𝑄 is the segment [−𝜋𝑏𝑖, 𝜋𝑏𝑖]). Then, function
𝑄 is even. For 𝑥 > 0 we have

𝑄(𝑥) =
1

2𝜋𝑖

∫︁
Γ𝛿

𝛾(𝑡)𝑒𝑥𝑡𝑑𝑡, (18)

where Γ𝛿 the boundary of rectangle with the sides on the lines Re 𝑡 = ±𝛿 (0 < 𝛿 6 1, Im 𝑡 =
±(𝜋𝑏 + 1). In view of (16) by (18) we obtain that for each 𝜀 > 0 as 0 < 𝛿 6 𝛿0(𝜀)

|𝑄(𝑥)| 6 𝐶𝜀 exp[𝑘−1]

[︁
𝑒𝜀𝛿

−1

+ 𝛿𝑥
]︁

(0 < 𝐶𝜀 < ∞). (19)

Estimate (19) is valid for each 𝛿 ∈ (0, 𝛿0(𝜀)]. In view of this fact, we let

𝛿−1 = 𝜀−1 ln𝑘−1 𝑥
𝛼, 𝛼 = 𝛼(𝑥) = 1 − ln(ln𝑘−1 𝑥)2

ln𝑥
.
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We see that 𝛼(𝑥) → 1 as 𝑥 → ∞, and as 𝛿 → 0+

𝑥𝛼 =
𝑥

ln2
𝑘−1 𝑥

→ ∞.

Substituting the chosen value of 𝛿−1 into (19), as 𝑥 > 𝑥0(𝜀) we obtain that

ln |𝑄(𝑥)| 6 ln𝐶𝜀 +
𝑥

ln2
𝑘−1 𝑥

+
𝜀𝑥

ln𝛼
𝑘−1

. (20)

We check that as 𝑥 → ∞,

ln𝑘−1 𝑥
𝛼 = (1 + 𝑜(1)) ln𝑘−1 𝑥 (𝑘 > 2).

In view of this identity, by (20) we finally get

ln |𝑄(𝑥)| 6 2𝜀
𝑥

ln𝑘−1 𝑥
, 𝑥 > 𝑥1(𝜀).

It means that
ln |𝑄(𝑥)| 6 𝑔(𝑥) (𝑥 > 0)

for some nonnegative (and non-decaying) function 𝑔 satisfying condition (15).

2. Formula for calculation 𝑘-order for sum of Dirichlet series

We shall call the quantity

𝜌𝑘 = lim
𝜎→0−

ln𝑘 𝑀(𝜎)

|𝜎|−1
(𝑘 > 2) (21)

𝑘-order of function 𝐹 ∈ 𝐷0(Λ) in the half-plane Π0 = {𝑠 : 𝜎 = Re 𝑠 < 0}. Here 𝑀(𝜎) =
sup
|𝑡|<∞

|𝐹 (𝜎+ 𝑖𝑡)|. It makes sense to consider only the functions 𝐹 ∈ 𝐷0(Λ) satisfyin sup
𝜎<0

𝑀(𝜎) =

∞. By the definition of 𝑘-order (21) we see that 𝜌2 = 𝜌𝑅, where 𝜌𝑅 is 𝑅-order in half-plane Π0

[4].
The following theorem holds.

Theorem 1. Condition

lim
𝑛→∞

ln𝑛 ln𝑘−1 𝜆𝑛

𝜆𝑛

= 0, (𝑘 > 2), (22)

is the criterion for 𝑘-order (21) of each function 𝐹 ∈ 𝐷0(Λ) satisfies the formula

𝜌𝑘 = lim
𝑛→∞

ln |𝑎𝑛|
𝜆𝑛

ln𝑘−1 𝜆𝑛 (𝑘 > 2; 0 6 𝜌𝑅 6 ∞). (23)

Remark. Suppose that the power series

𝑔(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛𝑧
𝑝𝑛 (𝑝𝑛 ∈ 𝑁) (24)

converges in the circle {𝑧 : |𝑧| < 1} and

𝑀𝑔(𝑟) = max
|𝑧|=𝑟

|𝑔(𝑧)| → ∞, 𝑟 → ∞.

We let

𝑟𝑘 = lim
𝑟↑∞

ln𝑘 𝑀𝑔(𝑟)

(1 − 𝑟)−1
(0 6 𝑟 < 1).

Since 1 − 𝑟 = (1 + 𝑜(1))| ln 𝑟| as 𝑟 ↑ 1, then

𝑟𝑘 = lim
𝑟↑∞

ln𝑘 𝑀𝑔(𝑟)

| ln 𝑟|−1
(25)
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We make the change 𝑧 = 𝑒𝑠. Then

𝑓(𝑠) = 𝑔(𝑒𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝑝𝑛𝑠 (𝑠 = 𝜎 + 𝑖𝑡). (26)

It is clear the Dirichlet-Taylor series (26) converges absolutely in half-plane Π0. Since 𝑟 = 𝑒𝜎,
then 𝑀𝑔(𝑟) = 𝑀(𝜎) and 𝑟𝑘 = 𝜌𝑘, where 𝜌𝑘 is the 𝑘-order of series (26) (one can see it by (25)
and the definition of 𝜌𝑘).

Let us formulate a corollary of Theorem 1.

Corollary. 𝑘-order 𝑟𝑘 of each function 𝑔 given by (24) satisfies the formula

𝑟𝑘 = lim
𝑛→∞

ln |𝑎𝑛|
𝑝𝑛

ln𝑘−1 𝑝𝑛 (𝑘 > 2)

if and only if

lim
𝑛→∞

ln𝑛 ln𝑘−1 𝑝𝑛
𝑝𝑛

= 0 (𝑘 > 2).

Proof. 10. Sufficiency. Let 𝑘-order 𝜌𝑘 of function 𝐹 is finite. Let us prove that then 𝛼 6 𝜌𝑘,
where

𝛼 ≡ lim
𝑛→∞

ln |𝑎𝑛|
𝜆𝑛

ln𝑘−1 𝜆𝑛 (𝑘 > 2).

Indeed, by the definition of 𝑘-order we obtain that for each 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀) such
that for 𝛿 < 𝜎 < 0 the inequality

ln𝑀(𝜎) 6 exp𝑘−1

(︂
𝜌𝑘 + 𝜀

|𝜎|

)︂
. (27)

holds true. For 𝜎 < 0 we have |𝑎𝑛| 6 𝑀(𝜎)𝑒𝜆𝑛|𝜎| (𝑛 > 1). By (27) it follows that as 𝛿 < 𝜎 < 0,

ln |𝑎𝑛| 6 exp𝑘−1

(︂
𝜌𝑘 + 𝜀

|𝜎|

)︂
+ 𝜆𝑛|𝜎|.

If we let 𝑡 = |𝜎|−1, then

ln |𝑎𝑛| 6 exp𝑘−1(𝜌𝑘 + 𝜀)𝑡 +
𝜆𝑛

𝑡
.

We let 𝑡 = 𝑡*, where

𝑡* =
1

𝜌𝑘 + 𝜀
ln𝑘−1 𝜆

𝛼𝑛
𝑛 , 𝛼𝑛 = 1 − ln(ln𝑘−1 𝜆𝑛)2

𝜆𝑛

.

We see that 𝛼𝑛 → 1 as 𝑛 → ∞ and 𝜆𝛼𝑛
𝑛 = 𝜆𝑛

ln2𝑘−1 𝜆𝑛
. Since 𝑡* = 𝑡*(𝑛) → ∞ as 𝑛 → ∞ and

ln |𝑎𝑛| 6 exp𝑘−1 (𝜌𝑘 + 𝜀)𝑡*) +
𝜆𝑛

𝑡*
(𝑛 > 𝑁 = 𝑁(𝜀)).

It yields that for each 𝑛 > 𝑁

ln |𝑎𝑛| 6
𝜆𝑛

ln2
𝑘−1 𝜆𝑛

+
𝜆𝑛(𝜌𝑘 + 𝜀)

ln𝑘−1 𝜆𝛼𝑛
𝑛

(𝑘 > 2). (28)

Since by straightforward calculations one can check that for 𝑛 → ∞
ln𝑘−1 𝜆

𝛼𝑛
𝑛 = (1 + 𝑜(1)) ln𝑘−1 𝜆𝑛 (𝑘 > 2),

then as 𝑛 > 𝑁1 > 𝑁 , by (28) we obtain the estimate

ln |𝑎𝑛|
𝜆𝑛

ln𝑘−1 𝜆𝑛 < 𝜌𝑘 + 3𝜀 (𝑘 > 2).

Since 𝜀 > 0 is arbitrary, it follows that 𝛼 6 𝜌𝑘.
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Suppose now that 𝛼 < ∞. Let us prove that in this case 𝜌𝑘 6 𝛼. By the definition of 𝛼, for
each 𝜀 > 0 there exists 𝑁 = 𝑁(𝜀) such that for 𝑛 > 𝑁

ln |𝑎𝑛|
𝜆𝑛

ln𝑘−1 𝜆𝑛 < 𝛼 + 𝜀 (𝑘 > 2).

Let 𝑘0 = min{𝑛 : 𝜆𝑛 > 𝑝0 = exp𝑘−2(0) (𝑘 > 2)}. We choose 𝐴(𝜀) such that for each 𝑛 > 𝑘0
the inequality

|𝑎𝑛| < 𝐴(𝜀) exp

[︂
(𝛼 + 𝜀)𝜆𝑛

ln𝑘−1 𝜆𝑛

]︂
(𝑘 > 2)

holds. Then

|𝐹 (𝑠)| 6
∞∑︁
𝑛=1

|𝑎𝑛|𝑒𝜆𝑛𝜎 6 𝐵 + 𝐴(𝜀)
∞∑︁

𝑛=𝑘0

exp

(︂
𝑞

𝜆𝑛

ln𝑘−1 𝜆𝑛

− 𝜆𝑛|𝜎|
)︂

6𝐵 + 𝐴(𝜀) max
𝑡>𝜆𝑘0

exp

(︂
𝑞1

𝑡

ln𝑘−1 𝑡
− 𝑡𝜎

)︂ ∞∑︁
𝑛=𝑘0

exp

(︂
−𝜀

𝜆𝑛

ln𝑘−1 𝜆𝑛

)︂
,

where 𝑞 = 𝛼 + 𝜀, 𝑞1 = 𝛼 + 2𝜀, 𝜎 = Re 𝑠 < 0. In view of condition (22), we employ Lemma 2 to
obtain

∞∑︁
𝑛=𝑘0

exp

(︂
−𝜀

𝜆𝑛

ln𝑘−1 𝜆𝑛

)︂
= 𝐴1(𝜀) < ∞. (29)

Let us estimate the function

𝜙(𝑡) = 𝑞1
𝑡

ln𝑘−1 𝑡
− 𝑡𝜎.

It follows from Lemma 3 that

max
𝑡>𝜆𝑘0

𝜙(𝑡) 6 exp𝑘−1

(︁𝑞1
𝜎

)︁
, 0 < |𝜎| 6 1. (30)

Thus, due to (29) and (30), we have

|𝐹 (𝑠)| 6 𝐵 + 𝐴2(𝜀) exp𝑘

(︁𝑞1
𝜎

)︁
, 0 < |𝜎| 6 1.

Therefore, as −1 6 𝜎0 < 𝜎 < 0,

|𝐹 (𝑠)| 6 exp𝑘

(︁𝑞2
𝜎

)︁
, 𝑞2 = 𝛼 + 3𝜀.

It implies that for each 𝜀 > 0

ln𝑘 𝑀(𝜎)

|𝜎|−1
6 𝑞2, −1 6 𝜎0 < 𝜎 < 0.

It means that 𝜌𝑘 6 𝛼. Hence, 𝛼 = 𝜌𝑘. It yields that 𝛼 = ∞ if and only if 𝜌𝑘 = ∞. The proof
of sufficiency is complete.

20. Necessity. Let us show that condition (22) is necessary for the 𝑘-order of each function
𝐹 ∈ 𝐷0(Λ) to satisfy formula (23). Indeed, suppose that condition (22) fails, i.e.,

lim
𝑛→∞

ln𝑛 ln𝑘−1 𝜆𝑛

𝜆𝑛

> 0 (𝑘 > 2).

Then there exists a subsequence {𝑛𝑚}, such that for each 𝑚 > 1

ln𝑛𝑚 ln𝑘−1 𝜆𝑛𝑚

𝜆𝑛𝑚

> 𝛽 > 0. (31)

We let 𝑎𝑛 = 𝑒 (𝑛 > 1) and we estimate the 𝑘-order of function 𝐹 defined by the series

𝐹 (𝑠) = 𝑒

∞∑︁
𝑛=1

𝑒𝜆𝑛𝑠 (𝑠 = 𝜎 + 𝑖𝑡). (32)
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We assume that the condition

lim
𝑛→∞

ln𝑛

𝜆𝑛

= 0 (33)

holds true. Series (32) converges (absolutely by condition (33)) in half-plane Π0. Calculating
𝑘-order by formula (23), we get 𝜌𝑘 = 0. Let us make sure that the 𝑘-order of function 𝐹 is
positive. Indeed, since 𝑎𝑛 > 0, then 𝑀(𝜎) = 𝐹 (𝜎) (𝜎 < 0). Thus, for each natural 𝑁 we have

𝑀(𝜎) > 𝑒
𝑁∑︁

𝑘=[𝑁
2
]

𝑒−𝜆𝑘|𝜎| > 𝑒
𝑁

2
𝑒−𝜆𝑁 |𝜎| > 𝑁𝑒−𝜆𝑁 |𝜎| = exp(ln𝑁 − 𝜆𝑁 |𝜎|). (34)

We write condition (31) as

𝜆𝑛𝑚 6
1

𝛽
ln𝑛𝑚 ln𝑘−1 𝜆𝑛𝑚 (𝛽 > 0) (35)

and we let 𝑁 = 𝑛𝑚 in (34). Then for each 𝑚 > 1 we have

𝑀(𝜎) > exp(ln𝑛𝑚 − 𝜆𝑛𝑚|𝜎|) > exp(ln𝑛𝑚 − |𝜎|
𝛽

ln𝑛𝑚 ln𝑘−1 𝜆𝑛𝑚 . (36)

We see by (35) that ln𝜆𝑛𝑚 6 2 ln ln𝑛𝑚 as 𝑚 > 𝑚0. It follows that ln𝑘−1 𝜆𝑛𝑚 6 2 ln𝑘 𝑛𝑚 as
𝑚 > 𝑚1 > 𝑚0. By (36) it yields the estimate

𝑀(𝜎) > exp(ln𝑛𝑚 − 2|𝜎|
𝛽

ln𝑛𝑚 ln𝑘 𝑛𝑚) (𝑚 > 𝑚1). (37)

In (34), |𝜎| > 0 is arbitrary. We let 𝜎 = 𝜎𝑚, where 𝜎𝑚 solves the equation

ln𝑘 𝑛𝑚 =
𝛽

4|𝜎|
(𝑚 > 𝑚1).

Then by (37) we get

𝑀(𝜎) > exp

{︂
1

2
exp𝑘−1

𝛽

4|𝜎|

}︂
, 𝜎 = 𝜎𝑚.

Hence,

ln𝑀(𝜎) >
1

2
exp𝑘−1

𝛽

4|𝜎|
, 𝜎 = 𝜎𝑚 (𝑚 > 𝑚1),

and

ln ln𝑀(𝜎) > ln

(︂
1

2
exp𝑘−1

𝛽

4|𝜎|

)︂
>

1

2
exp𝑘−2

𝛽

4|𝜎|
, 𝜎 = 𝜎𝑚 (𝑚 > 𝑚2).

Proceeding in the same way, we finally obtain

ln𝑘 𝑀(𝜎) >
𝛽

8|𝜎
, 𝜎 = 𝜎𝑚 (𝑚 > 𝑚𝑘).

It means that 𝜌𝑘 >
𝛽
8
. The proof is complete.

3. Two-sided estimate for 𝑘-order via 𝑘-order in half-strip

Before we formulate the theorem, we introduce the following classes of functions:

𝐿𝑘 = {ℎ ∈ 𝐿 : ℎ(𝑥) ln𝑘−1 𝑥 = 𝑜(𝑥), 𝑥 → ∞} (𝑘 > 2),

𝑅𝑘 = {ℎ ∈ 𝑆 : ℎ(𝑥) ln
𝑥

ℎ(𝑥)
= 𝑜

(︂
𝑥

ln𝑘−1 𝑥

)︂
, 𝑥 → ∞} (𝑘 > 2).

Theorem 2. Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a sequence satisfying the conditions:
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1). The inequality

Λ(𝑥 + 𝜌) − Λ(𝑥) 6 𝑐𝜌 + 𝑑 +
𝜙(𝑥)

ln+ 𝜌 + 1
(𝜌 > 0), (38)

holds true, where Λ(𝑥) =
∑︀

𝜆𝑛6𝑥

1, 𝜙 is a some function in 𝐿𝑘 (𝑘 > 2);

2). The relation

𝑞*𝑘 = lim
𝑛→∞

ln𝑘−1 𝜆𝑛

𝜆𝑛

1∫︁
0

𝑛(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡 < ∞ (𝑘 > 2), (39)

holds true, where 𝑛(𝜆𝑛; 𝑡) is the number of points 𝜆𝑘 ̸= 𝜆𝑛 in the segment {𝑥 : |𝑥−𝜆𝑛| 6 𝑡}.
If 𝑅 is the density of sequence Λ is equal to 𝐺(𝑅), then 𝑘-order 𝜌𝑠 of each function 𝐹 ∈ 𝐷0(Λ)

in strip 𝑆(𝑎, 𝑡0) as 𝑎 > 𝜋𝐺(𝑅𝑘) and order 𝜌𝑅 of this function in half-plane Π0 satisfy the
estimates

𝜌𝑠 6 𝜌𝑘 6 𝜌𝑠 + 𝑞*𝑘 (𝑘 > 2). (40)

Proof. Since 𝜙 ∈ 𝐿𝑘, it follows from estimate (38) and the definition of 𝑅𝑘-density that 𝐺(𝑅𝑘) <
∞. Indeed, if 𝑝0 = exp𝑘−2(0), (𝑘 > 2), ℎ(𝑥) = 𝑥

ln(𝑥+1) ln𝑘−1(𝑥+𝑝0+1)
, (𝑥 > 0), then one can check

easily that ℎ ∈ 𝑅𝑘 and

lim
𝑡→∞

𝜇Λ(𝜔(𝑡))

ℎ(𝑡)
6 𝑐,

where 𝑐 is a constant in condition (38), 𝜔(𝑡) = [𝑡, 𝑡 + ℎ(𝑡)). Therefore, 𝐺(𝑅𝑘) 6 𝑐 < ∞.
We make use of Theorem II. For each 𝑏, 𝐺(𝑅𝑘) < 𝑏 < 𝑎

𝜋
, there exists a sequence Γ = {𝜇𝑛},

(0 < 𝜇𝑛 ↑ ∞), containing Λ and having density 𝑏 such that the entire function of exponential
type 𝜋𝑏

𝑄(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜇2
𝑛

)︂
(𝑧 = 𝑥 + 𝑖𝑦) (41)

possesses the properties:
1) 𝑄(𝜆𝑛) = 0, 𝑄′(𝜆𝑛) ̸= 0 (𝑛 > 1);
2) ln |𝑄(𝑥)| 6 𝑔(𝑥) (𝑥 > 0), 𝑔 ∈ 𝐿𝑘;
3) 𝑞𝑘(𝑄) = 𝑞*𝑘, where 𝑞*𝑘 is defined by formula (39) and

𝑞𝑘(𝑄) = lim
𝑛→∞

ln𝑘−1 𝜆𝑛

𝜆𝑛

ln

⃒⃒⃒⃒
1

𝑄′(𝜆𝑛)

⃒⃒⃒⃒
(𝑘 > 2).

We note that estimate 2) and identity 3) follow from estimates (10) and (11) in view of fact
that 𝑅𝑘-densities in estimates (10), (11) obey 𝐻 ∈ 𝑅𝑘, and 𝜙 ∈ 𝐿𝑘.

We introduce A.F. Leontiev interpolating function [3]

𝜔(𝜇, 𝛼, 𝐹 ) = 𝑒−𝛼𝜇 1

2𝜋𝑖

∫︁
𝐶

𝛾(𝑡)

⎛⎝ 𝑡∫︁
0

𝐹 (𝑡 + 𝛼− 𝜂)𝑒𝜇𝜂𝑑𝜂

⎞⎠ 𝑑𝑡,

where 𝐹 ∈ 𝐷0(Λ), 𝛾 is the function associated with entire function 𝑄 defined by (41) in the
Borel sense, 𝐶 is a closed contour enveloping the segment 𝐼 = [−𝜋𝑏𝑖, 𝜋𝑏𝑖], which is the adjoint
diagram of 𝑄, 𝛼 is an arbitrary complex parameter Re𝛼 < 0. It is clear that (𝑡+ 𝛼− 𝜂) ∈ 𝐶𝛼,
where 𝐶𝛼 is the shift of 𝐶 by vector 𝛼. As 𝐶 we take the boundary of the rectangle

𝑃 = {𝑡 : |Re 𝑡| 6 ℎ(0 < ℎ 6 1), |Im 𝑡| 6 𝑎}, 𝜋𝐺(𝑅) < 𝜋𝑏 < 𝑎.
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Let us prove that 𝜌𝑘 6 𝜌𝑠 + 𝑞*𝑘 (estimate 𝜌𝑠 6 𝜌𝑘 is obvious). We have

|𝜔(𝜆𝑛, 𝛼, 𝐹 )| 6 2

𝜋
(1 + 𝑎)2|𝑒−𝛼𝜆𝑛|max

𝜂∈𝑃
|𝑒𝜆𝑛𝜂|max

𝑡∈𝐶
|𝛾(𝑡)|max

𝑢∈𝑃𝛼

|𝐹 (𝑢)|.

We let 𝛼 = 𝜎− ℎ+ 𝑖𝑡0 (𝜎 < 0). Applying Lemma 4 and taking into consideration the fact that
|𝛾(𝑡)| 6 𝑀 on the horizontal parts of the contour, as ℎ < ℎ0(𝛿) for each 𝛿 > 0 we get

|𝜔(𝜆𝑛, 𝛼, 𝐹 )| 6 𝑒(|𝜎|+2ℎ)𝜆𝑛 exp𝑘(
𝛿

ℎ
) max
𝑢∈𝑃𝛼

|𝐹 (𝑢)|. (42)

Here 𝑃𝛼 is the shift of rectangle 𝑃 by vector 𝛼.
We assume that 𝜌𝑘 < ∞. Then 𝜌𝑠 < ∞. It follows from the definition of 𝑘-order 𝜌𝑠 in the

half-strip 𝑆(𝑎, 𝑡0) that as 0 < |𝜎| < 𝜎0(𝜀) for each 𝜀 > 0

𝑀𝑠(𝜎) 6 exp𝑘[(𝜌𝑠 + 𝜀)|𝜎|−1].

For 0 < |𝜎| < 𝜎0(𝜀) it implies

max
𝑢∈𝑃𝛼

|𝐹 (𝑢)| 6 exp𝑘[(𝜌𝑠 + 𝜀)|𝜎|−1]. (43)

Letting ℎ = 𝛾|𝜎|, (0 < 𝛾 < ∞) and taking into consideration (43), by (42) we obtain that

|𝜔(𝜆𝑛, 𝛼, 𝐹 )| 6 𝑒(1+2𝛾)𝜆𝑛|𝜎| exp

[︂
exp𝑘(

𝛿

𝛾|𝜎|
) + exp𝑘(

𝜌

|𝜎|
)

]︂
, (44)

where 𝜌 = 𝜌𝑠 + 𝜀, 0 < |𝜎| < 𝜎1(𝛿, 𝜀), 𝛾 > 0.
Let 𝛿 = 𝜀2, 𝛾 = 𝜀. Then employing the formulae for the coefficients [3]

𝑎𝑛 =
𝜔(𝜆𝑛, 𝛼, 𝐹 )

𝑄′(𝜆𝑛)
(𝑛 > 1)

and bearing in mind (44), we have

|𝑎𝑛| 6
⃒⃒⃒⃒

1

𝑄′(𝜆𝑛)

⃒⃒⃒⃒
exp

[︀
(1 + 2𝜀)𝜆𝑛𝑡

−1 + exp𝑘−1(𝜌1𝑡)
]︀
,

where 𝑡 = |𝜎|−1, 𝑡 > 𝑡0(𝜀), 𝜌1 = 𝜌 + 𝜀. In particular, this inequality holds true as 𝑛 > 𝑛0(𝜀) for

𝑡 =
1

𝜌1
ln𝛼𝑛

𝑘−1 𝜆𝑛, 𝛼𝑛 = 1 − ln ln2 𝜆𝑛

ln𝜆𝑛

.

For such 𝑡 we have (cf. (28)):

|𝑎𝑛| 6
⃒⃒⃒⃒

1

𝑄′(𝜆𝑛)

⃒⃒⃒⃒
exp

[︂
(1 + 2𝜀)𝜌1𝜆𝑛

ln𝛼𝑛 𝜆𝑛

+
𝜆𝑛

ln2
𝑘−1 𝜆𝑛

]︂
(𝑛 > 𝑛0(𝜀)).

Since ln𝛼𝑛
𝑘−1 𝜆𝑛 = (1 + 𝑜(1)) ln𝑘−1 𝜆𝑛 as 𝑛 → ∞, by applying formula (23) for calculating order

𝜌𝑘 in half-plane, we obtain that 𝜌𝑘 6 𝑞𝑘(𝑄) + (1 + 2𝜀)(𝜌𝑠 + 𝜀). Since 𝑞𝑘(𝑄) = 𝑞*𝑘, 𝜀 > 0, is
arbitrary, then 𝜌𝑘 6 𝜌𝑠 + 𝑞*𝑘 and it completes the proof.

Remark. In the above theorem, instead of 𝑆(𝑎, 𝑡0) one can take a curved half-strip 𝐾 de-
scribed by a vertical segment of length 2𝑎 while its center moves along a curve in half-plane Π0

having a common point with the imaginary axis. In this case estimates (40) hold true.
The left estimate in (40) is exact. The exactness of the right estimate as 𝑘 = 2 was proven

in [6]. In the general situation this issue will be considered in an independent paper.

The authors express their gratitude to the participants of Ufa city seminar named after
A.F. Leontiev on theory of functions for the attention to the work and useful discussion.
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