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ON INVERSE NODAL PROBLEM

FOR STURM-LIOUVILLE OPERATOR

A.YU. TRYNIN

Abstract. In this paper we propose a solution to a certain inverse Sturm-Liouville problem,
which allows one to determine the potential and the boundary conditions of the differential
operator on the values of one of the differentials of Gateaux zeroes 𝑥𝑘,𝑛[𝑞] ∈ (0, 𝜋) of some
eigenfunction 𝑦(𝑥, 𝑞, 𝜆𝑛[𝑞]) for an increment 𝑤 from the set W. As W, we consider some
sets of classical and generalized functions.
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1. Introduction

The properties of the eigenfunctions and eigenvalues for Sturm-Liouville problem with non-
smooth potentials is the subject of study of leading scientific schools in spectral theory of
differential operators for a rather long period of time. The class of the problems in this field is
studied quite well. Not pretending to provide a complete survey in this field, we just mention
a series of known works published recently in this scientific direction.

In [1] for a fixed summable potential the authors obtained the asymptotic formulae for
the eigenfunctions and the eigenvalues of the classical Sturm-Liouville problem by a modern
interpretation of Liouville-Steklov method.

Works [2], [3] were devoted to studying the asymptotics of eigenfunctions and eigenvalues
of the Sturm-Liouville operator with a singular potential being a generalized first order eigen-
function 𝑞(𝑥) = 𝑢′(𝑥), where 𝑢 ∈ 𝐿2[0, 𝜋].

Works [4], [5] represent the studies where the estimates for the considered characteristics of
Sturm-Liouville problem were uniform w.r.t. the potential 𝑞 in a ball in a Sobolev space.

Paper [6] was devoted to proving the fact that the system of eigenfunctions and the associated
functions of a Sturm-Liouville operator with a square summable potential and subject to either
periodic or antiperiodic boundary conditions form a Riesz basis.

In [7] there was considered a class of discrete Sturm-Liouville operators for which the essential
part of the support of the measure contained a finite number of gaps.

A series of interesting publications [8], [9], [10] was devoted to studying the properties of
various types of spectra for periodic self-adjoint second order differential operators on the axis
having important applications. One more result of these works was the asymptotic expansions
for the eigenvalues and the eigenfunctions of certain perturbed operators.

In fundamental works [11], [12], [13] an analogue of oscillating Sturm theory on distribution
of zeroes of eigenfunctions on a spatial net or graphs was constructed.
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In work [14] there were obtained some asymptotic formulae for the values of differential
operators associated with Cauchy problem whose differential expression is a second order linear
equation 𝑦′′ + [𝜆 − 𝑞𝜆(𝑥)]𝑦 = 0, where the potential 𝑞𝜆 could change subject to 𝜆, i.e., it was
a function of two variables 𝑥 and 𝜆. The character of the dependence of the potential 𝜆 was
caused by the fact that for each 𝜆 function 𝑞𝜆 belonged to a ball centered at zero and the radius
growing slower

√
𝜆 in the space of functions of bounded variations and vanishing at zero. In

addition, in [14] the asymptotics for nodal lines of considered differential operators was given
under the condition that function 𝑞𝜆 belongs to the ball centered at zero and with a radius
growing slower than

√
𝜆/ ln𝜆. In work [15] an example of potential was constructed which

showed that if one neglected the boundedness of variation for 𝑞𝜆, then the obtained order of
asymptotic approximation could be attained neither on the class of functions 𝑞 in 𝐶[0, 𝜋], for
instance, in balls, no even for a particular element in the space of continuous potentials.

Starting from well-known classical works [16]-[24] and till the present (see, for instance, papers
[4], [25]), a large amount of interesting studies were devoted to the inverse Sturm-Liouville
problems, i.e., the problems on constructing Sturm-Liouville operator by some given data. In
[16] the author established the equivalence between the formulae 𝜆𝑛 = 𝑛2, 𝑛 = 0, 1, 2, 3, . . . for
the eigenvalues and vanishing of a continuous potential in the Sturm-Liouville problem with
Neumann conditions.

Work [17] contains the study of the inverse Sturm-Liouville problem on recovering the pa-
rameters of the problem by the spectra. It was shown that in the general case it is impossible
to recover Sturm-Liouville operator by one spectrum Λ = {𝜆𝑛}∞𝑛=1, while two spectra with the
same potential and different boundary conditions are sufficient to determine both the potential
and the boundary conditions.

It was proven in [18] that in the case of nonnegative eigenvalues the scattering phase given
for all positive energies and any fixed angular momentum determines the potential uniquely.

In [21] methods for recovering a second order differential equation by its spectral function
were given. This problem was reduced to a linear integral equation. It was also found out which
monotone functions could serve as spectral functions for second order differential equations.

It was shown in work [22] that Sturm-Liouville operator can be uniquely recovered by its
spectral function.

In interesting papers [4], [25] an exact uniform asymptotics for the spectral data of Sturm-
Liouville problems was obtained under the assumption that the potential ranges in a ball of a
fixed radius in the Sobolev space 𝑊𝛼

2 [0, 1] for some 𝛼 > −1. These studies ensures the uniform
stability while recovering the potential by the spectral data.

The topical problem on recovering the density of the string by the reaction operator mapping
a boundary control into the force applied to an end of the string was considered in work [26].

Beginning from pioneering work [27], in papers [28], [29], [30], [31], [32] there were given
uniqueness theorems of nodal problem for various second order differential operator.

A rather wide survey of results obtained for inverse Sturm-Liouville problems can be found
in well-known monographs [33], [34], [35].

Let 𝑞 ∈ 𝐿[0, 𝜋], and 𝜆𝑛 = 𝜆𝑛[𝑞] be the 𝑛th eigenvalue of the regular Sturm-Liouville problem
(for the definition see [35]) ⎧⎨⎩ 𝑦′′ + [𝜆− 𝑞]𝑦 = 0,

sin𝛼𝑦′(0) + cos𝛼𝑦(0) = 0,
sin 𝛽𝑦′(𝜋) + cos 𝛽𝑦(𝜋) = 0,

(1)

where 𝛼, 𝛽 ∈ R, and 𝑦(𝑥, 𝑞, 𝜆𝑛) ≡ 𝑦𝑛(𝑥) are the associated orthonormalized eigenfunctions of
this problem ‖𝑦(·, 𝑞, 𝜆𝑛)‖𝐿2[0,𝜋] = 1. We order the zeroes of function 𝑦𝑛 so that 0 6 𝑥0,𝑛 <
𝑥1,𝑛 < · · · < 𝑥𝑛,𝑛 6 𝜋. We fix some 𝑛 ∈ N and 0 6 𝑘 6 𝑛, 𝑘 ∈ Z. By 𝑥𝑘,𝑛[𝑞] we denote the
functional mapping the potential 𝑞 into left 𝑘 + 1th left zero of 𝑛th eigenfunction 𝑦(𝑥, 𝑞, 𝜆𝑛[𝑞]).
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We indicate by

𝐷𝜑[𝑞, 𝑤] = lim
𝑡→0

𝜑(𝑞 + 𝑡𝑤) − 𝜑(𝑞)

𝑡
the Gâteaux differential of a functional 𝜑 : 𝐿[0, 𝜋] → R with an increment 𝑤 ∈ 𝐿[0, 𝜋].

In the case of Dirichlet condition, in [27] there were obtained certain differential relations in
terms of Gâteuax differentials for the nodal points of Sturm-Liouville problem. However, these
relations involved the derivatives of the eigenfunctions w.r.t. both variable 𝑥 and the spectral
parameter.

Theorem 1 ([27]). Let 𝑞, 𝑤 ∈ 𝐿2[0, 𝜋], then the Gâteaux differential of functional 𝑥𝑘,𝑛[𝑞]
(𝑛 ∈ N and 0 6 𝑘 6 𝑛 as 𝛼 = 𝛽 = 0 in (1)) with an increment 𝑤 satisfies the relation

𝐷𝑥𝑘,𝑛[𝑞, 𝑤] =
1[︀

𝑦′(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)
]︀2 ∫︁ 𝑥𝑘,𝑛

0

𝑤(𝜏)𝑦2(𝜏, 𝑞, 𝜆𝑛) 𝑑𝜏

− �̇�(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)

�̇�(𝜋, 𝑞, 𝜆𝑛)𝑦′(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)𝑦′(𝜋, 𝑞, 𝜆𝑛)

∫︁ 𝜋

0

𝑤(𝜏)𝑦2(𝜏, 𝑞, 𝜆𝑛) 𝑑𝜏,

where

𝑦′(𝑥, 𝑞, 𝜆) =
𝜕

𝜕𝑥
𝑦(𝑥, 𝑞, 𝜆), �̇�(𝑥, 𝑞, 𝜆) =

𝜕

𝜕𝜆
𝑦(𝑥, 𝑞, 𝜆).

This relation was employed by the author for studying the properties of the inverse nodal
Sturm-Liouville problem with a potential in space 𝐿2[0, 𝜋]. In [27] the uniqueness theorem was
established for recovering the potential by an arbitrary dense in [0, 𝜋] set of the zeroes of the
eigenfunctions.

In work [36] there were provided the differential relations similar to that established in [27].
These relations were provided in terms of Gâteuax differentials for the nodal points of regular
Sturm-Liouville problem with a summable potential and Robin boundary conditions and it
was necessary to remove Dirichlet conditions (𝛼 ̸= 𝜋𝑙 and 𝛽 ̸= 𝜋𝑚, 𝑙,𝑚 ∈ Z). In particular,
by means of these relations, we succeeded in showing the absence of the stability of repre-
senting a continuous on [0, 𝜋] function by interpolation Lagrange processes constructed by the
eigenfunctions of Sturm-Liouville problem.

In work [37] there were obtained some differential relations in terms of Gâteuax differen-
tials for the nodal point of regular Sturm-Liouville problem with arbitrary Robin boundary
conditions.

Theorem 2 ([37]). Suppose 𝑞, 𝑤 ∈ 𝐿[0, 𝜋]. Then the Gâteaux differential of functional
𝑥𝑘,𝑛[𝑞] (𝑛 ∈ N and 0 6 𝑘 6 𝑛) with an increment 𝑤 satisfies the relation

𝐷𝑥𝑘,𝑛[𝑞, 𝑤] =
1[︀

𝑦′(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)
]︀2 ∫︁ 𝜋

0

𝑤(𝜏)𝑦2(𝜏, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝜏) 𝑑𝜏, (2)

where

𝛽𝑘,𝑛(𝜏) =

{︂
1 − 𝛼𝑘,𝑛, if 𝜏 ∈ [0, 𝑥𝑘,𝑛],
−𝛼𝑘,𝑛, if 𝜏 ∈ (𝑥𝑘,𝑛, 𝜋],

𝛼𝑘,𝑛 =

∫︁ 𝑥𝑘,𝑛

0

𝑦2(𝜏, 𝑞, 𝜆𝑛) 𝑑𝜏.

Remark. In the case at least one of the boundary conditions becomes the Dirichlet conition
𝛼 = 2𝜋𝑙 or 𝛽 = 2𝜋𝑙, 𝑙 ∈ Z, i.e., 𝑥0,𝑛[𝑞] ≡ 0 or 𝑥𝑛,𝑛[𝑞] ≡ 𝜋, the associated Gâteaux differential
for each 𝑞, 𝑤 ∈ 𝐿[0, 𝜋] satisfies

𝐷𝑥0,𝑛[𝑞, 𝑤] = 0 or 𝐷𝑥𝑛,𝑛[𝑞, 𝑤] = 0.

In the present work we suggest the solution to some inverse Sturm-Liouville problem allowing
one to determine the potential and boundary conditions for a differential operator by the values
of Gâteaux differential of one of zeroes 𝑥𝑘,𝑛[𝑞] ∈ (0, 𝜋) of some eigenfunction 𝑦(𝑥, 𝑞, 𝜆𝑛[𝑞]) with
an increment 𝑤 in set W. In the case W = {𝛿[1](𝑥), 𝑥 ∈ M}, (𝛿[1](𝑥) is the Dirac delta
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function) and M is dense in [0, 𝜋], up to then normalization
∫︀ 𝜋

0
𝑞(𝑥) 𝑑𝑥 = 0 we determine the

potential of Sturm-Liouville prlblem 𝑞 ∈ 𝐿[0, 𝜋] or 𝑞 ∈ 𝐶[0, 𝜋]. For each fixed 𝑞 ∈ 𝐿[0, 𝜋]
the values of Gâteaux differentials and of their derivatives w.r.t. 𝑥 for one of zeroes 𝑥𝑘,𝑛[𝑞] ∈
(0, 𝜋) of an eigenfunction 𝑦(𝑥, 𝑞, 𝜆𝑛[𝑞]) at the end-points of the segment [0, 𝜋]: 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](0)],
𝑑𝐷𝑥𝑘,𝑛[𝑞,𝛿[1](𝑥)]

𝑑𝑥

⃒⃒⃒
𝑥=0

and 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝜋)],
𝑑𝐷𝑥𝑘,𝑛[𝑞,𝛿[1](𝑥)]

𝑑𝑥

⃒⃒⃒
𝑥=𝜋

allow us to determine the parameters

𝛼 and 𝛽 of the boundary conditions in problem (1), respectively. In the case W is the set
of continuously differentiable functions on [0, 𝜋] with an absolutely continuous derivative, we
obtain the uniqueness theorem for solution of the inverse problem under the normalization
condition for the potential

∫︀ 𝜋

0
𝑞(𝑥) 𝑑𝑥 = 0. These studies are based on a differential relations

obtained in work [37].
The topicality of the studies presented in our work can be demonstrated from the point of

view of mathematical physics as follows. We take a non-homogeneous string with an unknown
linear density which can have first kind jumps. We suppose that the tension of the string in
the state of rest is known. If the initial conditions are so that the vibrations are a standing
wave with one of the eigenfrequencies, then the wave nodes are the zeroes of the eigenfunctions
associated with this eigenfrequency. The results of the work allow one to find the linear density
of the string in the point where mass m is concentrated by observations of the motion dynamics
of one of internals wave nodes during the motion of the point mass m with a constant speed
along the string. Knowledge of Gâteaux differential and of its derivative w.r.t. the indepdendent
variable for some internal node of Sturm-Liouville problem under the perturbation of summable
potential by the Dirac function on the end-points of the segment gives a possibility to determine
constants 𝛼 and 𝛽 in Robin boundary conditions of problem (1). In its turn, it allows us to
determine completely the resisting force for the motion of the string’s end-points.

2. Main results

Changing the potential 𝑞 ∈ 𝐿[0, 𝜋] of problem (1) by an additive constant 𝑞+𝐶 produces the
shift of the spectrum Λ = {𝜆𝑛}∞𝑛=1 by the same constant {𝜆𝑛 + 𝐶}∞𝑛=1. Thus, except explicitly
mentioned cases, we assume that the normalization condition∫︁ 𝜋

0

𝑞(𝑥) 𝑑𝑥 = 0 (3)

holds true. We define 𝛿[𝑓 ](𝑥) which the Dirac delta function (the rigorous justification of the
definition can be found, for instance, iun [38, Ch. 2, Sec. 5], [39, S16.7]) as the functional
mapping each summable on the segment [0, 𝜋] function 𝑓 into the real number

𝛿[𝑓 ](𝑥) = lim
𝜀→0

∫︁ 𝜋

0

𝑓(𝜏)Ψ(𝜏, 𝑥, 𝜀) 𝑑𝜏,

where

𝐸(𝑥, 𝜀) = [𝑥− 𝜀, 𝑥 + 𝜀] ∩ [0, 𝜋],

Ψ(𝜏, 𝑥, 𝜀) =

{︂
1

𝑚𝑒𝑠𝐸(𝑥,𝜀)
, as 𝜏 ∈ 𝐸(𝑥, 𝜀),

0, as 𝜏 ∈ [0, 𝜋] ∖ 𝐸(𝑥, 𝜀).

We shall denote by

𝐷𝜑[𝑞, 𝛿[1](𝑥)] = lim
𝜀→0

lim
𝑡→0

𝜑(𝑞 + 𝑡Ψ(·, 𝑥, 𝜀)) − 𝜑(𝑞)

𝑡

the action of Gâteaux differential of a functional 𝜑 on an element 𝑞 ∈ 𝐿[0, 𝜋] with an increment
𝛿[1](𝑥). And by

𝑑𝑘𝐷𝜑[𝑞, 𝛿[1](𝑥)]

𝑑𝑥𝑘
=

𝑑𝑘

𝑑𝑥𝑘

{︁
lim
𝜀→0

lim
𝑡→0

𝜑(𝑞 + 𝑡Ψ(·, 𝑥, 𝜀)) − 𝜑(𝑞)

𝑡

}︁
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we indicate its 𝑘th derivative w.r.t. 𝑥. Generally speaking, this derivative can be treated
as the generalized one [38, Ch. 2, Sec. 6, Subsec. 1]. But in the case when the function
𝑑𝑘

𝑑𝑥𝑘

{︁
lim𝜀→0 lim𝑡→0

𝜑(𝑞+𝑡Ψ(·,𝑥,𝜀))−𝜑(𝑞)
𝑡

}︁
is continuous w.r.t. 𝑥, we assume that the generalized

derivative coincides with the classical one in the sense of definitions in [38, Ch. 2, Sec. 5, Items
5, 6].

Knowing the Gâteaux differential of some internal node of Sturm-Liouville problem under the
perturbation of the potential by Dirac function on a dense in [0, 𝜋] set allows us to determine
each summable potential in our problem.

Theorem 3. Let M be an arbitrary dense in [0, 𝜋] set,

𝑥𝑘,𝑛 ∈ (0, 𝜋) (4)

be a zero of an eigenfunction of Sturm-Liouville problem (1) and Gâteaux differential of func-
tional 𝑥𝑘,𝑛[𝑞] on an element 𝑞 ∈ 𝐿[0, 𝜋] with the increment 𝛿[1](𝑥) takes value 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)]
in each point 𝑥 of set M.

Then the potential of Sturm-Liouville problem (1) satisfying the normalization condition (3)
can be represented as

𝑞(𝑥)
a.e.
=

𝑑2
√︁⃒⃒

lim
𝑥𝑝

M→𝑥
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]

⃒⃒
𝑑𝑥2

(︁√︂⃒⃒
lim
𝑥𝑝

M→𝑥

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]
⃒⃒)︁−1

− 1

𝜋

∫︁ 𝜋

0

{︃
𝑑2
√︁⃒⃒

lim
𝑥𝑝

M→𝑥
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]

⃒⃒
𝑑𝑥2

(︁√︂⃒⃒
lim
𝑥𝑝

M→𝑥

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]
⃒⃒)︁−1

}︃
𝑑𝑥,

(5)

where {𝑥𝑝}∞𝑝=1 is an arbitrary sequence converging to 𝑥 along set M, i.e., 𝑥𝑝 ∈ M, 𝑥𝑝 → 𝑥.

Proposition 1. Let (4) be a zero of an eigenfunction to Sturm-Liouville problem (1) and the
Gâteaux differential of functional 𝑥𝑘,𝑛[𝑞] on an element 𝑞 ∈ 𝐿[0, 𝜋] with an increment 𝛿[1](𝑥)
takes the value 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] in almost each point 𝑥 the segment [0, 𝜋].

Then the potential in Sturm-Liouville problem (1) satisfying normalization condition (3)
reads as

𝑞(𝑥)
a.e.
=

𝑑2
√︁⃒⃒

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)]
⃒⃒

𝑑𝑥2

(︁√︁⃒⃒
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)]

⃒⃒)︁−1

− 1

𝜋

∫︁ 𝜋

0

{︃
𝑑2
√︁⃒⃒

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)]
⃒⃒

𝑑𝑥2

(︁√︁⃒⃒
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)]

⃒⃒)︁−1
}︃
𝑑𝑥.

(6)

Knowledge of Gâteaux differential and of its derivative w.r.t. the independent variable for
some internal node of Sturm-Liouville problem under the perturbation of summable potential by
the Dirac function on the end-points of the segment gives a possibility to determine constants
𝛼 and 𝛽 in Robin boundary conditions of problem (1). It allows us to find completely the
resisting force for the motion of the string’s end-points.

Proposition 2. Let (4) be a zero of an eigenfunction of Sturm-Liouville problem (1) and the
Gâteaux differential of functional 𝑥𝑘,𝑛[𝑞] on an element 𝑞 ∈ 𝐿[0, 𝜋] with the increment 𝛿[1](𝑥)

and its derivative w.r.t. 𝑥 take the values 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](0)], 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝜋)],
𝑑𝐷𝑥𝑘,𝑛[𝑞,𝛿[1](𝑥)]

𝑑𝑥

⃒⃒⃒
𝑥=0

,

and
𝑑𝐷𝑥𝑘,𝑛[𝑞,𝛿[1](𝑥)]

𝑑𝑥

⃒⃒⃒
𝑥=𝜋

on the end-points of the segment [0, 𝜋].
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Then the parameters of boundary conditions in Sturm-Liouville problem (1) can be found
from the relations

𝛼 =

⎧⎪⎪⎨⎪⎪⎩
−arccot

{︂(︁
𝑑𝐷𝑥𝑘,𝑛[𝑞,𝛿[1](𝑥)]

𝑑𝑥

⃒⃒⃒
𝑥=0

)︁(︁
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](0)]

)︁−1
}︂

+ 𝜋𝑝, 𝑝 ∈ Z,

if 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](0)] ̸= 0,
𝜋𝑝, 𝑝 ∈ Z, if 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](0)] = 0,

𝛽 =

⎧⎪⎪⎨⎪⎪⎩
−arccot

{︂(︁
𝑑𝐷𝑥𝑘,𝑛[𝑞,𝛿[1](𝑥)]

𝑑𝑥

⃒⃒⃒
𝑥=𝜋

)︁(︁
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝜋)]

)︁−1
}︂

+ 𝜋𝑟, 𝑟 ∈ Z,

if 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝜋)] ̸= 0,
𝜋𝑟, 𝑟 ∈ Z, if 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝜋)] = 0.

(7)

To determine the continuity of potential of Sturm-Liouville problem (1) as well as to deter-
mine it everywhere in [0, 𝜋] we can specify Theorem 3.

Proposition 3. Let (4) be a zero of an eigenfunction of Sturm-Liouville problem (1) and the
Gâteaux differential of functional 𝑥𝑘,𝑛[𝑞] on the element 𝑞 ∈ 𝐿[0, 𝜋] with the increment 𝛿[1](𝑥)
takes value 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] in each point 𝑥 of a set M dense in the segment [0, 𝜋]. Then the
function

𝑑2
√︁⃒⃒

lim
𝑥𝑝

M→𝑥
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]

⃒⃒
𝑑𝑥2

(︁√︂⃒⃒
lim
𝑥𝑝

M→𝑥

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]
⃒⃒)︁−1

is continuous w.r.t. 𝑥 on [0, 𝜋] if and only if the potential of Sturm-Liouville problem (1) is
continuous on [0, 𝜋]. And function (5) on [0, 𝜋] is the potential in Sturm-Liouville problem (1)
satisfying normalization condition (3).

Theorem 4. Consider two Sturm-Liouville problems of the form (1) and⎧⎨⎩
ˆ̃𝑦′′ + [�̃�− 𝑞]ˆ̃𝑦 = 0,

sin �̃�ˆ̃𝑦′(0) + cos �̃�ˆ̃𝑦(0) = 0,

sin 𝛽 ˆ̃𝑦′(𝜋) + cos 𝛽 ˆ̃𝑦(𝜋) = 0

(8)

with summable potentials satisfying the normalization conditions (3) and assume that their

eigenfunctions 𝑦𝑛 and ˆ̃𝑦𝑚 𝑛,𝑚 ∈ N of have a common zero 𝑥*, i.e., there exist such 0 6 𝑘 6
𝑛, 0 6 𝑙 6 𝑚,𝑛,𝑚 ∈ N that 𝑥* = 𝑥𝑘,𝑛 = �̃�𝑙,𝑚 ∈ (0, 𝜋) and the Gâteaux differentials of this zero
coincide for the increment 𝛿[1](𝑥) in each point 𝑥 of a set M dense in the segment [0, 𝜋], i.e.,

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] = 𝐷�̃�𝑙,𝑚[𝑞, 𝛿[1](𝑥)], for each 𝑥 ∈ M. (9)

Then 𝑞 = 𝑞 a.e. in [0, 𝜋], 𝜆𝑛 = �̃�𝑚 and �̃� = 𝛼, 𝛽 = 𝛽.

By W1
∞[0, 𝜋] we denote the set of continuously differentiable and having absolutely continuous

derivative on [0, 𝜋] functions.

Theorem 5. Consider two Sturm-Liouville problems of the form (1) and (8) with summable
potentials satisfying the normalization conditions (3) and assume that their eigenfunctions 𝑦𝑛
and ˆ̃𝑦𝑚, 𝑛,𝑚 ∈ N, have a common zero 𝑥*, i.e., there exist such 0 6 𝑘 6 𝑛, 0 6 𝑙 6 𝑚,
𝑛,𝑚 ∈ N that 𝑥* = 𝑥𝑘,𝑛 = �̃�𝑙,𝑚 ∈ (0, 𝜋) and the Gâteaux differentials of this zero coincide for
each increment 𝑤 ∈ W1

∞[0, 𝜋],

𝐷𝑥𝑘,𝑛[𝑞, 𝑤] = 𝐷�̃�𝑙,𝑚[𝑞, 𝑤], for each 𝑤 ∈ W1
∞[0, 𝜋]. (10)

Then 𝑞 = 𝑞 a.e. in [0, 𝜋], 𝜆𝑛 = �̃�𝑚 and �̃� = 𝛼, 𝛽 = 𝛽.



118 A.YU. TRYNIN

By 𝐶2
𝑡 [0, 𝜋] we denote the set of the functions in 𝐶1[0, 𝜋] which are twice continuously differ-

entiable on each of the segments [0, 𝑡] and (𝑡, 𝜋]. At the point 𝑡 ∈ [0, 𝜋] the second derivatives of
the functions in 𝐶2

𝑡 [0, 𝜋] can have a jump of the first kind. Classical solutions to Sturm-Liouville
problem (1) obey the following

Proposition 4. Let eigenfunctions 𝑦𝑛 and ˆ̃𝑦𝑚 𝑛,𝑚 ∈ N of two Sturm-Liouville problems
(1) and (8) with continuous potentials satisfying normalization conditions (3) have a common
zero, i.e., there exist such 0 6 𝑘 6 𝑛, 0 6 𝑙 6 𝑚, 𝑛,𝑚 ∈ N that 𝑥* = 𝑥𝑘,𝑛 = �̃�𝑙,𝑚 ∈ (0, 𝜋) and
the Gâteaux differentials of this zero coincide for each increment 𝑤 ∈ 𝐶2

𝑥* [0, 𝜋], i.e.,

𝐷𝑥𝑘,𝑛[𝑞, 𝑤] = 𝐷�̃�𝑙,𝑚[𝑞, 𝑤], for each 𝑤 ∈ 𝐶2
𝑥* [0, 𝜋].

Then 𝑞 = 𝑞 everywhere in [0, 𝜋], 𝜆𝑛 = �̃�𝑚 and �̃� = 𝛼, 𝛽 = 𝛽.

The hypothesis of Proposition 1 being a corollary of Theorem 3 is convenient but it employs
a redundant information since to recover the potential in Sturm-Liouville problem one has to
know the value of 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] in almost each point 𝑥 of segment [0, 𝜋]. The statement of
Theorem 3 is non-improvable in the sense that it is impossible to neglect the density of set M
in [0, 𝜋]. This fact is justified by

Proposition 5. For an arbitrary interval (𝑎, 𝑏) ⊂ [0, 𝜋] there exist two potentials satisfying
(3) and having a bounded variation

𝑞
a.e.
̸= 𝑞 (11)

such that there exists 𝑛 ∈ N for which the eigenfunctions 𝑦𝑛 and ˆ̃𝑦𝑛 of two Sturm-Liouville
problem (1) and (8) (with 𝛼 = �̃�, 𝛽 = 𝛽 and potentials 𝑞 and 𝑞, respectively) have the same
zeros 𝑥𝑘,𝑛[𝑞] = �̃�𝑘,𝑛[𝑞] ∈ [0, 𝜋], 0 6 𝑘 6 𝑛, and Gâteaux differentials for each of these zeros
coincide for each increment 𝛿[1](𝑥) in each point 𝑥 of [0, 𝜋] ∖ (𝑎, 𝑏), i.e.,

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] = 𝐷�̃�𝑘,𝑛[𝑞, 𝛿[1](𝑥)], (12)

for each𝑥 ∈ [0, 𝜋] ∖ (𝑎, 𝑏), 𝑥𝑘,𝑛[𝑞] = �̃�𝑘,𝑛[𝑞] ∈ [0, 𝜋], 0 6 𝑘 6 𝑛.

3. The proof of main results

Proof of Theorem 3. By Theorem 2, for an arbitrary node (4) of Sturm-Liouville problem (1)
we have

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] = lim
𝜀→0

1[︀
𝑦′(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)

]︀2 ∫︁ 𝜋

0

Ψ(𝜏, 𝑥, 𝜀)𝑦2(𝜏, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝜏) 𝑑𝜏

=
1[︀

𝑦′(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)
]︀2 𝛿[︀𝑦2(·, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(·)

]︀
(𝑥).

The function 𝑦2(𝜏, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝜏) is continuously differentiable on [0, 𝜋]. This is why the set
[0, 𝜋] consists of Lebesgue points of the function 𝑦2(𝜏, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝜏) and everywhere in [0, 𝜋] the
identity

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] =
1[︀

𝑦′(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)
]︀2𝑦2(𝑥, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝑥) (13)

holds true.
By Theorem 2 and (4) we have 𝛽𝑘,𝑛(𝑥) ̸= 0. Thus, on the set [0, 𝜋] the representation

⃒⃒
𝑦(𝑥, 𝑞, 𝜆𝑛)

⃒⃒
=

⎯⎸⎸⎷⃒⃒
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)]

⃒⃒ [︀𝑦′(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)
]︀2⃒⃒

𝛽𝑘,𝑛(𝑥)
⃒⃒
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holds true. It follows that on each of the segments [0, 𝑥0,𝑛], [𝑥0,𝑛, 𝑥1,𝑛],. . . , [𝑥𝑛−1,𝑛, 𝑥𝑛,𝑛], [𝑥𝑛,𝑛, 𝜋]
the eigenfunction can be represented as

𝑦(𝑥, 𝑞, 𝜆𝑛) = 𝜂𝑙,𝑛
√︂⃒⃒

lim
𝑥𝑝

M→𝑥

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]
⃒⃒
, 0 6 𝑙 6 𝑛 + 1, (14)

where each subscript 𝑙 of constant 𝜂𝑙,𝑛 corresponds to the index of the segment in which 𝑥
is located and {𝑥𝑝}∞𝑝=1 is an arbitrary sequence converging to 𝑥 along set M dense in the
segment [0, 𝜋], i.e., 𝑥𝑝 ∈ M. By the definition [40, Ch. IV, Sec. 1] of a generalized solution to
the differential equation in Sturm-Liouville problem (1), on each segment [0, 𝑥0,𝑛], [𝑥0,𝑛, 𝑥1,𝑛],
. . . , [𝑥𝑛−1,𝑛, 𝑥𝑛,𝑛], [𝑥𝑛,𝑛, 𝜋] the function 𝑦(𝑥, 𝑞, 𝜆𝑛) has an absolutely continuous and almost
everywhere the second derivative. After the substitution in the equation in (1), this second
derivative transforms the equation into the identity almost everywhere. It implies the existence
of the second derivative

𝑑2
√︁⃒⃒

lim
𝑥𝑝

M→𝑥
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]

⃒⃒
𝑑𝑥2

for almost each 𝑥 ∈ [0, 𝜋] as well as the representation

𝑞(𝑥) − 𝜆𝑛
a.e.
=

𝑦′′(𝑥, 𝑞, 𝜆𝑛)

𝑦(𝑥, 𝑞, 𝜆𝑛)

a.e.
=

𝑑2
√︁⃒⃒

lim
𝑥𝑝

M→𝑥
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]

⃒⃒
𝑑𝑥2

(︁√︂⃒⃒
lim
𝑥𝑝

M→𝑥

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]
⃒⃒)︁−1

.

(15)

Thus, the potential in Sturm-Liouville problem (1) satisfying normalization condition (3)
can be represented via the values of Gâteaux differential with the increment being Dirac delta
function as

𝑞(𝑥)
a.e.
=

𝑑2
√︁⃒⃒

lim
𝑥𝑝

M→𝑥
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]

⃒⃒
𝑑𝑥2

(︁√︂⃒⃒
lim
𝑥𝑝

M→𝑥

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]
⃒⃒)︁−1

− 1

𝜋

∫︁ 𝜋

0

{︃
𝑑2
√︁⃒⃒

lim
𝑥𝑝

M→𝑥
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]

⃒⃒
𝑑𝑥2

(︁√︂⃒⃒
lim
𝑥𝑝

M→𝑥

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]
⃒⃒)︁−1

}︃
𝑑𝑥.

The proof is complete.

Proof of Proposition 1. The desired statement follows immediately from Theorem 3 if as M one
takes the segment [0, 𝜋], while sequence {𝑥𝑝}∞𝑝=1 is to be taken stationary.

Proof of Proposition 2. By the definition [40, Ch. IV, Sec. 1] of a generalized solution to the
differential equation in Sturm-Liouville problem (1), on each of segments [0, 𝑥0,𝑛], [𝑥𝑛,𝑛, 𝜋] the
function 𝑦(𝑥, 𝑞, 𝜆𝑛) has an absolute continuous derivative. The representation (14) yields also

the existence of
𝑑

√︂⃒⃒
𝐷𝑥𝑘,𝑛[𝑞,𝛿[1](𝑥)]

⃒⃒
𝑑𝑥

on the end-points of the segment [0, 𝜋] and the possibility of
recovering the parameters of boundary conditions in Sturm-Liouville problem (1) by formulae
(7). The proof is complete.

Remark. In particular, it follows from representation (13) and theorem 2 that as 𝑥 < 𝑥𝑘,𝑛,
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] > 0, while𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] 6 0 for 𝑥 > 𝑥𝑘,𝑛. If we perturb the potential in a
node by Dirac function, then this node and other nodes remain unchanged. Indeed, it follows
from (13) that

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑙,𝑛)]

[︀
𝑦′(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)

]︀2
𝛽𝑘,𝑛(𝑥𝑙,𝑛)

= 𝑦2(𝑥𝑙,𝑛, 𝑞, 𝜆𝑛) = 0, 𝑘, 𝑙 ∈ [0, 𝑛].



120 A.YU. TRYNIN

Proof of Proposition 3. The continuity of function (15) in (14) implies the validity of the iden-
tity in (15) everywhere in [0, 𝜋]. The proof is complete.

Remark. Under the hypothesis of Theorem 3, for a potential normalized by relation (3),
the 𝑛th eigenvalue of problem (1) is determined by the formula

𝜆𝑛 = − 1

𝜋

∫︁ 𝜋

0

{︃
𝑑2
√︁⃒⃒

lim
𝑥𝑝

M→𝑥
𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]

⃒⃒
𝑑𝑥2

(︁√︂⃒⃒
lim
𝑥𝑝

M→𝑥

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]
⃒⃒)︁−1

}︃
𝑑𝑥.

The values of Gâteaux differential allow us to calculate not only the eigenvalue but also to de-
termine the eigenfunction 𝑦(𝑥, 𝑞, 𝜆𝑛). In order to do it, we need to choose appropriate constants
𝜂𝑙,𝑛 in representation (14).

Proof of Theorem 4. By (9) and (13), for each 𝑥 ∈ M we have the identity

1[︀
𝑦′(𝑥𝑘,𝑛, 𝑞, 𝜆𝑛)

]︀2𝑦2(𝑥, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝑥) =𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)]

=𝐷�̃�𝑙,𝑚[𝑞, 𝛿[1](𝑥)] =
1[︀

ˆ̃𝑦′(�̃�𝑙,𝑚, 𝑞, �̃�𝑚)
]︀2 ˆ̃𝑦2(�̃�, 𝑞, �̃�𝑚)𝛽𝑙,𝑚(𝑥).

It yields that the sets of the nodes of considered problems coincide and for each of the segments
[0, 𝑥0,𝑛], [𝑥0,𝑛, 𝑥1,𝑛], . . . , [𝑥𝑛−1,𝑛, 𝑥𝑛,𝑛], [𝑥𝑛,𝑛, 𝜋] the eigenfunctions can be represented as

ˆ̃𝑦(𝑥, 𝑞, �̃�𝑚) = 𝑦(𝑥, 𝑞, 𝜆𝑛) = 𝜂𝜈,𝑛
√︂⃒⃒

lim
𝑥𝑝

M→𝑥

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥𝑝)]
⃒⃒
, 0 6 𝜈 6 𝑛 + 1, (16)

where each subscript 𝜈 of constant 𝜂𝜈,𝑛 corresponds to the index of the segment in which 𝑥 is
located and {𝑥𝑝}∞𝑝=1 is an arbitrary sequence converging to 𝑥 along set M dense in the segment
[0, 𝜋] set, i.e., 𝑥𝑝 ∈ M. Then representation (15) implies

𝑞 − �̃�𝑚 = 𝑞 − 𝜆𝑛

almost everywhere in [0, 𝜋]. Integrating the obtained relation w.r.t. 𝜏 from 0 to 𝜋 and taking

into consideration the normalization condition (3), we get 𝜆𝑛 = �̃�𝑚. Identities (16) yield also

�̃� = 𝛼 and 𝛽 = 𝛽.

Remark. In the same way one can show that a zero 𝑥𝑘,𝑛[𝑞] (4) of an eigenfunction of Sturm-
Liouville problem (1) and values 𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] of Gâteaux differential of functional 𝑥𝑘,𝑛[𝑞]
on element 𝑞 ∈ 𝐶[0, 𝜋] with the increment 𝛿[1](𝑥) in each point 𝑥 of a dense in segment [0, 𝜋]
set determines uniquely the potential 𝑞 ∈ 𝐶[0, 𝜋] up to the normalization (3).

Proof of Theorem 5. Suppose for some 0 6 𝑘 6 𝑛, 0 6 𝑙 6 𝑚,𝑛,𝑚 ∈ N 𝑥* = 𝑥𝑘,𝑛 = �̃�𝑙,𝑚 ∈
(0, 𝜋) is a common zero for considered in Theorem 5 Sturm-Liouville problems, then by Theo-
rem 2 and (10) for each 𝑤 ∈ W1

∞[0, 𝜋] we have the identity

0 =𝐷𝑥𝑘,𝑛[𝑞, 𝑤] −𝐷�̃�𝑙,𝑚[𝑞, 𝑤]

=

∫︁ 𝜋

0

𝑤(𝜏)

{︂
1[︀

𝑦′(𝑥*, 𝑞, 𝜆𝑛)
]︀2𝑦2(𝜏, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝜏) − 1[︀

ˆ̃𝑦′(𝑥*, 𝑞, �̃�𝑚)
]︀2 ˆ̃𝑦2(𝜏, 𝑞, �̃�𝑚)𝛽𝑙,𝑚(𝜏)

}︂
𝑑𝜏.

(17)

By (2), the function

1[︀
𝑦′(𝑥*, 𝑞, 𝜆𝑛)

]︀2𝑦2(𝜏, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝜏) − 1[︀
ˆ̃𝑦′(𝑥*, 𝑞, �̃�𝑚)

]︀2 ˆ̃𝑦2(𝜏, 𝑞, �̃�𝑚)𝛽𝑙,𝑚(𝜏)

belongs to the set W1
∞[0, 𝜋]. Taking the function

𝑤(𝜏) =
1[︀

𝑦′(𝑥*, 𝑞, 𝜆𝑛)
]︀2𝑦2(𝜏, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝜏) − 1[︀

ˆ̃𝑦′(𝑥*, 𝑞, �̃�𝑚)
]︀2 ˆ̃𝑦2(𝜏, 𝑞, �̃�𝑚)𝛽𝑙,𝑚(𝜏),
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as the increment for both Gâteaux differentials, by (17) we obtain∫︁ 𝜋

0

{︂
1[︀

𝑦′(𝑥*, 𝑞, 𝜆𝑛)
]︀2𝑦2(𝜏, 𝑞, 𝜆𝑛)𝛽𝑘,𝑛(𝜏) − 1[︀

ˆ̃𝑦′(𝑥*, 𝑞, �̃�𝑚)
]︀2 ˆ̃𝑦2(𝜏, 𝑞, �̃�𝑚)𝛽𝑙,𝑚(𝜏)

}︂2

𝑑𝜏 = 0.

Since the integrand is nonnegative, by Theorem 2 we have the representation

ˆ̃𝑦(𝜏, 𝑞, �̃�𝑚)
a.e.
=

{︂
𝐶1𝑦(𝜏, 𝑞, 𝜆𝑛), as 𝜏 ∈ [0, 𝑥*],
𝐶2𝑦(𝜏, 𝑞, 𝜆𝑛), as 𝜏 ∈ (𝑥*, 𝜋],

𝐶𝑖 ̸= 0, 𝑖 = 1, 2. (18)

The relation 𝐶𝑖 ̸= 0, 𝑖 = 1, 2, follows from the condition 𝑥* = 𝑥𝑘,𝑛 = �̃�𝑙,𝑚 ∈ (0, 𝜋) and thus

𝛽𝑘,𝑛(𝜏) ̸= 0, 𝛽𝑙,𝑚(𝜏) ̸= 0. Since 𝑦 and ˆ̃𝑦 solve differential equations in problem (1) for the

corresponding eigenvalues 𝜆𝑛, �̃�𝑚 and potentials 𝑞 and 𝑞, we obtain

𝑞(𝜏) − 𝜆𝑛
a.e.
=

𝑦′′(𝜏, 𝑞, 𝜆𝑛)

𝑦(𝜏, 𝑞, 𝜆𝑛)
a.e.
=

ˆ̃𝑦′′(𝜏, 𝑞, 𝜆𝑛)

ˆ̃𝑦(𝜏, 𝑞, �̃�𝑚)

a.e.
= 𝑞(𝜏) − �̃�𝑚. (19)

Integrating the obtain relation w.r.t. 𝜏 from 0 to 𝜋 and bearing in mind the normalization (3),

we obtain 𝜆𝑛 = �̃�𝑚.
Identities �̃� = 𝛼, 𝛽 = 𝛽 follow from (1), (8) and (18). The proof is complete.

Proof of Proposition 4. To prove the proposition, in the proof of Theorem 5 we continue po-
tentials 𝑞 and 𝑞 in relation (19) by continuity and it completes the proof.

Proof of Proposition 5. In order not to overload the arguments by technical details, we provide
the proof for Dirichlet case 𝛼 = 𝜋𝑚, 𝛽 = 𝜋𝑝, 𝑚, 𝑝 ∈ Z.

As 𝑞 we take 𝑞 ≡ 0, then �̃�𝑘,𝑛 = 𝑘𝜋
𝑛

for each 𝑛 ∈ N and 0 6 𝑘 6 𝑛. For an arbitrary interval
(𝑎, 𝑏) ⊂ [0, 𝜋] there exist 𝑛 ∈ N and 0 6 𝑘0 6 𝑛− 1 such that [𝑥𝑘0,𝑛, 𝑥𝑘0+1,𝑛] ⊂ (𝑎, 𝑏).

Let 0 6 𝑧 6 𝑡 6 𝜋
2𝑛

. We consider the potential

𝑞(𝑥, 𝑧, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
2

(𝑥−𝑥𝑘0,𝑛
−𝑡)2−𝑡2+𝑧2

, 𝑥𝑘0,𝑛 + 𝑧 6 𝑥 6 𝑥𝑘0,𝑛 + 𝑡,
2

(𝑥𝑘0+1,𝑛−𝑥−𝑡)2−𝑡2+𝑧2
, 𝑥𝑘0+1,𝑛 − 𝑡 6 𝑥 6 𝑥𝑘0+1,𝑛 − 𝑧,

−𝑛2, 𝑥 ∈ [0, 𝜋] ∖ [𝑥𝑘0,𝑛, 𝑥𝑘0+1,𝑛],
0, otherwise,

(20)

not obeying normalization condition (3).

The eigenfunction of problem (1) with potential (20) associated with 𝑛th eigenvalue �̆�𝑛 = 0
reads as

𝑦(𝑥, 𝑞, �̆�𝑛, 𝑧, 𝑡) =

=

⎧⎨⎩ (−1)𝑘0𝑌 (𝑥− 𝑥𝑘0,𝑛, 𝑧, 𝑡), 𝑥𝑘0,𝑛 6 𝑥 6
𝑥𝑘0,𝑛

+𝑥𝑘0+1,𝑛

2
,

(−1)𝑘0𝑌 (𝑥𝑘0+1,𝑛 − 𝑥, 𝑧, 𝑡),
𝑥𝑘0,𝑛

+𝑥𝑘0+1,𝑛

2
< 𝑥 6 𝑥𝑘0+1,𝑛,

sin𝑛𝑥, 𝑥 ∈ [0, 𝜋] ∖ [𝑥𝑘0,𝑛, 𝑥𝑘0+1,𝑛],

(21)

where

𝑌 (𝑥, 𝑧, 𝑡) =

⎧⎨⎩
𝑛𝑥, as 𝑥 ∈ [0, 𝑧],

− 𝑛
2(𝑡−𝑧)

(𝑥− 𝑡)2 + 𝑛𝑧 + 𝑛(𝑡−𝑧)
2

, as 𝑥 ∈ (𝑧, 𝑡],

𝑛𝑧 + 𝑛(𝑡−𝑧)
2

, as 𝑥 ∈ (𝑡, 𝜋
2𝑛

].

Here the eigenfunctions of problems (1) with potentials (20) and 𝑞 ≡ 0 for each 0 6 𝑧 6 𝑡 6 𝜋
2𝑛

are both normalized by the condition 𝑦′(0, 𝑞, �̆�𝑛, 𝑧, 𝑡) = 𝑦′(0, 𝑛2) = 𝑛. Moreover, the sets of
their zeros 𝑥𝑘,𝑛 = �̃�𝑘,𝑛 = 𝑘𝜋

𝑛
, 0 6 𝑘 6 𝑛, coincide.
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We consider the function

𝐹 (𝑧, 𝑡) =
1

2
‖𝑦2(·, 𝑞, �̆�𝑛, 𝑧, 𝑡)‖2𝐿2(𝑥𝑘0,𝑛

,𝑥𝑘0+1,𝑛)
− 1

2
‖𝑦2(·, 𝑞, 𝑛2)‖2𝐿2(𝑥𝑘0,𝑛

,𝑥𝑘0+1,𝑛)

=
𝑛2𝑧3

3
+

𝑛2(𝑡− 𝑧)3

20
− 𝑛2(𝑡 + 𝑧)(𝑡− 𝑧)2

6
+
{︁𝑛(𝑡 + 𝑧)

2

}︁2(︁ 𝜋

2𝑛
− 𝑧

)︁
− 𝜋

4𝑛
.

in the triangle 0 6 𝑧 6 𝑡 6 𝜋
2𝑛

. Function 𝐹 is continuous in the closed domain 0 6 𝑧 6 𝑡 6 𝜋
2𝑛

.
Through the points with the coordinates 𝑧 = 0, 𝑡 = 0 and 𝑧 = 𝜋

2𝑛
, 𝑡 = 𝜋

2𝑛
we draw a continuous

curve Γ belonging to the interior (except the end-points of the curve) of the domain 0 < 𝑧 <

𝑡 < 𝜋
2𝑛

. Since 𝐹 (0, 0) = − 𝜋
4𝑛

, and 𝐹 ( 𝜋
2𝑛
, 𝜋
2𝑛

) = 𝜋
4𝑛

(︀
𝜋2

6
− 1

)︀
, on curve Γ there exist points with

coordinates (𝑧*, 𝑡*) ∈ Γ, 0 < 𝑧* < 𝑡* < 𝜋
2𝑛

obeying (see (21)) the identity

𝐹 (𝑧*, 𝑡*) =
1

2
‖𝑦2(·, 𝑞, �̆�𝑛, 𝑧

*, 𝑡*)‖2𝐿2(𝑥𝑘0,𝑛
,𝑥𝑘0+1,𝑛)

− 1

2
‖𝑦2(·, 𝑞, 𝑛2)‖2𝐿2(𝑥𝑘0,𝑛

,𝑥𝑘0+1,𝑛)
= 0,

where 0 < 𝑧* < 𝑡* < 𝜋
2𝑛

. Together with Theorem 2 and (21) it yields the relations

‖𝑦2(·, 𝑞, �̆�𝑛, 𝑧
*, 𝑡*)‖2𝐿2(0,𝜋)

= ‖𝑦2(·, 𝑞, 𝑛2)‖2𝐿2(0,𝜋)
, 𝛽𝑘,𝑛 ≡ 𝛽𝑘,𝑛 on [0, 𝜋], 0 6 𝑘 6 𝑛,

and

𝐷𝑥𝑘,𝑛[𝑞, 𝛿[1](𝑥)] = 𝐷�̃�𝑘,𝑛[𝑞, 𝛿[1](𝑥)],

for each 𝑥 ∈ [0, 𝜋] ∖ (𝑥𝑘0,𝑛, 𝑥𝑘0+1,𝑛), 0 6 𝑘 6 𝑛.

It implies (12).
After the renormalization of the potential

𝑞(𝑥, 𝑧*, 𝑡*) =

⎧⎪⎪⎨⎪⎪⎩
2

(𝑥−𝑥𝑘0,𝑛
−𝑡*)2−𝑡*2+𝑧*2

, 𝑥𝑘0,𝑛 + 𝑧* 6 𝑥 6 𝑥𝑘0,𝑛 + 𝑡*,
2

(𝑥𝑘0+1,𝑛−𝑥−𝑡*)2−𝑡*2+𝑧*2
, 𝑥𝑘0+1,𝑛 − 𝑡* 6 𝑥 6 𝑥𝑘0+1,𝑛 − 𝑧*,

−𝑛2, 𝑥 ∈ [0, 𝜋] ∖ [𝑥𝑘0,𝑛, 𝑥𝑘0+1,𝑛],
0, otherwise,

we obtain the potential satisfying (3), (11) and (12):

𝑞(𝑥) = 𝑞(𝑥, 𝑧*, 𝑡*) − 1

𝜋

∫︁ 𝜋

0

𝑞(𝑥, 𝑧*, 𝑡*) 𝑑𝑥.

Since the function (𝑥−𝑥𝑘0,𝑛− 𝑡*)2− 𝑡*2 +𝑧*2 is separated from zero on the segment 𝑥𝑘0,𝑛 +𝑧* 6
𝑥 6 𝑥𝑘0,𝑛+𝑡* and the same is true for the function (𝑥𝑘0+1,𝑛 − 𝑥− 𝑡*)2 − 𝑡*2 + 𝑧*2 on the segment
𝑥𝑘0+1,𝑛 − 𝑡* 6 𝑥 6 𝑥𝑘0+1,𝑛 − 𝑧*, potential 𝑞 is a function with bounded variation on [0, 𝜋]. By
(21) all the zeroes of eigenfunctions 𝑦(·, 𝑞, 𝜆𝑛, 𝑧

*, 𝑡*) and 𝑦(·, 𝑞, 𝑛2) coincide.
The case of arbitrary 𝛼, 𝛽 ∈ R can be proven in the same way. The proof is complete.

Remark. Since curve Γ in the proof of Proposition 5 was chosen in arbitrary way in the
interior of domain 0 < 𝑧 < 𝑡 < 𝜋

2𝑛
, then the amount of various points (𝑡*, 𝑧*) and thus of various

potentials 𝑞 satisfying conditions (11), (12) of Proposition 5 is at least continuum.
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