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ORTHOSIMILAR EXPANSION SYSTEMS

IN SPACE WITH REPRODUCING KERNEL

V.V. NAPALKOV (JR.)

Abstract. We study expansion system similar to orthogonal ones (orthosimilar systems)
in reproducing kernel Hilbert spaces. We establish the equivalency of two definitions of
orthosimilar system. We show the relation of orthosimilar system with the problem on
description of the dual space to a Hilbert space in terms of a special system of functions.
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Expansions systems similar to orthogonal ones (orthosimilar expansion systems) in a Hilbert
space were introduced by T.P. Lukashenko in work [1] and they are applied, say, in wavelet
analysis. In this work we study orthosimilar expansion systems in spaces with reproducing
kernel. The need of studying spaces with reproducing kernel is motivated by the problems of
complex analysis.

Definition 1 (See, for instance, [3]). Let 𝐻 be a Hilbert space over field C consisting of func-
tions defined on a set 𝑀 . Space 𝐻 is called reproducing kernel Hilbert space if for each point
𝑧0 ∈ 𝑀 the functional

𝛿𝑧0 : 𝐻 −→ C; 𝛿𝑧0𝑓 −→ 𝑓(𝑧0), 𝑓 ∈ 𝐻

is linear and continuous on 𝐻.

By Riesz-Fischer theorem, a linear continuous functional on Hilbert space 𝐻 is generated by
some element of 𝐻. The identity

𝑓(𝜉) = 𝛿𝜉𝑓 = (𝑓(𝑧), 𝐾𝐻(𝑧, 𝜉))𝐻 , 𝜉 ∈ 𝑀, (1)

determines the reproducing kernel of space 𝐻 as a function 𝐾𝐻(𝑧, 𝜉) of two variables 𝑧, 𝜉 ∈ 𝑀 .
The main properties of Hilbert spaces with reproducing kernel are presented, for instance,
in [3]. The most important fact of the theory of spaces with reproducing kernel is the following
Moore-Aronszajn theorem (see, for instance, [5]).

Remark. We assume for simplicity that 𝐻 is a Hilbert space over the field of complex
numbers. For Hilbert spaces over the field of real numbers all said below is also true with
appropriate changes.

Theorem A. Let 𝑀 be an arbitrary set of points, and 𝐾(𝑧, 𝜉) : 𝑀 ×𝑀 → C is a complex-
valued function. This function is a reproducing kernel of some Hilbert space 𝐻 consisting of
complex-valued functions defined on 𝑀 if and only if for each finite set of points 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈
𝑀 and for each finite set of complex numbers 𝑐1, 𝑐2, . . . , 𝑐𝑛 the condition

𝑛∑︁
𝑙,𝑚=1

𝑐𝑙 · 𝑐𝑚 ·𝐾(𝑧𝑙, 𝑧𝑚) > 0
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holds true. At that, 𝐻 is the only space with reproducing kernel having function 𝐾(𝑧, 𝜉) as the
reproducing kernel.

In works of T.P. Lukashenko [1], [2] the following definition of orthosimilar expansion system
is given.

Remark. The definition of orthosimilar expansions system the notion of Lebesgue integral
with the values in a Hilbert space is used. The theory of such integrals is exposed in [4]. To
distinguish the case when the integral is treated as the usual Lebesgue integral, we introduce

the notation: the symbol
∫︀ (𝐻)

Ω
indicates the integral of a function with values in a Hilbert space

𝐻 (see below).

Definition 2. (see [1]) Let 𝐻 be a Hilbert space over field R or C, and Ω is the space with a
countable additive measure 𝜇. A system of elements {𝑒𝜔}𝜔∈Ω is called orthosimilar (similar to
orthogonal) expansion system with the measure 𝜇 in 𝐻, if each element 𝑦 ∈ 𝐻 can be represented
as

𝑦 =

∫︁ (𝐻)

Ω

(𝑦, 𝑒𝜔)𝐻𝑒𝜔 𝑑𝜇(𝜔),

where the integral is treated as the proper or improper Lebesgue integral. In the latter case there
exists an exhaustion {Ω𝑘}∞𝑘=1 of space Ω, namely, all Ω𝑘 are 𝜇-measurable, Ω𝑘 ⊂ Ω𝑘+1 as 𝑘 ∈ N
and

⋃︀∞
𝑘=1 Ω𝐾 = Ω. This exhaustion can depend on 𝑦 and is called appropriate for 𝑦 and it is

so that the function (𝑦, 𝑒𝜔)𝐻 · 𝑒𝜔 is Lebesgue integrable on Ω𝑘 and

𝑦 =

∫︁ (𝐻)

Ω

(𝑦, 𝑒𝜔)𝐻𝑒𝜔 𝑑𝜇(𝜔) = lim
𝑘→∞

(𝐿)

∫︁ (𝐻)

Ω𝑘

(𝑦, 𝑒𝜔)𝐻𝑒𝜔 𝑑𝜇(𝜔).

In this work we consider a countable-finite space Ω with a countable additive measure 𝜇. If
measure 𝜇 is non-negative, the orthosimilar system {𝑒𝜔}𝜔∈Ω is called nonnegative.

Definition 3. A space Ω with a measure 𝜇 is called countable-finite, if Ω is represented as a
countable union of subsets Ω𝑘 ⊂ Ω:

⋃︀
𝑘>1 Ω𝑘 = Ω, 𝑘 = 1, 2, . . ., at that, 𝜇(Ω𝑘) < ∞ for each 𝑘.

In this work we employ a theorem proven in by T.P. Lukashenko in work [1].
Theorem B. Let 𝐻 be a separable Hilbert space over field R or C, space Ω with countable

additive measure 𝜇 be countable finite, {𝑒𝜔}𝜔∈Ω a system of elements in 𝐻, and for each 𝑦 ∈ 𝐻
the Parseval identity

‖𝑦‖2𝐻 =

∫︁
Ω

|(𝑦, 𝑒𝜔)𝐻 |2 𝑑𝜇(𝜔)

hold true. Then {𝑒𝜔}𝜔∈Ω is an orthosimilar expansion system in 𝐻 (in the sense of Definition 2).
We shall prove that if 𝐻 is a separable reproducing kernel Hilbert space over field C consisting

of functions 𝑓(𝑧), 𝑧 ∈ 𝑀 , where 𝑀 is a some set, then we can give an equivalent definition of
orthosimilar expansion system.

Definition 4. Let 𝐻 be a separable reproducing kernel Hilbert space over field C, and Ω is
a space with countable additive measure 𝜇 (see [4]). A system of elements {𝑒𝜔(𝑧), 𝑧 ∈ 𝑀}𝜔∈Ω
is called orthosimilar (similar to orthogonal) expansion system with measure 𝜇 in 𝐻, if each
function 𝑓 ∈ 𝐻 is represented as

𝑓(𝑧) =

∫︁
Ω

(𝑓(𝜏), 𝑒𝜔(𝜏))𝐻𝑒𝜔(𝑧) 𝑑𝜇(𝜔), 𝑧 ∈ 𝑀.

The latter identity is treated “pointwise” for each 𝑧 ∈ 𝑀 , and the integral is treated as the usual
Lebesgue integral.

As it is noted in work [2], function 𝑓𝜔 = (𝑓(𝜏), 𝑒𝜔(𝑧))𝐻 of variable 𝜔 ∈ Ω is not necessary
𝜇-measurable. Because of this fact, in [2] the notion of measurable orthosimilar expansion
system was introduced.
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Definition 5. Suppose that in a Hilbert space 𝐻 there is an orthosimilar expansion system
(in the sense of Definition 2) {𝑒𝜔(𝑧)}𝜔∈Ω with a measure 𝜇. This system is called measurable

if for each 𝑓 ∈ 𝐻 function 𝑓𝑒(𝜔)
𝑑𝑒𝑓
= (𝑓(𝑧), 𝑒𝜔(𝑧))𝐻 is 𝜇-measurable on Ω.

As it was proven in work [2], for each considered orthosimilar expansion system {𝑒𝜔(𝑧)}𝜔∈Ω
there exists a function 𝜃(𝜔), |𝜃(𝜔)| = 1, such that the system {𝜃(𝜔) · 𝑒𝜔(𝑧)}𝜔∈Ω is measurable.
Theorem C ([2]). If {𝑒𝜔} ⊂ 𝐻 is a non-negative orthosimilar expansion system in 𝐻, and

the space with measure Ω is countable-finite, then there exists a function 𝜃(𝜔) with values either
in R or in C subject over which field we consider 𝐻 such that |𝜃(𝜔)| = 1, on Ω and {𝜃(𝜔) · 𝑒𝜔}
is a measurable orthosimilar expansion system in 𝐻.

Let Ω be a countable-finite space with a non-negative countable additive measure 𝜇. Consider
the system of functions {𝑒𝜔(𝑧)}𝑧∈𝑀 of variable 𝜔 ∈ Ω. Without loss of generality we can assume
that this system has the property: for each 𝑧 ∈ 𝑀 the function 𝑒𝜔(𝑧), 𝜔 ∈ Ω is 𝜇-measurable
on Ω. If it is not true, then there exists a complex-valued function 𝜃(𝜔), |𝜃(𝜔)| = 1 such that
all the functions of the system {𝜃(𝜔) · 𝑒𝜔(𝑧)}𝑧∈𝑀 are 𝜇-measurable (see [2]). Assume also that
for each 𝑧 ∈ 𝑀 ∫︁

Ω

|𝑒𝜔(𝑧)|2 𝑑𝜇(𝜔) < ∞.

By Cauchy-Schwarz inequality each finite linear combination of the elements of system
{𝑒𝜔(𝑧)}𝑧∈𝑀 is square summable over Ω w.r.t. measure 𝜇. By 𝑅(Ω, 𝜇) we denote the com-
pletion of a linear span of functions {𝑒𝜔(𝑧)}𝑧∈𝑀 w.r.t. the norm

‖ℎ‖𝑅
𝑑𝑒𝑓
=

√︃∫︁
Ω

|ℎ(𝜔)|2 𝑑𝜇(𝜔)

𝑅(Ω, 𝜇) is a Hilber space with the scalar product

(ℎ, 𝑔)𝑅 =

∫︁
Ω

ℎ(𝜔) · 𝑞(𝜔) 𝑑𝜇(𝜔).

By Riesz-Fischer theorem, each linear continuous functional 𝑆 over 𝑅(Ω, 𝜇) is generated by
some element ℎ according the rule

𝑆(𝑓) = (𝑓, ℎ)𝑅, 𝑓 ∈ 𝑅(Ω, 𝜇).

With each linear continuous functional generated by function ℎ ∈ 𝑅(Ω, 𝜇) we associate the
function ̂︀ℎ(𝑧)

𝑑𝑒𝑓
= (𝑒𝜔(𝑧), ℎ(𝜔))𝑅 =

∫︁
Ω

ℎ(𝜔) · 𝑒𝜔(𝑧) 𝑑𝜇(𝜔), 𝑧 ∈ 𝑀.

We shall call this function the transform of the functional generated by function ℎ ∈ 𝑅(Ω, 𝜇).
These functions form a Hilbert spacê︀𝑅(Ω, 𝜇)

𝑑𝑒𝑓
= {̂︀ℎ : ℎ ∈ 𝑅(Ω, 𝜇)}

with the scalar product

(̂︀ℎ, ̂︀𝑞) ̂︀𝑅 𝑑𝑒𝑓
= (𝑞, ℎ)𝑅, ‖̂︀ℎ‖ ̂︀𝑅 =

√︁
(̂︀ℎ,̂︀ℎ) ̂︀𝑅 = ‖ℎ‖𝑅, ℎ, 𝑞 ∈ 𝑅(Ω, 𝜇).

We note that space ̂︀𝑅(Ω, 𝜇) is a Hilbert one with reproducing kernel. Indeed, each element̂︀ℎ ∈ ̂︀𝑅(Ω, 𝜇) is represented as ̂︀ℎ(𝑧) = (𝑒𝜔(𝑧), ℎ(𝜔))𝑅, 𝑧 ∈ 𝑀.

For an arbitrary 𝑧0 ∈ 𝑀 the estimate

|̂︀ℎ(𝑧0)| =|(𝑒𝜔(𝑧0), ℎ(𝜔))𝑅| 6 ‖𝑒𝜔(𝑧0)‖𝑅‖ℎ‖𝑅 = ‖𝑒𝜔(𝑧0)‖𝑅‖̂︀ℎ‖ ̂︀𝑅
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holds true. Hence, for each 𝑧0 ∈ 𝑀 the functional ̂︀ℎ → ̂︀ℎ(𝑧0) is linear and continuous functional

on space ̂︀𝑅(Ω, 𝜇), this is why space ̂︀𝑅(Ω, 𝜇) is a reproducing kernel Hilbert space.

1. Main result

Theorem 1. Suppose in a separable reproducing kernel Hilbert space 𝐻 over field C there
exists a system of functions {𝑒𝜔(𝑧)}𝜔∈Ω ⊂ 𝐻, and a space Ω with countable additive measure 𝜇
is countable-finite. Let for each 𝑧 ∈ 𝑀 the function 𝑒𝜔(𝑧) is measurable w.r.t. variable 𝜔 ∈ Ω.
Then the following conditions are equivalent

1. System {𝑒𝜔(𝑧)}𝜔∈Ω ⊂ 𝐻 is an orthosimilar expansion system with measure 𝜇 in space 𝐻
in the sense of Definition 2, i.e., each function 𝑓 in 𝐻 is represented as

𝑓(𝑧) =

∫︁ (𝐻)

Ω

(𝑓(𝜏), 𝑒𝜔(𝜏))𝐻𝑒𝜔(𝑧) 𝑑𝜇(𝜔). (2)

Here the integral is treated as that of a function with values in a Hilbert space [4, Ch. III].
The identity of two elements is treated as that of two elements in a Hilbert space.

2. System {𝑒𝜔(𝑧)}𝜔∈Ω ⊂ 𝐻 is an orthosimilar expansion system with measure 𝜇 in space 𝐻
in the sense of Definition 4, i.e., each function 𝑓 in space 𝐻 is represented as

𝑓(𝑧) =

∫︁
Ω

(𝑓(𝜏), 𝑒𝜔(𝜏))𝐻𝑒𝜔(𝑧) 𝑑𝜇(𝜔), 𝑧 ∈ 𝑀. (3)

Identity (3) is understood “pointwise” for each fixed 𝑧 ∈ 𝑀 , the integral is treated as the
usual Lebesgue integral.

3. The system of functions {𝑒𝜔(𝑧)}𝜔∈Ω belongs to space 𝐻. The reproducing kernel of space
𝐻 reads as

𝐾𝐻(𝑧, 𝜉) =

∫︁
Ω

𝑒𝜔(𝑧) · 𝑒𝜔(𝜉) 𝑑𝜇(𝜔), 𝑧, 𝜉 ∈ 𝑀. (4)

Here the integral is treated as the usual Lebesgue integral. The identity is understood
“pointwise”.

4. Space 𝐻 coincides with space ̂︀𝑅(Ω, 𝜇). Spaces 𝐻 and ̂︀𝑅(Ω, 𝜇) comprise the same elements
and for each functions ℎ, 𝑟 ∈ 𝐻 the identity

(ℎ, 𝑟)𝐻 = (ℎ, 𝑟) ̂︀𝑅
holds true.

Let us prove that Condition 1 implies Condition 2. Suppose system {𝑒𝜔(𝑧)}𝜔∈Ω ⊂ 𝐻 is an
orthosimilar expansion system with a measure 𝜇 in a space 𝐻 in the sense of Definition 2. We
employ the following theorem being a particular case of a theorem proven in [4]:

Theorem D. Let 𝐻 be a Hilbert space and Ω be a space with a measure 𝜇, 𝑆 be a linear
continuous operator mapping 𝐻 in another Hilbert space 𝑌 . If a function 𝑓 : Ω → 𝐻 with
the values in the Hilbert space is 𝜇-integrable in the sense of [4, Ch. III], then the function
𝑆𝑓 : Ω → 𝑌 is also 𝜇-integrable and∫︁

Ω

𝑆𝑓(𝜔) 𝑑𝜇(𝜔) = 𝑆

∫︁
Ω

𝑓(𝜔) 𝑑𝜇(𝜔).

We take an arbitrary fixed point 𝑧0 in set 𝑀 and apply this theorem with delta-functional
acting from space 𝐻 into C as the operator 𝑆:

𝛿𝑧0 : 𝑓 −→ 𝑓(𝑧0).
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We obtain the identity

𝑓(𝑧0) =𝛿𝑧0𝑓(𝑧) = 𝛿𝑧0

∫︁ (𝐻)

Ω

(𝑓(𝜏), 𝑒𝜔(𝜏))𝐻𝑒𝜔(𝑧) 𝑑𝜇(𝜔)

=

∫︁
Ω

(𝑓(𝜏), 𝑒𝜔(𝜏))𝐻𝛿𝑧0𝑒𝜔(𝑧) 𝑑𝜇(𝜔) =

∫︁
Ω

(𝑓(𝜏), 𝑒𝜔(𝜏))𝐻𝑒𝜔(𝑧0) 𝑑𝜇(𝜔).

The both sides of this identity are complex numbers. The integral is treated as the usual
Lebesgue integral with values in C. Since point 𝑧0 ∈ 𝑀 is arbitrary, {𝑒𝜔(𝑧)}𝜔∈Ω ⊂ 𝐻 is
an orthosimilar expansion system in the sense of Definition 4. Thus, Condition 1 implies
Condition 2.

Let us show that Condition 2 yields Condition 3.
It is obvious that the system of functions {𝑒𝜔(𝑧)}𝜔∈Ω ⊂ 𝐻 belongs to space 𝐻. Since for a

fixed 𝜉 ∈ 𝑀 the function 𝐾𝐻(𝑧, 𝜉), 𝑧 ∈ 𝑀 , belongs to space 𝐻, we can substitute this function
into identity (3) to obtain

𝐾𝐻(𝑧, 𝜉) =

∫︁
Ω

(𝐾𝐻(𝜏, 𝜉), 𝑒𝜔(𝜏))𝐻𝑒𝜔(𝑧) 𝑑𝜇(𝜔)

=

∫︁
Ω

(𝑒𝜔(𝜏), 𝐾𝐻(𝜏, 𝜉))𝐻𝑒𝜔(𝑧) 𝑑𝜇(𝜔) =

∫︁
Ω

𝑒𝜔(𝑧) · 𝑒𝜔(𝜉) 𝑑𝜇(𝜔), 𝑧, 𝜉 ∈ 𝑀.

(5)

The identity in (5) is understood “pointwise”. The integral is treated as the usual Lebesgue
integral. Thus, Condition 2 yields Condition 3.

Let us show that Condition 3 implies Condition 4. We first prove that if Condition 3 holds
true, then space 𝑅(Ω, 𝜇) defined above is a Hilbert one with reproducing kernel. In identity (4)
we let 𝜉 = 𝑧 and obtain

𝐾𝐻(𝑧, 𝑧) =

∫︁
Ω

|𝑒𝜔(𝑧)|2 𝑑𝜇(𝜔) < ∞, 𝑧 ∈ 𝑀.

Thus, all the functions in the system {𝑒𝜔(𝑧)}𝑧∈𝑀 are 𝜇-measurable and square integrable over Ω
w.r.t. measure 𝜇. By Cauchy-Schwarz inequality each finite linear combination of the functions
in system {𝑒𝜔(𝑧)}𝑧∈𝑀 is also measurable and square integrable over Ω w.r.t. measure 𝜇. As it
was described, space 𝑅(Ω, 𝜇) is the completion w.r.t. the norm

‖ℎ‖𝑅 =

√︃∫︁
Ω

|ℎ(𝜔)|2 𝑑𝜇(𝜔)

of linear span of functions {𝑒𝜔(𝑧)}𝑧∈𝑀 .
By Condition 3, the system of functions {𝑒𝜔(𝑧)}𝜔∈Ω belongs to space 𝐻. We denote by 𝑄

the completion of the linear span of system {𝑒𝜔(𝑧)}𝜔∈Ω w.r.t. the norm of space 𝐻. Thus, 𝑄
is a closed subspace of space 𝐻. If 𝑔 ∈ 𝑄, then ‖𝑔‖𝑄 = ‖𝑔‖𝐻 . Since 𝐻 is a reproducing kernel
Hilbert space, the same is true for 𝑄. Indeed, if 𝑔 ∈ 𝑄, 𝑧 ∈ 𝑀 , then 𝑔 ∈ 𝐻

|𝑔(𝑧)| = |(𝑔(𝜏), 𝐾𝐻(𝜏, 𝑧))𝐻 | 6 ‖𝐾𝐻(𝜏, 𝑧)‖𝐻 · ‖𝑔‖𝐻 = ‖𝐾𝐻(𝜏, 𝑧)‖𝐻 · ‖𝑔‖𝑄, 𝑧 ∈ 𝑀.

This is 𝑄 is a reproducing kernel Hilbert space.
The system of functions {𝑒𝜔(𝑧)}𝜔∈Ω is obviously complete in space 𝑄. With each linear

continuous functional on 𝑄 generated by a function 𝑔 ∈ 𝑄, we associate the functioñ︀𝑔(𝜔) = (𝑒𝜔(𝑧), 𝑔(𝑧))𝑄.

The set of such functions forms a Hilbert spacẽ︀𝑄 𝑑𝑒𝑓
= {̃︀𝑔 : 𝑔 ∈ 𝑄}
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with the scalar product

(̃︀𝑔, ̃︀𝑢) ̃︀𝑄 𝑑𝑒𝑓
= (𝑢, 𝑔)𝑄, ‖̃︀𝑔‖2̃︀𝑄 = (̃︀𝑔, ̃︀𝑔) ̃︀𝑄 = ‖𝑔‖2𝑄, 𝑔, 𝑢 ∈ 𝑄. (6)

Let us show that ̃︀𝑄 is a reproducing kernel Hilbert space. Indeed, given an arbitrary point
𝜔0 ∈ Ω, we have the estimate

|̃︀𝑔(𝜔0)| = |(𝑒𝜔0(𝑧), 𝑔(𝑧))𝑄| 6 ‖𝑒𝜔0(𝑧)‖𝑄 · ‖𝑔‖𝑄 = ‖𝑒𝜔0(𝑧)‖𝑄 · ‖̃︀𝑔‖ ̃︀𝑄.
Thus, ̃︀𝑄 is a reproducing kernel Hilbert space. Since for each 𝑧0 ∈ 𝑀

𝑒𝜔(𝑧0) = (𝑒𝜔(𝑧), 𝐾𝑄(𝑧, 𝑧0))𝑄, (7)

the function 𝑒𝜔(𝑧0), 𝜔 ∈ Ω, and each finite linear combination of elements of system {𝑒𝜔(𝑧)}𝑧∈𝑀
belongs to space ̃︀𝑄 as a function of 𝜔 ∈ Ω.

Lemma 1. Space 𝑅(Ω, 𝜇) coincides with space ̃︀𝑄 and is a reproducing kernel Hilbert space.

Proof. System of functions {𝑒𝜔(𝑧)}𝑧∈𝑀 belongs to space ̃︀𝑄 and is complete in it. The same
system of functions {𝑒𝜔(𝑧)}𝑧∈𝑀 belongs to space 𝑅(Ω, 𝜇) and is complete in it. This is why it

is sufficient to show that the norm in space ̃︀𝑄 is an integral one

‖𝑓‖ ̃︀𝑄 =

√︃∫︁
Ω

|𝑓(𝜔)|2 𝑑𝜇(𝜔), 𝑓 ∈ ̃︀𝑄.

In our notations

𝐾𝑄(·, 𝑧)(𝜔) = (𝑒𝜔(𝜂), 𝐾(𝜂, 𝑧))𝑄 = 𝑒𝜔(𝑧), 𝑧 ∈ 𝑀.

We note that for each 𝑔 ∈ 𝑄

𝑔(𝑧) = (𝑔(𝜂), 𝐾𝑄(𝜂, 𝑧))𝑄 = (𝐾𝑄(·, 𝑧)(𝜔), ̃︀𝑔(𝜔)) ̃︀𝑄 = (𝑒𝜔(𝑧), ̃︀𝑔(𝜔)) ̃︀𝑄, 𝑧 ∈ 𝑀.

The system of reproducing kernels {𝐾𝑄(𝑧, 𝑤)}𝑤∈𝑀 is complete in space 𝑄 (see [3]). Each
element 𝑓 ∈ 𝑄 can be approximated in the norm of space 𝑄 by finite linear combination of
elements in {𝐾𝑄(𝑧, 𝑤)}𝑤∈𝑀 . Namely, there exists a sequence of functions

𝑝𝑛(𝑧)
𝑑𝑒𝑓
=

𝑘𝑛∑︁
𝑗=1

𝑎𝑗,𝑛𝐾𝑄(𝑧, 𝑤𝑗,𝑛), 𝑛 = 1, 2, . . . , (8)

where {𝑎𝑗,𝑛}𝑗,𝑛∈N is a sequence of complex numbers, and {𝑤𝑗,𝑛}𝑗,𝑛∈N is a sequence of points in
𝑀 with the property

‖𝑓(𝑧) − 𝑝𝑛(𝑧)‖𝑄 → 0, 𝑛 → ∞. (9)

We note that by identity (7)

̃︀𝑝𝑛(𝜔) = (𝑒𝜔(𝑧), 𝑝𝑛(𝑧))𝑄 =

(︂
𝑒𝜔(𝑧),

𝑘𝑛∑︁
𝑗=1

𝑎𝑗,𝑛𝐾𝑄(𝑧, 𝑤𝑗,𝑛)

)︂
𝑄

=
𝑘𝑛∑︁
𝑗=1

𝑎𝑗,𝑛(𝑒𝜔(𝑧), 𝐾𝑄(𝑧, 𝑤𝑗,𝑛))𝑄 =
𝑘𝑛∑︁
𝑗=1

𝑎𝑗,𝑛𝑒𝜔(𝑤𝑗,𝑛).

(10)

Thus, function ̃︀𝑝𝑛(𝜔), 𝑛 = 1, 2, . . . , is a finite linear combination of elements of system
{𝑒𝜔(𝑧)}𝑧∈𝑀 . The obvious identity

‖ ̃︀𝑓(𝜔) − ̃︀𝑝𝑛(𝜔)‖ ̃︀𝑄 = ‖𝑓(𝑧) − 𝑝𝑛(𝑧)‖𝑄

show that the system {𝑒𝜔(𝑧)}𝑧∈𝑀 is complete in space ̃︀𝑄. We observe that identity (4) implies

𝐾𝑄(𝑧, 𝜉0) =

∫︁
Ω

𝑒𝜔(𝜉0)𝑒𝜔(𝑧) 𝑑𝜇(𝜔) =

∫︁
Ω

(𝐾𝑄(𝜏, 𝜉0), 𝑒𝜔(𝜏))𝑄𝑒𝜔(𝑧) 𝑑𝜇(𝜔). (11)
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Let us prove by induction that for each function

𝑟𝑛(𝑧)
𝑑𝑒𝑓
=

𝑛∑︁
𝑗=1

𝑎𝑗𝐾𝑄(𝑧, 𝜉𝑗), 𝑧 ∈ 𝑀, {𝜉𝑗}𝑛𝑗=1 ∈ 𝑀

the identity

𝑟𝑛(𝑧) =

∫︁
Ω

(𝑟𝑛(𝜏), 𝑒𝜔(𝜏))𝑄𝑒𝜔(𝑧) 𝑑𝜇(𝜔) (12)

holds true. For 𝑛 = 1 it follows from (11) and the linearity of scalar product. Suppose that
identity (12) holds for 𝑛 = 𝑛0. Let us show that identity (12) is valid for 𝑛 = 𝑛0 + 1. It is easy
to see that

𝑟𝑛0+1(𝑧) = 𝑟𝑛0(𝑧) + 𝑎𝑛0+1𝐾𝑄(𝑧, 𝜉𝑛0+1).

Then the identity

𝑟𝑛0+1(𝑧) = 𝑟𝑛0(𝑧) + 𝑎𝑛0+1𝐾𝑄(𝑧, 𝜉𝑛0+1)

=

∫︁
Ω

(𝑟𝑛0(𝜏), 𝑒𝜔(𝜏))𝑄𝑒𝜔(𝑧) 𝑑𝜇(𝜔) + 𝑎𝑛0+1

∫︁
Ω

(𝐾𝑄(𝜏, 𝜉𝑛0+1), 𝑒𝜔(𝜏))𝑄𝑒𝜔(𝑧) 𝑑𝜇(𝜔)

=

∫︁
Ω

(𝑟𝑛0(𝜏), 𝑒𝜔(𝜏))𝑄𝑒𝜔(𝑧) 𝑑𝜇(𝜔) +

∫︁
Ω

(𝑎𝑛0+1𝐾𝑄(𝜏, 𝜉𝑛0+1), 𝑒𝜔(𝜏))𝐻𝑒𝜔(𝑧) 𝑑𝜇(𝜔)

=

∫︁
Ω

(𝑟𝑛0(𝜏) + 𝑎𝑛0+1𝐾𝑄(𝜏, 𝜉𝑛0+1), 𝑒𝜔(𝜏))𝑄𝑒𝜔(𝑧) 𝑑𝜇(𝜔)

=

∫︁
Ω

(𝑟𝑛0+1(𝜏), 𝑒𝜔(𝜏))𝑄𝑒𝜔(𝑧) 𝑑𝜇(𝜔)

(13)

holds true. Thus, we have proven that identity (12) is valid, and thus for each function 𝑝𝑛(𝑧)
(see (8)) the representation

𝑝𝑛(𝑧) =

∫︁
Ω

(𝑝𝑛(𝜏), 𝑒𝜔(𝜏))𝑄𝑒𝜔(𝑧) 𝑑𝜇(𝜔) (14)

is true. It follows from identity (13) that for each 𝜉0 ∈ 𝑀 we have

(𝑝𝑛(𝜂), 𝐾𝑄(𝜂, 𝜉0))𝑄 =

∫︁
Ω

(𝑝𝑛(𝜏), 𝑒𝜔(𝜏))𝑄(𝑒𝜔(𝜂), 𝐾𝑄(𝜂, 𝜉0))𝑄 𝑑𝜇(𝜔). (15)

Since function 𝑝𝑛(𝑧) is a finite linear combination of the elements in system {𝐾𝑄(𝑧, 𝜉)}𝜉∈𝑀 ,
then by employing (15) and the linearity of integral and scalar product one can prove easily
that

‖𝑝𝑛‖2𝑄 = (𝑝𝑛(𝑧), 𝑝𝑛(𝑧))𝑄 =

∫︁
Ω

(𝑝𝑛(𝑧), 𝑒𝜔(𝑧))𝑄(𝑒𝜔(𝑧), 𝑝𝑛(𝑧))𝑄 𝑑𝜇(𝜔). (16)

As it was mentioned above, see (10),̃︀𝑝𝑛(𝜔) = (𝑒𝜔(𝑧), 𝑝𝑛(𝑧))𝑄.

At that, ‖̃︀𝑝𝑛‖ ̃︀𝑄 = ‖𝑝𝑛‖𝑄. This is why it follows from (16) that

‖̃︀𝑝𝑛‖2̃︀𝑄 =‖𝑝𝑛‖2𝑄 =

∫︁
Ω

(𝑝𝑛(𝑧), 𝑒𝜔(𝑧))𝑄(𝑒𝜔(𝑧), 𝑝𝑛(𝑧))𝑄 𝑑𝜇(𝜔)

=

∫︁
Ω

̃︀𝑝𝑛(𝜔) · ̃︀𝑝𝑛(𝜔) 𝑑𝜇(𝜔) =

∫︁
Ω

|̃︀𝑝𝑛(𝜔)|2 𝑑𝜇(𝜔).

(17)

We shall make use of Fatou theorem (see, for instance, [6]).
Theorem E. If a sequence of measurable nonnegative functions {𝑦𝑛} converges a.e. in Ω to

a function 𝑦 and ∫︁
Ω

𝑦𝑛(𝜔) 𝑑𝜇(𝜔) 6 𝐾,
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where 𝐾 is a constant, then 𝑦 is integrable over Ω and∫︁
Ω

𝑦(𝜔) 𝑑𝜇(𝜔) 6 𝐾.

We let 𝑦𝑛(𝜔) = |̃︀𝑝𝑛(𝜔)|2. The sequence {|̃︀𝑝𝑛(𝜔)|2}𝑛>0 converges pointwise in Ω to the function

𝑦(𝜔) = | ̃︀𝑓(𝜔)|2. Indeed, the sequence of function {𝑝𝑛}𝑛>0 converges to function 𝑓 in the norm
of space 𝑄 (see (9)), and thus for each 𝜔0 ∈ Ω⃒⃒

|̃︀𝑝𝑛(𝜔0)| − | ̃︀𝑓(𝜔0)|
⃒⃒
6|̃︀𝑝𝑛(𝜔0) − ̃︀𝑓(𝜔0)| = |(𝑒𝜔0(𝑧), 𝑝𝑛(𝑧) − 𝑓(𝑧))𝑄|
6‖𝑒𝜔0(𝑧)‖𝑄 · ‖𝑝𝑛(𝑧) − 𝑓(𝑧)‖𝑄 −→ 0, 𝑛 → ∞.

(18)

The function 𝑢 = 𝑥2, 𝑥 > 0, is continuous and thus it follows from (18) that

||̃︀𝑝𝑛(𝜔0)|2 − | ̃︀𝑓(𝜔0)|2| −→ 0, 𝑛 → ∞.

Since

‖̃︀𝑝𝑛‖2̃︀𝑄 → ‖ ̃︀𝑓‖2̃︀𝑄, 𝑛 → ∞, (19)

there exists a number 𝜀 > 0 such that∫︁
Ω

|̃︀𝑝𝑛(𝜔)|2 𝑑𝜇(𝜔) = ‖̃︀𝑝𝑛‖2̃︀𝑄 6 ‖ ̃︀𝑓‖2̃︀𝑄 + 𝜀, 𝑛 = 1, 2, . . . .

By Fatou theorem the function | ̃︀𝑓(𝜔)|2 is integrable over Ω w.r.t. measure 𝜇 and the inequality∫︁
Ω

| ̃︀𝑓(𝜔)|2 𝑑𝜇(𝜔) 6 ‖ ̃︀𝑓‖2̃︀𝑄 + 𝜀 (20)

holds true. We consider the sequence {𝑝𝑛}∞𝑛=𝑁 , where 𝑁 is a natural number. Due to (19),
increasing 𝑁 , we can make the number 𝜀 > 0 as small as needed. In inequality (20) the left
hand side is independent of 𝜀. Thus,∫︁

Ω

| ̃︀𝑓(𝜔)|2 𝑑𝜇(𝜔) 6 ‖ ̃︀𝑓‖2̃︀𝑄, ̃︀𝑓 ∈ ̃︀𝑄. (21)

Let us prove that ∫︁
Ω

| ̃︀𝑓(𝜔)|2 𝑑𝜇(𝜔) = ‖ ̃︀𝑓‖2̃︀𝑄, ̃︀𝑓 ∈ ̃︀𝑄. (22)

We consider two functions

𝑢 : ̃︀𝑄 −→ R, 𝑢( ̃︀𝑓) = ‖ ̃︀𝑓‖ ̃︀𝑄, (23)

𝑣 : ̃︀𝑄 −→ R, 𝑣( ̃︀𝑓) =

√︃∫︁
Ω

| ̃︀𝑓(𝜔)|2 𝑑𝜇(𝜔). (24)

By the triangle inequality we get

𝑢( ̃︀𝑓) 6 𝑢( ̃︀𝑓 − ̃︀𝑔) + 𝑢(̃︀𝑔), ̃︀𝑓, ̃︀𝑔 ∈ ̃︀𝑄
that implies

|𝑢( ̃︀𝑓) − 𝑢(̃︀𝑔)| 6 𝑢( ̃︀𝑓 − ̃︀𝑔), ̃︀𝑓, ̃︀𝑔 ∈ 𝑄.

Hence, the function 𝑢 : ̃︀𝑄 −→ R is continuous. By inequality (21) function 𝑣 is defined on ̃︀𝑄.
Cauchy-Schwarz inequality yields

𝑣( ̃︀𝑓) 6 𝑣( ̃︀𝑓 − ̃︀𝑔) + 𝑣(̃︀𝑔), ̃︀𝑓, ̃︀𝑔 ∈ ̃︀𝑄,

and thus, employing (21), we obtain

|𝑣( ̃︀𝑓) − 𝑣(̃︀𝑔)| 6 𝑣( ̃︀𝑓 − ̃︀𝑔) 6 𝑢( ̃︀𝑓 − ̃︀𝑔), ̃︀𝑓, ̃︀𝑔 ∈ ̃︀𝑄.
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Hence, the function 𝑣 : ̃︀𝑄 −→ R is continuous. Identity (17) means that everywhere on a dense

set ̃︀𝑄 being the linear span of the system {𝑒𝜔(𝑧)}𝑧∈𝑀 , continuous functions 𝑢 and 𝑣 coincide.
If the sequence {̃︀𝑝𝑛}𝑛>0 of finite linear combination of the system {𝑒𝜔(𝑧)}𝑧∈𝑀 approximates an

element ̃︀𝑓 ∈ ̃︀𝑄, then

𝑢(̃︀𝑝𝑛) = 𝑣(̃︀𝑝𝑛), 𝑛 = 1, 2, . . .

Employing the continuity of functions 𝑢 and 𝑣, we obtain

𝑢( ̃︀𝑓) = 𝑣( ̃︀𝑓), ̃︀𝑓 ∈ ̃︀𝑄.

Thus, for each ̃︀𝑓 ∈ ̃︀𝑄 the identity (22) holds true.
As it was mentioned above, functions ̃︀𝑝𝑛(𝜔), 𝑛 = 1, 2, . . . , are finite linear combinations of the

elements in system {𝑒𝜔(𝑧)}𝑧∈𝑀 . We note now that space ̃︀𝑄 can be considered as the completion
of the linear span of the system {𝑒𝜔(𝑧)}𝑧∈𝑀 w.r.t. the norm ‖ · ‖ ̃︀𝑄. As it was mentioned above,

space 𝑅(Ω, 𝜇) is the completion of the linear span of the system {𝑒𝜔(𝑧)}𝑧∈𝑀 w.r.t. the norm

‖ℎ‖𝑅(Ω,𝜇)
𝑑𝑒𝑓
=

√︃∫︁
Ω

|ℎ(𝜔)|2 𝑑𝜇(𝜔).

This is why spaces ̃︀𝑄 and 𝑅(Ω, 𝜇) coincide. Therefore, space 𝑅(Ω, 𝜇) is one with reproducing
kernel. The proof of Lemma 1 is complete.

The next theorem holds true.

Theorem 2. Let 𝐻 be a separable reproducing kernel Hilbert space consisting of the functions
defined on a countable-finite space Ω with a countable-additive measure 𝜇. The norm of space
𝐻 has the integral form

‖𝑓‖𝐻 =

√︃∫︁
Ω

|𝑓(𝜉)|2 𝑑𝜇(𝜉) (25)

if and only if the system of the functions {𝐾𝐻(𝜉, 𝑡)}𝑡∈Ω is an orthosimilar expansion system
with measure 𝜇 in space 𝐻 in the sense of Definition 2.

Proof. Necessity. Let a system of functions {𝐾𝐻(𝜉, 𝑡)}𝑡∈Ω is the orthosimilar expansion system
with measure 𝜇 in space 𝐻 in the sense of Definition 2. It means that each function 𝑓 ∈ 𝐻 is
represented as

𝑓(𝑧) =

∫︁ (𝐻)

Ω

(𝑓(𝜏), 𝐾𝐻(𝜏, 𝜉))𝐻𝐾𝐻(𝑧, 𝜉) 𝑑𝜇(𝜉).

Then an analogue of Parseval identityy for orthosimilar expansion systems holds true [1, Thm.
1]), i.e., for each 𝑓 ∈ 𝐻 we have

‖𝑓‖2𝐻 =

∫︁
Ω

|(𝑓(𝜏), 𝐾𝐻(𝜏, 𝜉))𝐻 |2 𝑑𝜇(𝜉) =

∫︁
Ω

|𝑓(𝜉)|2 𝑑𝜇(𝜉).

Thus, the identity (25) is valid. The necessity is proven.
Sufficiency. Suppose that the norm in space 𝐻 reads as (25). It means that

‖𝑓‖2𝐻 =

∫︁
Ω

|𝑓(𝜉)|2 𝑑𝜇(𝜉) =

∫︁
Ω

|(𝑓(𝜏), 𝐾𝐻(𝜏, 𝜉))𝐻 |2 𝑑𝜇(𝜉).

Thus, for system of functions {𝐾𝐻(𝜉, 𝑡)}𝑡∈Ω the analogue of Parseval identity holds true [1]. By
Theorem B, system of functions {𝐾𝐻(𝜉, 𝑡)}𝑡∈Ω is an orthosimilar expansion system in the sense
of Definition 2. The proof is complete.



ORTHOSIMILAR EXPANSION SYSTEMS . . . 97

The norm in space 𝑅(Ω, 𝜇) has the integral form and since 𝑅(Ω, 𝜇) is a reproducing kernel
Hilbert space, by Theorem 2, the system of reproducing kernels {𝐾𝑅(𝜔, 𝑡)}𝑡∈Ω of space 𝑅(Ω, 𝜇)
is an orthosimilar expansion system in space 𝑅(Ω, 𝜇) in the sense of Definition 2. As we have
already proven, it implies that system {𝐾𝑅(𝜔, 𝑡)}𝑡∈Ω is an orthosimilar expansion system in the
sense of Definition 4.

Lemma 2. Suppose we are given a space Ω with a countable additive measure 𝜇 and let in a
separable Hilbert space 𝐻 consisting of functions defined on space Ω the system of reproducing
kernels {𝐾𝐻(𝑧, 𝜉)}𝜉∈Ω is an orthosimilar expansion system in the sense of Definition 4, i.e.,
each element 𝑓 in space 𝐻 can be represented as

𝑓(𝑧) =

∫︁
Ω

(𝑓(𝜏), 𝐾𝐻(𝜏, 𝜉))𝐻𝐾𝐻(𝑧, 𝜉) 𝑑𝜇(𝜉), 𝑧 ∈ Ω.

Then system {𝐾𝐻(𝑧, 𝜉)}𝜉∈Ω is an orthosimilar expansion system in the sense of Definition 2,
i.e., each 𝑓 in space 𝐻 is represented as

𝑓(𝑧) =

∫︁ (𝐻)

Ω

(𝑓(𝜏), 𝐾𝐻(𝜏, 𝜉))𝐻𝐾𝐻(𝑧, 𝜉) 𝑑𝜇(𝜉).

Proof. The system of reproducing kernels {𝐾𝐻(𝑧, 𝜉)}𝜉∈Ω is complete in space 𝐻 [3]. As in the
proof of Lemma 1, one can show that if {𝑝𝑛(𝑧)}𝑛>0 is a sequence of finite linear combinations
of the elements of system {𝐾𝐻(𝑧, 𝜉)}𝜉∈Ω approximating an element 𝑓 ∈ 𝐻, then

‖𝑝𝑛‖2𝐻 =

∫︁
Ω

(𝑝𝑛(𝜏), 𝐾𝐻(𝜏, 𝜉))𝐻(𝐾𝐻(𝜏, 𝜉), 𝑝𝑛(𝜏))𝐻 𝑑𝜇(𝜉) =

∫︁
Ω

|𝑝𝑛(𝜉)|2 𝑑𝜇(𝜉), 𝑛 = 1, 2, . . .

(26)
We let 𝑦𝑛(𝜉) = |𝑝𝑛(𝜉)|2. The sequence of functions {|𝑝𝑛(𝜉)|2}𝑛>0 converges pointwise in Ω to

the function 𝑦(𝜉) = |𝑓(𝜉)|2, and∫︁
Ω

|𝑝𝑛(𝜉)|2 𝑑𝜇(𝜉) = ‖𝑝𝑛‖2𝐻 6 ‖𝑓‖2𝐻 + 𝜀, 𝑛 = 1, 2, . . . ,

where 𝜀 is a positive number independent of 𝑛. By Fatou theorem, function 𝑓(𝜉) is integrable
over Ω w.r.t. measure 𝜇 and the inequality∫︁

Ω

|𝑓(𝜉)|2 𝑑𝜇(𝜉) 6 ‖𝑓‖2𝐻 + 𝜀 (27)

holds true. Considering the sequence {𝑝𝑛}𝑛>𝑁 for sufficiently large 𝑁 , we can make 𝜀 as small
as needed. The left hand side in inequality (27) is independent of 𝜀. This is why∫︁

Ω

|𝑓(𝜉)|2 𝑑𝜇(𝜉) 6 ‖𝑓‖2𝐻 , 𝑓 ∈ 𝐻. (28)

Let us prove that ∫︁
Ω

|𝑓(𝜉)|2 𝑑𝜇(𝜉) = ‖𝑓‖2𝐻 , 𝑓 ∈ 𝐻. (29)

We consider two functions

𝑢 : 𝐻 −→ R, 𝑢(𝑓) = ‖𝑓‖𝐻 , (30)

𝑣 : 𝐻 −→ R, 𝑣(𝑓) =

√︃∫︁
Ω

|𝑓(𝜉)|2 𝑑𝜇(𝜉). (31)

By the triangle inequality we have

𝑢(𝑓) 6 𝑢(𝑓 − 𝑔) + 𝑢(𝑔), 𝑓, 𝑔 ∈ 𝐻.

It implies
|𝑢(𝑓) − 𝑢(𝑔)| 6 𝑢(𝑓 − 𝑔), 𝑓, 𝑔 ∈ 𝐻.
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Hence, the function 𝑢 : 𝐻 −→ R is continuous. By inequality (28), function 𝑣 is defined on 𝐻.
By Cauchy-Schwarz inequality

𝑣(𝑓) 6 𝑣(𝑓 − 𝑔) + 𝑣(𝑔), 𝑓, 𝑔 ∈ 𝐻,

and employing (28), we obtain

|𝑣(𝑓) − 𝑣(𝑔)| 6 𝑣(𝑓 − 𝑔) 6 𝑢(𝑓 − 𝑔), 𝑓, 𝑔 ∈ 𝐻.

Thus, the function 𝑣 : 𝐻 −→ R is continuous. Identity (26) means that continuous functions 𝑢
and 𝑣 coincide on a dense subset of 𝐻, which is the linear span of system {𝐾𝐻(𝑧, 𝜉)}𝜉∈Ω. If a
sequence 𝑝𝑛 of finite linear combinations of the elements in system {𝐾𝐻(𝑧, 𝜉)}𝜉∈Ω approximates
an element 𝑓 ∈ 𝐻, then

𝑢(𝑝𝑛) = 𝑣(𝑝𝑛), 𝑛 = 1, 2, . . . ,

and in view of the continuity of functions 𝑢 and 𝑣, we obtain

𝑢(𝑓) = 𝑣(𝑓), 𝑓 ∈ 𝐻.

Hence, for each 𝑓 ∈ 𝐻 identity (29) holds true. Identity (29) means that the analogue of
Parseval identity for system {𝐾𝐻(𝑧, 𝜉)}𝜉∈Ω holds:

‖𝑓‖2𝐻 =

∫︁
Ω

|𝑓(𝜉)|2 𝑑𝜇(𝜉) =

∫︁
Ω

|(𝑓(𝜏), 𝐾𝐻(𝜏, 𝜉))𝐻 |2 𝑑𝜇(𝜉), 𝑓 ∈ 𝐻.

Since measure 𝜇 is countable additive, by Theorem B the latter identity implies that the
system of reproducing kernles is orthosimilar in the sense of Definition 2, i.e., each element is
represented as

𝑓(𝑧) =

∫︁ (𝐻)

Ω

(𝑓(𝜏), 𝐾𝐻(𝜏, 𝜉))𝐻𝐾𝐻(𝑧, 𝜉) 𝑑𝜇(𝜉).

The proof is complete.

Consider the space

𝑅(Ω, 𝜇)
𝑑𝑒𝑓
= {ℎ : ℎ ∈ 𝑅(Ω, 𝜇), (ℎ, 𝑟)𝑅

𝑑𝑒𝑓
= (𝑟, ℎ)𝑅}.

Each function ℎ ∈ 𝑅(Ω, 𝜇) can be represented as

ℎ(𝜔) =

∫︁ (𝑅)

Ω

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝐻𝐾𝑅(𝜔, 𝑡) 𝑑𝜇(𝑡). (32)

It yields

ℎ(𝜔) =

∫︁
Ω

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝐻𝐾𝑅(𝜔, 𝑡) 𝑑𝜇(𝑡), 𝜔 ∈ Ω. (33)

We take the complex conjugation of this identity to obtain

ℎ(𝜔) =

∫︁
Ω

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝑅𝐾𝑅(𝜔, 𝑡) 𝑑𝜇(𝑡) =

∫︁
Ω

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝑅𝐾𝑅(𝜔, 𝑡) 𝑑𝜇(𝑡), 𝜔 ∈ Ω. (34)

Due to Lemma 2,

ℎ(𝜔) =

∫︁ (𝑅)

Ω

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝑅𝐾𝑅(𝜔, 𝑡) 𝑑𝜇(𝑡). (35)

Identity (35) means that the system of functions {𝐾𝑅(𝜔, 𝑡)}𝑡∈Ω is an orthosimilar expansion

system in the sense of Definition 2 in space 𝑅(Ω, 𝜇).

The operator T acting from 𝑅(Ω, 𝜇) into ̂︀𝑅(Ω, 𝜇) by the rule

T : ℎ −→ ̂︀ℎ(𝑧)
𝑑𝑒𝑓
=

∫︁
Ω

ℎ(𝜔) · 𝑒𝜔(𝑧) 𝑑𝜇(𝜔), 𝑧 ∈ 𝑀,
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is a linear continuous operator (the definition of space ̂︀𝑅(Ω, 𝜇) was given above). We apply
operator T to identity (35) and employ Theorem C to get

̂︀ℎ(𝑧) =T
∫︁ (𝑅)

Ω

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝑅𝐾𝑅(𝜔, 𝑡) 𝑑𝜇(𝑡) =

∫︁ ( ̂︀𝑅)

Ω

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝑅T𝐾𝑅(𝜔, 𝑡) 𝑑𝜇(𝑡)

=

∫︁ ( ̂︀𝑅)

Ω

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝑅
̂︀𝐾𝑅(𝑧, 𝑡) 𝑑𝜇(𝑡) =

∫︁ ( ̂︀𝑅)

Ω

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝑅 · 𝑒𝑡(𝑧) 𝑑𝜇(𝑡).

(36)

In the latter identity we have employed the fact that

̂︀𝐾𝑅(𝑧, 𝑡) =

∫︁
Ω

𝐾𝑅(𝜔, 𝑡) · 𝑒𝜔(𝑧) 𝑑𝜇(𝜔) = 𝑒𝑡(𝑧), 𝑧 ∈ 𝑀.

As it was noticed above (see the definition of space 𝑅(Ω, 𝜇))

(ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝑅 = (ℎ(𝜏), 𝐾𝑅(𝜏, 𝑡))𝑅 = (𝐾𝑅(𝜏, 𝑡), ℎ(𝜏))𝑅 = (̂︀ℎ(𝑧), 𝑒𝑡(𝑧)) ̂︀𝑅. (37)

Substituting relation (37) into identity (36), we obtain

̂︀ℎ(𝑧) =

∫︁ ( ̂︀𝑅)

Ω

(̂︀ℎ(𝑧), 𝑒𝑡(𝑧)) ̂︀𝑅 · 𝑒𝑡(𝑧) 𝑑𝜇(𝑡). (38)

The latter means that the system of functions {𝑒𝜔(𝑧)}𝜔∈Ω is an orthosimilar expansion system in

the sense of Definition 2 in space ̂︀𝑅(Ω, 𝜇). As it was noted above, space ̂︀𝑅(Ω, 𝜇) is a reproducing
kernel Hilbert space.

Let us calculate the reproducing kernel of space ̂︀𝑅(Ω, 𝜇).

In order to do it, we substitute an element 𝐾 ̂︀𝑅(𝑧, 𝜉) for fixed 𝜉 ∈ 𝑀 as ̂︀ℎ into identity (38).

Then one can show easily that the reproducing kernel in space ̂︀𝑅(Ω, 𝜇) reads as

𝐾 ̂︀𝑅(𝑧, 𝜉) =

∫︁
Ω

𝑒𝜔(𝑧) · 𝑒𝜔(𝜉) 𝑑𝜇(𝜔), 𝑧, 𝜉 ∈ 𝑀.

On the other hand, identity (4) holds true

𝐾𝐻(𝑧, 𝜉) =

∫︁
Ω

𝑒𝑡(𝑧) · 𝑒𝑡(𝜉) 𝑑𝜇(𝑡), 𝑧, 𝜉 ∈ 𝑀.

By Moore-Aronszajn theorem, space 𝐻 coincides with space ̂︀𝑅(Ω, 𝜇), i.e., these spaces consist
of the same elements and the identity

(𝑓, 𝑔)𝐻 = (𝑓, 𝑔) ̂︀𝑅, 𝑓, 𝑔 ∈ 𝐻,

holds true. Thus, Condition 3 implies Condition 4 of Theorem 1.

Suppose Condition 4 of Theorem 1, i.e., space 𝐻 coincides with space ̂︀𝑅(Ω, 𝜇). By construc-
tion, system {𝑒𝜔(𝑧)}𝜔∈Ω is an orthosimilar expansion system in the sense of Definition 2 spacê︀𝑅(Ω, 𝜇). It means that in space 𝐻 system {𝑒𝜔(𝑧)}𝜔∈Ω is an orthosimilar expansion system in
the sense of Definition 2, i.e. Condition 1 holds true. Theorem is proven.

2. Examples

2.1. Weighted Hilbert transform in Bergman space. Let 𝐺 be a simply connected
Jordan domain in C. As system {𝑒𝜔(𝑧)}𝜔∈Ω we take functions { 1

(𝑧−𝜉)2
}𝜉∈𝐺 defined on the set

𝑀 = C∖𝐺. As Ω we take domain 𝐺; in domain 𝐺 we have a countable finite measure 𝜇. We
choose measure 𝜇 so that the space

𝐵2(𝐺, 𝜇)
𝑑𝑒𝑓
= {𝑓 ∈ 𝐻(𝐺) : ‖𝑓‖2𝐵2

=

∫︁
𝐺

|𝑓(𝑧)|2 𝑑𝜇(𝑧) < ∞}
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consisting of analytic and square integrable w.r.t. measure 𝜇 in domain 𝐺 functions is a
separable reproducing kernel Hilbert space and the system of functions { 1

(𝑧−𝜉)2
}𝜉∈𝐺 is complete

in this space. Space ̃︀𝐵2(𝐺, 𝜇) is defined as the set of functions̃︀𝑓(𝑧)
𝑑𝑒𝑓
= ( 1

(𝑧−𝜉)2
, 𝑓(𝜉))𝐵2(𝐺,𝜇), 𝑓 ∈ 𝐵2(𝐺, 𝜇)

with the scalar product

( ̃︀𝑓, ̃︀𝑔) ̃︀𝐵2(𝐺,𝜇)

𝑑𝑒𝑓
= (𝑔, 𝑓)𝐵2(𝐺,𝜇), ̃︀𝑔, ̃︀𝑓 ∈ ̃︀𝐵2(𝐺, 𝜇).

Under these assumptions Theorem 1 holds true.

As space 𝑅(Ω, 𝜇) we take space 𝐵2(𝐺, 𝜇), and as ̂︀𝑅(Ω, 𝜇) we take space ̃︀𝐵2(𝐺, 𝜇). The
orthosimilar system { 1

(𝑧−𝜉)2
}𝜉∈𝐺 and the problem on description of the dual space for 𝐵2(𝐺, 𝜇)

were considered in [7].

2.2. Weighted Fourier-Laplace transform in Bergman space. As Ω we take here a
convex domain 𝐺 in the complex plane with some measure 𝜇 satisfying the hypothesis of
Theorem 1. As system {𝑒𝜔(𝑧)}𝜔∈Ω, we take the system of functions {𝑒𝜉𝑧}𝜉∈𝐺, 𝑀 = C, and as

space 𝑅(Ω, 𝜇) we take space 𝐵2(𝐺, 𝜇). As space ̂︀𝑅(Ω, 𝜇) we choose the space ̂︀𝐵2(𝐺, 𝜇) consisting
of functions ̂︀𝑓(𝑧) = (𝑒𝑧·𝜉, 𝑓(𝜉))𝐵2 =

∫︁
𝐺

𝑓(𝜉) · 𝑒𝑧·𝜉 𝑑𝜇(𝜉), 𝑧 ∈ C, 𝑓 ∈ 𝐵2(𝐺, 𝜇).

At that,

( ̂︀𝑓,̂︀ℎ) ̂︀𝐵2

𝑑𝑒𝑓
= (ℎ, 𝑓)𝐵2 ,

̂︀ℎ, ̂︀𝑓 ∈ ̂︀𝐵2(𝐺, 𝜇).

Then Theorem 1 holds true.
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