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CONVERGENCE DOMAIN FOR SERIES

OF EXPONENTIAL POLYNOMIALS

O.A. KRIVOSHEYEVA

Abstract. In this paper we study the convergence of exponential polynomials series
constructed by almost exponential sequences of such polynomials. Particular cases of such
series are series of exponential monoms, exponential series, Dirichlet series and power series.
We obtain an analogue of Abel theorem for these series implying in particular results on
continuation of convergence. An analogue of the Cauchy–Hadamard theorem is obtained
as well. We give a formula allowing one to recover the convergence domain for these series
by their coefficients. The obtained results include Abel and Cauchy–Hadamard theorems
for exponential monoms series, exponential series, Dirichlet series and power series.
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1. Introduction

In the work we study the convergence of the series
∞∑︁
𝑘=1

𝑑𝑘𝑒𝑘(𝑧), (1.1)

where {𝑒𝑘}∞𝑘=1 is an almost exponential sequence.
For each convex domain 𝐷 ⊂ C we fix a sequence of convex compacts 𝐾(𝐷) = {𝐾𝑝}∞𝑝=1

which strictly exhausts it, i.e., 𝐾𝑝 ⊂ int𝐾𝑝+1, 𝑝 = 1, 2, . . ., (int indicates the interior of a set)
and 𝐷 = ∪∞

𝑝=1𝐾𝑝. Let Λ = {𝜆𝑘}∞𝑘=1 be a sequence of complex numbers such that |𝜆𝑘| → ∞
as 𝑘 → ∞, and 𝑒𝑚 is an entire function, 𝑚 = 1, 2, . . . We shall say (see [1]) that {𝑒𝑘}∞𝑘=1 is
an almost exponential sequence with the indices {𝜆𝑘} if for each convex domain 𝐷 ⊂ C two
conditions hold true:
1) for each 𝑝 > 1 there exists a constant 𝑎 > 0 and an index 𝑠 such that

sup
𝑤∈𝐾𝑝

|𝑒𝑘(𝑤)| 6 𝑎 exp (𝐻𝐾𝑠(𝜆𝑘)) , 𝑘 = 1, 2, . . . ;

2) for each 𝑝 > 1 there exists a constant 𝑏 > 0 and an index 𝑠 such that

𝑏 exp
(︀
𝐻𝐾𝑝(𝜆𝑘)

)︀
6 sup

𝑤∈𝐾𝑠

|𝑒𝑘(𝑤)|, 𝑘 = 1, 2, . . .

Here 𝐻𝑀(𝜆) denotes the support function of a set 𝑀 (more precisely, of the set complex
conjugate with):

𝐻𝑀(𝜆) = sup
𝑤∈𝑀

Re (𝜆𝑤), 𝜆 ∈ C.
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Conditions 1) and 2) mean that sequence {𝑒𝑚}∞𝑚=1 is in some sense similar with the sequence
of exponentials {exp(𝜆𝑚𝑧)}∞𝑚=1. Indeed, by Condition 1) and the definition of the support
function we obtain the relations

sup
𝑤∈𝐾𝑝

|𝑒𝑚(𝑤)| 6 𝑎 exp(𝐻𝐾𝑠(𝜆𝑚)) = 𝑎 sup
𝑤∈𝐾𝑠

exp(Re (𝜆𝑚𝑤)) = 𝑎 sup
𝑤∈𝐾𝑠

| exp(𝜆𝑚𝑤)|, 𝑘 = 1, 2, . . .

Condition 2) gives a similar lower estimate for the modulus of function 𝑒𝑚(𝑤). It is obvious
that the mentioned sequence of exponentials is an almost exponential sequence. As an example
of the latter let us consider the family of the functions {𝑧𝑛 exp(𝜆𝑚𝑧)}∞,𝑘𝑚

𝑚=1,𝑛=0. It was shown
in Proposition 2.3 of work [2] that under the condition 𝑘𝑚/|𝜆𝑚| → 0 this family is an almost
exponential sequence. The convergence of series of exponential monomials, i.e., the series
w.r.t. the elements of such system, were studied in work [3]. There the analogues of Abel
and Cachy-Hadamard theorems for the series of exponential monomials were obtained. Almost
exponential sequences of a more general form were considered in work [4]. They consist of
linear combinations of exponential monomials whose exponents form so-called “relatively small”
groups. Such sequences are used in the representation theory for elements invariant w.r.t. the
operator of differentiating subspaces of functions analytic in a convex domain (see [5]) and, in
particular, the spaces of solutions to homogeneous convolution equations and their systems. In
this connection there appears the issue on studying the convergence of series of exponential
polynomials constructed by almost exponential sequence of such polynomials. In the present
work we study the convergence domains of the mentioned series. For these series we obtain
analogues of Abel and Cauchu-Hadamard theorems.

2. Preliminary results

Let 𝐷 be a convex domain in C, 𝐾(𝐷) = {𝐾𝑝}∞𝑝=1, Λ = {𝜆𝑘}∞𝑘=1 and 𝑝 = 1, 2, . . . Consider
the Banach space of complex sequences

𝑄𝑝(Λ) = {𝑑 = {𝑑𝑘} : ‖𝑑𝑝‖ = sup
𝑘>1

|𝑑𝑘| exp𝐻𝐾𝑝(𝜆𝑘) < ∞}.

By the symbol 𝑄(Λ, 𝐷) we denote the projective limit of space 𝑄𝑝, 𝑝 > 1. The space 𝑄(Λ, 𝐷)
is the intersection of 𝑄𝑝, 𝑝 > 1. The topology in 𝑄(Λ, 𝐷) is equivalent to that defined by the
metric

𝜌(𝑑, 𝑑′) =
∞∑︁
𝑝=1

2−𝑝 ‖𝑑− 𝑑′‖𝑝
1 + ‖𝑑− 𝑑′‖𝑝

.

Equipped by this metric, space 𝑄(Λ, 𝐷) obviously becomes Fréchet space.
Let us show that the sequence of the coefficients of converging series (1.1) belongs to space

𝑄(𝐷) for some special convex domain 𝐷.
By the symbol S we shall denote the circle of unit radius centered at the origin. Let 𝐸 be a

set in C, Θ be a closed subspace of the circle S. Θ-convex envelope of 𝐸 is the set

𝐸(Θ) = {𝑧 ∈ C : Re (𝑧𝜉) < 𝐻𝐸(𝜉), 𝜉 ∈ Θ}.
We note that the interior of 𝐸 lies in 𝐸(Θ). Indeed, if 𝑧 is an internal point of 𝐸, then the

definition of the support function imply the inequalities Re (𝑧𝜉) < 𝐻𝐸(𝜉) for each 𝜉 ∈ Θ. It
means that 𝑧 ∈ 𝐸(Θ). In particular, as Θ = S, Θ-convex envelope of the set coincides with its
usual convex envelope (more precisely, with the interior of this convex envelope) and thus it is
a convex domain. The latter holds also in the general situation as the next lemma states.

Lemma 2.1. Let 𝐸 be a set in C, Θ be a closed subspace of circle S. Then set 𝐸(Θ) is a
convex domain.

Proof. By the definition, set 𝐸(Θ) is the intersection of half-planes and thus it is convex. The
convexity implies the connectivity of 𝐸(Θ). It remains to show that 𝐸(Θ) is an open set.
Suppose the opposite. Then there exists a point 𝑧0 ∈ 𝐸(Θ) and a sequence {𝑧𝑘} such that
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𝑧𝑘 → 𝑧0 as 𝑘 → ∞ and 𝑧𝑘 /∈ 𝐸(Θ) for each 𝑘 > 1, i.e., Re (𝑧𝑘𝜉𝑘) > 𝐻𝐸(𝜉𝑘) for some 𝜉𝑘 ∈ Θ,
𝑘 = 1, 2, . . . Passing to a subsequence, we can assume that {𝜉𝑘} converges to a point 𝜉0 ∈ Θ.
Then the last inequality and the lower semi-continuity of the support function imply

Re (𝑧0𝜉0) = lim
𝑘→∞

Re (𝑧𝑘𝜉𝑘) = lim
𝑘→∞

Re (𝑧𝑘𝜉𝑘) > lim
𝑘→∞

𝐻𝐸(𝜉𝑘) > 𝐻𝐸(𝜉0).

It contradicts to the definition of 𝐸(Θ), since 𝑧0 ∈ 𝐸(Θ), and 𝜉0 ∈ Θ. The proof is complete.

Let Λ = {𝜆𝑘}∞𝑘=1. By Θ(Λ) we denote the set of all partial limits of sequence {𝜆𝑘/|𝜆𝑘|}∞𝑘=1

except the point 𝜆𝑘 = 0 if it is present. It is obvious that Θ(Λ) is a closed subset of circle S.
By the symbol 𝐵(𝑥, 𝛿) we shall denote an open circle centered at a point 𝑥 and a radius 𝛿.

Lemma 2.2. Let Λ = {𝜆𝑘}∞𝑘=1 be a sequence of complex numbers, |𝜆𝑘| → ∞ as 𝑘 → ∞,
{𝑒𝑘}∞𝑘=1 is an almost exponential sequence with indices {𝜆𝑘}∞𝑘=1. Suppose that the terms of
series (1.1) are bounded on each compact set 𝐾 of an open set 𝐸 ⊂ C, i.e., |𝑑𝑘𝑒𝑘(𝑧)| 6 𝐴,
𝑘 = 1, 2, . . ., 𝑧 ∈ 𝐾. Then the inclusion 𝑑 = {𝑑𝑘} ∈ 𝑄(Λ, 𝐷) holds true, where 𝐷 = 𝐸(Θ(Λ)).

Proof. Suppose 𝑑 /∈ 𝑄(Λ, 𝐷). Then 𝑑 /∈ 𝑄𝑝(Λ) for some index 𝑝 = 1, 2, . . . It means that there
exists a subsequence {𝑑𝑘𝑙} such that

|𝑑𝑘𝑙 | exp𝐻𝐾𝑝(𝜆𝑘𝑙) → +∞, 𝑙 → ∞. (2.1)

Passing once again to a subsequence, we can assume that {𝜆𝑘𝑙/|𝜆𝑘𝑙 |} converges to a point
𝑥0 ∈ Θ(Λ). Since 𝐾𝑝 is a compact set in the domain 𝐷 = 𝐸(Θ(𝜆)), the definition of the set
𝐸(Θ(Λ)) and the support function imply that for some 𝑧0 ∈ 𝐸 the estimate Re (𝑧0𝑥0) > 𝐻𝐾𝑝(𝑥0)
holds true. Then in view of the continuity of the support function for a compact set there exists
𝛿 > 0 such that

Re (𝑧0𝑥) > 𝐻𝐾𝑝(𝑥), 𝑥 ∈ 𝐵(𝑥0, 𝛿). (2.2)

By the assumption 𝐸 is an open set. This is why it contains some circle �̃� centered at point
𝑧0. Let 𝐾(�̃�) = {�̃�𝑚}∞𝑚=1. We choose an index 𝑠 for which compact set �̃�𝑠 contains 𝑧0. Then
inequality

𝐻�̃�𝑠
(𝑥) > Re (𝑧0𝑥), 𝑥 ∈ C, (2.3)

holds.
Since {𝑒𝑘}∞𝑘=1 is an almost exponential sequence with the indices {𝜆𝑘}∞𝑘=1, there exist a

constant 𝑏 > 0 and an index 𝑛 such that

𝑏 exp(𝐻�̃�𝑠
(𝜆𝑘)) 6 sup

𝑤∈�̃�𝑛

|𝑒𝑘(𝑤)|, 𝑘 = 1, 2, . . . (2.4)

We choose an index 𝑙0 such that 𝜆𝑘𝑙/|𝜆𝑘𝑙 | ∈ 𝐵(𝑥0, 𝛿), 𝑙 > 𝑙0. Then it follows from inequalities
(2.2)-(2.4) and the positive homogeneity of the support function that for each 𝑙 > 𝑙0

sup
𝑤∈�̃�𝑛

|𝑒𝑘𝑙(𝑤)| > 𝑏 exp(𝐻𝐾𝑝(𝜆𝑘𝑙)).

Thus, by (2.1) we have
|𝑑𝑘𝑙 | sup

𝑤∈�̃�𝑛

|𝑒𝑘𝑙(𝑤)| → +∞, 𝑙 → ∞.

On the other hand, in accordance with the assumption the inequality

|𝑑𝑘𝑙 | sup
𝑤∈�̃�𝑛

|𝑒𝑘𝑙(𝑤)| 6 𝐴, 𝑙 = 1, 2, . . .

holds true. The proof is complete.

Lemma 2.2 implies of the results of work [1] (Lemma 1).

Corollary. Let 𝐷 be a convex domain in C, Λ = {𝜆𝑘}∞𝑘=1 is a sequence of complex numbers,
|𝜆𝑘| → ∞, 𝑘 → ∞, {𝑒𝑘}∞𝑘=1 is an almost exponential sequence with indices {𝜆𝑘}∞𝑘=1. Suppose
that series (1.1) converges uniformly on each compact subset of domain 𝐷. Then the inclusion
𝑑 = {𝑑𝑘} ∈ 𝑄(Λ, 𝐷) is valid.
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Proof. It is sufficient to observe that 𝐷 ⊂ 𝐷(Θ(Λ)), and thus the inclusion 𝑄(Λ, 𝐷(Θ(Λ))) ⊂
𝑄(Λ, 𝐷) holds true.

It was proven in [1] that under the condition 𝜎(Λ) = lim
𝑘→∞

ln 𝑘/|𝜆𝑘| = 0 one has the inverse

statement for this corollary and even a stronger statement.

Lemma 2.3. Let 𝐷 be a convex domain in C, Λ = {𝜆𝑘}∞𝑘=1 be a sequence of complex num-
bers, |𝜆𝑘| → ∞, 𝑘 → ∞, {𝑒𝑘}∞𝑘=1 is an almost exponential sequence with the indices {𝜆𝑘}∞𝑘=1

such that 𝜎(Λ) = 0 and 𝑑 = {𝑑𝑘} ∈ 𝑄(Λ, 𝐷). Then for each 𝑝 > 1 there exist an index 𝑠 and a
constant 𝐶𝑝 > 0 independent of 𝑑 = {𝑑𝑘} for which the inequality

∞∑︁
𝑘=1

|𝑑𝑘| sup
𝑧∈𝐾𝑝

|𝑒𝑘(𝑧)| 6 𝐶𝑝‖𝑑‖𝑠 (2.5)

holds true. In particular, series (1.1) converges absolutely and uniformly on each compact subset
of domain 𝐷.

3. Analogue of Abel theorem

The following result is an analogue of Abel theorem for series (1.1).

Theorem 3.1. Let Λ = {𝜆𝑘}∞𝑘=1 be a sequence of complex numbers, |𝜆𝑘| → ∞, 𝑘 → ∞, such
that 𝜎(Λ) = 0, {𝑒𝑘}∞𝑘=1 be an almost exponential sequence with indices {𝜆𝑘}∞𝑘=1. Suppose that
the terms of series (1.1) are bounded on each compact set 𝐾 in an open set 𝐸 ⊂ C. Then for
each 𝑝 = 1, 2, . . . there exist an index 𝑠 and a number 𝐶𝑝 > 0 (independent of sequences 𝑑) such
that (2.5) holds true, where the norms ‖𝑑𝑝‖ are constructed by the sequence 𝐾(𝐷) = {𝐾𝑝}∞𝑝=1

and 𝐷 = 𝐸(Θ(Λ)). In particular, series (1.1) converges absolutely and uniformly on each
compact subset of domain 𝐷.

Proof. By Lemma 2.2 the inclusion 𝑑 = {𝑑𝑘} ∈ 𝑄(Λ, 𝐷) holds true. By Lemma 2.3 for each
𝑝 = 1, 2, . . . there exist an index 𝑠 and a number 𝐶𝑝 > 0 (independent of sequence 𝑑) such that
(2.5) holds true. The proof is complete.

Remarks. 1. It follows from Theorem 3.1 that under the condition 𝜎(Λ) = 0 the interior
of the set of the uniform convergence of series (1.1) is convex and even Θ is a convex domain
(i.e., it is the intersection of half-planes {𝑧 : Re (𝑧𝜉) < ℎ(𝜉), 𝜉 ∈ Θ}).
2. If we omit the condition 𝜎(Λ) = 0 from Theorem 3.1, its statement becomes wrong. It

was proven in Lemma 4 of work [1] that the convergence of the series

∞∑︁
𝑘=1

|𝑑𝑘| sup
𝑧∈𝐾𝑝

|𝑒𝑘(𝑧)|

for each sequence 𝑑 = {𝑑𝑘} ∈ 𝑄(Λ, 𝐷), where 𝐷 is a bounded domain, implies the identity
𝜎(𝜆) = 0.

4. Analogue of Cauchy-Hadamard theorem

We provide a result being an analogue of Cauchy-Hadamard theorem for power series. Before
formulating it, we introduce additional notation. Let 𝜉 ∈ Θ(Λ). For the sequence of coefficients
𝑑 = {𝑑𝑘} of series (1.1) we let

ℎ(𝑑, 𝜉) = inf lim
𝑗→∞

ln(1/|𝑑𝑘(𝑗)|)
|𝜆𝑘(𝑗)|

,

where the infimum is taken over all subsequences {𝜆𝑘(𝑗)} of sequence {𝜆𝑘} such that 𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)|
converges to 𝜉 as 𝑗 → ∞. Thus, we have obtained the function ℎ(𝑑, 𝜉), 𝜉 ∈ Θ(Λ). It is lower
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semi-continuous. Indeed, let 𝜉, 𝜉𝑝 ∈ Θ(Λ), 𝑝 > 1, 𝜉𝑝 → 𝜉 and a sequence {𝜉𝑝} is so that

lim
𝜁→𝜉

ℎ(𝑑, 𝜁) = lim
𝑝→∞

ℎ(𝑑, 𝜉𝑝) = 𝑎.

By the definition of function ℎ(𝑑, 𝜁), for each 𝑝 > 1 we can find a point 𝜆𝑘(𝑝) satisfying the
conditions |𝜆𝑘(𝑝)/|𝜆𝑘(𝑝)|−𝜉𝑝| < 1/𝑝 and ln(1/|𝑑𝑘(𝑝)|)/|𝜆𝑘(𝑝)| < 𝑎+1/𝑝. Then sequence 𝜆𝑘(𝑝)/|𝜆𝑘(𝑝)|
converges to 𝜉 and

lim
𝑝→∞

ln(1/|𝑑𝑘(𝑝)|)
|𝜆𝑘(𝑝)|

6 𝑎.

It means that
lim
𝜁→𝜉

ℎ(𝑑, 𝜁) > ℎ(𝑑, 𝜉),

i.e., ℎ(𝑑, 𝜁) is lower semi-continuous. Then as in Lemma 2.1 one can show that the set

𝐷(𝑑,Λ) = {𝑧 : Re (𝑧𝜉) < ℎ(𝑑, 𝜉), 𝜉 ∈ Θ(Λ)}
is a Θ(Λ)-convex domain. By the symbol �̃�(𝑑,Λ) we denote the set of points in the plane such
that in the vicinity of each point series (1.1) converges uniformly.

Theorem 4.1. Let Λ = {𝜆𝑘}∞𝑘=1 be a sequence of complex numbers, |𝜆𝑘| → ∞, 𝑘 → ∞, such
that 𝜎(Λ) = 0, {𝑒𝑘}∞𝑘=1 be an almost exponential sequence with indices {𝜆𝑘}∞𝑘=1. Then domains

�̃�(𝑑,Λ) and 𝐷(𝑑,Λ) coincide.

Proof. Let us show that 𝑑 = {𝑑𝑘} ∈ 𝑄(Λ, 𝐷(𝑑,Λ)). Let 𝐾𝑝 be an arbitrary element of set
𝐾(𝐷(𝑑,Λ)). It is sufficient to show that

lim
𝑘→∞

|𝑑𝑘| exp𝐻𝐾𝑝(𝜆𝑘) < +∞. (4.1)

Suppose the opposite. Then for some sequence {𝑘(𝑗)} we have

lim
𝑘→∞

|𝑑𝑘| exp𝐻𝐾𝑝(𝜆𝑘) = +∞,

or, equivalently,
lim
𝑗→∞

(ln |𝑑𝑘(𝑗)| + 𝐻𝐾𝑝(𝜆𝑘(𝑗))) = +∞.

It yields
lim
𝑗→∞

|𝜆𝑘(𝑗)|−1(ln |𝑑𝑘(𝑗)| + 𝐻𝐾𝑝(𝜆𝑘(𝑗))) > 0. (4.2)

Passing to a subsequence once again, we can assume that 𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| converges to a point
𝜉 ∈ Θ(Λ). Then in view of semi-continuity and the positive homogeneity of the support
function and the definition of ℎ(𝑑, 𝜉) we obtain

lim
𝑗→∞

|𝜆𝑘(𝑗)|−1(ln |𝑑𝑘(𝑗)| + 𝐻𝐾𝑝(𝜆𝑘(𝑗))) 6 lim
𝑗→∞

|𝜆𝑘(𝑗)|−1 ln |𝑑𝑘(𝑗)| + lim
𝑗→∞

|𝜆𝑘(𝑗)|−1𝐻𝐾𝑝(𝜆𝑘(𝑗))

6 lim
𝑗→∞

|𝜆𝑘(𝑗)|−1 ln |𝑑𝑘(𝑗)| + 𝐻𝐾𝑝(𝜉) 6 −ℎ(𝑑, 𝜉) + 𝐻𝐾𝑝(𝜉).

Since 𝐾𝑝 is a compact set in domain 𝐷(𝑑,Λ), the inequality 𝐻𝐾𝑝(𝜉) < 𝐻𝐷(𝑑,Λ)(𝜉) holds true.
Moreover, by the definition of domain 𝐷(𝑑,Λ) and its support function 𝐻𝐷(𝑑,Λ) there holds
also the inequality 𝐻𝐷(𝑑,Λ)(𝜉) 6 ℎ(𝑑, 𝜉). Thus, in view of above results,

lim
𝑗→∞

|𝜆𝑘(𝑗)|−1(ln |𝑑𝑘(𝑗)| + 𝐻𝐾𝑝(𝜆𝑘(𝑗))) 6 −ℎ(𝑑, 𝜉) + 𝐻𝐾𝑝(𝜉) < −ℎ(𝑑, 𝜉) + 𝐻𝐷(𝑑,𝜆)(𝜉) 6 0.

It contradicts (4.2). Therefore, (4.1) is true, i.e., 𝑑 ∈ 𝑄(Λ, 𝐷(𝑑,Λ)). Then in accordance with
Lemma 2.3, series (1.1) converges absolutely and uniformly on each compact set in domain
𝐷(𝑑,Λ). It means that the inclusion 𝐷(𝑑,Λ) ⊂ �̃�(𝑑,Λ) holds true.

Let us show that the inverse inclusion is valid as well. Let 𝑧 ∈ �̃�(𝑑,Λ). By the definition
of domain �̃�(𝑑,Λ), in a neighborhood 𝐸 of point 𝑧 series (1.1) converges uniformly. This is
why the terms of this series are bounded on set 𝐸. Then by Lemma 2.2 sequence 𝑑 = {𝑑𝑘} is
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an element of space 𝑄(Λ, 𝐸(Θ(Λ)). As it was noticed above, set 𝐸 lies in domain 𝐸(Θ(Λ)).
Hence, one of the compact sets �̃�𝑝 of sequence 𝐾(𝐸(Θ(Λ)) contains the point 𝑧 in its interior.
In accordance with the definition of space 𝑄(Λ, 𝐸(Θ(Λ)) for some 𝐶 > 0 the inequality

|𝑑𝑘| 6 𝐶 exp(−𝐻�̃�𝑝
(𝜆𝑘)), 𝑘 = 1, 2, . . . (4.3)

holds true.
We fix an arbitrary point 𝜉 ∈ Θ(Λ). In accordance with the definition of quantity ℎ(𝑑, 𝜉) we

find a subsequence {𝑘(𝑗)} such that 𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| converges to point 𝜉 and

ℎ(𝑑, 𝜉) = lim
𝑗→∞

ln(1/|𝑑𝑘(𝑗)|)
|𝜆𝑘(𝑗)|

.

By (4.3), the positive homogeneity and continuity of the support function of a compact set it
implies

ℎ(𝑑, 𝜉) > lim
𝑗→∞

ln(1/𝐶 exp(−𝐻�̃�𝑝
(𝜆𝑘(𝑗))))

|𝜆𝑘(𝑗)|
= lim

𝑗→∞

(𝑙𝑛(1/𝐶) + 𝐻�̃�𝑝
(𝜆𝑘(𝑗)))

|𝜆𝑘(𝑗)|
=

= lim
𝑗→∞

𝐻�̃�𝑝
𝜆𝑘(𝑗))

|𝜆𝑘(𝑗)|
= lim

𝑗→∞
𝐻�̃�𝑝

(︂
𝜆𝑘(𝑗)

|𝜆𝑘(𝑗)|

)︂
= 𝐻�̃�𝑝

(𝜉).

Since point 𝑧 lies inside compact set �̃�𝑝, inequality Re (𝑧𝜉) < 𝐻�̃�𝑝
(𝜉) is valid. Therefore, by the

previous inequality we have Re (𝑧𝜉) < ℎ(𝑑,Λ). We remind that 𝜉 is arbitrary point of set Θ(Λ).
And in accordance with the definition, domain 𝐷(𝑑,Λ) comprises 𝑧. The proof is complete.

Remark. The formula determining ℎ(𝑑,Λ) involves as particular cases the corresponding
formulae for the series of exponential monomials, series of exponentials and Cauchy-Hadamard
formula for power series. In a particular case, for the series

∑︀
𝑑𝑘 exp(𝑘𝑧) we have

ℎ(𝑑, 1) = lim
𝑘→∞

ln(1/|𝑑𝑘|)
𝑘

= lim
𝑘→∞

(− ln 𝑘
√︀
|𝑑𝑘|).

Making the transformation 𝑤 = exp 𝑧 reducing this series into the power one, we obtain the
following formula for the radius of convergence of the latter

𝑅 = expℎ(𝑑, 1) = lim
𝑘→∞

1
𝑘
√︀
|𝑑𝑘|

.

Thus, we have obtained Cauchy-Hadamard formula for power series.
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