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MODIFIED GRADIENT FASTEST DESCENT METHOD FOR

SOLVING LINEARIZED NON-STATIONARY NAVIER-STOKES

EQUATIONS

I.I. GOLICHEV

Abstract. We introduce a regularization of Navier-Stokes equations, whose solution
coincides with the solution to the system of Navier-Stokes equations if the latter exists.
The regularized nonlinear system is reduced to solving a sequence of linearized systems.
To solve the latter system, we employ the gradient method. We construct and justify
a modified method of fastest descent, which may be employed under restrictions on the
control and an unbounded Lebesgue set.
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1. Introduction

Consider the initial boundary value problem for the generalized system of Navier Stokes
equations

v𝑡 − 𝜈∆v + 𝑣𝑖v𝑥𝑖
+ grad 𝑝 = f(𝑥, 𝑡), (1)

v|𝑆𝑇
= 0, v|𝑡=0 = a(𝑥), (2)

div v = 0 (3)

in the domain 𝑄𝑇 = Ω × [0, 𝑇 ], 𝑆𝑇 = 𝑆 × [0, 𝑇 ], 𝑆 is the boundary of domain Ω, f ∈ J̊(𝑄𝑇 ),

L2(𝑄𝑇 ) = G(𝑄𝑇 ) ⊕ J̊(𝑄𝑇 ) is the orthogonal decomposition on gradient and solenoidal parts of
the space L2(𝑄𝑇 ), v = (𝑣1, 𝑣2, . . . , 𝑣𝑛),

div a = 0, a|𝑆 = 0. (4)

Hereinafter we employ the notations of work [3]. For the well-definiteness of the pressure we
assume that

∫︀
Ω

𝑝(𝑥, 𝑡)𝑑𝑥 = 0 for a.e. 𝑡 in [0, 𝑇 ].

As it was mentioned in work [1], the main difficulty in studying the problem (1)-(3) is related
with the global unique solvability, i.e., for each 𝑡 ∈ [0, 𝑇 ], of initial boundary value problem (1),
(2). The justification of global solvability is hampered by the proof of an apriori estimate for one
of the norms ‖v𝑥(𝑥, 𝑡)‖2, ‖v‖𝑞,𝑟,𝑄𝑇

, where the parameters 𝑞 and 𝑟 satisfy certain conditions. The
estimate on ‖v‖𝑞,𝑟,𝑄𝑇

implies that for ‖v𝑥(𝑥, 𝑡)‖2 and vice-versa. Due to this situation, various
regularizations of Navier-Stokes equations are considered, see, for instance, [1], [2] and the
references therein. As a rule, the regularization is related with introducing additional terms
with a small parameter into equation (1). At that, the solution to the regularized problem
should converge to the solution of the initial Navier-Stokes problem as 𝜀 → 0 provided it exists.
Within such approach, there appear an issue on physical relevance of the regularized problem,
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on the choice of parameter 𝜀 and on how the solutions of the regularized and original problem
are close.

The approach for solving problem (1)-(3) suggested in work [3] can be also considered as the
regularization of Navier-Stokes system. Its matter is that in the product 𝑣𝑖v𝑥𝑖

in equation (1)
the term v is replaced by its projection on the ball 𝐾𝑅(𝑡) = {v(𝑡) : ‖v𝑥(𝑡)‖ 6 𝑅(𝑡)} for almost
each 𝑡 in [0, 𝑇 ], where 𝑅(𝑡) is a non-decreasing positive function. Hereinafter ‖ · ‖ = ‖ · ‖L2(Ω).

The projection on the ball 𝐾𝑅 is calculated by the formula 𝑃𝐾𝑅
v = 𝛼𝑅(𝑡,v)v, where

𝛼𝑅(𝑡,v(𝑡)) = min[1, 𝑅(𝑡)/ ‖v𝑥(𝑡)‖]. Thus, from equation (1) we pass to the equation

v𝑡 − 𝜈∆v + 𝛼𝑅(𝑡,v)𝑣𝑖v𝑥𝑖
+ grad 𝑝 = f. (1́)

For the solution of regularized problem
(︀
1́
)︀
, (2), (3) we construct the iteration process

v𝑘+1
𝑡 − 𝜈∆v𝑘+1 + 𝛼𝑘+1

𝑅 𝑣𝑘𝑖 v
𝑘+1
𝑥𝑖

+ grad 𝑝𝑘+1 = f, (5)

v𝑘+1
⃒⃒
𝑆𝑇

= 0, v𝑘+1
⃒⃒
𝑡=0

= a(𝑥), (6)

div v𝑘+1 = 0, (7)

where 𝛼𝑘 = 𝛼𝑘(𝑡) = 𝛼𝑅(𝑡,v𝑘).
By V2 we denote the space W2,1(𝑄𝑇 ) ∩ L∞(0, 𝑇 ;W1

2(Ω)) with the norm

‖v‖V2
= ‖v‖W2,1(𝑄) + vrai max

𝑡∈[0,𝑇 ]
‖v𝑥‖ (8)

The following theorem was proven in [3]

Theorem 1. Let f ∈ J̊(𝑄𝑇 ), Ω be a bounded domain with the boundary 𝑆 ∈ 𝐶2, a(𝑥) satisfy
conditions (4). Then problem (1́), (2), (3) has the unique solution v, 𝑝 with v𝑥𝑥, v𝑡, 𝑝𝑥 in
L2(𝑄𝑇 ) and sequences

{︀
v𝑘
}︀∞
𝑘=0

,
{︀
𝑝𝑘
}︀∞
𝑘=1

determined by the iteration process (5)-(7) converge

to the solution of (1́), (2), (3) for each v0 ∈ V2. Here 𝛼𝑘 = 𝑚𝑖𝑛
[︁
1, 𝑅(𝑡)

⃦⃦
v𝑘𝑥
⃦⃦−1

]︁
, 𝑅(𝑡) is a

bounded non-decreasing function. The estimates⃦⃦
v𝑘 − v

⃦⃦
V2

6 𝑐(𝑞)𝑞𝑘
⃦⃦
v0 − v

⃦⃦
V2

, (9)

‖𝑝𝑘 − 𝑝‖W1,0
2 (𝑄𝑇 ) 6 𝑐(𝑞)𝑞𝑘

⃦⃦
v0 − v

⃦⃦
V2

(10)

hold true for each 𝑞 ∈ (0, 1), where 𝑐(𝑞) is bounded on the segment [𝛼, 1] for each 𝛼 > 0.

It was also shown in [3] that the statement of Theorem 1 remains true if one replaces v(𝑡) by
its projection on the ball {v(𝑡) ∈ L4(Ω) : ‖v(𝑡)‖4 6 𝑅(𝑡)} in the nonlinear term of equation (1);
one can also replace by the coordinate projections of vector v(𝑡) on the segment [𝑅1(𝑡), 𝑅2(𝑡)],
where 𝑅1(𝑡), 𝑅2(𝑡) are bounded on the interval [0, 𝑇 ] functions.

Remark 1. We observe that the proven theorem ensures the convergence of iteration process
(5)-(7) on each segment [0, 𝑇 ] such that f ∈ J̊(𝑄𝑇 ), as well as the unique solvability for problem
(1́), (2), (3).

Remark 2. If solution v*, 𝑝* of problem (1́), (2), (3) satisfies the inequality

‖v*
𝑥(𝑡)‖ 6 𝑅(𝑡) ∀𝑡 ∈ [0, 𝑇1], (11)

on each interval [0, 𝑇1], 𝑇1 6 𝑇 , then the solution to problem (1)-(3) exists on this interval and
v = v*, 𝑝 = 𝑝*. Indeed, if inequality (11) holds true, then 𝛼 (𝑡,v*

𝑥) = 1, and thus equations (1)
and (1́) coincide.
Remark 3. If the solution to problem (1)-(3) exists on the interval [0, 𝑇1], 𝑇1 6 𝑇 and the

estimate
‖v𝑥(𝑡)‖ 6 𝑀(𝑡) ∀𝑡 ∈ [0, 𝑇1], (12)

holds true, where 𝑀(𝑡) 6 𝑅(𝑡), then on this interval it coincides with the solution to regularized
problem (1́), (2), (3). Indeed, since v(t) lies inside the ball 𝐾𝑅(𝑡), v(t) coincides with its
projection on this ball and thus v satisfies equation (1́). Taking into account the uniqueness
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of solution to problem (1́), (2), (3) (by Theorem 1) and the uniqueness of solution to problem
(1)-(3) under condition (12) (see [1, Ch. VI, Thm. 1́2 [1]), we arrive at the desired statement.

Remark 4. In view of Remark 2 it is easy to construct an iteration process converging to the
solution of problem (1)-(3) in the case when the right hand side of estimate (12) is unknown
under the condition that solution to problem (1)-(3) exists and satisfies restriction (12) for
some unknown but bounded on [0, 𝑇1] function 𝑀(𝑡). Indeed, we take a positive bounded
non-decreasing function 𝑅1(𝑡) and solve equation (1́), (2), (3) for 𝑅(𝑡) = 𝑅1(𝑡). Then we check
condition (12) for 𝑀(𝑡) = 𝑅1(𝑡). If this condition holds, problem (1)-(3) is solved. If no, we
let 𝑅2(𝑡) = 𝑅1(𝑡) + 𝐾, 𝐾 is the parameter of the method and repeat the iteration process. It
is clear that after a final number of steps condition (12) will be satisfied and problem (1)-(3)
will be thus solved.

While realizing the suggested approach, there appears an issue of the choice of integral
restriction for 𝑅(𝑡) or uniform restrictions for the speed 𝑅1(𝑡), 𝑅2(𝑡). The estimates for ‖v𝑥(𝑡)‖
and ‖v(𝑡)‖4 can be explicitly found globally for 𝑛 = 2 and locally for 𝑛 = 3. These estimates
on the interval [𝑡0, 𝑡] depends on the initial condition ‖u𝑥(𝑡0)‖(‖u(𝑡0)‖4), ‖𝑓‖L2(𝑄𝑡

𝑡0
), 𝜈 and the

constants from embedding theorems.
In many cases it is difficult to find such estimates, moreover, applying them to a particular

problem we can obtain very rough estimates. Because of this fact, in Remark 4 we suggest the
iteration process which allows to find an apriori estimate if the solution with an appropriate
estimate on a given time interval exists.

An apriori estimate of the form |v| 6 𝑁 can be prescribed by physical reasons if we know
apriori that the speed of a viscous liquid does not exceeds a given quantity, i.e., |v(𝑡, 𝑥)| 6 𝑁 ,
then we can let 𝑅1(𝑡) = −𝑁 , 𝑅2(𝑡) = 𝑁 . Then we note that if the solution of such regularized
problem satisfies the chosen apriori estimate, then its solution coincides with the solution of the
original problem. If the obtained solution does not satisfy the chosen estimate, then either the
speed is estimated in a wrong way, of the original model (1) − (3) is irrelevant for the studied
physical process.

It follows from the said above that in many cases solving nonlinear Navier-Stokes system can
be reduced to solving a sequence of linear problems.

There are various approaches for solving linear problems. Among them we mention one based
on gradient methods for minimization the functional 𝐽 (v) =

∫︀
𝑄𝑇

|div v|2 𝑑𝑥𝑑𝑡, where pressure

𝑝 is treated as a control (see, for instance, [5]–[7]). However, while constructing the gradient
method, one faces the difficulty related with the fact that in the considered problems (as in the
most part of real problems, where the state of a system is described by differential equations)
the Lebesgue sets M𝑖(𝐶) = {𝑢 ∈ 𝑈𝑖 : 𝐽𝑖(𝑢) < 𝐶, 𝑖 = 1, 2} are unbounded. In work [5] this
difficulty was overcome by means of iterative regularization of the gradient projection method.
Unfortunately, this method converges too slowly.

In the present work we construct and justify a modified method of fastest descent which can
be applied under some restrictions for the control and unboundedness of the Lebesgue set.

2. Gradient method for solving linearized problem

It was shown in the previous section that under certain conditions solving of problem (1.1)-
(1.3) is reduced to solving the sequence of problems (1.5)-(1.7). Omitting index 𝑘, we write
this problem as

𝐿v ≡ v𝑡 − 𝜈∆v + 𝑔𝑖v𝑥𝑖
= f− grad 𝑝, (1)

v|𝑆𝑇
= 0, v|𝑡=0 = a(𝑥), (2)

div v = 0, (3)
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where f ∈ J̊(𝑄𝑇 ), 𝑔𝑖 ∈ 𝐿4,∞ (𝑄𝑇 ), a (𝑥) satisfies condition (1.4). Hereinafter while referring to
the formulae from another section, we make use of a double numeration, where the first number
indicates the number of the section, and the other stands for the number of the formula within
the section.

We consider problem (1)-(3) as the inverse problem of determining v and 𝑝 by additional
data (3). The main aim of solving inverse problems is their reduction to problems of optimal
control. We consider two versions of such problems.

Problem I. Find the minimum of the functional 𝐽1(𝑢) = 1
2

∫︀
𝑄𝑇

|div v (∇𝑢)|2 𝑑𝑥𝑑𝑡 on the set

𝑈1 = �̊� 1,0
2 (𝑄𝑇 ) =

{︂
𝑢 ∈ 𝑊 1,0

2 (𝑄𝑇 ) :
∫︀
Ω

𝑢 (𝑥, 𝑡) 𝑑𝑥 = 0, 𝑡 ∈ [0, 𝑇 ]

}︂
, where ∇𝑢 = grad𝑢, v (∇𝑢)

solves problem 𝐿v = f−∇𝑢 with conditions (2).
Problem II. Find the minimum of the functional 𝐽2(𝑢) = 1

2

∫︀
𝑄𝑇

|div v (∇𝑢)|2 𝑑𝑥𝑑𝑡 on the

set 𝑈2 = 𝐿2 (𝑄𝑇 ) =

{︂
𝑢 ∈ 𝐿2 (𝑄𝑇 ) :

∫︀
Ω

𝑢 (𝑥, 𝑡) 𝑑𝑥 = 0, ; 𝑡 ∈ [0, 𝑇 ]

}︂
, where v (∇𝑢) solves problem

𝐿v = f−∇𝑢 with condition (2).
The difference between problems II and I is that the derivatives ∇𝑢 for 𝑢 ∈ 𝐿2 (𝑄𝑇 ) are

treated in the generalized sense and solution to problem (1) − (3) will be also treated in the
generalized sense.

The we denote by 𝐻𝑙, 𝑙 = 1, 2 the Hilbert spaces

𝐻1 = 𝑊 1,0
2 (𝑄𝑇 ), 𝐻2 = L2 (𝑄𝑇 );

then 𝑈𝑙 is a subspace of space 𝐻𝑙, 𝑙 = 1, 2.
We solve problems I, II by the gradient projection method

𝑢𝑘+1 = 𝑃𝑈𝑙
(𝑢𝑘 − 𝛼𝑘+1𝐽

′
𝑙 (𝑢𝑘)) , (4)

where 𝑃𝑈𝑙
the projector on set 𝑈𝑙, 𝐽

′
𝑙 (𝑢𝑘) is the gradient of the functional 𝐽𝑙(𝑢𝑘) at the point

𝑢𝑘, 𝑙 = 1, 2.
It will be shown in the next subsection that the formulae for calculating gradients

𝐽 ′
1(𝑢) = −𝑝(𝑢) (51)

hold true, where 𝑝(𝑢) is determined by the decomposition w(𝑢) on gradient and solenoidal parts
w(𝑢) = grad 𝑝(𝑢) + 𝜙,

𝐽 ′
2(𝑢) = divw(𝑢). (52)

Here w(𝑢) is the adjoint condition determined for both the problems as the solution to the
problem

𝐿*w(𝑢) = −w𝑡 − 𝜈∆w− 𝜕

𝜕𝑥𝑖

(𝑔𝑖w) = grad div v (∇𝑢) , (6)

w|𝑆𝑇
= 0, w (𝑥, 𝑇 ) = 0. (7)

2.1. Differentiability of functional 𝐽1(𝑢). We consider first the problem I. It is written
as

𝐽1(𝑢) =
1

2

∫︁
𝑄𝑇

|div v (∇𝑢)|2 𝑑𝑥𝑑𝑡 → 𝑖𝑛𝑓 ; 𝑢 ∈ 𝑈1, (8)

where v (∇𝑢) is the solution to equation

𝐿v = v𝑡 − 𝜈∆v + 𝑔𝑖v𝑥𝑖
= f−∇𝑢 (9)

with initial and boundary conditions (2).
The proof of existence of solution to problem (1), (2) in space W2,1

2 (𝑄𝑇 ) and estimates
necessary for justifying formula (51) are based on the following lemma.



62 I.I. GOLICHEV

Lemma 1. Let F (𝑥, 𝑡) ∈ L2 (𝑄𝑇 ), g = (𝑔1, . . . , 𝑔𝑛) ∈ L4,∞ (𝑄𝑇 ), 𝑟 ∈ 𝐿4,∞ (𝑄𝑇 ),

a (𝑥) ∈ W̊1
2 (Ω). Then in the space W2,1

2 (Ω) there exists the unique solution to the equation

𝐿 (v) + 𝑟v = F, (𝑥, 𝑡) ∈ 𝑄𝑇 , (10)

with initial and boundary conditions (2). The estimate

‖v‖2𝜆 ≡vrai max
𝑡∈[0,𝑇 ]

‖v𝑥 (𝑡)‖2 + 𝜈

𝑇∫︁
0

‖∆v‖2𝑑𝑡 + 𝜆

𝑇∫︁
0

‖v𝑥 (𝑡)‖2𝑑𝑡

64𝑒𝜆𝑇
(︂
𝜈−1 ‖F‖2L2(𝑄𝑇 ) +

1

2
‖a (𝑥)‖2

)︂ (11)

is valid, where 𝜆 is a constant depending only on 𝜈 and constants 𝑐2, 𝑐3, 𝑐4, 𝑐7 from the
embedding theorems and the second energy inequality (see inequalities (13)–(15), (20) in work
[3]), ‖g‖L4,∞(𝑄𝑇 ), ‖𝑟‖L4,∞(𝑄𝑇 ).

Proof. We choose a sequence of bounded on 𝑄𝑇 functions {F𝑛}, {g𝑛}, {𝑟𝑛} satisfying the
conditions

lim
𝑛→∞

‖F𝑛 − F‖L2(𝑄𝑇 ) = lim
𝑛→∞

‖g𝑛 − g‖L4,∞(𝑄𝑇 )

= lim
𝑛→∞

‖𝑟𝑛 − 𝑟‖𝐿4,∞(𝑄𝑇 ) = 0
(12)

and consider the sequence of the problems

v𝑛
𝑡 − 𝜈∆v𝑛 + 𝑔𝑛𝑖 v

𝑛
𝑥𝑖

+ 𝑟𝑛v = F𝑛, (13)

v𝑛|𝑆𝑇
= 0, v𝑛|𝑡=0 = a. (14)

We note that the latter problem splits into separate problems for the coordinates of vector v𝑛.
Employing the known results (see, for instance, [4, Ch. III, Sec. 6]), we make sure that ‖v𝑛‖𝜆
is bounded. Let us prove the uniform estimate ‖v𝑛‖𝜆 6 𝑐0, 𝑛 = 1, 2, . . .

In what follows by 𝐶𝑖 we denote the constants depending on the same quantities as constant
𝜆.

We denote ̃︀v𝑛 = v𝑛𝑒−𝜆𝑡; ̃︀F𝑛
= F𝑛𝑒−𝜆𝑡, then ̃︀v𝑛 is a solution to the problem

̃︀v𝑛
𝑡 − 𝜈∆̃︀v𝑛 + 𝑔𝑛𝑖 ̃︀v𝑛

𝑥𝑖
+ 𝑟𝑛̃︀v𝑛 + 𝜆̃︀v𝑛 = ̃︀𝐹 𝑛, (13′)

̃︀v𝑛|𝑆𝑇
= 0, ̃︀v𝑛|𝑡=0 = a. (14′)

We multiply equation (13′) by ∆̃︀v and integrating by parts over domain 𝑄𝑡, we obtain

1

2
‖̃︀v𝑛

𝑥 (𝑡)‖2 + 𝜈‖|∆̃︀v𝑛|‖20,𝑡 + ((𝑔𝑛𝑖 ̃︀v𝑥𝑖
+ 𝑟𝑛̃︀v𝑛) , ∆̃︀v𝑛)L2(𝑄𝑇 ) + 𝜆‖|̃︀v𝑛

𝑥 (𝑡) |‖20,𝑡

=
(︁̃︀F𝑛

,∆̃︀v𝑛
)︁
L2(𝑄𝑇 )

+
1

2
‖a𝑥‖2 .

(15)

Here we have used the notation ‖| · |‖0,𝑡 = ‖·‖𝐿2(𝑄𝑡)
.

It follows from relations (12) that there exist constants 𝐶1, 𝐶2, 𝐶3 such that the estimates

‖|F𝑛|‖0,𝑡 6 𝐶1, ‖g𝑛 (𝑡)‖L4(Ω) 6 𝐶2, ‖𝑟𝑛 (𝑡)‖𝐿4(Ω) 6 𝐶3 ∀𝑡 ∈ [0, 𝑇 ] (16)

are valid.
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To estimate the integrals in the left hand side of identity (15), we make use of the following
relations

‖|𝑔𝑛𝑖 ̃︀v𝑛
𝑥𝑖
|‖0,𝑡 6

⎛⎝ 𝑡∫︁
0

∫︁
Ω

|g𝑛|2 |̃︀v𝑛
𝑥|

2 𝑑𝑥𝑑𝑡

⎞⎠
1
2

6

⎛⎝ 𝑡∫︁
0

‖g𝑛‖24 ‖̃︀v𝑛
𝑥‖

2
4 𝑑𝜏

⎞⎠
1
2

6𝐶2

⎛⎝ 𝑡∫︁
0

‖̃︀v𝑛
𝑥‖

2
4 𝑑𝜏

⎞⎠
1
2

6 𝜀‖∆̃︀v𝑛‖0,𝑡 + 𝑐(𝜀)‖∆̃︀v𝑛
𝑥‖0,𝑡.

Here we have used the inequality⎛⎝ 𝑡∫︁
0

‖w𝑥‖24 𝑑𝜏

⎞⎠
1
2

6 𝜀‖|∆w|‖0,𝑡 + 𝑐(𝜀)‖|w𝑥|‖0,𝑡, (17)

which is valid for each 𝑤 ∈ �̊� 2,1
2 (𝑄𝑇 ).

The latter inequality can be obtained, for instance, for 𝑛 = 3, as follows:

𝑡∫︁
0

‖w𝑥‖42 𝑑𝜏 6 𝑐3𝑐7

⎛⎝ 𝑡∫︁
0

‖w𝑥‖
1
2 ‖∆w‖

3
4 𝑑𝜏

⎞⎠
1
2

6 𝑐3𝑐7 ‖|w𝑥‖ |
1
4
0,𝑡 ‖|∆w‖ |

3
4
0,𝑡.

Here we have used the estimate from the embedding theorem ‖𝑣‖4 6 𝑐3 ‖𝑣𝑥‖
3
4 ‖𝑣‖

1
4 (as 𝑛 = 3)

and the second energy estimate ‖𝑣𝑥𝑥‖ 6 𝑐7 ‖∆𝑣‖ being valid for W̊1
2 (Ω) ∩W2

2 (Ω). Employing

then Young’s inequality
(︁
𝑎𝑏 6 1

𝑚
𝜀𝑚1 𝑎

𝑚 + 𝑚−1
𝑚

𝜀
−𝑚−1

𝑚
1 𝑏

𝑚
𝑚−1

)︁
, where 𝑚 = 4

3
, we obtain inequality

(17).
Taking into consideration estimates (16) and the estimates ‖v‖4 6 𝑐‖v𝑥‖ for 𝑛 = 2, 3, it is

easy to make sure that the following inequalities

‖|𝑟𝑛̃︀v𝑛|‖0,𝑡 6

⎛⎝ 𝑡∫︁
0

‖𝑟𝑛‖24 ‖̃︀v𝑛‖24 𝑑𝜏

⎞⎠
1
2

6 𝐶3𝑐‖|̃︀v𝑛
𝑥|‖0,𝑡 (18)

are valid. They imply

𝐴1 =|
(︀(︀
𝑔𝑛𝑖 ̃︀v𝑛

𝑥𝑖
+ 𝑟𝑛̃︀v𝑛

)︀
, ∆̃︀v𝑛

)︀
L2(𝑄𝑡)

|
6 (𝜀‖|∆̃︀v𝑛|‖0,𝑡 + (𝑐 (𝜀) + 𝐶3𝑐) ‖|̃︀v𝑛

𝑥|‖0,𝑡) ‖|∆̃︀v𝑛|‖0,𝑡

62𝜀‖|∆̃︀v𝑛|‖20,𝑡 +
1

4𝜀
(𝑐 (𝜀) + 𝐶3𝑐)

2 ‖|̃︀v𝑛
𝑥|‖20,𝑡.

Letting 𝜀 = 1
8
𝜈, and 𝜆 = 4𝜈−1

(︀
𝑐
(︀
𝜈
8

)︀
+ 𝐶3𝑐

)︀2
, we obtain

𝐴1 6
1

4
𝜈‖|∆̃︀v𝑛|‖20,𝑡 +

1

2
𝜆‖|̃︀v𝑛

𝑥|‖0,𝑡.

Taking into consideration the latter inequality, relation (15) and inequality

𝐴2 = |
(︁̃︀F𝑛

,∆̃︀v𝑛
)︁
L2(𝑄𝑇 )

| 6 1

4
𝜈‖|̃︁∆v

𝑛
|‖20,𝑡 + 𝜈−1‖|̃︀F𝑛

|‖0,𝑡,

we obtain
1

2
‖̃︀v𝑛

𝑥 (𝑡)‖2 +
1

2
𝜈‖|∆̃︀v𝑛|‖20,𝑡 +

1

2
𝜆‖|̃︀v𝑛

𝑥|‖20,𝑡 6 𝑐2𝑡 ,
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where 𝑐2𝑡 = 𝜈−1‖|̃︀F𝑛
|‖20,𝑡 + 1

2
‖a𝑥‖2. By the latter inequality we find that

[̃︀v𝑛]2𝜆,𝑡 = vrai max
𝜏∈[0,𝑡]

‖̃︀v𝑛(𝜏)‖2 + 𝜈‖|∆̃︀v𝑛|‖20,𝑡 + 𝜆‖|̃︀v𝑛
𝑥|‖20,𝑡 6 4𝑐2𝑡 . (19)

Let us show that the sequence {̃︀v𝑛} is fundamental in the metrics [·]𝜆,𝑇 = ‖·‖𝜆.

We denote z𝑛,𝑙 = ̃︀v𝑛 − ̃︀v𝑛+𝑙 and note that z𝑛,𝑙 satisfies the equation

z𝑛,𝑙𝑡 −𝜈∆z𝑛,𝑙 + 𝑔𝑛𝑖 z
𝑛,𝑙
𝑥𝑖

+ 𝑟𝑛z𝑛,𝑙 + 𝜆z𝑛,𝑙

=
(︁̃︀F𝑛

− ̃︀F𝑛+𝑙
)︁

+
(︀
𝑔𝑛+𝑙
𝑖 − 𝑔𝑛𝑖

)︀ ̃︀v𝑛+𝑙
𝑥𝑖

+
(︀
𝑟𝑛+𝑙 − 𝑟𝑛

)︀ ̃︀v𝑛+𝑙
(20)

and the conditions

z𝑛,𝑙
⃒⃒
𝑆𝑇

= 0, z𝑛,𝑙
⃒⃒
𝑡=0

= 0. (21)

We can apply inequality (19) to problem (20), (21) with

𝑐2𝑡 = 𝑐2𝑡 (𝑛, 𝑙) = 𝜈−1
(︁
‖|
(︁̃︀F𝑛

− ̃︀F𝑛+𝑙
)︁

+
(︀
𝑔𝑛+𝑙
𝑖 − 𝑔𝑛𝑖

)︀ ̃︀v𝑛+𝑙
𝑥𝑖

+
(︀
𝑟𝑛+𝑙 − 𝑟𝑛

)︀ ̃︀v𝑛+𝑙|‖20,𝑡
)︁
.

Bearing in mind condition (12), the boundedness of the sequence {̃︀v𝑛} in the metrics [·]𝜆,𝑇
and inequality (17), we obtain the estimates

‖|
(︀
g𝑛+𝑙 − g𝑛

)︀ ̃︀v𝑛+𝑙|‖0,𝑇 6 𝐶5

⃦⃦
g𝑛+𝑙 − g𝑛

⃦⃦
L4,∞(𝑄𝑇 )

,

‖|
(︀
𝑟𝑛+𝑙 − 𝑟𝑛

)︀ ̃︀v𝑛+𝑙|‖0,𝑇 .

These inequalities, conditions (12), and estimates (19) yield the convergence of sequence {̃︀v𝑛}
in metrics [·]𝜆,𝑇 .

It is easy to show that lim
𝑛→∞

𝑔𝑛𝑖 ̃︀v𝑛
𝑥𝑖

= 𝑔𝑖̃︀v𝑥𝑖
, lim

𝑛→∞
𝑟𝑛̃︀v𝑛 = 𝑟̃︀v. Then it follows from equation

(13) that {̃︀v𝑛
𝑡 }

∞
𝑛=0 converges in L2 (𝑄𝑇 ) to ̃︀v𝑡. ̃︀v ∈ W2,1

2 (𝑄𝑇 ).
Passing to the limit as 𝑛 → ∞ in inequality and taking into consideration the obvious

inequalities

‖̃︀v (𝑡)‖ > 𝑒−𝜆𝑡 ‖v (𝑡)‖ , ‖̃︀v𝑥 (𝑡)‖ > 𝑒−𝜆𝑡 ‖v𝑥 (𝑡)‖

‖∆̃︀v (𝑡)‖ > 𝑒−𝜆𝑡 ‖∆v (𝑡)‖ , ‖̃︀F‖L2(𝑄𝑇 ) 6 ‖F‖L2(𝑄𝑇 ) ,

we arrive at inequality (11). In its turn, it implies the uniqueness of solution to equation
(10).

Corollary 1. Let f ∈ L2 (𝑄𝑇 ), g ∈ L4,∞ (𝑄𝑇 ), a (𝑥) ∈ W̊1
2 (Ω), 𝑆 ∈ 𝐶2. Then for each

𝑢 ∈ 𝑊 1,0
2 (𝑄𝑇 ) the equation

𝐿v = f− grad𝑢

with boundary and initial conditions (2) the unique solution in W2,1
2 (𝑄𝑇 ) and the estimate

‖v‖𝜆 6 𝐶7𝑒
𝜆𝑇

(︁
‖f‖L2(𝑄𝑇 ) + ‖grad𝑢‖L2(𝑄𝑇 ) + ‖a𝑥‖

)︁
(22)

holds true.

Corollary 2. Suppose that the hypothesis of Corollary 1 holds and in addition div g ∈
L4,∞ (𝑄𝑇 ). Then for each 𝑢 ∈ 𝑊 1,0

2 (𝑄𝑇 ) problem (6), (7) has a solution in W2,1
2 (Ω) and

the estimate

‖w‖𝜆 6 𝐶8𝑒
𝜆𝑇 ‖grad div v (∇𝑢)‖L2(𝑄𝑇 ) (23)

holds true.
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Proof. First we note that in Lemma 1, g is an arbitrary function in L4,∞ (𝑄𝑇 ). Writing the left
hand side of equation (6) as

𝐿*w ≡ −w𝑡 − 𝜈∆w− g𝑖w𝑥𝑖
− div gw

and making the change 𝑡 = 𝑇 − 𝜏 , we pass to equation (10) with an arbitrary right hand side
𝐹 ∈ L2 (𝑄𝑇 ) and homogeneous boundary and initial conditions. Employing inequality (11), we
obtain estimate (23).

Corollary 3. Let a linear operator 𝐿 is defined by the differential expression 𝐿v = v𝑡 −
𝜈∆v+ g𝑖v𝑥𝑖

(𝑔 ∈ L4,∞ (𝑄𝑇 )) on the set of functions 𝐷(𝐿) ⊂ W2,1
2 (𝑄𝑇 ) satisfying homogeneous

initial and boundary conditions (2). Then operator 𝐿 is closed, has a bounded inverse and its
domain is 𝑅(𝐿) = L2 (𝑄𝑇 ).

First two statements follow immediately from Lemma 1, while the closedness follows from
the first two properties of operator 𝐿. Similar statements are valid for operator 𝐿* defined
by the differential expression in the right hand side of equation (6) on the set of functions
w ∈ 𝐷(𝐿*) ⊂ W2,1

2 (𝑄𝑇 ) satisfying conditions (7). Integrating by parts, one can make sure
that 𝐿* is contained in the adjoint operator �̃�* of 𝐿. The coincidence of the domains of operators

𝐿* and �̃�* can be shown easily. Indeed, let 𝑧 ∈ 𝐷
(︁
�̃�*

)︁
, then letting 𝑓 = �̃�*𝑧, we obtain the

relations (𝐿𝑥, 𝑧) = (𝑥, 𝑓)∀𝑥 ∈ 𝐷 (𝐿). On the other hand, there exists an element 𝑤 ∈ 𝐷
(︁
�̃�*

)︁
such that �̃�*𝑤 = 𝑓 . Hence, (𝐿𝑥, 𝑧 − 𝑤) = 0 for each 𝑥 ∈ 𝐷 (𝐿). Letting 𝑥 = 𝐿−1 (𝑧 − 𝑤), we
obtain identity 𝑧 = 𝑤.

Theorem 2. Suppose the hypothesis of Corollary 2 of Lemma 1. Then functional 𝐽1(𝑢) is

differentiable in W̊1,0
2 (𝑄𝑇 ) = 𝑈1 and its gradient satisfies Lipshitz condition.

Proof. To prove formula (51) on the set 𝑈1 = �̊� 1,0
2 (𝑄𝑇 ), we introduce the scalar product

equivalent to that in 𝑊 1,0
2 (𝑄𝑇 )

(𝑣, 𝑧)�̊� 1,0
2

=

∫︁
𝑄𝑇

𝑣𝑥𝑖
𝑧𝑥𝑖

𝑑𝑥𝑑𝑡 = (∇v,∇z)L2(𝑄𝑇 ) .

Then

𝐽1 (𝑢 + ℎ) − 𝐽1(𝑢) =
1

2
‖div v (∇𝑢 + ∇ℎ)‖2𝐿2(𝑄𝑇 ) −

1

2
‖div v (∇𝑢)‖2𝐿2(𝑄𝑇 )

= (div v (∇𝑢) , div v̊ (∇ℎ))𝐿2(𝑄𝑇 ) +
1

2
‖div v (∇ℎ)‖2𝐿2(𝑄𝑇 ) .

(24)

By Corollary 1, operator 𝐿 has the inverse 𝐿−1, and in particular, 𝐿−1h = v̊ (ℎ). Taking
into consideration Corollary 2 of Lemma 1, we make sure that operator 𝐿* has inverse and
(𝐿*)−1 grad div 𝑢 = w, where w solves problem (6), (7). By Corollary 3 of Lemma 1, 𝐿* is the
adjoint operator for 𝐿.

Employing the above introduced operator 𝐿, we transform the first term in the right hand
side of the latter identity:

(div v (∇𝑢) , div v̊ (∇ℎ))𝐿2(𝑄𝑇 ) = −
(︀
(𝐿*)−1∇div v (∇𝑢) ,∇ℎ

)︀
L2(𝑄𝑇 )

= −
(︀
𝑃𝐺(𝑄𝑇 )w(𝑢),∇𝑢

)︀
L2(𝑄𝑇 )

= − (∇𝑝(𝑢),∇ℎ)L2(𝑄𝑇 ) = (−𝑝(𝑢), ℎ)�̊� 1,0
2

.
(25)

Taking into consideration inequality (22), we obtain the estimates

‖div v̊ (∇ℎ)‖2𝐿2(𝑄𝑇 ) 62 ‖v̊𝑥 (∇ℎ)‖2L2(𝑄𝑇 ) 6 2𝜆−1 ‖v̊ (∇ℎ)‖2𝜆
62𝜆−1𝐶7𝑒

𝜆𝑇 ‖∇ℎ‖2L2(𝑄𝑇 ) = 2𝜆−1𝐶7𝑒
𝜆𝑇 ‖ℎ‖2W̊1,0

2
.

This relation and (24), (25) imply identity (51).
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Let us show that 𝐽 ′
1(𝑢) satisfies Lipshitz condition. Let 𝑢1 and 𝑢2 belong to �̊� 1,0

2 (𝑄𝑇 ), while
w1 and w2 are the corresponding solution to problem (6), (7). Then

‖𝐽 ′
1 (𝑢1) − 𝐽 ′

1 (𝑢2)‖�̊� 1,0
2 (𝑄𝑇 ) = ‖𝑝 (𝑢1) − 𝑝 (𝑢2)‖�̊� 1,0

2 (𝑄𝑇 ) =

= ‖∇𝑝 (𝑢1) −∇𝑝 (𝑢2)‖L2(𝑄𝑇 ) =
⃦⃦
𝑃𝐺(𝑄𝑇 )w

1 − 𝑃𝐺(𝑄𝑇 )w
2
⃦⃦
L2(𝑄𝑇 )

6

6
⃦⃦
w1 −w2

⃦⃦
L2(𝑄𝑇 )

. (26)

We note that w = w1 −w2 solves problem (6), (7), where 𝑢 = 𝑢1 − 𝑢2.
Employing inequalities (23), (22) and ‖v‖ 6 𝑐4‖v𝑥‖, ‖v𝑥𝑥‖ 6 𝑐7‖∆v‖ being valid for each

v ∈ W̊1
2(Ω), we get

‖w‖L2(𝑄𝑇 ) 6𝑐4 ‖w𝑥‖L2(𝑄𝑇 ) 6 𝑐4𝜆
−1 ‖w‖𝜆 6 𝑐4𝜆

−1𝐶8𝑒
𝜆𝑇

⃦⃦
∇div v

(︀
∇
(︀
𝑢1 − 𝑢2

)︀)︀⃦⃦
L2(𝑄𝑇 )

6
√
𝑛𝑐4𝜆

−1𝑐7𝐶8𝑒
𝜆𝑇

⃦⃦
∆v

(︀
𝑢1 − 𝑢2

)︀⃦⃦
L2(𝑄𝑇 )

6
√
𝑛𝑐4𝑐7𝐶8𝜆

−1𝜈− 1
2 𝑒𝜆𝑇

⃦⃦
v
(︀
∇
(︀
𝑢1 − 𝑢2

)︀)︀⃦⃦
𝜆

6
√
𝑛𝑐4𝑐7𝐶8𝜈

− 1
2𝜆−1𝐶7𝑒

𝜆𝑇
⃦⃦
∇
(︀
𝑢1 − 𝑢2

)︀⃦⃦
L2(𝑄𝑇 )

=𝐿1

⃦⃦
𝑢1 − 𝑢2

⃦⃦
W̊1,0

2
.

This inequality and (26) imply that the gradient 𝐽 ′
1(𝑢) satisfies Lipshitz condition with the

constant 𝐿1 =
√
𝑛𝑐4𝑐7𝐶8𝜈

− 1
2𝜆−1𝐶7𝑒

𝜆𝑇 .

2.2. Differentiability of functional 𝐽2(𝑢). In studying problem II we shall need general-

ized solutions to problem (1)-(3) in the Banach space V̊1,0
2 (𝑄𝑇 ) obtained as a closure of smooth

functions vanishing in the vicinity of 𝑆𝑇 by the norm

‖v‖𝑄𝑇
= 𝑚𝑎𝑥

06𝑡6𝑇
‖v (𝑥, 𝑡)‖𝐿2(Ω) + ‖v𝑥‖L2(𝑄𝑇 ) .

A generalized solution in the class V̊1,0
2 (𝑄𝑇 ) to the problem (1)–(3) is a function

v ∈ V̊1,0
2 ∩ 𝐽 (𝑄𝑇 ) satisfying the identity∫︁

𝑄𝑇

(−vΦ𝑡 + 𝜈v𝑥Φ𝑥) 𝑑𝑥𝑑𝜏 +

∫︁
Ω

v (𝑥, 𝑡) Φ (𝑥, 𝑡) 𝑑𝑥 +

∫︁
𝑄𝑇

𝑞𝑖v𝑥𝑖
Φ 𝑑𝑥𝑑𝜏

=

∫︁
Ω

a (𝑥) Φ (𝑥, 0) 𝑑𝑥 +

∫︁
𝑄𝑇

𝑓Φ 𝑑𝑥𝑑𝜏, 𝑡 ∈ (0, 𝑇 )

(27)

for each Φ ∈ W̊1,1
2 (𝑄𝑇 ) ∩ 𝐽 (𝑄𝑇 ) and the identity

1

2
‖v (𝑥, 𝑡)‖2 + 𝜈

𝑡∫︁
0

‖v𝑥‖2 𝑑𝜏 =

𝑡∫︁
0

(𝑓,v) 𝑑𝜏 +
1

2
‖a‖2 +

∫︁
𝑄𝑇

div 𝑔‖v‖2 𝑑𝑥𝑑𝜏. (28)

If the hypothesis of Theorem 2 holds, then solution to problem (1)-(3) obviously satisfies
relations (27), (28), and this is why the solution to the generalized problem exists.

We note that if 𝑆 ∈ 𝐶2, it is easy to prove the unique solvability for problem (1)-(3) in

V̊1,0
2 (𝑄𝑇 ) under the condition a ∈ 𝐽 (Ω) , 𝑓 ∈ L2 (𝑄𝑇 ).

It can be done by passing to a limit in the sequence of the problems where a ∈ 𝐽 (Ω) is
replaced by a sequence of smooth functions a𝑛 in 𝐻 (Ω) converging in the norm of 𝐿2 (Ω) (see,
for instance, [1, Ch. IV, Thm. 3]).

To prove formula (52) and to check Lipshitz condition for the gradient 𝐽 ′
2(𝑢) of the functional

𝐽2(𝑢), we shall need the estimates similar to estimates (22), (23) but in the space V̊1,0
2 (𝑄𝑇 ).

At that, the constants in the obtained inequalities can be obtained explicitly. It gives a chance
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to find explicitly the Lipshitz constant for the gradient 𝐽 ′
2(𝑢) being important for studying

gradient methods of solving extremal problems.
The unique solvability of the problem

𝐿v = v𝑡 − 𝜈∆v + 𝑔𝑖v𝑥𝑖
= f− grad𝑢, (29)

v|𝑆𝑇
= 0, v|𝑡=0 = a. (30)

in the space V̊1,0
2 (𝑄𝑡) for each 𝑢 ∈ L2 (𝑄𝑇 ), f ∈ L2,1 (𝑄𝑇 ), a ∈ 𝐿2 (Ω), 𝑔 ∈ L4,∞ (𝑄𝑇 ) follows

from [3, Ch. III, Thm. 4.1].
Multiplying equation (29) by v𝑒−2𝜆𝑡 and differentiating by parts in domain 𝑄𝑡, we obtain the

identity

1

2
‖̃︀v (𝑡)‖2 + 𝜈‖|̃︀v𝑥|‖20,𝑡 + 𝜆‖|̃︀v|‖20,𝑡 +

𝑡∫︁
0

(𝑔𝑖̃︀v𝑥𝑖
, ̃︀v) 𝑑𝜏

=
1

2
‖a‖2 +

𝑡∫︁
0

[︁(︁ ̃︀𝑓, ̃︀v)︁ + (̃︀𝑢, div ̃︀v)
]︁
𝑑𝜏,

(31)

where ̃︀v = v𝑒−𝜆𝑡, ̃︀f = f𝑒−𝜆𝑡, ̃︀𝑢 = 𝑢𝑒−𝜆𝑡.
We consider two cases: the case of bounded functions 𝑔𝑖 and the case 𝑔 ∈ L4,∞ (𝑄𝑇 ).
Suppose the condition

max
𝑖

|𝑔𝑖 (𝑥, 𝑡)| 6 𝐺 ∀ (𝑥, 𝑡) ∈ 𝑄𝑇 , (32)

then

𝐼1 =

⃒⃒⃒⃒
⃒⃒

𝑡∫︁
0

(𝑔𝑖̃︀v𝑥𝑖
, ̃︀v) 𝑑𝜏

⃒⃒⃒⃒
⃒⃒ 6 𝐺‖|̃︀v𝑥𝑖

|‖0,𝑡‖|̃︀v|‖0,𝑡 6 𝜈

4
‖|̃︀v𝑥|‖20,𝑡 + 𝐺2𝜈−1‖|̃︀v|‖20,𝑡. (33)

It is easy to see that the estimates

𝐼2 =

⃒⃒⃒⃒
⃒⃒

𝑡∫︁
0

(̃︀𝑢, div ̃︀v) 𝑑𝜏

⃒⃒⃒⃒
⃒⃒ 6

𝑡∫︁
0

‖̃︀𝑢‖ ‖̃︀v𝑥‖ 𝑑𝜏 6
𝜈

4
‖|̃︀v𝑥|‖20,𝑡 + 𝜈−1‖|̃︀𝑢|‖20,𝑡, (34)

𝐼3 =

⃒⃒⃒⃒
⃒⃒

𝑡∫︁
0

(︁̃︀f, ̃︀v)︁ 𝑑𝜏

⃒⃒⃒⃒
⃒⃒ 6 1

2

⃦⃦⃦̃︀f⃦⃦⃦2

0,𝑡
+

1

2
‖̃︀v‖20,𝑡 (35)

are valid. Relations (31), (33)-(35) imply the inequality

1

2
‖̃︀v (𝑡)‖2 +

𝜈

2
‖|̃︀v𝑥|‖20,𝑡 +

[︂
𝜆−

(︂
𝐺2𝜈−1 + 𝜈−1 +

1

2

)︂]︂
‖|̃︀v|‖20,𝑡

6
1

2
‖a‖2 +

1

2
‖|̃︀f|‖20,𝑡 + 𝜈−1‖|𝑢|‖20,𝑡.

Letting 𝜆 = 𝐺2𝜈−1 + 𝜈−1 + 1
2
, we obtain

‖̃︀v (𝑡)‖2 + 𝜈‖|̃︀v𝑥|‖20,𝑡 6 ‖a‖2 + ‖|̃︀f|‖20,𝑡 + 2𝜈−1‖|𝑢|‖0,𝑡.
It yields the estimate

‖v‖𝑄𝑇
6

(︁
1 + 𝜈− 1

2

)︁
𝑒𝜆𝑇

(︁
‖a‖2𝐿2(Ω) + ‖f‖2L2(𝑄𝑇 ) + 2𝜈−1 ‖𝑢‖2L2(𝑄𝑇 )

)︁ 1
2
, (36)

where 𝜆 = 𝐺2𝜈−1 + 𝜈−1 + 1
2
.

If the conditions ‖𝑔‖L4,∞
6 𝐺 hold true, to estimate the integral we apply the inequalities

‖𝑣‖4 6 2
1
4‖𝑣𝑥‖

1
2‖𝑣‖

1
2 , 𝑛 = 2, and ‖𝑣‖4 6 2

1
2‖𝑣𝑥‖

3
4‖𝑣‖

1
4 , 𝑛 = 3,
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being valid for each 𝑣 ∈ W̊1
2(Ω), as well as Young’s inequality(︂

𝑎𝑏 6
1

𝑚
𝜀𝑚1 𝑎

𝑚 +
𝑚− 1

𝑚
𝜀
−𝑚−1

𝑚
1 𝑏

𝑚
𝑚−1

)︂
.

As 𝑛 = 2, letting 𝑚 = 4
3
, 𝜀1 =

(︀
1
3
𝜈
)︀ 3

4 , we obtain

𝐼1 6 2
1
4𝐺‖|̃︀v𝑥|‖

3
2
0,𝑡‖|v|‖

1
2
0,𝑡 6

𝜈

4
‖|̃︀v𝑥|‖20,𝑡 +

1

2

(︁𝜈
3

)︁− 3
16
𝐺4‖|̃︀v|‖20,𝑡,

and for 𝑛 = 3, letting 𝑚 = 7, 𝜀1 =
(︀
2
7
𝜈
)︀ 7

8 , we get

𝐼1 6 2
1
2𝐺‖|̃︀v𝑥|‖

7
4
0,𝑡‖|v|‖

1
4
0,𝑡 6

𝜈

4
‖|̃︀v𝑥|‖20,𝑡 + 2

(︂
2

7
𝜈

)︂− 7
64

𝐺8‖|̃︀v|‖20,𝑡.
Due to these estimates, we obtain inequality (36), where

𝜆 = 𝜆2 =
1

2

(︁𝜈
3

)︁− 3
16
𝐺4 + 𝜈−1 +

1

2
as𝑛 = 2,

𝜆 = 𝜆3 = 2

(︂
2

7
𝜈

)︂− 7
64

𝐺8 + 𝜈−1 +
1

2
as𝑛 = 3. (37)

To estimate the adjoint state w, we multiply equation (6) by w𝑒−2𝜆(𝑇−𝑡) and integrate by
parts over domain 𝑄𝑇

𝑡 = Ω × [𝑡, 𝑇 ]. Denoting ̃︀w = w𝑒−𝜆(𝑇−𝑡), we get

1

2
‖|̃︀w|‖2+𝜈‖|̃︀w𝑥|‖2 + 𝜆‖|̃︀w|‖20,𝑡 +

𝑇∫︁
𝑡

(𝑔𝑖 ̃︀w, ̃︀w𝑥𝑖
) 𝑑𝜏

= −
𝑇∫︁
𝑡

(︀
div 𝑣

(︀
∇𝑢𝑒−𝜆(𝑇−𝑡), div ̃︀w)︀)︀

𝑑𝜏.

We have obtained relation (31), if we let there ̃︀v = ̃︀w, a = 0, ̃︀f = 0, ̃︀𝑢 = div 𝑣 (∇𝑢). Thus, we
arrive at the estimate

‖w‖𝑄𝑇
6

(︁
1 + 𝜈− 1

2

)︁
𝑒𝜆𝑇 ‖div 𝑣 (∇𝑢)‖L2(𝑄𝑇 ) , (38)

where 𝜆 = 𝐺2𝜈−1 + 𝜈−1 + 1
2

if 𝑔 is a bounded function and 𝜆 is determined by formulae (37)
once 𝑔 ∈ L4,∞ (𝑄𝑇 ).

To prove formula (52), we can not employ here direct integration by parts since the belonging
of functions 𝑣 and 𝑤 to space W2,1

2 (𝑄𝑇 ) is not guaranteed. We employ the passage to a limit.
We choose sequences 𝑢𝑛, ℎ𝑛 contained in 𝑈1 such that 𝑢𝑛 −→ 𝑢, ℎ𝑛 −→ ℎ in 𝐿2(𝑄𝑇 ). On
sequences 𝑢𝑛, ℎ𝑛, identities (24) and the first identity in (25) hold true. It implies that

𝐽2 (𝑢𝑛 + ℎ𝑛) − 𝐽2 (𝑢𝑛) = −
(︀
(𝐿*)−1∇div v (∇𝑢𝑛) ,∇ℎ𝑛

)︀
L2(𝑄𝑇 )

+
1

2
‖div v̊ (∇ℎ𝑛)‖2𝐿2(𝑄𝑇 )

= (divw (𝑢𝑛) , ℎ𝑛)𝐿2(𝑄𝑇 ) +
1

2
‖div v̊ (∇ℎ𝑛)‖2𝐿2(𝑄𝑇 ) .

(39)

We denote 𝛿ℎ𝑛 = ℎ − ℎ𝑛, 𝛿𝑢𝑛 = 𝑢 − 𝑢𝑛, 𝛿v𝑛 = v − v𝑛, then 𝛿v𝑛 solves problem (1), (2),
where a = 0, f = 0, 𝑢 = 𝛿𝑢𝑛. Employing estimates (36), (37), we obtain that

‖div 𝛿v𝑛‖𝐿2(𝑄𝑇 ) 6 𝑐 ‖𝛿𝑢𝑛‖𝐿2(𝑄𝑇 ) ,

‖divw (𝛿𝑢𝑛)‖𝐿2(𝑄𝑇 ) 6 𝑐 ‖𝛿𝑢𝑛‖𝐿2(𝑄𝑇 ) .

Passing to the limit in relations (39), we obtain the identity

𝐽2(𝑢 + ℎ) − 𝐽2(𝑢) = (divw(𝑢), ℎ)𝐿2(𝑄) +
1

2
‖div v̊(∇ℎ)‖2𝐿2(𝑄𝑇 ) .
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It follows from estimate (36) that ‖div v̊ (∇ℎ)‖2𝐿2(𝑄𝑇 ) = 𝑂
(︁
‖ℎ‖2𝐿2(𝑄𝑇 )

)︁
. Hence, formula (52)

is proven.
Let us show that 𝐽 ′

2(𝑢) satisfies Lipshitz condition. In order to do it, we employ inequalities
(38), (36) to obtain⃦⃦

𝐽 ′
2

(︀
𝑢1
)︀
− 𝐽 ′

2

(︀
𝑢2
)︀⃦⃦

𝐿2(𝑄𝑇 )
=
⃦⃦

divw
(︀
𝑢1
)︀
− divw

(︀
𝑢2
)︀⃦⃦

𝐿2(𝑄𝑇 )
=

⃦⃦
divw

(︀
𝑢1 − 𝑢2

)︀⃦⃦
𝐿2(𝑄𝑇 )

6
√
𝑛
⃦⃦
w
(︀
𝑢1 − 𝑢2

)︀⃦⃦
𝑄𝑇

6 𝐶9

⃦⃦
div v

(︀
∇

(︀
𝑢1 − 𝑢2

)︀)︀⃦⃦
𝐿2(𝑄𝑇 )

6𝐶10

⃦⃦
v
(︀
∇

(︀
𝑢1 − 𝑢2

)︀)︀⃦⃦
𝑄𝑇

6 𝐶11

⃦⃦
𝑢1 − 𝑢2

⃦⃦
𝐿2(𝑄𝑇 )

.

Thus, we have proven the following theorem.

Theorem 3. Let f ∈ L2 (𝑄𝑇 ), g ∈ L4,∞(𝑄𝑇 ), div g ∈ L4,∞(𝑄𝑇 ), a ∈ 𝐽 (𝑄𝑇 ), 𝑆 ∈ 𝐶2, then
functional 𝐽2(𝑢) is differentiable 𝐿2 (𝑄𝑇 ) and its gradient satisfies Lipshitz condition.

2.3. Convergence of modified fastest descent method. We shall seek the solution to
problems I, II by the gradient projection method (4), where parameter 𝛼𝑘+1 is chosen by the
modified fastest descent method:

𝛼𝑘+1 = min
[︀
𝛼′
𝑘+1, 𝛾

]︀
. (401)

Here 𝛾 is a sufficiently large quantity (the parameter of the method), and 𝛼′
𝑘+1 is defined as in

the fastest descent method

𝑓𝑘
(︀
𝛼′
𝑘+1

)︀
= min

𝛼>0
𝑓𝑘 (𝛼) , 𝑓𝑘 (𝛼) = 𝐽 (𝑃𝑈 (𝑢𝑘 − 𝛼𝐽 ′(𝑢𝑘))) . (402)

Since the suggest method can be also employed in other optimization problem, where set
𝑈 is the whole space or a subspace, we formulate the statement as a theorem in an abstract
Hilbert space 𝐻.

We introduce the notations 𝐽* = inf
𝑈
𝐽(𝑢), 𝑈* = {𝑢 ∈ 𝑈 : 𝐽(𝑢) = 𝐽*}, 𝐶1,1(𝑢) is the set of

differentiable functionals whose gradient satisfy Lipshitz condition.

Theorem 4. Let 𝑈 be a convex closed set in a Hilbert space 𝐻, 𝐽(𝑢) ∈ 𝐶1,1(𝑢) be a convex
functional. Suppose that the set 𝑈* is non-empty and bounded, the sequence {𝑢𝑘}∞𝑘=0 is defined
by formula (4) and the conditions

∞∑︁
𝑘=0

‖𝐽 ′(𝑢𝑘)‖2 6 𝑏1, (41)

0 < 𝛼𝑘 < 𝑏2 (42)

hold true. Then sequence {𝑢𝑘}∞𝑘=0 minimize function 𝐽(𝑢) on 𝑈 converges to set 𝑈* weakly in
𝐻.

Proof. Denote 𝜌 (𝑢, 𝑈*) = 𝑚𝑖𝑛
𝑣∈𝑈*

‖𝑢− 𝑣‖, then by the definition of the projection operator

𝜌2 (𝑢𝑘+1, 𝑈*) = ‖𝑢𝑘+1 − 𝑃𝑈* (𝑢𝑘+1)‖2 6 ‖𝑢𝑘+1 − 𝑃𝑈*(𝑢𝑘)‖2

= ‖𝑃𝑈 (𝑢𝑘 − 𝛼𝑘+1𝐽
′(𝑢𝑘)) − 𝑃𝑈 (𝑃𝑈*(𝑢𝑘))‖2 6

6 ‖𝑢𝑘 − 𝛼𝑘+1𝐽
′(𝑢𝑘) − 𝑃𝑈*(𝑢𝑘)‖2

=𝜌2 (𝑢𝑘, 𝑈*) + 𝛼2
𝑘+1 ‖𝐽 ′(𝑢𝑘)‖2 − 2𝛼𝑘+1 (𝐽 ′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) .

(43)

Employing the criterion for the convexity of a differentiable functional on a convex set 𝑈

𝐽(𝑢) − 𝐽 (𝑣) > (𝐽 ′ (𝑣) , 𝑢− 𝑣) ∀𝑢, 𝑣 ∈ 𝑈,

and letting 𝑣 = 𝑢𝑘, 𝑢 = 𝑃𝑈*(𝑢𝑘), we obtain

0 6 𝐽(𝑢𝑘) − 𝐽 (𝑃𝑈*(𝑢𝑘)) = 𝐽(𝑢𝑘) − 𝐽* 6 (𝐽 ′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) .
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Thus, we get
(𝐽 ′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) > 𝐽(𝑢𝑘) − 𝐽* > 0. (44)

Taking into consideration the inequalities (43), (44), we have

𝜌2 (𝑢𝑘+1, 𝑈*) − 𝜌2 (𝑢𝑘, 𝑈*) 6 𝛼2
𝑘+1 ‖𝐽 ′(𝑢𝑘)‖2 . (45)

Summing up the last inequality from 0 to 𝑚 > 0 and bearing in mind condition (41), we arrive
at

𝜌2 (𝑢𝑚, 𝑈*) 6
𝑚∑︁
𝑘=0

𝛼2
𝑘+1 ‖𝐽 ′(𝑢𝑘)‖2 + 𝜌2 (𝑢0, 𝑈*) 6 𝑏22𝑏1 + 𝜌2 (𝑢0, 𝑈*) = 𝑏3. (46)

Thus, sequence {𝑢𝑘}∞𝑘=0 is bounded in 𝐻, and condition (41) follows that lim
𝑘→∞

‖𝐽 ′(𝑢𝑘)‖ = 0.

Now inequality (44) implies that sequence {𝑢𝑘}∞𝑘=0 minimizes functional 𝐽(𝑢). Thus, sequence
{𝑢𝑘}∞𝑘=0 is bounded and minimizing 𝐽(𝑢) on 𝑈 .

We denote by 𝑊 the set of convex combination of sequence {𝑢𝑘}∞𝑘=0, i.e., the set of points 𝑢
represented as

𝑢 =
∞∑︁
𝑘=0

𝛼𝑘𝑢𝑘, 𝛼𝑘 > 0 𝑘 = 0, 1, . . . ,
∞∑︁
𝑘=0

𝛼𝑘 = 1.

Employing [8, Ch. 4, Sec. 8, Thm. 5], it is easy to show that 𝑊 ⊂ 𝑈 and since 𝑈 is a closed
set, the closure 𝑊 of set 𝑊 belongs to 𝑈 as well.

Sequence {𝑢𝑘}∞𝑘=0 minimizes function 𝐽(𝑢) on 𝑈 and thus minimizes 𝐽(𝑢) on 𝑊 . It follows

that 𝐽*
(︀
𝑊

)︀
= inf

𝑢∈𝑊
𝐽(𝑢) = 𝐽* = inf

𝑢∈𝑈
𝐽(𝑢), 𝑊 * =

{︀
𝑢 ∈ 𝑊 : 𝐽(𝑢) = 𝐽*

}︀
∈ 𝑈*. The boundedness

of sequence {𝑢𝑘}∞𝑘=0 follows boundedness of set 𝑊 . In accordance with [8, Ch. 1, Sec. 3, Thm.
6], a convex lower semibounded functional 𝐽(𝑢) on a bounded convex closed set 𝑈 in a reflexive
Banach space has a non-empty set of minimum points 𝑈* and each minimizing sequence {𝑢𝑘}∞𝑘=0

converges weakly to 𝑈*. The weak convergence of sequence {𝑢𝑘}∞𝑘=0 to 𝑊 * implies its weak
convergence to 𝑈*. The proof is complete.

Remark 1. If set 𝑊 is compact, the strong convergence holds true. Here we can apply
Theorem 1 in [8, Ch. 1, Sec. 3]).

Remark 2. If 𝑈 is a subspace of a Hilbert space 𝐻, 𝑃𝑈 is the orthogonal projector on this
space, then 𝑢𝑘+1 = 𝑢𝑘 − 𝑃𝑈𝐽

′(𝑢𝑘). In this case relation (43) can be written as

𝜌2 (𝑢𝑘+1, 𝑈*) = 𝜌2 (𝑢𝑘, 𝑈*) + 𝛼2
𝑘+1 ‖𝑃𝑈𝐽

′(𝑢𝑘)‖2 − 2𝛼𝑘+1 (𝑃𝑈𝐽
′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) .

In view of the identity (𝑃𝑈𝐽
′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) = (𝐽 ′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) it is easy to see that

the statement of the theorem holds if one replaces condition (41) by the condition
∞∑︁
𝑘=0

‖𝑃𝑈𝐽
′(𝑢𝑘)‖2 < 𝑏1. (41′)

Since sets 𝑈𝑙, 𝑙 = 1, 2, are the subspaces of corresponding spaces and thus the projectors 𝑃𝑙

on these sets are linear, let us find the explicit formulae for the parameters 𝛼′
𝑘+1, 𝛼𝑘+1.

Indeed,

𝑓𝑙,𝑘 (𝛼) =𝐽𝑙 (v (𝑃𝑙 (𝑢𝑘 − 𝛼𝐽 ′
𝑙 (𝑢𝑘)))) =

1

2
‖|div v (𝑢𝑘 − 𝛼𝑃𝑙𝐽

′
𝑙 (𝑢𝑘)) |‖20,𝑇

=
1

2
‖|div v(𝑢𝑘)|‖20,𝑇 − 2𝛼 (div v(𝑢𝑘), div v̊ (𝑃𝑙𝐽

′
𝑙 (𝑢𝑘)))L2(𝑄𝑇 )

+ 𝛼2‖|div v̊ (𝑃𝑙𝐽
′
𝑙 (𝑢𝑘)) |‖20,𝑇 .

It follows that

𝛼′
𝑘 = (div v(𝑢𝑘), div v̊ (𝑃𝑙𝐽

′
𝑙 (𝑢𝑘)))L2(𝑄𝑇 ) ‖|div v̊ (𝑃𝑙𝐽

′
𝑙 (𝑢𝑘)) |‖−2

0,𝑇 . (47)
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Here the expressions v(𝑢𝑘), v̊ (𝑃𝑙𝐽
′
𝑙 (𝑢𝑘)) mean v (∇𝑢𝑘), v̊ (∇𝑃𝑙𝐽

′
𝑙 (𝑢𝑘)), where ˚v(𝑢) is the

solution to equation (1) for 𝑓 = 0 and a = 0.
It is clear that sequences {𝐽𝑙(𝑢𝑘)}∞𝑘=0 are monotonically decreasing and are bounded from

below.
It was shown in the previous subsection that 𝐽𝑙(𝑢) ∈ 𝐶1,1 (𝑈𝑙). We then apply a known

estimate being valid for the functions in 𝐶1,1(𝑢), see [8, Eq. (2.3.7)]

|𝐽(𝑢) − 𝐽 (𝑣) − (𝐽 ′ (𝑣) , 𝑢− 𝑣)| 6 𝐿

2
‖𝑢− 𝑣‖2 ∀𝑢, 𝑣 ∈ 𝑈,

where 𝐿 is the Lipshitz constant. Letting here 𝑣 = 𝑢𝑘, 𝑢 = 𝑢𝛼
𝑘+1 = 𝑢𝑘 − 𝛼𝑃𝑙𝐽

′
𝑙 (𝑢𝑘), we obtain

𝐽𝑙(𝑢𝑘) − 𝐽𝑙
(︀
𝑢𝛼
𝑘+1

)︀
=𝐽𝑙(𝑢𝑘) − 𝐽𝑙 (𝑢𝑘 − 𝛼𝑃𝑙𝐽

′
𝑙 (𝑢𝑘))

>𝛼 (𝐽 ′
𝑙 (𝑢𝑘), 𝑃𝑙𝐽

′
𝑙 (𝑢𝑘))𝐻𝑙

− 𝐿𝑙

2
𝛼2 ‖𝑃𝑙𝐽

′
𝑙 (𝑢𝑘)‖2 ,

(48)

where 𝐿𝑙 is the Lipshitz constant for the gradient 𝐽 ′
𝑙 (𝑢) of functional 𝐽𝑙(𝑢). Taking into ac-

count that 𝑃𝑙 is the orthogonal projector on a subspace, we obtain that (𝐽 ′
𝑙 (𝑢𝑘), 𝑃𝑙𝐽

′
𝑙 (𝑢𝑘))𝐻𝑙

=

‖𝑃𝑙𝐽
′(𝑢𝑘)‖𝐻𝑙

. Then it follows from inequality (48) that

𝐽𝑙(𝑢𝑘) − 𝐽𝑙
(︀
𝑢𝛼
𝑘+1

)︀
> 𝛼

(︂
1 − 𝛼

𝐿𝑙

2

)︂
‖𝑃𝑙𝐽

′
𝑙 (𝑢𝑘)‖2𝐻𝑙

. (49)

Letting 𝛼 = 1/𝐿𝑙, we obtain

𝐽𝑙(𝑢𝑘) − 𝐽𝑙
(︀
𝑢𝛼
𝑘+1

)︀
> 1/2𝐿𝑙 ‖𝑃𝑙𝐽

′
𝑙 (𝑢𝑘)‖2𝐻𝑙

.

Suppose that 𝛼′
𝑘+1 6 𝛾, then 𝛼𝑘+1 = 𝛼′

𝑘+1. Thus, for 𝛼 = 1/𝐿𝑙 the inequalities

𝐽𝑙(𝑢𝑘) − 𝐽𝑙 (𝑢𝑘+1) > 𝐽𝑙(𝑢𝑘) − 𝐽
(︀
𝑢𝛼
𝑘+1

)︀
> 1/2𝐿𝑙 ‖𝑃𝑙𝐽

′
𝑙 (𝑢𝑘)‖2𝐻𝑙

(50)

hold true.
Suppose now that 𝛼′

𝑘+1 > 𝛾, then 𝛼𝑘+1 = 𝛾. We consider two cases: 𝛾 > 1/𝐿𝑙 and 𝛾 < 1/𝐿𝑙.
Since function 𝑓𝑙,𝑘 (𝛼) decreases on the interval (0, 𝛼′

𝑘), in the first case we obtain inequalities
(50). In the second case (𝛾 < 1/𝐿𝑙

𝛾 (1 − 𝛾𝐿𝑙/2) >
1

2
𝛾.

Thus, due to inequalities (49), (50), in all cases we obtain the estimate

𝐽𝑙(𝑢𝑘) − 𝐽𝑙 (𝑢𝑘+1) > 𝑐𝑙 ‖𝑃𝑙𝐽
′
𝑙 (𝑢𝑘)‖2𝐻𝑙

, (51)

where 𝑐𝑙 = 𝑚𝑖𝑛
[︀
1
2
𝛾, 1

2
/𝐿𝑙

]︀
. The last estimate yields that the sequence

{︀
𝐽𝑙
(︀
𝑢𝑙
𝑘

)︀}︀∞
𝑘=0

decreases

monotonically, the series
∞∑︀
𝑘=0

‖𝑃𝑙𝐽
′
𝑙 (𝑢𝑘)‖2𝐻𝑙

converges and the estimate

∞∑︁
𝑗=𝑘

⃦⃦
𝑃𝑙𝐽

′
𝑙

(︀
𝑢𝑙
𝑘

)︀⃦⃦2

𝐻𝑙
6 𝑐−1

𝑙 (𝐽𝑙(𝑢𝑘) − 𝐽𝑙,*) (52)

holds true, where 𝐽𝑙,* = inf
𝑢∈𝑈𝑙

𝐽𝑙(𝑢). Thus, the gradients 𝐽 ′
𝑙 (𝑢) of functionals 𝐽𝑙(𝑢), 𝑙 = 1, 2,

satisfy inequality (41′).
It is easy to make sure that functional 𝐽𝑙(𝑢), 𝑙 = 1, 2, are convex. Indeed, for each 𝛼 ∈ [0, 1]

𝐽𝑙(𝛼𝑢 + (1 − 𝛼)𝑤) = ‖𝛼div v(𝑢) + (1 − 𝛼)div v(𝑤)‖20,𝑇
=𝛼2‖div v(𝑢)‖20,𝑇 + (1 − 𝛼)2‖div v(𝑤)‖20,𝑇 + 2𝛼(1 − 𝛼) (div v(𝑢), div v(𝑤))L2(𝑄𝑇 )

=𝛼‖div v(𝑢)‖20,𝑇 + (1 − 𝛼)‖div v(𝑤)‖20,𝑇 − 𝛼(1 − 𝛼)‖div v(𝑢) − div v(𝑤)‖20,𝑇
6𝛼𝐽𝑙(𝑢) + (1 − 𝛼)𝐽𝑙(𝑤).
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Taking into consideration Remark 2 for Theorem 4, Theorems 2 and 3 on differentiability of
functionals 𝐽𝑙(𝑢), 𝑙 = 1, 2, and the well-known theorems on the unique solvability of problem
(1)-(3) [1, Ch. 4. Sec. 1, Thms. 1′, 2], one can easily prove the following theorem.

Theorem 5. Let f ∈ L2 (𝑄𝑇 ), g ∈ L4,∞ (𝑄𝑇 ), div g ∈ 𝐿4,∞ (𝑄𝑇 ), a (𝑥) satisfies condition
(1.4), 𝑆 ∈ 𝐶2. Then the sequence

{︀
𝑢𝑙
𝑘

}︀∞
𝑘=0

defined by identities (4), (5𝑙), 𝑙 = 1, 2, where
parameter 𝛼𝑘+1 is defined by (40), (47), minimizes functional 𝐽𝑙(𝑢) on 𝑈𝑙 and converges to 𝑈𝑙,*
weakly in 𝐻𝑙 from each initial approximation.

Remark. As 𝑙 = 1, Theorem 5 is implied immediately by Theorem 4 since the hypothesis
of this theorem holds true. As 𝑙 = 2, the unique solvability of problem (1)-(3) does not
ensure one of the conditions of Theorem 5 that 𝑈* is non-empty and bounded. However under
the hypothesis of Theorem 5 there exists the unique solution to problem (1)-(3) in the class
v ∈ W2,1

2 (𝑄𝑇 ), 𝑝 ∈ W1,0
2 (𝑄𝑇 ). It is clear this solution is also that of the generalized problem,

while the solution to the generalized problem is unique. Thus, functional 𝐽2(𝑢) in the hypothesis
of Theorem 5 satisfies all the assumptions of Theorem 4 and moreover, in this case the condition
div 𝑔 ∈ 𝐿4,∞(𝑄𝑇 ) can be neglected.

2.4. Regularization of iteration process by Tikhonov method. In the previous subsec-
tion we have proven the weak convergence of the modified fastest descent method for functionals
𝐽𝑙(𝑢), 𝑙 = 1, 2.

In order to construct strongly converging sequence one can employ the Tikhonov regular-
ization method [8]. Its matter is the consecutive solving of the minimization problems for
functionals 𝑇𝑗(𝑢) = 𝐽(𝑢) + 𝛽𝑗Ω(𝑢) on 𝑈 as first kind problems, i.e., the problem on mini-
mization w.r.t. the functional. Here Ω(𝑢) is the stabilizer or a non-negative strongly convex
function. For a fixed 𝑗 we find a point 𝑢𝑗 satisfying the conditions

𝑇 *
𝑗 = 𝑖𝑛𝑓

𝑈
𝑇𝑗(𝑢) 6 𝑇𝑗 (𝑢𝑗) < 𝑇 *

𝑗 + 𝜀𝑗. (53)

Tikonov’s theorem (see, for instance, [8, Ch. 2, Sec. 5, Thm. 1]) implies that if 𝐽(𝑢) ∈
𝐶1,1(𝑢), 𝑈* is non-empty, 𝐽* > −∞,

lim
𝑗→∞

𝛽𝑗 = lim
𝑗→∞

𝜀𝑗 = 0, sup
𝑗>1

𝜀𝑗𝛽
−1
𝑗 < ∞, (54)

then the sequence {𝑢𝑗}∞𝑗=1 defined by conditions (53) minimizes functional 𝐽(𝑢) on 𝑈 and

lim
𝑗→∞

𝜌 (𝑢𝑗, 𝑈*) = 0.

Returning back to the original problem (1)-(3), we introduce the notations

𝑇𝑙,𝑗(𝑢) = 𝐽𝑙(𝑢) + 𝛽𝑗 ‖𝑢‖2𝐻𝑙
, 𝑢 ∈ 𝑈𝑙, 𝛽𝑗 > 0, 𝑙𝑖𝑚

𝑗→∞
𝛽𝑗 = 0. (55)

Since for 𝛽𝑗 > 0 functional 𝑇𝑙,𝑗(𝑢), 𝑙 = 1, 2, is strongly convex, it has the unique minimum point
𝑢*
𝑙,𝑗. In what follows, if the arguments are same, we omit the subscript 𝑙, at that, ‖·‖ = ‖·‖𝐻𝑙

.
For the approximate solving of the minimization problem for functional 𝑇𝑙,𝑗(𝑢) we employ

the usual fastest descent method

𝑢𝑗,𝑘+1 = 𝑃𝑈𝑙

(︀
𝑢𝑗,𝑘 − 𝛼𝑗,𝑘+1𝑇

′
𝑙,𝑗 (𝑢𝑗,𝑘)

)︀
, 𝑗 = 1, 2, . . . ; 𝑘 = 0, 1, . . . , 𝑛𝑗. (56)

Parameter 𝛼𝑗,𝑘+1 is calculated explicitly by the formula

𝛼𝑗,𝑘+1 =
[︁(︀

div v (𝑢𝑗,𝑘) , div v̊
(︀
𝑃𝑙𝑇

′
𝑙,𝑗 (𝑢𝑗,𝑘)

)︀)︀
L2(𝑄𝑇 )

+ 𝛽𝑗

(︀
𝑢𝑗,𝑘, 𝑃𝑙𝑇

′
𝑙,𝑗 (𝑢𝑗,𝑘)

)︀
𝐻1

]︁
×

[︁⃦⃦
div v̊

(︀
𝑃𝑙𝑇

′
𝑙,𝑗 (𝑢𝑗,𝑘)

)︀⃦⃦2

L2(𝑄𝑇 )
+ 𝛽𝑗

⃦⃦
𝑃𝑙𝑇

′
𝑙,𝑗 (𝑢𝑗,𝑘)

⃦⃦2

𝐻1

]︁−1

.
(57)

As in formula (47), here for 𝑙 = 1, 2

v (𝑢𝑗,𝑘) = v (∇𝑢𝑗,𝑘) ; v̊
(︀
𝑃𝑙𝑇

′
𝑙,𝑗 (𝑢𝑗,𝑘)

)︀
= v̊

(︀
∇𝑃𝑙𝑇

′
𝑙,𝑗 (𝑢𝑗,𝑘)

)︀
.
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Let 𝛽𝑗 → 0 as 𝑗 → ∞ and 𝛽𝑗 > 0. For each fixed 𝑗, we make 𝑛𝑗 iteration by scheme (56) and
as the initial value for the minimization of functional 𝑇𝑙,𝑗+1 we take 𝑢𝑗+1,0 = 𝑢𝑗 = 𝑢𝑗,𝑛𝑗

. We
choose 𝑛𝑗 by the condition

𝑇 ′
𝑙,𝑗

(︀
𝑢𝑗,𝑛𝑗

)︀
6 𝛽𝑗. (58)

Let us show that in this case sequence {𝑢𝑗} satisfies conditions (53), (54) of Tikhonov’s
theorem. We take into consideration the well-known inequality for strongly convex functionals

𝐽(𝑢) − 𝐽 (𝑢*) 6
1

2𝜇
‖𝐽 ′(𝑢)‖2 , (59)

where 𝜇 is the constant from the criterion of strong convexity of a functional

(𝐽 ′(𝑢) − 𝐽 ′ (𝑣) , 𝑢− 𝑣) > 𝜇 ‖𝑢− 𝑣‖ ∀𝑢, 𝑣 ∈ 𝑈.

In the considered case 𝜇 > 𝛽𝑗. It follows from inequalities (58), (59) that

𝑇𝑙,𝑗 (𝑢𝑗) − 𝑇𝑙,𝑗

(︀
𝑢*
𝑙,𝑗

)︀
6

1

2
𝛽𝑗 = 𝜀𝑗.

Thus, the hypothesis of Tiknonov’s theorem holds true. Taking into consideration that the
minimum of functionals 𝐽𝑙(𝑢), 𝑙 = 1, 2 under the hypothesis of Theorem 5 is equal to zero and
it is attained at the only point being the solution to problem (1)-(3), we arrive at the following
theorem.

Theorem 6. Suppose the hypothesis of Theorem 5. Then sequence {𝑢𝑗}∞𝑗=1 defined by rela-
tions (56)-(58) minimizes functional 𝐽𝑙(𝑢) on 𝑈𝑙 and

lim
𝑗→∞

‖𝑢𝑗 − 𝑢*‖𝐻𝑙
= 0. (60)

Remark. Let v, 𝑝 be the solution to problem (1)-(3), then 𝑢* = 𝑝. Taking into consideration
that the norm ‖·‖𝜆 is equivalent to

‖v‖ = vrai max
𝑡∈[0,𝑇 ]

‖v𝑥‖ + ‖∆v‖L2(𝑄𝑇 ) + ‖v𝑥‖L2(𝑄𝑇 ) ,

and estimates (22) and (36), we obtain the relations

lim
𝑗→∞

⃦⃦
v1
𝑗 − v

⃦⃦
= 0, lim

𝑗→∞

⃦⃦
v2
𝑗 − v

⃦⃦
𝑄𝑇

= 0, (61)

where
{︀
v1
𝑗

}︀
is the sequence defined in solving Problem I, while

{︀
v2
𝑗

}︀
is the sequence defined in

solving Problem II.

3. Conclusion

In the present work we suggest an approach for solving problem (1.1)-(1.3). The matter of the
approach is a consecutive solving of linearized problems by the gradient method. We note that
in this case the minimizing functional is convex. One can also employ another approach where
problem (1.1)-(1.3) is regarded as the inverse problem, where relations (1.1)-(1.3) describes the
state of a system under an unknown pressure, while identity (1.3) introduces additional data
on the state of a system. This problem is easily formulated as a problem of optimal control:

𝐽 (𝑝) =

∫︁
𝑄𝑇

|div v(𝑝)|2 𝑑𝑥𝑑𝑡 → inf; 𝑝 ∈ 𝑈𝑙, 𝑙 = 1, 2,

where v(𝑝) solves problem (1.1), (1.2) for a given 𝑝 ∈ 𝑈𝑙.
Employing the obtained or apriori restrictions for the speed vector v, we can replace equation

(1.1) by equation (1.1′) and justify the unique solvability for problem (1.1′), (1.2) as well as the
convergence of the iteration process (1.5), (1.6) for each fixed 𝑝 ∈ 𝑈𝑙, 𝑙 = 1, 2. The construction
and justification of the gradient method for solving problem (1.1)-(1.3) in such formulation
as well as the comparison of various ways of numerical realization of the suggested methods
will be given in a future work. One of the options was tested on a model example where the
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solution to problem (1.1)-(1.3) and thus the apriori estimate were known. The calculations
were made consecutively by time layers. In this case to obtain a given precision 3-4 steps of
iterative linearization was needed and 5-6 steps of gradient descent.
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