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MINIMUM OF MODULUS OF THE SUM OF DIRICHLET
SERIES CONVERGING IN A HALF-PLANE

A.M. GAISIN

Abstract. The estimate of the sum of Dirichlet series near the convergence line and outside
some exceptional set of disks is obtained in terms of minimum of modulus on continuums
close to vertical line segments. This result generalizes the known theorem on minimum of
modulus on vertical segments lying in the convergence half-plane.
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1. Introduction

The methods of obtaining asymptotic estimates for the sum of an entire Dirichlet series on
vertical segments in terms of maximum or minimum of modulus as well as on curves passing
to infinity in a certain way are well-known at the present (on this subject see, for instance, [1]
– [3]). The behavior of the sum of Dirichlet series on curves happens to be exactly its global
behavior outside certain set of exceptional circles. This is the matter of the present paper in
the case when the convergence domain of the Dirichlet series is a half-plane.

Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a sequence with a finite upper density, а 𝐷𝑐(Λ) be a class of
functions 𝐹 which can be represented in the half-plane Π𝑐 = {𝑠 : Re 𝑠 < 𝑐}, −∞ < 𝑐 6 +∞,
by the Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠 (𝑠 = 𝜎 + 𝑖𝑡) (1)

converging only in this half-plane. In what follows, for the sake of convenience as “maximum of
modulus” we call the quantity

𝑀𝐹 (𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎 + 𝑖𝑡)|, 𝜎 < 𝑐.

We describe briefly the general scheme of our arguments allowing us to obtain the estimates
for the maximum of modulus 𝑀𝐹 (𝜎) in terms of the minimum of modulus 𝐹 on vertical
segments.

The asymptotic estimate of quantity 𝑀𝐹 (𝜎) for the sum 𝐹 of entire Dirichlet series (1) in
terms of maximum |𝐹 | on the vertical segment 𝐼 = {𝑠 = 𝜎 + 𝑖𝑡 : |𝑡 − 𝑡𝑜| 6 𝐻} of a certain
length was obtained in [1]. At that, the length |𝐼| of segment 𝐼 should not be less than a certain
characteristics close to similar characteristics allowing one to determine the completeness radius
for the system of exponents

{︀
𝑒𝑖𝜆𝑘𝑥

}︀
in space 𝐶[𝑎, 𝑏] (or 𝐿2[𝑎, 𝑏]) (on this subject see [1, 4, 5, 6]).

It is natural to expect that while estimating 𝑀𝐹 (𝜎) by the minimum of modulus, in a general
situation the length of segment 𝐼 can not be too large. It is clear that the more |𝐼| the better
the estimate. Under natural restrictions for the sequence of central indices for entire series (1),
it was shown in [3] that as 𝜎 → +∞, the length of segment |𝐼| can grow as 𝑂(𝜎𝑞) (0 < 𝑞 < 1).
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Let us clarify the main ideas employed in obtaining asymptotic estimates for each function
𝐹 ∈ 𝐷∞(Λ) (as we shall see, after an appropriate modification this scheme is applicable also
for the case 𝐷𝑜(Λ)):

a) for each curve 𝛾 passing to infinity in a proper way there exists a sequence {𝜉𝑛}, 𝜉𝑛 ∈ 𝛾
such that

ln𝑀𝐹 (𝜎𝑛) = (1 + 𝑜(1)) ln |𝐹 (𝜉𝑛)| , 𝜎𝑛 = Re 𝜉𝑛, as 𝜉𝑛 → ∞;

b) as 𝜎 → ∞, outside some set 𝐸 ⊂ R+

ln𝑀𝐹 (𝜎) = (1 + 𝑜(1)) ln𝑚𝐹 (𝜎),

where 𝑚𝐹 (𝜎) = min
𝑖𝑡∈𝐼

|𝐹 (𝜎+𝑖𝑡)|, 𝐼 = 𝐼(𝜎) is the segment of, generally speaking, arbitrary length.

Let Λ be a sequence satisfying natural conditions [2]:

1)
∞∑︁
𝑛=1

1

𝜆𝑛
<∞; 2)

∞∫︁
1

𝑐(𝑡)

𝑡2
𝑑𝑡 <∞, (2)

where 𝑐(𝑡) = max
𝜆𝑛6𝑡

𝑞𝑛, 𝑞𝑛 = − ln |𝑄′(𝜆𝑛)|, 𝑄(𝑧) =
∞∏︀
𝑛=1

(︂
1 − 𝑧2

𝜆2𝑛

)︂
.

The general scheme of the approach allowing us to obtain estimates like a) and b) is as
follows. We first find a partial sum of the series 𝐹𝑣(𝑠) =

∑︀
𝜆𝑛6𝑣

𝑎𝑛𝑒
𝜆𝑛𝑠, 𝑣 = 𝑣(𝜎), obeying

|𝐹 (𝑠) − 𝐹𝑣(𝑠)| < 1 (3)

for each 𝜎 > 𝜎0 outside 𝐸, mes𝐸 <∞. At the next step we show that outside 𝐸

𝑀𝐹 (𝜎) 6 𝑒𝑤(𝑣) max
|𝑧−𝛼|6𝛿

|𝐹𝑣(𝑧)|, (4)

where 𝛼 ∈ C (Re𝛼 = 𝜎) is arbitrary, 𝛿 =
𝑤*(𝑣)

𝑣
, 𝑤, 𝑤* are some continuous monotonically

increasing functions for the convergence class 𝑊 , i.e., 𝑥−2𝑤(𝑥), 𝑥−2𝑤*(𝑥) belongs to 𝐿1[1,∞),
𝑤(𝑥) = 𝑜(𝑤*(𝑥)) as 𝑥 → ∞, 𝑤(𝑣) > 𝑁(𝑣) + 𝑐(𝑣), 𝑤(𝑣) = 𝑜(ln𝑀𝐹 (𝜎) as 𝜎 → ∞ [2]. Here 𝑐 is

a function in (2), 𝑁(𝑥) =
𝑥∫︀
0

𝑛(𝑡)
𝑡
𝑑𝑡, 𝑛(𝑡) =

∑︀
𝜆𝑛6𝑡

1. In view of (3) we see that estimate like (4) is

valid also for 𝐹 .
Statement a) follows from (4) by applying two constants theorem (it is assumed that 𝛼 ∈ 𝛾)

and a lemma like Borel-Nevalinna theorem (see [2]).
To obtain Statement b) from (4), we need to pass to a similar estimate for the circle {𝑧 : |𝑧−

𝛼| 6 𝛿2}. This is why we act as follows (see, for instance, [7]). We apply two constants theorem
and take into consideration the asymptotic estimate (being a corollary of a lemma of Borel-
Nevalinna kind [2])

ln𝑀𝐹 (𝜎 + 𝛿) < (1 + 𝑜(1)) ln𝑀𝐹 (𝜎), 𝜎 → ∞, 𝜎 /∈ 𝐸.

Then we can assume that estimate (4) holds true for a vertical segment 𝐼 of length 2𝛿 centered
at a point 𝛼 [7]. Now the problem is reduced to replacing segment 𝐼 by a small segment 𝐽 ⊂ 𝐼 of
length 2𝛿2. The latter problem is usually solved by means of the following P. Turan’s lemma [8]:
if 𝜇1 < 𝜇2 < · · · < 𝜇𝑛 and

𝑝(𝑡) =
𝑛∑︁

𝑗=1

𝑏𝑗𝑒
𝑖𝑡𝜇𝑗 ,

then

‖𝑝‖𝐼 6
(︁

2𝑒
|𝐼|
|𝐽 |

)︁𝑛

‖𝑝‖𝐽 . (5)
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Here 𝐼, 𝐽 are segments on the imaginary axis, 𝐽 ⊂ 𝐼, ‖𝑝‖𝐼 = max
𝑖𝑡∈𝐼

|𝑝(𝑡)|.
If 𝐼, 𝐽 are the above segments, bearing in mind estimate (5), it remains to pass from segment

𝐽 to the circle {𝑧 : |𝑧 − 𝛼| 6 𝛿2}.
Sometimes Turan’s lemma is replaced by another statement based on the properties of Fourier

transform (see [1], [3]).
There is another approach based on applying well-known A.F. Leont’ev formulae for the

coefficients of quasipolynomial 𝐹𝑣 [9, Ch. I, Sec. 2, Subsec. 1]. In this case outside some set
𝐸 ⊂ R+ of finite measure

𝑀𝐹 (𝜎) 6 𝑒𝑤(𝑣)𝐻𝑣(𝛿
2) max

|𝑧−𝛼|6𝛿2
|𝐹𝑣(𝑧)|, (6)

where 𝐻𝑣(𝛿) =
∞∫︀
0

𝑀(𝑟, 𝑞𝑣)𝑒
−𝑟𝛿 𝑑𝑟, 𝑞𝑣(𝑧) =

∏︀
𝜆𝑛6𝑣

(︁
1 − 𝑧2

𝜆2𝑛

)︁
. In view of estimate 𝑁(𝑣) 6 𝑤(𝑣) it

follows from (6) that

𝑀𝐹 (𝜎) 6 2𝑒3𝑤(𝑣) exp
(︁

max
𝑟>0

𝜙(𝑟)
)︁

max
|𝑧−𝛼|6𝛿2

|𝐹𝑣(𝑧)|,

where 𝜙(𝑟) = 𝑛(𝑣) ln
(︁

1 +
𝑟2

𝑣2

)︁
− 𝑟𝛿2. But the maximum of function 𝜙 is attained at the point

𝑟0 6
2𝑛(𝑣)

𝛿2
and this is why

𝜙(𝑟0) 6 𝑛(𝑣) ln
(︁

1 + 4
𝑣2

𝑛2(𝑣)

)︁
= 𝑂

(︁
𝑛(𝑣) ln

𝑣

𝑛(𝑣)

)︁
as 𝜎 → ∞. Thus,

𝑀𝐹 (𝜎) 6 𝑒3𝑤(𝑣)+𝐴𝑛(𝑣) ln 𝑣
𝑛(𝑣) max

|𝑧−𝛼|6𝛿2
|𝐹𝑣(𝑧)|. (7)

On the other hand, for 𝑝 = 𝐹𝑣 the first factor in (5) as 𝜎 → ∞ is the quantity

exp
(︁
𝑂
(︁
𝑛(𝑣) ln

1

𝛿

)︁)︁
6 exp

(︁
𝑂
(︁
𝑛(𝑣) ln

𝑣

𝑛(𝑣)

)︁)︁
,

since ln 1
𝛿
6 ln 𝑣

𝑛(𝑣)
. To obtain from (7) the desired estimate for the minimum of modulus 𝑚𝐹 (𝜎)

it is important [7] that for the function 𝑛(𝑡) ln 𝑡
𝑛(𝑡)

there exists a majorant 𝑤 from class 𝑊 . It
is equivalent [3] to

∞∫︁
𝜆1

𝑛(𝑡) ln 𝑡
𝑛(𝑡)

𝑡2
𝑑𝑡 <∞. (8)

But then as 𝜎 → ∞ in all cases outside 𝐸, mes 𝐸 <∞,

𝑀
1+𝑜(1)
𝐹 (𝜎) 6 max

|𝑧−𝛼|6𝛿2
|𝐹 (𝑧)| = |𝐹 (𝜉)|.

It is the main estimate for the maximum of modulus. In the same way as in [7] one can deduce
the desired estimate if for the circle 𝐷(𝜉, 2𝛿) one applies to 𝐹 the following lemma on a lower
estimate of an analytic bounded function in the unit circle.

Lemma 1. [10] Suppose that a function 𝑔 is analytic and bounded in the circle {𝑧 : |𝑧| < 𝑅},
|𝑔(0)| > 1. If 0 < 𝑟 < 1 −𝑁−1 (𝑁 > 1), then there exists at most countably many circles

𝑉𝑛 =
{︀
𝑧 : |𝑧 − 𝑧𝑛| 6 𝜌𝑛

}︀
,

∑︁
𝑛

𝜌𝑛 6 𝑅𝑟𝑁(1 − 𝑟),
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such that for each 𝑧 in the circke {𝑧 : |𝑧| 6 𝑅𝑟} but outside
⋃︀
𝑛

𝑉𝑛 the estimate

ln |𝑔(𝑧)| > 𝑅− |𝑧|
𝑅 + |𝑧|

ln |𝑔(0)| − 5𝑁𝐿 (9)

holds true, where

𝐿 =
1

2𝜋

2𝜋∫︁
0

ln+ |𝑔(𝑅𝑒𝑖𝜃)| 𝑑𝜃 − ln |𝑔(0)|.

Condition (8) is natural and it is likely optimal in consideration of problems like b). In some
sense it is confirmed by the fact that omitting this condition leads one to a deformation of
segment 𝐼, see below and [3].

For functions 𝐹 ∈ 𝐷∞(Λ) the issue on the minimum of modulus was studied rather in
detail in work [3], where the complete results were obtained. It is important to note that in
the present work function 𝐹 can have arbitrarily fast growth. Some important theorems on
minimum of modulus of Dirichlet series converging only in the half-plane Π𝑜 were established
in [11]. Similar results on less regular behavior of functions 𝐹 ∈ 𝐷𝑜(Λ), namely, on curves
adjacent to the imaginary axis were proven in paper [12].

The aim of this paper is to move the results of work [3] on minimum of modulus of a function
in 𝐷∞(Λ) for the case of a function in class 𝐷𝑜(Λ) and to strengthen and generalized the
corresponding statements in [11], [12]. Thereupon we note that in the case 𝐹 ∈ 𝐷𝑜(Λ) there
appear specific difficulties related with estimating the sizes of exceptional sets 𝑒 ⊂ [−1, 0). This

is why in the case of half-plane Π𝑜 (or the unit circle for lacunar power series 𝑓(𝑧) =
∞∑︀
𝑛=1

𝑎𝑛𝑧
𝑝𝑛 ,

𝑝𝑛 ∈ N) the usual way is as follows. We fix some monotonically increasing continuous function
Φ and choose certain subclass of functions 𝐹 ∈ 𝐷𝑜(Λ) satisfying, say, the condition

lim
𝜎→0−

ln𝜇(𝜎)

Φ
(︁

1
|𝜎|

)︁ > 0,

where 𝜇(𝜎) is the maximal term of series (1). Then the variable relative density

∆(𝜎) =
mes(𝑒 ∩ [𝜎, 0))

|𝜎|

of the exceptional set 𝑒 ⊂ [−1, 0) outside with function 𝐹 satisfies desired estimates depends
usually only on the behavior of the quantity

𝜙(𝑡)

∞∫︁
𝑡

𝑤(𝑥)

𝑥2
𝑑𝑥,

where 𝜙 is the inverse function for Φ, while 𝑤 = 𝑤(𝑥) is a distribution function of sequence Λ
[11]. If, for instance, 𝑤 ∈ 𝑊 𝜙 (see definition below) and 𝜙(𝑥)𝑤(𝑥) = 𝑜(𝑥) as 𝑥→ ∞, then the
lower density 𝑑𝑒 of set 𝑒 happens to vanish. In other respects the ways of proof are the same
as in the case 𝐷∞(Λ). This is why the main aim of the present work is to specify the location
and sizes of exceptional circles outside which the desired estimate holds for function ln |𝐹 (𝑠)|
in terms of the minimum of modulus in half-plane Π0.
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2. Definitions and preliminaries

Let 𝐿 be the class of continuous unbounded and increasing on [0,∞) functions,

𝑊 = {𝑤 ∈ 𝐿 :

∞∫︁
1

𝑤(𝑥)

𝑥2
𝑑𝑥 <∞}

be the convergence class, and

𝑊 𝜙 = {𝑤 ∈ 𝑊 : lim
𝑡→∞

𝜙(𝑡)𝐽(𝑡;𝑤) = 0},

where 𝜙 ∈ 𝐿, 𝐽(𝑡;𝑤) =
∞∫︀
𝑡

𝑤(𝑥)
𝑥2 𝑑𝑥. We also introduce the set 𝑊 𝜙 ⊂ 𝑊 𝜙 :

𝑊 𝜙 = {𝑤 ∈ 𝑊 : lim
𝑡→∞

𝜙(𝑡)𝐽(𝑡;𝑤) = 0}.

We shall say that two functions 𝜙 and 𝑤 from class 𝐿 are consistent if 𝜙(𝑥)𝑤(𝑥) = 𝑜(𝑥) as
𝑥→ ∞.

Let 𝑒 ⊂ [−1, 0) be a Lebesgue measurable set. The upper 𝐷𝑒 and the lower 𝑑𝑒 densities are
the quantities [11]

𝐷𝑒 = lim
𝜎→0−

mes(𝑒 ∩ [𝜎, 0))

|𝜎|
, 𝑑𝑒 = lim

𝜎→0−

mes(𝑒 ∩ [𝜎, 0))

|𝜎|
.

If 𝐷𝑒 = 𝑑𝑒, then set 𝑒 is said to have a density.
Theorems on minimum of modulus are based on the statements related with a lower estimate

for the logarithm of modulus of an analytic and bounded from below function outside some set
of circles. As it was mentioned above, Lemma 1 is useful in obtaining similar estimates. Let
us make a remark on exceptional circles from this lemma. As 𝐿 = 0, estimate (9) follows from
Harnack’s inequality and it is valid everywhere in the circle {𝑧 : |𝑧| < 𝑅} (see [10]). Suppose now
𝐿 > 0. Estimate (9) is valid in each so-called light point of the circle 𝐷 = {𝑧 : |𝑧| 6 𝑅𝑟} [10].
Other points of circle 𝐷 are called heavy. To each heavy point 𝑧, the circle (see [10], [13])
𝐾𝑧 = {𝜉 : |𝜉 − 𝑧| 6 𝜌𝑧} is associated. As it is known, the covering of the set of heavy points by
the circles 𝐾𝑧 of a bounded radius 𝜌𝑧 contains at most countable subcovering such that each
heavy point is covered by at most six circles [14]. In circle 𝐷 function 𝑔 has just a finite number
of zeroes 𝑎1, 𝑎2, . . . , 𝑎𝑛. It is obvious that all of them are heavy points.

Slightly increasing the radii of exceptional points, we can assume that estimate (9) is valid
outside the union of open circles 𝑉𝑛 = {𝑧 : |𝑧 − 𝑧𝑛| < 𝜌𝑛} with the total sum of radii∑︁

𝑛

𝜌𝑛 6 𝑅𝑟𝑁 , 𝑟 < 1 − 1
𝑁
, 𝑁 > 1.

Then for each 𝑧 ∈ 𝐷 outside 𝑉 =
⋃︀
𝑛

𝑉𝑛 the estimate

𝐺(𝑧) > −6𝑁𝐿, 𝐺(𝑧) = ln |𝑔(𝑧)| − 𝑅− |𝑧|
𝑅 + |𝑧|

ln |𝑔(0)| (10)

holds true. Discarding from 𝐷 all open circles in 𝑉 containing 𝑎1, 𝑎2, . . . , 𝑎𝑛 (their total number
is at most 6𝑛), we obtain a closed set which we indicate by 𝐶. Let

𝐵 =
{︀
𝑧 ∈ 𝐶 : 𝐺(𝑧) 6 −6𝑁𝐿

}︀
.

Set 𝐵 is closed and 𝐵 ⊂ 𝑉 . Therefore, by Heine-Borel lemma there exists a finite number of
circles in 𝑉 covering 𝐵. Thus, for each 𝑧 in 𝐶 ∖ 𝐵 estimate (10) holds true outside mentioned
circles. Thus, we arrive at
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Lemma 2. Suppose the hypothesis of Lemma 1. Then there exists a finite number of circles
𝑉𝑛 = {𝑧 : |𝑧 − 𝑧𝑛| < 𝜌𝑛} (1 6 𝑛 6 𝑚) with the total sum of radii

𝑚∑︁
𝑛=1

𝜌𝑛 6 𝑅𝑟𝑁 , 𝑟 < 1 − 1
𝑁

(𝑁 > 1), (11)

outside which in the circle {𝑧 : |𝑧| 6 𝑅𝑟} the estimate

𝐺(𝑧) > −6𝑁𝐿

holds true, where 𝐺 is the function defined in formulae (10).

3. Main result

Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞), lim
𝑛→∞

𝑛
𝜆𝑛

= 𝐷 <∞,

𝑄(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜆2𝑛

)︂
. (12)

It is clear that 𝑄 is an entire function of exponential type. Denote 𝑀(𝑟;𝑄) = max
|𝑧|=𝑟

|𝑄(𝑧)|.

Suppose that sequence Λ is distributed so that for some function 𝜓 ∈ 𝑊 𝜙 the estimates

− ln |𝑄′(𝜆𝑛)| 6 𝜓(𝜆𝑛) 𝑛 ≥ 1, (13)

hold true. We note that in this case, if 𝐹 ∈ 𝐷∞(Λ), then estimate (13) should be satisfied for
𝜓 ∈ 𝑊 , and this condition is essential for validity of estimates a), b) (see Introduction) [2].

Let us formulate the main result. Under the above assumptions we have

Theorem 1. Let 𝜙 be a fixed function in 𝐿, 𝑝 ∈ 𝑊 𝜙, where 𝑝(𝑥) = ln𝑀(𝑥;𝑄) and 𝜙 and
𝑝 are consistent. Suppose that the maximal term 𝜇(𝜎) of series (1) satisfies the condition

lim
𝜎→0−

ln𝜇(𝜎)

Φ
(︁

1
|𝜎|

)︁ > 0, (14)

Φ is inverse function for 𝜙. Then for each function 𝐹 ∈ 𝐷𝑜(Λ) there exists a measurable set
𝑒 ⊂ [−1, 0) of zero lower density such that for each vertical segment

𝐼𝐻 = 𝐼𝐻(𝜎) = {𝑠 = 𝜎 + 𝑖𝑡 : |𝑡− 𝑡𝑜| 6 𝐻, 𝜎 < 0}, 𝐻 = const,

for each 𝜎, −1 < 𝜎𝑜 6 𝜎 < 0, outside 𝑒 there exists a deformed segment 𝐼*𝐻 = 𝐼*𝐻(𝜎) with the
properties

1) mes[𝐼𝐻(𝜎) ∩ 𝐼*𝐻(𝜎)] → |𝐼𝐻 | = 2𝐻 as 𝜎 → 0−;
2) ln𝑀𝐹 (𝜎+𝑑(𝜎)) < (1+𝑜(1)) ln𝑀𝐹 (𝜎) as 𝜎 → 0− outside 𝑒, where 𝑑(𝜎) = max

𝜏∈𝐼*𝐻
|Re 𝜏−𝜎)|;

3) ln𝑀𝐹 (𝜎) = (1 + 𝑜(1)) ln𝑚*
𝐹 (𝜎) as 𝜎 → 0− outside 𝑒, where 𝑚*

𝐹 (𝜎) = min
𝜏∈𝐼*𝐻

|𝐹 (𝜏)|.

Доказательство. Let 𝑤1(𝑥) = 𝑁(𝑒𝑥), 𝜓 ∈ 𝑊 𝜙 be the function in condition (13). Since 𝑝 ∈
𝑊 𝜙, then 𝑤1 ∈ 𝑊 𝜙. Therefore, function 𝑤(𝑥) = 𝑤1(𝑥) + 𝜓(𝑥) belongs to class 𝑊 𝜙. In view
of the belonging 𝜓 ∈ 𝑊 𝜙, we have 𝜙(𝑥)𝜓(𝑥) = 𝑜(𝑥) as 𝑥 → ∞. But then it follows obviously
from the hypothesis of the theorem that 𝜙(𝑥)𝑤1(𝑥) = 𝑜(𝑥) as 𝑥 → ∞. Hence, there exists a
function such that 𝑤*(𝑥) = 𝛽(𝑥)𝑤(𝑥) (0 < 𝛽(𝑥) ↑ ∞, 𝑥 → ∞), also belonging to 𝑊 𝜙,
𝜙(𝑥)𝑤*(𝑥) = 𝑜(𝑥) as 𝑥→ ∞. We denote 𝑤*

1(𝑥) =
√︀
𝛽(𝑥)𝑤(𝑥).

Let 𝑣 = 𝑣(𝜎) be a solution to the equation

𝑤*(𝑣) = 3 ln𝜇(𝜎). (15)
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It is clear that 𝑣(𝜎) ↑ ∞ as 𝜎 ↑ 0. Since 𝑤* ∈ 𝑊 𝜙, there exists a sequence {𝜏𝑗} (𝜏𝑗 ↑ 0) such
that

lim
𝑣𝑗→∞

𝜙(𝑣𝑗)𝐽(𝑣𝑗;𝑤
*) = 0, (16)

where 𝑣𝑗 = 𝑣(𝜏𝑗) → ∞, 𝜏𝑗 → 0−,

𝐽(𝑣𝑗;𝑤
*) =

∞∫︁
𝑣𝑗

𝑤*(𝑥)

𝑥2
𝑑𝑥.

It follows from conditions (14) — (16) the consistency of functions 𝜙 and 𝑤* that [12]

lim
𝜏𝑗→0−

1

|𝜏𝑗|
𝐽(𝑣𝑗;𝑤

*) = 0, 𝑣𝑗 = 𝑣(𝜏𝑗), (17)

lim
𝜎→0−

𝑤*(𝑣(𝜎))

|𝜎|𝑣(𝜎)
= 0. (18)

But under conditions (15), (17), (18) Borel-Nevalinna kind lemma holds, in accordance with it
as 𝜎 → 0−, outside some set 𝑒1 ⊂ [−1, 0), mes(𝑒1 ∩ [𝜏𝑗, 0)) = 𝑜(|𝜏𝑗|), 𝜏𝑗 → 0−, the estimates
[12] 𝜎 + 3𝛿* < 0, and

𝜇(𝜎 + 3𝛿*) ≤ 𝜇(𝜎)1+𝑜(1), 𝛿* =
𝑤*(𝑣(𝜎))

𝑣(𝜎)
, (19)

hold true. Applying estimates (10), (19) and other arguments mentioned in Section 1 (see, for
instance,[12]), as 𝜎 → 0− outside exceptional set 𝑒1 we obtain that

1) ln𝑀𝐹 (𝜎 + 𝛿*) < (1 + 𝑜(1)) ln𝑀𝐹 (𝜎);

2) 𝑀
1+𝑜(1)
𝐹 (𝜎) 6 max

|𝜉−𝛼|6𝛿
|𝐹 (𝜉)|, (20)

where 𝛼 (Re𝛼 = 𝜎) is an arbitrary complex number in half-plane Π𝑜,

𝛿 = 𝛿(𝑣) =
𝑤*

1(𝑣)

𝑣
, 𝛿* = 𝛿*(𝑣) =

𝑤*(𝑣)

𝑣
, 𝑣 = 𝑣(𝜎).

Let 𝐷𝑎 = [−1, 0) ∖ 𝑒1. Then for 𝜎 ∈ 𝐷𝑎 and 𝜎 → 0− by (20) we obviously get

𝑀
1+𝑜(1)
𝐹 (𝜎) 6 max

𝜉∈𝐾
|𝐹 (𝜉)| = |𝐹 (𝜉*)|, (21)

where 𝜉* ∈ 𝜕𝐾, 𝐾 is the square with the sides parallel to the axis and circumscribed around
the circle 𝐷̄(𝛼, 𝛿) = {𝜉 : |𝜉 − 𝛼| 6 𝛿} ⊂ Π𝑜.

We apply Lemma 2 to function 𝑔(𝑧) = 𝐹 (𝑧 + 𝜉*) assuming 𝑁 = 4, 𝑅 = 𝛿*, 𝑟 = 2
√
2√

𝛽(𝑣)
. Since

𝑅𝑟 = 2
√

2 𝛿 is the length of the diagonal in square 𝐾, then 𝐾 ⊂ 𝐷̄(𝜉*, 𝑅𝑟). If 𝑟 < 1 − 1
𝑁

,
in accordance with Lemma 2 for each 𝑧 in the circle 𝐷̄(𝜉*, 𝑅𝑟) outside a finite number of
exceptional circles 𝑉𝑛 with radii obeying condition (11), as 𝜎 ∈ 𝐷𝑎 and 𝜎 → 0−, the estimate

𝐹 (𝜉*)| 6 |𝐹 (𝑧)|1+𝑜(1) 6𝑀
1+𝑜(1)
𝐹 (𝜎 + 𝛿*) (22)

holds true. The number of exceptional circles depends on the square. Denoting this number by
𝑚(𝐾), we have

𝑚(𝐾)∑︁
𝑛=1

𝜌𝑛 6 𝑅𝑟4 6
64 𝛿

𝛽3/2(𝑣)
. (23)

Thus, by (21), (22) we obtain that as 𝜎 ∈ 𝐷𝑎 and 𝜎 → ∞,

ln𝑀𝐹 (𝜎) = (1 + 𝑜(1)) ln |𝐹 (𝑧)|, (24)

if 𝑧 ∈ 𝐾 ∖
𝑚(𝐾)⋃︀
𝑛=1

𝑉𝑛, where 𝐾 is the above square centered at the point 𝛼 = 𝜎 + 𝑖𝑡.
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For each 𝜎 ∈ 𝐷𝑎 we consider the rectangular

𝑃 = {𝑧 = 𝑥+ 𝑖𝑦 : |𝜎 − 𝑥| 6 𝛿, |𝑦 − 𝑡0| 6 𝐻} (𝐻 = const).

It is clear that 𝑃 ⊂ Π0 as 𝜎′ < 𝜎 < 0.
Consider the minimal numbers of squares like 𝐾 mutually having no common internal points

and covering 𝑃 . The exceptional set 𝑒 = {𝑒𝑖} of rectangular 𝑃 consists of exceptional circles of
the covering squares and the number of these circles is finite. Circles 𝑒𝑖 can intersect forming

so-called clusters 𝑑𝐾 =
𝑚𝐾⋃︀
𝑖=1

𝑒𝑖 being connected components of 𝑒.

Let Π be the projection of sets 𝑑𝐾 having non-empty intersection with segment 𝐼𝐻(𝜎) on

this segment. Then Π =
𝑛⋃︀

𝑗=1

𝐼𝑗, where 𝐼𝑗 are some mutual disjoint segments, 𝐼𝑗 ⊂ 𝐼𝐻(𝜎), and

by (23)
𝑛∑︁

𝑗=1

|𝐼𝑗| 6 2
𝑛∑︁

𝑗=1

𝜌𝑗 6
const

𝛽3/2(𝑣)

as 𝜎′ < 𝜎′′ < 𝜎 < 0.
The changed segment 𝐼*𝐻 is constructed as follows. For each 𝑗 = 1, 2, . . . , 𝑛 we find the

minimal rectangular 𝑃𝑗 with the side 𝐼𝑗 and covering the appropriate sets 𝑑𝐾 . The part 𝐼𝑗 of
segment 𝐼𝐻 is replaced by the polyline 𝛾𝑗 = 𝜕𝑃𝑗 ∖ 𝐼𝑗. If 𝑃𝑗 is adjacent to a horizontal side of 𝑃 ,
from 𝛾𝑗 we exclude the segment lying on this side of 𝑃 . Making this procedure for each segment
𝐼𝑗, we obtain the required “segment” 𝐼*𝐻 .

The continuity of function 𝐹 implies the validity of estimate (24) on the boundaries of clusters
𝑑𝐾 . Therefore, estimate (24) holds on the whole “segment” 𝐼*𝐻 , and as 𝜎 ∈ 𝐷𝑎 and 𝜎 → 0−

ln𝑀𝐹 (𝜎) = (1 + 𝑜(1)) ln𝑚*
𝐹 (𝜎),

where 𝑚*
𝐹 (𝜎) = min

𝜏∈𝐼*𝐻(𝜎)
|𝐹 (𝜏)|. The proof is complete.

Remark 1. In [12] under the hypothesis of Theorem 1 a weaker asymptotic relation 𝑑(𝐹 ; 𝛾) =
1 was proven, where

𝑑(𝐹 ; 𝛾) = lim
𝑠∈𝛾, Re 𝑠→0−

ln |𝐹 (𝑠)|
ln𝑀𝐹 (Re 𝑠)

,

𝛾 is an arbitrary curve in Π𝑜 ending on the imaginary part.

Theorem 2. Suppose hypothesis of Theorem 1, and function 𝑙,

𝑙(𝑟) = 𝑁(𝑟) ln
𝑟

𝑁(𝑟)
, 𝑁(𝑡) =

𝑡∫︁
0

𝑛(𝑥)

𝑥
𝑑𝑥, 𝑛(𝑡) =

∑︁
𝜆𝑗≤𝑡

1,

belongs to class 𝑊 𝜙. Then as 𝜎 → 0−, outside some set 𝑒 ⊂ [−1, 0) of zero density

ln𝑀𝐹 (𝜎) = (1 + 𝑜(1)) ln𝑚𝐹 (𝜎), (25)

where 𝑚𝐹 (𝜎) = min
𝜏∈𝐼𝐻

|𝐹 (𝜏)|, 𝐼𝐻 = 𝐼𝐻(𝜎), 𝜎 < 0− is a vertical segment of length 2𝐻.

If 𝑙 ∈ 𝑊 𝜙, then asymptotic identity (25) is valid as 𝜎 → 0− outside a set 𝑒 ⊂ [−1, 0) of zero
upper density.

Theorem 2 can be proven by the same approach as in [11], if one takes into consideration the
way of estimating the measures of exceptional sets like 𝑒1 in the proof of Theorem 1.

We note that in paper [11] function 𝜙 satisfies certain additional restrictions. In Theorems 1, 2
we require only 𝜙 ∈ 𝐿. Proof of Theorem 2 will be provided in another paper.
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10. A.M. Gaisin. On a conjecture of Pólya // Izvestia RAN. Ser. matem. 1994. V. 58, No. 2. P. 73-92.

[Russ. Acad. Sci. Izv. Math. 1995. V. 44, No. 2. P. 281-299.]
11. A.M. Gaisin. Behavior of the logarithm of the modulus of the sum of a Dirichlet series converging

in a half-plane // Izve. RAN. Ser. Matem. 1994. V. 53, No. 4. P. 173-185. [Russ. Acad. Sci. Izv.
Math. 1995. V. 45, No. 1. P. 175-186.]

12. A.M. Gaisin, T.I. Belous. Estimation over curves of the functions given by dirichlet series on a
half-plane // Sibir. Matem. Zhurn. 2003. V. 44, No. 1. P. 27-43. [Sib. Math. J. 2003. V. 44, No. 1.
P. 22-36.]

13. N.V. Govorov. On lower estimate of function subharmonic in circle // Theory of Functions,
Functional Analysis and Their Applications. Kharkov State University, Kharkov, 1968. No. 6.
P. 130–150.

14. N.S. Landkof.Foundations of modern potential theory. Nauka, Moscow, 1996. [Springer, Berlin,
1972.]

Akhtyar Magazovich Gaisin,
Institute of Mathematics USC RAS,
Chernyshevskogo str., 112,
450008, Ufa, Russia
E-mail: gaisinam@mail.ru


	to1. Introduction
	to2. Definitions and preliminaries
	to3. Main result
	 Список литературы

