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Abstract. In the work we study some spectral properties of the non-self-adjoint operator 𝐴
in the space ℋ𝑙 = 𝐿2(0, 1)

𝑙 associated with a noncoercive sesquilinear form. We address the
issues on completeness of a system of root vector-functions for operator 𝐴 in ℋ𝑙, description
of the domain of operator 𝐴, estimating resolvent of operator 𝐴 and asymptotic distribution
of eigenvalues of operator 𝐴.
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Introduction

The present paper is a continuation of work [1]. We study some spectral properties of a
certain class of degenerate elliptic non-self-adjoint operators 𝐴 in the space ℋ𝑙 = 𝐿2(0, 1)𝑙; the
operators are associated with non-coercive sesquilinear forms. We also consider the issues on the
completeness of the system of root vector-functions for an operator 𝐴 in ℋ𝑙, a description of the
domain of an operator 𝐴, estimates for the resolvent of an operator 𝐴, asymptotic distribution
of eigenvalues of an operator 𝐴.

Spectral asymptotics for degenerate elliptic operators far from being self-adjoint were studied
in works [2–7] in the situation when the eigenvalues of the operator split into two series, one
being located outside the angle | arg 𝑧| 6 𝜙, 𝜙 < 𝜋, while the other was accumulating to the ray
𝑅+ = (0,+∞). This paper, as [1], is related to works [2, 3, 7]. The most general results were
obtained in [7], where it was assumed that the leading coefficient of the operator 𝐴 satisfies

𝑎(𝑡) ≡ 𝑎𝑚𝑚(𝑡) ∈ 𝐶𝑚([0, 1];𝐸𝑛𝑑C𝑙) (0.1)

and has different simple eigenvalues for each 𝑡 ∈ [0, 1].
Instead of (0.1) we just assume 𝑎(𝑡) ∈ 𝐶([0, 1];𝐸𝑛𝑑C𝑙).

1. Formulation of main results

1. An operator 𝐴 acting a Hilbert space 𝐻 will be called far from being self-adjoint if it can
not be reduced to the form

𝐴 = 𝐵(𝐸 +𝐷), 𝐵 = 𝐵*, 𝐷 ∈ 𝜎∞(𝐻). (1.1)

Hereinafter the symbol 𝜎∞(𝐻) indicates the class of linear completely continuous operators in
𝐻, 𝐵* is the adjoint operator for 𝐵.

Spectral properties of elliptic differential and pseudodifferential operators close to self-adjoint,
i.e., which can be reduced to (1.1), are studied well enough, see [8, 9]. Also in details there
were studied spectral properties of elliptic differential operators (DO) and pseudodifferential
operators (PDO) far from being self-adjoint in the case when the are defined on a compact
manifold without the boundary (see [7, 10–12] and the references therein). In the case of
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domains with boundaries, DO and PDO far from being self-adjoint were studied in [3, 4, 13–
18]; degenerate elliptic problems were considered in [3, 4, 13].

2. In the present paper we study spectral properties of a non-self-adjoint operator in 𝐿2(0, 1)𝑙

associated with the sesquilinear form

𝒜[𝑢, 𝑣] =
𝑚∑︁

𝑖,𝑗=0

1∫︁
0

< 𝑝𝑖(𝑡)𝑎𝑖𝑗(𝑡)𝑢
(𝑖)(𝑡), 𝑝𝑗(𝑡)𝑣

(𝑗)(𝑡) >C𝑙 𝑑𝑡. (1.2)

Here

𝑝𝑖(𝑡) = {𝑡(1 − 𝑡)}𝜃+𝑖−𝑚 (𝑖 = 0,𝑚), 𝜃 < 𝑚, 𝑢(𝑖)(𝑡) =
𝑑𝑖𝑢(𝑡)

𝑑𝑡𝑖
,

𝑎𝑖𝑗 ∈ 𝐿∞(𝐽 ; 𝐸𝑛𝑑C𝑙) (𝑖, 𝑗 = 0,𝑚),

where 𝐽 = (0, 1). The symbol < , >C𝑙 denotes the scalar product in C𝑙.
By ℋ+ we denote the closure of linear manifold 𝐶∞

0 (𝐽) by the norm

|𝜙|+ =

⎛⎝∫︁
𝐽

𝑝2𝑚(𝑡)|𝜙(𝑚)(𝑡)|2𝑑𝑡+

∫︁
𝐽

|𝜙(𝑡)|2𝑑𝑡

⎞⎠1/2

.

We let

ℋ = 𝐿2(𝐽), ℋ𝑙 = ℋ⊕ · · · ⊕ ℋ (𝑙 𝑡𝑖𝑚𝑒𝑠),

ℋ𝑙
+ = ℋ+ ⊕ · · · ⊕ ℋ+ (𝑙 𝑡𝑖𝑚𝑒𝑠).

In what follows we denote the scalar product in the spaces ℋ, ℋ𝑙 by the same symbol ( , ).
In the same way, the norms in the spaces ℋ+, ℋ𝑙

+ and ℋ, ℋ𝑙, C𝑙 will be denoted respectively
by | |+, | |. By the symbol ‖𝑇‖ we shall denote the norm of a bounded operator 𝑇 defined
either in ℋ or in ℋ𝑙.

As the domain of sesquilinear form 𝒜[𝑢, 𝑣] (1.2) we take space ℋ𝑙
+.

Suppose that 𝑎𝑚𝑚(𝑡) ∈ 𝐶𝑚(𝐽 ; 𝐸𝑛𝑑C𝑙) and for each 𝑡 ∈ 𝐽 the matrix 𝑎(𝑡) = 𝑎𝑚𝑚(𝑡) has
𝑙 different nonzero eigenvalues 𝜇1(𝑡), . . . , 𝜇𝑙(𝑡). Then the eigenvalues of matrix 𝑎(𝑡) can be
ordered so that 𝜇𝑗(𝑡), 𝜇

−1
𝑗 (𝑡) ∈ 𝐶𝑚(𝐽), 𝑗 = 1, 𝑙.

Suppose the conditions

|𝑎𝑖𝑗(𝑡)| 6𝑀𝑡𝛿(1 − 𝑡)𝛿 (𝑖+ 𝑗 < 2𝑚), 𝛿 > 0, (1.3)

𝜇𝑗(𝑡) ̸∈ 𝑆 (𝑗 = 1, 𝑙, 𝑡 ∈ 𝐽), (1.3′)

where 𝑆 ⊂ C is a closed angle with the vertex at the origin and 𝜇𝑗(𝑡) are the eigenvalues of
matrix 𝑎(𝑡).

Under the above conditions the following theorems hold true (see [1]).

Theorem 1.1. There exists the unique closed operator 𝐴 in ℋ𝑙 with the properties
(𝑖) 𝐷(𝐴) ⊂ ℋ𝑙

+, (𝐴𝑢, 𝑣) = 𝒜[𝑢, 𝑣] ∀𝑢 ∈ 𝐷(𝐴), 𝑣 ∈ ℋ𝑙
+,

(𝑖𝑖) for some 𝑧0 ∈ C there exists the bounded inverse

(𝐴− 𝑧0𝐸)−1 : ℋ𝑙 → ℋ𝑙.

Let 𝐴 be the operator from the previous theorem.

Theorem 1.2. Operator 𝐴 has a discrete spectrum. The system of root vector-functions of
operator 𝐴 is complete in ℋ𝑙, i.e., their finite linear combinations are complete in ℋ𝑙. The
order of the resolvent of operator 𝐴 does not exceed 1

2𝑚
. The number 𝑁(𝜆) of the eigenvalues

of operator 𝐴 whose moduli does not exceed 𝜆 taken counting multiplicity satisfies the estimate
𝑁(𝜆) 6𝑀𝜆1/2𝑚, 𝜆 ≥ 1.
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We observe that in the case of a symmetric form (1.2) the above formulated results are
well-known.

3. We denote by ℋ− the completion of the space ℋ by the norm

|𝑢|− = sup
0̸=𝜙∈ℋ+

|(𝑢, 𝜙)|
|𝜙|+

.

We let ℋ𝑙
− = ℋ− ⊕ · · · ⊕ ℋ− (𝑙 times). An element 𝐹 = (𝐹1, . . . , 𝐹𝑙) ∈ ℋ𝑙

− generates an
antilinear functional over ℋ𝑙

+ by the formula

< 𝐹, 𝑣 >= lim
𝑖→+∞

(𝑢𝑖, 𝑣), 𝑣 ∈ ℋ𝑙
+,

where the sequence of vector functions 𝑢1, 𝑢2, . . . ∈ ℋ𝑙 is chosen so that 𝑢𝑖 → 𝐹 (𝑖→ +∞) in
ℋ𝑙

−.
We note that if 𝑣 = (𝑣1, . . . , 𝑣𝑙) ∈ ℋ𝑙

+, then

< 𝐹, 𝑣 >=
𝑙∑︁

𝑖=1

< 𝐹𝑖, 𝑣𝑖 >, |𝐹 |− = (
𝑙∑︁

𝑖=1

|𝐹𝑖|2−)1/2.

Hereinafter, both for 𝑙 = 1 and for an arbitrary 𝑙 ∈ 𝑁 we adopt the same notations | |−, < , >.
And vice versa, for each continuous antilinear functional 𝑔(𝑣) (𝑣 ∈ ℋ𝑙

+) there exists the
unique element 𝐹 ∈ ℋ𝑙

− such that 𝑔(𝑣) =< 𝐹, 𝑣 >, ∀𝑣 ∈ ℋ𝑙
+. At that, the norm of functional

𝑔 is equal to |𝐹 |−.
In what follows continuous antilinear functionals over ℋ𝑙

+ are identified with the elements of
the space ℋ𝑙

−.
4. Under condition (1.3), by Hardy inequality we have

|𝒜[𝑢, 𝑣]| 6𝑀 |𝑢|+|𝑣|+ (∀𝑢, 𝑣 ∈ ℋ𝑙
+).

This is why we can introduce the operator 𝒜 : ℋ𝑙
+ → ℋ𝑙

− acting by the formula

< 𝒜𝑢, 𝑣 >= 𝒜[𝑢, 𝑣] (∀𝑢, 𝑣 ∈ ℋ𝑙
+).

Let 𝐴 be the operator from Theorems 1.1, 1.2. The following theorem holds true.

Theorem 1.3. For 𝜆 ∈ 𝑆 with sufficiently large modulus there exists bounded inverses

(𝒜− 𝜆𝐸)−1 : ℋ𝑙
− → ℋ𝑙

−, (𝐴− 𝜆𝐸)−1 : ℋ𝑙 → ℋ𝑙,

and the identity
(𝒜− 𝜆𝐸)−1𝑢 = (𝐴− 𝜆𝐸)−1𝑢 (∀𝑢 ∈ ℋ𝑙)

holds true. At that, 𝐴𝑢 = 𝒜𝑢 (∀𝑢 ∈ 𝐷(𝐴)) and

𝐷(𝐴) = {𝑢 ∈ ℋ𝑙
+ : 𝒜𝑢 ∈ ℋ𝑙}.

Similar result for a scalar partial differential operator was obtained in work [19]. We note
that that first part of Theorem 1.3 can be proven by the approach of paper [19] only in the
case if one assumes additionally that for some continuous on 𝐽 non-zero function 𝛾(𝑡) and for
sufficiently small 𝜀 > 0 the condition

| arg {𝛾(𝑡) < 𝑎(𝑡)ℎ, ℎ >C𝑙}| < 𝜋 − 𝜀

2
(∀𝑡 ∈ 𝐽, 0 ̸= ℎ ∈ C𝑙) (1.4)

holds true. Hereinafter we assume the function arg 𝑧 takes the values in the segment (−𝜋, 𝜋].
In particular, it follows from (1.4) that

| arg 𝛾(𝑡)𝜇𝑗(𝑡)| 6
𝜋 − 𝜀

2
(∀𝑡 ∈ 𝐽, 𝑗 = 1, 𝑙).

5. The proof of Theorem 1.2 is given in Section 2. We note that in Section 2 we also prove
the following estimate for the resolvent of operator 𝐴 in sector 𝑆:

‖(𝐴− 𝜆𝐸)−1‖ 6𝑀 |𝜆|−1, (𝜆 ∈ 𝑆, |𝜆| ≥ 𝑐(𝑆)),
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where 𝑐(𝑆) > 0. The summability of Fourier series for the elements 𝑓 ∈ ℋ𝑙 in terms of root
vector functions of operator 𝐴 by the Abel methods with brackets was established in [1]. In
the present work we prove the completeness for the system of root vector functions of operator
𝐴 in space ℋ𝑙.

In Section 3 we describe the domain of operator 𝐴. In Section 4 we study the asymptotic
behavior of the eigenvalues of operator 𝐴.

The results of this work were announced partially in [20].

2. Estimate for resolvent of operator 𝐴

1. Let 𝑃 be the self-adjoint operator in ℋ associated with the sesquilinear form

𝑃
′
[𝑢, 𝑣] = (𝜌𝜃𝑢(𝑚), 𝜌𝜃𝑣(𝑚)), 𝐷[𝑃

′
] = ℋ+,

where 𝜌(𝑡) = 𝑡(1 − 𝑡), 𝑡 ∈ [0, 1], 𝜃 is the same as in (1.2).
We denote (see [1]) by ℋ𝑟

𝜈 , 𝜈 > 0, the space of functions 𝑢 ∈ ℋ𝑟
+ with norm

|𝑢|𝜈 =

⎛⎝∫︁
𝐽

𝜌2𝜃(𝑡)|𝑢(𝑚)(𝑡)|2𝑑𝑡+ 𝜈

∫︁
𝐽

|𝑢(𝑡)|2𝑑𝑡

⎞⎠1/2

.

We indicate by ℋ𝑟
−𝜈 , 𝜈 > 0, the space of elements 𝐹 ∈ ℋ𝑟

− with the norm

|𝐹 |−𝜈,𝑟 = sup
𝑣∈ℋ𝑟

+
|𝑣|𝜈61

| < 𝐹, 𝑣 > |.

As 𝜈1, 𝜈2 > 0, the sets ℋ𝑟
±𝜈1

,ℋ𝑟
±𝜈2

coincide, while as the normed spaces they differ only by the
equivalent norms. For 𝜈 = 1 we have ℋ𝑟

𝜈 = ℋ𝑟
+, ℋ𝑟

−𝜈 = ℋ𝑟
−. Space ℋ𝑟

−𝜈 , 𝜈 > 0, is the negative
one in the triple ℋ𝑟

𝜈 ⊂ ℋ𝑟 ⊂ ℋ𝑟
−𝜈 w.r.t. the positive space ℋ𝑟

𝜈 (see, for instance, [21]).
In what follows we shall make use of the following lemma (see [1]).

Lemma 2.1. There exists the bounded inverse operator 𝑇𝜔 : ℋ− → ℋ, 𝜔 ≥ 1, such that

𝑇𝜔𝑢 = (𝑃 + 𝜔𝐸)−
1
2𝑢, ∀𝑢 ∈ ℋ, at that

|𝑇𝜔𝐹 | 6𝑀 |𝐹 |−𝜈 , ∀𝜔 ≥ 1, 𝜈 ∈ [1, 2𝜔), ∀𝐹 ∈ ℋ−𝜈 ,

where the number 𝑀 > 0 is independent of 𝜔, 𝜈.

2. Let 𝑇𝜔 be the operator from 2.1, 𝒯𝜔 : ℋ → ℋ− be the inverse operator for 𝑇𝜔 : ℋ− → ℋ.
As in Lemma 2.1, one can prove that

|𝒯𝜔𝑢|−𝜈 6𝑀 |𝑢| ∀𝜔 ≥ 1, 𝜈 ∈ [1, 2𝜔), ∀𝑢 ∈ ℋ),

where number 𝑀 > 0 is independent of 𝜔, 𝜈. At that, if 𝑢 ∈ ℋ𝜈 , then

𝒯𝜔𝑢 = (𝑃 + 𝜔𝐸)
1
2𝑢.

We introduce the operators 𝑇 𝑙
𝜔 : ℋ𝑙

− → ℋ𝑙, 𝒯 𝑙
𝜔 : ℋ𝑙 → ℋ𝑙

− by the formulae

𝑇 𝑙
𝜔 = 𝑑𝑖𝑎𝑔{𝑇𝜔, . . . , 𝑇𝜔}, 𝒯 𝑙

𝜔 = 𝑑𝑖𝑎𝑔{𝒯𝜔, . . . , 𝒯𝜔}.
We let 𝑃𝑙 = 𝑑𝑖𝑎𝑔{𝑃, . . . , 𝑃}.

Theorem 2.1. For 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎, where 𝜎 > 0 is a sufficiently large number the represen-
tations

(𝒜− 𝜆𝐸)−1 = (𝑃𝑙 + |𝜆|𝐸)−1Φ(𝜆)𝑇𝜆 (2.1)

(𝐴− 𝜆𝐸)−1 = (𝑃𝑙 + |𝜆|𝐸)−
1
2 Φ(𝜆)(𝑃𝑙 + |𝜆|𝐸)−

1
2 , (2.1′)

hold true, where Φ(𝜆) : ℋ𝑙 → ℋ𝑙 is a bounded operator

sup
𝜆∈𝑆, |𝜆|≥𝜎

‖Φ(𝜆)‖ < +∞. (2.2)
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Proof. Let us prove that if 𝜈 = |𝜆|, then for 𝜆 ∈ 𝑆 with sufficiently large modulus we have

|(𝑃𝑙 + |𝜆|𝐸)
1
2 (𝒜𝜈 − 𝜆𝐸)−1𝒯 𝑙

|𝜆|𝑢| 6𝑀 |𝑢| ∀𝑢 ∈ ℋ𝑙.

In order to it, we employ the identity (see [1, Sec. 4, Eqs. (4.6), (4.7)])

(𝒜𝜈 − 𝜆𝐸)−1 = 𝑋𝜈(𝜆)Γ
′

𝜈(𝜆).

Here the operator 𝒜𝜈 : ℋ𝑙
𝜈 → ℋ𝑙

−𝜈 is defined by the formula

< 𝒜𝜈𝑢, 𝑣 >= 𝒜[𝑢, 𝑣], (∀𝑢, 𝑣 ∈ ℋ𝑙
𝜈).

It is clear that

|𝑇 𝑙
|𝜆|Γ

(𝜆)
|𝜆| 𝒯

𝑙
|𝜆|𝑢| 6 |Γ(𝜆)

|𝜆| 𝒯
𝑙
|𝜆|𝑢|−|𝜆|

6𝑀1|𝒯 𝑙
|𝜆|𝑢|−|𝜆|

6𝑀2|𝑢|, 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎1.

It remains to show (see [1, Sec. 4, Eqs. (4.6), (4.7)]) that

|(𝑃𝑙 + |𝜆|𝐸)
1
2𝑋|𝜆|(𝜆)𝒯 𝑙

|𝜆|𝑢| 6𝑀3|𝑢|, 𝑢 ∈ ℋ𝑙. (2.3)

Employing (4.3), (3.13) from [1], as above, we reduce the proof of estimate (2.3) to checking
the following inequality

|(𝑃𝑙 + |𝜆|𝐸)
1
2𝑅𝑘,|𝜆|(𝜆)𝒯|𝜆|𝑣| 6𝑀4|𝑣|, 𝑣 ∈ ℋ.

The validity of this inequality for 𝜆 ∈ 𝑆 with sufficiently large modulus follows from represen-
tation (3.12) in work [1]. Thus, we have

(𝒜𝜈 − 𝜆𝐸)−1 = (𝑃𝑙 + |𝜆|𝐸)−
1
2 Φ(𝜆)𝑇 𝑙

|𝜆|, 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎, (2.4)

where Φ(𝜆) : ℋ𝑙 → ℋ𝑙 is a bounded operator obeying estimate (2.2).
We note that

(𝒜𝜈 − 𝜆𝐸)−1𝐹 = (𝒜− 𝜆𝐸)−1𝐹. ∀ 𝜈 ≥ 1, 𝐹 ∈ ℋ𝑙
−. (2.5)

For 𝑢 ∈ ℋ𝑙 we get

𝑇 𝑙
|𝜆|𝑢 = (𝑃𝑙 + |𝜆|𝐸)−

1
2𝑢, (𝒜− 𝜆𝐸)−1𝑢 = (𝐴− 𝜆𝐸)−1𝑢

and together with (2.4), (2.5) it proves (2.1), (2.1′). The proof is complete.

3. Representation (2.1′) implies the estimate

‖(𝐴− 𝜆𝐸)−1‖ 6𝑀 |𝜆|−1. 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎. (2.6)

Since the order of the resolvent of operator 𝑃𝑙 equals 1
2𝑚

, it follows from (2.1′) that the order

of the resolvent of operator 𝐴 does not exceed the number 1
2𝑚

. Applying Theorem 6.4.1 in [10],

by (2.6) we conclude that the system of root vector functions of operator 𝐴 is complete in ℋ𝑙.
We note the summability of Fourier series by Abel method with brackets w.r.t. the system

of root vector functions of operator 𝐴 was established in [1].
4. Let 𝐻 be a separable Hilbert space. We denote by 𝜎𝜏 (𝐻), 𝜏 ≥ 1, the class of operators

𝐿 ∈ 𝜎∞(𝐻) for 𝑠-numbers are summable with the power 𝜏 [22]:

‖𝐿‖𝜏 =

(︃
∞∑︁
𝑗=1

𝑠𝜏𝑗 (𝐿)

)︃ 1
𝜏

< +∞.

The infimum of the numbers 𝜏 such that 𝐿 ∈ 𝜎𝜏 (𝐻) is called the order of operator 𝐿.
We indicate by 𝜈1(𝑡), 𝜈2(𝑡), . . . the eigenvalues of operator 𝐿 ∈ 𝜎∞(𝐻) taken in the order of

ascending modulus counting their root multiplicities. We note that

𝜈𝑗

(︁
(𝐿*𝐿)

1
2

)︁
= 𝑠𝑗(𝐿), 𝑗 = 1, 2, . . .
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In what follows we shall make use of well-known inequalities (see, for instance, [22]):

+∞∑︁
𝑗=1

|𝜇𝑗(𝑡)| 6 ‖𝐿‖1, ∀𝐿 ∈ 𝜎1(𝐻), (2.7)

‖𝐿𝐿′‖𝑝 6 ‖𝐿‖𝑝‖𝐿′‖, ‖𝐿′𝐿‖𝑝 6 ‖𝐿′‖‖𝐿‖𝑝, (2.8)

if 𝐿 ∈ 𝜎𝑝(𝐻), 𝑝 ≥ 1, 𝐿′ is a bounded operator;

‖𝐿1 . . . 𝐿𝑟‖𝑝 6 ‖𝐿1‖𝜅1 . . . ‖𝐿𝑟‖𝜅𝑟 , (2.9)

if 𝐿𝑗 ∈ 𝜎𝜅𝑗
(𝐻), 1 6 𝑝 6 𝜅𝑗, 𝑗 = 1, 𝑟,

𝑟∑︀
𝑗=1

𝜅−1
𝑗 = 1

𝑝
. As 𝐿1 = . . . = 𝐿𝑟 = 𝐿 ∈ 𝜎1(𝐻), 𝜅𝑗 = 𝑟,

𝑗 = 1, 𝑟), thanks to (2.9) we obtain inequality

‖𝐿𝑟‖1 6 ‖𝐿‖𝑟𝑟. (2.10)

By (2.7) we obtain the convergence of the series

sp𝐿
𝑑𝑒𝑓
=

+∞∑︁
𝑗=1

𝜈𝑗(𝑡), ∀𝐿 ∈ 𝜎1(𝐻).

5. In conclusion of this section let us prove the statement of Theorem 1.2 on the estimate
for the spectrum of operator 𝐴.

We denote by 𝜆1, 𝜆2, . . . the eigenvalues of the operator 𝐴 taken in order of ascending moduli
counting the root multiplicity.

Employing (2.1′), (2.8)–(2.10), we find

‖(𝐴− 𝜆𝐸)−𝑟‖1 6 ‖(𝑃𝑙 + |𝜆|𝐸)−
1
2 Φ(𝜆)(𝑃𝑙 + |𝜆|𝐸)−

1
2‖

𝑟

𝑟 6𝑀‖(𝑃𝑙 + |𝜆|𝐸)−
1
2‖

2𝑟

2𝑟,

𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎, (2.11)

where 𝑟 = 4𝑚, 𝜎 > 0 is a sufficiently large number. It is known that

𝑁0(𝑡)
𝑑𝑒𝑓
=
∑︁
𝜔𝑗6𝑡

1 ∼ 𝑐𝑜𝑛𝑠𝑡 · 𝑡
1

2𝑚 (𝑡→ +∞),

where 𝜔1, 𝜔2, . . . denotes the eigenvalues of operator 𝑃 . This is why

‖(𝑃𝑙 + |𝜆|𝐸)−
1
2‖

8𝑚

8𝑚 =
+∞∑︁
𝑗=1

(𝜔𝑗 + |𝜆|)−4𝑚 =

+∞∫︁
0

𝑑𝑁0(𝑡)

(𝑡+ |𝜆|)4𝑚
6𝑀 |𝜆|

1
2𝑚

−4𝑚 |𝜆| ≥ 1.

By (2.7), (2.11) it implies that

+∞∑︁
𝑗=1

|(𝜆𝑗 − 𝜆)−4𝑚| 6𝑀 |𝜆|
1

2𝑚
−4𝑚 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎.

We choose a number 𝜙 ∈ (−𝜋; 𝜋] so that the ray Γ = {𝜆 = 𝑡𝑒𝑖𝜙 : 𝑡 ≥ 0} is the bisectrix of
angle 𝑆. Then

|𝑧| + |𝜆| 6 𝑐′|𝑧 − 𝜆| ∀𝑧 ̸∈ 𝑆, 𝜆 ∈ Γ, (2.12)

where number 𝑐′ > 0 depends only on angle 𝑆. For sufficiently large 𝑗 ≥ 𝑗0 we have 𝜆𝑗 ̸∈ 𝑆. It
is obvious that

𝑁(𝑡) =

𝑡∫︁
0

𝑑𝑁(𝜏) 6 (2𝑡)4𝑚
𝑡∫︁

0

𝑑𝑁(𝜏)

(𝑡+ 𝜏)4𝑚
6 (2𝑡)4𝑚

+∞∫︁
0

𝑑𝑁(𝜏)

(𝑡+ 𝜏)4𝑚
=

= (2𝑡)4𝑚
+∞∑︁
𝑗=1

(|𝜆𝑗| + 𝑡)−4𝑚,
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where 𝑁(𝑡) = card {𝑗 : |𝜆𝑗| 6 𝑡}. Therefore, (see (2.12))

𝑁(𝑡) 6𝑀1 +𝑀2𝑡
4𝑚

+∞∑︁
𝑗=𝑗0

|𝜆𝑗 − 𝑡𝑒𝑖𝜙|−4𝑚 6𝑀2𝑡
1

2𝑚 (𝑡 ≥ 1).

The proof of Theorem 1.2 is complete.

3. Description of domain of operator 𝐴

1. Let 𝐴 be the operator from Theorem 1.1 and

𝑎𝑖𝑗(𝑡) ∈ 𝐶𝑗(𝐽 ; 𝐸𝑛𝑑C𝑙) 𝑖, 𝑗 = 0,𝑚. (3.1)

Theorem 3.1. The domain 𝐷(𝐴) of operator 𝐴 is the class of vector functions 𝑢 ∈
𝑊 2𝑚

2,𝑙𝑜𝑐(𝐽)𝑙 ∩ℋ𝑙
+ such that

𝑓 =
𝑚∑︁

𝑖,𝑗=0

(−1)𝑗(𝑝𝑖(𝑡)𝑝𝑗(𝑡)𝑎𝑖𝑗(𝑡)𝑢
(𝑖)(𝑡))(𝑗) ∈ ℋ𝑙.

At that, 𝑓 = 𝐴𝑢.

Proof. Let 𝑢 ∈ 𝑊 2𝑚
2,𝑙𝑜𝑐(𝐽)𝑙∩ℋ𝑙

+ and 𝑓(𝑡) ∈ ℋ𝑙. Then integrating by parts for an arbitrary vector

function 𝑣(𝑡) ∈ 𝐶∞
0 (𝐽)𝑙, we obtain

(𝑓, 𝑣) =
𝑚∑︁

𝑖,𝑗=0

(𝑝𝑖(𝑡)𝑎𝑖𝑗(𝑡)𝑢
(𝑖)(𝑡), 𝑝𝑗(𝑡)𝑣

(𝑗)(𝑡)) = 𝒜[𝑢, 𝑣].

By continuity these identities are valid for each 𝑣 ∈ ℋ𝑙
+. Hence, in accordance with Theorem 1.1,

𝑢 ∈ 𝐷(𝐴), 𝑓 = 𝐴𝑢.
And vice versa, let 𝑢 ∈ 𝐷(𝐴), 𝑓1 = 𝐴𝑢. Then

(𝑓1, 𝑣) =
𝑚∑︁

𝑖,𝑗=0

(𝑝𝑖𝑎𝑖𝑗𝑢
(𝑖), 𝑝𝑗𝑣

(𝑗)), ∀𝑣 ∈ 𝐶∞
0 (𝐽)𝑙,

so the element

𝑓2 =
𝑚∑︁

𝑖,𝑗=0

(−1)𝑗(𝑝𝑖(𝑡)𝑝𝑗(𝑡)𝑎𝑖𝑗(𝑡)𝑢
(𝑗)(𝑡))(𝑗)

treated in the distribution sense belongs to ℋ𝑙. At that we have 𝑓1 = 𝑓2. Then by the general
theory of elliptic equations we get 𝑢 ∈ 𝑊 2𝑚

2,𝑙𝑜𝑐(𝐽)𝑙.

2. In relation with Theorem 3.1 we note that as −1
2
< 𝜃 < 𝑚−1

2
, space ℋ𝑙

+ is described (see

[23]) as the class of vector functions 𝑢(𝑡) ∈ ℋ𝑙 with the finite norm

|𝑢|+ =

⎛⎝∫︁
𝐽

|𝜌2𝜃(𝑡)𝑢(𝑡)|2𝑑𝑡+

∫︁
𝐽

|𝑢(𝑡)|2𝑑𝑡

⎞⎠ 1
2

< +∞ (3.2)

and having zero traces

𝑢(𝑗)(0) = 𝑢(𝑗)(1) = 0, 𝑗 = 0, 1, . . . , 𝑠0 − 1;

here 𝑠0 is an integer such that 𝑚− 𝜃−1
2
6 𝑠0 < 𝑚− 𝜃 + 1

2
. If 𝜃 6 −1

2
or 𝑚−1

2
6 𝜃 < 𝑚, then

space ℋ𝑙
+ comprises vector functions 𝑢(𝑡) ∈ ℋ𝑙 (see [23]) with finite norm |𝑢|+.

3. Together with Theorem 3.1 we also have
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Theorem 3.2. Suppose (3.1) and

|𝑎(𝑘)𝑖𝑗 (𝑡)| 6𝑀{𝑡(1 − 𝑡)}−𝑘, (𝑘 = 0, 1, . . . , 𝑗).

Moreover, let 𝜃+ 1
2
̸∈ {1, 2, . . . ,𝑚}. Then the domain of operator 𝐴 is described as the class of

vector functions 𝑢 ∈ 𝑊 2𝑚
2,𝑙𝑜𝑐(𝐽)𝑙 ∩ℋ𝑙

+ such that

𝑝0(𝑡)𝑢(𝑡),
𝑚∑︁

𝑖,𝑗=0

(−1)𝑗(𝑝𝑖(𝑡)𝑝𝑗(𝑡)𝑎𝑖𝑗(𝑡)𝑢
(𝑗)(𝑡))(𝑗) ∈ ℋ𝑙.

4. Asymptotic distribution of eigenvalues of operator 𝐴

1. Let 𝐴 be the operator from Theorem 1.1. Suppose that the eigenvalues 𝜇1(𝑡), . . . , 𝜇𝑙(𝑡) of
matrix 𝑎(𝑡) are located in the complex plane as follows

𝜇1(𝑡), . . . , 𝜇𝑛(𝑡) ∈ 𝑅+
𝑑𝑒𝑓
= {𝑧 ∈ C : Re, 𝑧 > 0, Im 𝑧 = 0}, 𝜇𝑛+1(𝑡), . . . , 𝜇𝑙(𝑡) ̸∈ Φ,

where 1 6 𝑛 6 𝑙, Φ = {𝑧 ∈ C : |arg 𝑧| < 𝜙}, 𝜙 ∈ (0, 𝜋). Then in accordance with Theorem 1.3
each closed sector 𝑆 ⊂ Φ∖𝑅+ with the vertex at the origin contains a finite number of eigenvalues
of operator 𝐴. It implies easily that

lim
𝑗→+∞

arg 𝜆𝑗 = 0,

where 𝜆1, 𝜆2, . . . are the eigenvalues of operator 𝐴 in angle Φ taken in the order of ascending
moduli counting root multiplicity.

Theorem 4.1. As 𝑡→ +∞, function

𝑁(𝑡) = card {𝑗 : |𝜆𝑗| 6 𝑡}
satisfies asymptotic formula

𝑁(𝑡) ∼ 𝑐𝑡
1

2𝑚 , 𝑐 =
1

𝜋

𝑛∑︁
𝑗=1

1∫︁
0

𝜌−
𝜃
𝑚 (𝑡)𝜇

− 1
2𝑚

𝑗 (𝑡)𝑑𝑡.

Similar result for second order differential operator was obtained in [4, 13]. We however note
that the approach of works [4, 13] can not be directly employed in the case 𝑚 > 1 even if
condition (1.4) holds true. A key point of our approach is that we “extract” explicitly the main
term of the “generalized” resolvent as an operator acting from ℋ𝑙

−𝜈 into ℋ𝑙
𝜈 .

We note also that similar result for a class of non-self-adjoint elliptic systems was proven in
[24].

In combination with some other analytic approaches, it allows us to calculate the main term
of the asymptotics for the function sp (𝐴 − 𝑧𝐸)−1 as 𝑧 → +∞ along some rays Γ ⊂ Φ∖𝑅+

starting at the origin. The asymptotic formulae established in this way relate to classes of
operators wider than in works [4, 13] even in the case 𝑚 = 1.

2. To prove Theorem 4.1 we employ (4.6), (4.7) from [1] as 𝜈 = |𝜆|. Let 𝑃𝑙, 𝑇
𝑙
𝜔, 𝒯 𝑙

𝜔 be the
same operators like in Item 1 of Section 2.

We denote by 𝑢1, 𝑢2, . . . the orthonormalized vector eigenfunctions of operator 𝑃𝑙. Let 𝑃𝑙𝑢𝑗 =

𝜔𝑗𝑢𝑗, 𝜔1 6 𝜔2 6 . . .. Since 𝑢1, 𝑢2, . . . is an orthonormalized basis in ℋ𝑙 and (𝐴− 𝜆𝐸)−1𝑢𝑗 =

(𝒜𝜈 − 𝜆𝐸)−1𝑢𝑗 ∀𝜈 ≥ 1, then

sp (𝐴− 𝜆𝐸)−1 =
+∞∑︁
𝑗=1

((𝐴− 𝜆𝐸)−1𝑢𝑗, 𝑢𝑗) =
+∞∑︁
𝑗=1

((𝒜𝜈 − 𝜆𝐸)−1𝑢𝑗, 𝑢𝑗) =

=
+∞∑︁
𝑗=1

(𝑋𝜈(𝜆)𝑢𝑗, 𝑢𝑗) +
+∞∑︁
𝑗=1

(𝑋𝜈(𝜆)Γ𝜈(𝜆)𝑢𝑗, 𝑢𝑗), 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎 = 𝜎(𝑆), (4.1)
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where 𝑆 ⊂ Φ∖𝑅+ is an arbitrary closed angle with the vertex at the origin. Taking into
consideration

(𝑃𝑙 + |𝜆|𝐸)±
1
2𝑢𝑗 = (𝜔𝑗 + |𝜆|)±

1
2𝑢𝑗,

we obtain
+∞∑︁
𝑗=1

(𝑋𝜈(𝜆)Γ𝜈(𝜆)𝑢𝑗, 𝑢𝑗) =
+∞∑︁
𝑗=1

(𝑋𝜈(𝜆)Γ𝜈(𝜆)(𝑃𝑙 + |𝜆|𝐸)
1
2𝑢𝑗, (𝑃𝑙 + |𝜆|𝐸)−

1
2𝑢𝑗)

=
+∞∑︁
𝑗=1

((𝑃𝑙 + |𝜆|𝐸)−
1
2𝑋𝜈(𝜆)𝒯|𝜆|𝑇|𝜆|Γ𝜈(𝜆)𝒯|𝜆|𝑢𝑗, 𝑢𝑗).

(4.2)

According to (4.6) (see [1, Sec. 4]), as 𝜈 = |𝜆|, 𝑢 ∈ ℋ𝑙 we have

|𝒯|𝜆|Γ𝜈(𝜆)𝑇|𝜆|𝑢| 6𝑀 |Γ𝜈(𝜆)𝑇|𝜆|𝑢|−|𝜆| 6𝑀1|𝜆|−𝜀′ |𝑇|𝜆|𝑢|−|𝜆| = 𝑀2|𝜆|−𝜀′|𝑢|.

Hence, the operator 𝒯|𝜆|Γ𝜈(𝜆)𝑇|𝜆| induces a bounded operator in ℋ𝑙 with the norm not exceeding

𝑀2|𝜆|−𝜀′ . In view of (4.1), (4.2), we thus find

𝑍(𝜆)
𝑑𝑒𝑓
= |𝑠𝑝(𝐴− 𝜆𝐸)−1 −

+∞∑︁
𝑗=1

(𝑋𝜈(𝜆)𝑢𝑗, 𝑢𝑗)| 6𝑀 |𝜆|−𝜀′‖(𝑃𝑙 + |𝜆|𝐸)−
1
2𝑋𝜈(𝜆)𝒯|𝜆|‖1.

Although here 𝒯|𝜆| is an unbounded operator in ℋ𝑙, the operator 𝑋𝜈(𝜆)𝒯|𝜆| induces a bounded
operator in ℋ𝑙. Applying (2.3), we find

𝑍(𝜆) 6𝑀 |𝜆|−𝜀′|(𝑃𝑙 + |𝜆|𝐸)−1|1 6𝑀1|𝜆|
1

2𝑚
−1−𝜀′ .

We then have (see [1, Sec. 4, Eq. (4.3)])

+∞∑︁
𝑗=1

(𝑋𝜈(𝜆)𝑢𝑗, 𝑢𝑗) =
+∞∑︁
𝑗=1

(𝑈(ℬ𝜈 − 𝜆𝐸)−1𝑈−1𝑢𝑗, 𝑢𝑗)

=
+∞∑︁
𝑗=1

((ℬ𝜈 − 𝜆𝐸)−1𝑢𝑗, 𝑢𝑗) =
𝑙∑︁

𝑘=1

𝑠𝑝( ̃︀𝑄𝑘 − 𝜆𝐸)−1.

Here the operators ̃︀𝑄𝑘, 𝑘 = 1, 𝑙, are defined in space ℋ as follows

𝐷( ̃︀𝑄𝑘) = {𝑣 ∈ ℋ+ : 𝑄𝜈,𝑘𝑣 ∈ ℋ}, ∀𝜈 ≥ 1, ̃︀𝑄𝑘𝑣 = 𝑄𝜈,𝑘𝑣, ∀𝑣 ∈ 𝐷( ̃︀𝑄𝑘).

Operators 𝑄𝜈,𝑘 were introduced in [1, Sec. 4, Subsec. 1]. We remind that

(ℬ𝜈 − 𝜆𝐸)−1 = 𝑑𝑖𝑎𝑔{(𝑄𝜈,1 − 𝜆𝐸)−1, . . . , (𝑄𝜈, 𝑙 − 𝜆𝐸)−1}.

The above introduced operators ̃︀𝑄1, . . . , ̃︀𝑄𝑙 are independent of number 𝜈 ≥ 1.

We employ Theorem 1.3 for the situation when 𝑙 = 1, 𝐴 = ̃︀𝑄𝑗, 𝑗 = 1, 𝑙. Then we obtain

that in angle Φ operator ̃︀𝑄𝑗, 𝑗 = 𝑛+ 1, 𝑙 has a finite number of the eigenvalues. Since 𝜇𝑗(𝑡) ∈
𝑅+(𝑗 = 1, 𝑛), then ̃︀𝑄𝑗 = ̃︀𝑄*

𝑗 ≥ 0, 𝑗 = 1, 𝑛. Thus, we have

sp (𝐴− 𝜆𝐸)−1 =
+∞∑︁
𝑖=1

𝑙∑︁
𝑘=1

(𝜆𝑖,𝑘 − 𝜆)−1 +𝑂(|𝜆|
1

2𝑚
−1−𝜀′), 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎(𝑆), (4.3)

where 𝜀′ > 0, 𝑆 ⊂ Φ∖𝑅+ is a closed angle with the vertex at the origin and 𝜆1,𝑘, 𝜆2,𝑘, . . . are

the eigenvalues of operator ̃︀𝑄𝑘 taken in the order of ascending moduli.
Let 𝜓 ∈ (0, 𝜙),

ℒ = {𝑧 ∈ C : arg 𝑧 = ±𝜓} ∪ {0}
is a contour enveloping 𝑅+ from the left. We choose numbers 𝑐, 𝛿 > 0 to satisfy the conditions
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(𝑖) |(arg 𝜆′𝑗) ± 𝜙| ≥ 𝛿, |(arg 𝜆𝑗,𝑘) ± 𝜙| ≥ 𝛿, if respectively |𝜆′𝑗| ≥ 𝑐 or |𝜆𝑗,𝑘| ≥ 𝑐, 𝑗 = 1, 2, . . .,

𝑘 = 1, 𝑙.
(𝑖𝑖) 𝜆𝑗,𝑘 ̸∈ Φ, (𝑘 = 𝑛+ 1, 𝑙), if |𝜆𝑗,𝑘| ≥ 𝑐.
Here 𝜆′1, 𝜆

′
2, . . . are the eigenvalues of operator 𝐴 taken in the order of ascending moduli.

Then in the case |𝜆′𝑗| ≥ 𝑐, |𝜆𝑗,𝑘| ≥ 𝑐, for 𝜆 ∈ ℒ we have |𝜆 − 𝜆′𝑗|−1 6 𝑀 |𝜆′𝑗|−𝜏 |𝜆|𝜏−1,

|𝜆− 𝜆𝑗,𝑘|−1 6𝑀 |𝜆𝑗,𝑘|−𝜏 |𝜆|𝜏−1, where 𝜏 ∈
(︀

1
2𝑚
, 1
)︀
. Hence,∑︁

𝑞6|𝜆′
𝑗 |

|𝜆′𝑗 − 𝜆|−1 6𝑀1𝑟(𝑞)|𝜆|𝜏−1, (4.4)

𝑟(𝑞)
𝑑𝑒𝑓
=
∑︁
𝑞6|𝜆′

𝑗 |

|𝜆′𝑗|−𝜏 → 0, 𝑞 → +∞. (4.5)

Here we have employed the statement of Theorem 1.2 on the estimate for the spectrum of
operator 𝐴.

We then have

1

2𝜋𝑖

∫︁
ℒ

⎛⎝ ∑︁
𝑎<|𝜆′

𝑗 |6𝑞

(𝑡+ 𝜆)−1(𝜆− 𝜆′𝑗)
−1

⎞⎠ 𝑑𝜆 =
∑︁

𝑎<|𝜆′
𝑗 |6𝑞

′
(𝑡+ 𝜆′𝑗)

−1, (4.6)

where the symbol
∑︀′ denotes the summation over only 𝑗 satisfying |arg 𝜆′𝑗| < 𝜓.

Taking into consideration that (see (4.4), (4.5))

lim
𝑞→+∞

𝑟(𝑞)

∫︁
ℒ

|𝜆|𝜏−1|𝑡+ 𝜆|−1𝑑𝜆 = 0

and passing in (4.6) to the limit as 𝑞 → +∞, we find

1

2𝜋𝑖

∫︁
ℒ

(𝑡+ 𝜆)−1

⎛⎝∑︁
𝑎<|𝜆′

𝑗 |

(𝜆− 𝜆′𝑗)
−1

⎞⎠ 𝑑𝜆 =
∑︁
𝑎<|𝜆′

𝑗 |

′
(𝑡+ 𝜆′𝑗)

−1. (4.7)

In the same way we get

1

2𝜋𝑖

∫︁
ℒ

(𝑡+ 𝜆)−1

⎛⎝ ∑︁
𝑎<|𝜆𝑗,𝑘|

(𝜆− 𝜆𝑗,𝑘)−1

⎞⎠ 𝑑𝜆 =
∑︁

𝑎<|𝜆𝑗,𝑘|

′′
(𝑡+ 𝜆𝑗,𝑘)−1, 𝑘 = 1, 𝑙, (4.8)

where the symbol
∑︀′′ indicates the summation over such indices 𝑗 satisfying |arg 𝜆𝑗,𝑘| 6 𝜓.

Operators ̃︀𝑄𝑛+1, . . . , ̃︀𝑄𝑙 have a finite number of eigenvalues in angle Φ. In view of this fact
and by (4.3), (4.7), (4.8) we conclude that

+∞∑︁
𝑗=1

(𝑡+ 𝜆𝑗)
−1 =

+∞∑︁
𝑗=1

𝑛∑︁
𝑘=0

(𝑡+ 𝜆𝑗,𝑘)−1 +𝑂(𝑡
1

2𝑚
−1−𝜀′), 𝑡→ +∞.

Since arg 𝜆𝑗 → 0 (𝑗 → +∞), then 𝜆𝑗|𝜆𝑗|−1 → 1, 𝑗 → +∞. Hence, for 𝑞 = 1, 2, . . . we have

+∞∑︁
𝑗=𝑞

|(𝑡+ 𝜆𝑗)
−1 − (𝑡+ |𝜆𝑗|)−1| 6 2

+∞∑︁
𝑗=𝑞

{︂
|𝜆𝑗 − |𝜆𝑗‖
(𝑡+ |𝜆𝑗|)2

}︂

6 𝑐𝑞

+∞∑︁
𝑗=𝑞

|𝜆𝑗|
(𝑡+ |𝜆𝑗|)2

6 𝑐′𝑞

+∞∑︁
𝑗=𝑞

(𝑡+ |𝜆𝑗|)−1,
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where 𝑐𝑞, 𝑐
′
𝑞 → 0, 𝑞 → +∞. It easily implies that

+∞∑︁
𝑗=1

(𝑡+ 𝜆𝑗)
−1 ∼

+∞∑︁
𝑗=1

(𝑡+ |𝜆𝑗|)−1 𝑡→ +∞.

For the eigenvalues of operators 𝑄𝑘, 𝑘 = 1, 𝑛, the following estimate

+∞∑︁
𝑗=1

(𝑡+ 𝜆𝑗,𝑘)−1 ∼
+∞∫︁
0

𝑑𝑁𝑗(𝜏)

𝜏 + 𝑡
, 𝑡→ +∞,

is known, where

𝑁𝑗(𝜏) =
1

𝜋
𝜏

1
2𝑚

+∞∫︁
0

𝜌−
𝜃
𝑚 (𝑡)𝜇

− 1
2𝑚

𝑗 (𝑡)𝑑𝑡.

Thus, we get
+∞∫︁
0

𝑑𝑁(𝜏)

𝜏 + 𝑡
∼

+∞∫︁
0

𝑑 ̃︀𝑁(𝜏)

𝜏 + 𝑡
, 𝑡→ +∞,

where ̃︀𝑁(𝜏) =
𝑛∑︁

𝑗=1

𝑁𝑗(𝜏).

Applying an appropriate tauberian theorem, we obtain the formula

𝑁(𝑡) ∼
𝑛∑︁

𝑗=1

𝑁𝑗(𝑡), 𝑡→ +∞,

that proves Theorem 4.1.
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