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ON BERNSTEIN INEQUALITY FOR VECTORS
IN BANACH SPACES

E.E. DIKAREV

Abstract. We obtain the Bernstein inequality for the vectors in the Banach space of
the isometric representation of a one-parametric group of the operators. We introduce the
notion of an entire at infinity function. For such functions and for the norms of commutation
operators we obtain the Bernstein inequality.
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INTRODUCTION

Consider the Banach space Car(R) of continuous 27-periodic complex-valued functions defined on
R as well as trigonometric polynomials = € Ca,(RR) of the form

n
x(t) = Z apef, la_pn| + |an| > 0. (1)

k=—n

S.N. Bernstein obtained the following inequality

max |2(t)] <n- max |z(t)].
te[0,27] t€[0,2m]
It was generalized in various directions. For instance, Bernstein inequality was obtained for an entire
function of exponential type o bounded on the real axis (see [1]):
sup |2/(t)| < o - sup [z (t)].
teR teR

Let 2 be a complex Banach space. By End 2" we denote the Banach algebra of linear bounded
operators acting in 2.

We shall call a closed linear operator A: D(A) C 2 — 2 correct (see [2]) (or self-adjoint [3, []),
if the operator iA is the generator (generating operator) of a strongly continuous group of isometric
operators T: R — End 2.

In particular, in the classical Bernstein theorem operator A is defined as A = 1_1% = —i%, it acts
in the space of uniformly continuous bounded complex-valued functions Cp,(RR) and is the generator
of the group of shifts. We observe that the spectrum of the operator obeys d(A) C R (see [3]). In
paper by A.G. Baskakov [5] it was proven for a bounded correct operator in a Banach space that
I|A|| = r(A), where r(A) is the spectral radius of operator A.

In the present Bernstein inequality is obtained for the vectors in a Banach space, in which an
isometric group of operators with the generator iA acts. The generator can be an unbounded operator.
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We obtain applications of Bernstein inequality for the functions of exponential type at infinity and
the estimates for the commutation operator. For such operator we obtain the estimate

[Azl| < r(z) - [lef,  zeZ, (2)

where 7(z) is the spectral radius of the vector  which will be defined below.
In particular for x € Car(R) being a trigonometrical polynomial we have r(z) =n. Thus,
estimate is a direct generalization of Bernstein inequality.

1. PROPERTIES OF BEURLING SPECTRUM

Let LY(R) be the Banach algebra of all summable on R complex-valued functions with the convo-
lution of functions as the multiplication and with the norm

Tl =/rf<t>|dt, feL\(R),
R

and let T: R — End 2", where 2" is a Banach space, be a strongly isometric representation. Then
Z is equipped by the structure of L!(RR)-module by the formula

fo = /f(t)T(—t)xdt, FELYR), 22 (3)
R

The module structure on Cy,(R) is defined by formula (3)) by means of the representation (T(t)¢)(s) =
o(s+1t), ¢ € Ch(R), t,s € R, i.e., by the usual convolution of functions. In view of formula , a
Banach L!(RR)-module 2" will be sometimes denoted as (2", T).

Definition 1 (See [3, 4, 5]). Beurling spectrum of a vector x in the Banach L'(R)-module 2
is the set A(x) in R being the complement in R of set {\g € R |there exists a function fy €
LY(R) such that fo(Xo) # 0 and fox = 0}.

Example 1. The Beurling spectrum of a trigonometrical polynomial 1s the set of k satisfying
(697 7& 0.

Definition 2. Let M be an arbitrary subset in Banach module 2 . Beurling spectrum of set
M is the set A(M) in R being the complement in R of the set {\g € R | there exists fy €
LY(R) such that fo(Mo) # 0 and foxr =0 for each x € M},

Lemma 1. The following properties of Beurling spectrum for vectors in Banach L'(R)-module
(Z,T) hold true:

1. A(x) is a closed subspace in R and A(z) = @ < v =0;

2. A(fx) C (Supp]?) NA(z), f € LY(R),z € 2. In particular, if x has a compact Beurling spectrum,
then the vector fx has a compact Beurling spectrum as well;

3. fe=0if f=0 on set A(z) and (supp ]?) NA(z) is at most countable;

4. fx =x if set A(x) is compact and f =1 is the vicinity of set A(x).
Remark 1 (See [3]). If fx = 0 for each function f € L'(R), it implies 2 = 0.

Definition 3. A linear subspace E of LY(R)-module (2, T) is called submodule, if it is invariant
w.r.t. all the operators T(t), t € R, and T(f), f € LY(R).

Let A be a closed set in R. The submodule
Z(A)={ze Z | A=) C A}

is called spectral submodule.

Lemma 2. Let 2 be a Banach L'(R)-module, A be a closed set in R. Then 2 (A) is a closed
submodule and A(2 (A)) C A.



ON BERNSTEIN INEQUALITY FOR VECTORS IN BANACH SPACES 7

Lemma 3. Let f € L'(R) be so that suppf is a compact set and [—a,a], a > 0 is the smallest
segment comprising supp f. Then f is infinitely differentiable. Moreover, it can be continued to an
entire function f: C — C of exponential type < a, i.e., the estimate

‘f(z)| < %max‘f()\)} etz e
holds true.

Lemma 4. Let f = 1 in a vicinity of the set A(x), where z is an element of a Banach L(R)-module
Z . Then the identities

T(t)x =T(t)(fz) = frw, te€R, where fi(s)= (S(t)f)(s)=f(t+s), s€R, zeZ,
hold true.

Proof. The first identity is implied by Property 4 of Lemma [I] Then

T(t)(fx) —T(t)/f(T)T(—T)a:dT—/f(T)T(t)T(—T)xdT
R

R
_ / FT(E = Pz dr = / (S()f) ()T (~s)eds = fua.

R R
0

In what follows we make use of the powers A™: D(A"™) C 2 — Z of operator A which we denote
according book [6].

Definition 4. Forn =0,1,... the operator A™ is defined by the induction by the relations A® = 1T,
Al = A and

D(A") = {:U S %’ reD(A™ ), Az e D(A)},
A"z = A(A"Lz), z € D(AM).

Lemma 5. Let a vector x in L'(R)-module (2, T) has a compact Beurling spectrum A(z) and a

function f € LY(R) is such that ]?()\) = X is a neighborhood U of set A(x). Then x € D(A™) for each
n>1and fr = Ax.

Proof. We choose a function ¢ € L'(R) such that @ = 1 in a neighborhood V of set A(z) and supp @ is
a compact set. By Lemmall] oz = x. Moreover, we can choose ¢ to satisfy the following properties: ¢
is infinitely differentiable, ¢’ € L!(RR), and g;’()\) =iA@(N). Consider the function ¢ = —ip, ¢ € L}(R).
Therefore, @Z’()\) = )\c;’()\). Moreover, f —1 € LY(R), and f — 4" = 0 in the neighborhood UNV of
set A(z). Therefore, by Property 2 of Lemma (1} (f — ')z = 0 that implies fx = ¢’z. Thus, it is
sufficient to prove the lemma for function ’.

Since function ¢ satisfies the hypothesis of Lemma [4] the identities

T(t)x — T(t — — —
i L@z —z . T@)(pr) —pz o —pr . (o=
t—0 t t—0 t t—0 t t—0 t
hold true. Thus, € D(A). Moreover, the identity ¢’z = iAz yields 'z = Az, or fx = Ax.
The obtained representation Ax = fx and Property 2 of Lemma [I] imply that the vector fx has a

compact Beurling spectrum and thus by the proven above fr = Ax € D(A), at that, A%z = fAz. It
follows from the definition of A™ that x € D(A™) for each n > 1. O

=yr =iz =iAx

Theorem 1. If © € 2 has a compact Beurling spectrum, then x € D(A™) for each m € N,
A(A™z) C A(z) and the estimates

A"z < r(z)™ - ||z

hold true for each m > 1.
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Proof. The fact z € D(A™) follows from Lemma [f] Let us show that A(A™x ) C A(x). Assume that
Mo € A(z). Then by the definition there exists a function fy € L*(R) such that fo()\o) # 0 and fox = 0.
Then fo(Ax) = Afpxr = 0 and it implies

A(Az) C Alz),  A(A"z) C A(z). (4)

Consider the vector y of the form

o T (’?@f) T

. 5
(7/2 — k) ©

y=r(z)

k=—o00

Let a function ¢ € L(R) be so that 12;()\) = )\ in a vicinity of set A(z). Then by Lemmathe identity
Ax = 1)z holds true. By Lemma |4} for each function f € L!(RR) we obtain the identities

0 fk‘ﬂ'—ﬂ'

fly—Az) = fly —¢z) = r(z) - < > M)w—(w*f)x—gx—(w*f)w—m,

k=—o00

where the Fourier transform of g € L!(R) reads as

Zf er@

k:——oo /2 - kﬂ)

and o = g — Y * f. Since x has a compact Beurling spectrum, we have r(x) < oo. The series in
the right hand side of (b)) converges absolutely. Function ¢ satisfies the hypothesis of Property 3 in
Lemma Thus, f(y Ax) = 0 for each function f € L*(R), and this is why y — Az = 0 by Remarkl
The estimates

o T km—m T 00
|Az| = r()-|| D M <r(z) Y %'HxIIZT(@'IIxH

oo (/2 — k7r)2 oo (/2 — k)
hold true. Inclusion and the proven above yield
HA”Q;H = [|A"~ IA:EH ) ||| n = 2.

2. BERNSTEIN INEQUALITY FOR ENTIRE AT INFINITY FUNCTION
By Cpu(R) we denote a closed subspace of uniformly continuous bounded complex-valued functions

in Cp(R) and the symbol Co(R) stands for the closed subspace {z € Cpu(R) ‘ hm ’x ’ =0}.

Definition 5. We call a function x € Cpy(R) entire at infinity of exponential type o > 0, if for
each € > 0 there exists xg € Cpy(R) which can be continued to an entire function xy: C —> C of
exponential type o + € such that z(t) = xo(t) + yo(t), where yo € Co(R).

Lemma 6. Each function f € LY(R) obeying suppfe [—0,0] can be continued to an entire on C
function of exponential type a. Moreover, for each z € C, the function f,(s) = f(s+z), s € R,belongs
to algebra LY(R) and the function F: C — LY(R), F(z) = f, is entire of exponential type o.

Proof. Let us show that f can be continued to a function of exponential type o. We write function f

as
:1/ﬂmmwzl/ﬂmww
27 27 ’
R -

f(z)= % / F) dn, z € C.

and let
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The estimate .
|f<z)‘ %20— Aerr[lag(g ‘f ‘ealz‘

is valid. Thus, we have obtained the continuation of function f to an entire on C function of exponential

type o. Since (%)(s) df%zz 8), z € C, s € R, function F is entire of exponential type o. O

Lemma 7. Function x € Cpy(R) can be continued to a function of exponential type o if and only
if A(z) C [—0,0].

Proof. Necessity. Suppose that there exists \g > o + § for some § > 0. We choose fy € LY(R) so
that fo(Ao) # 0, and let zg = fo * x, then A(zg) C [Ao — 6, Ao + 0]. Consider the function yo(t) =
(fo * z)(t)e™ o A(yg) C [~6,8]. Thus, we have constructed the function (fo * z)(2) = yo(2)e*0* of
exponential type > o + 4.

Sufficiency. Let A(z) C [~0,0]. We choose f € LY(R) such that f = 1 in the vicinity of the
spectrum and suppr [0 —e€,0 + €] for some € > 0. Then f*x =z, f is the entire function with
the properties in Lemma [6l By the same symbol z we denote the continuation of x on C. We let

ffz—s s)ds and have

Z)</|f(z—8)|$(8)d8< IfeAl - llzll, z2€C, seR.
Since || f»]|, < Const - e("+‘5)| ., 2 € €, s € R, then z is a function of exponential type < ¢ + ¢. Since
€ > 0 is arbitrary, we obtain that x is a function of exponential type o. O
Lemma 8. A function x € Cpy(R) is an entire at infinity function of exponentml type o > 0 if and

only if (x — fxx) € Co(R) for each summable function f with the property f =1 on[-0,0].

Definition 6. A function x € Cpy(R) is called slowly varying at infinity, if for each a € R the
inclusion S(a)r —x € Co(R) is valid, or, in other words, for each a € R the identity

lim ‘:nt—l—a —x(t ‘—0

[t]—
holds true.

The set of all slowly varying at infinity functions in Cy,(RR) will be indicated by Cgq(R).

We note that each slowly varying at infinity function is equivalent to an entire at infinity function
of exponential type 0 (see [7]).

Consider the strongly continuous group of shifts S: R — End Cp,(R) acting by the rule (S(t)z)(s) =

z(s+1t), s,t € R. By S: R — End Cpy(R)/Co we denote the representation defined by the rule
S(t)x = S(t)z. The module structure is defined by the formula

fx—/f Hzdt,  feLY(R), T € Chu(R).

Let x € Co(R) and y € Cbu(lR) is an element of the class y. We introduce the norm of the class of
y by the rule

vl = mf +x
o= _intlo+al,
Theorem 2. A function x is entire at infinity of eacponentml type of order o > 0, if A(T) C [—0,0],

or, what is equivalent, if in the class T there exists a differentiable function g satzsfymg the estimate
bl < o

The proof follows from the above results and Theorem
Here we employ the terminology and the results of papers [8, 9, [10]. Let 27, 22 be Banach spaces
and let 1Ay, iAs, Ay € End 2%, k = 1,2, are the generators of isometric groups Ti(t) and Ts(t),
respectively,
Ti: R — End 27, Ty: R — End 25.
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The Banach space Hom (27, 22) is equipped by the structure of Banach module by the representation
T: R — EndHom (27, 22) of the form T(t)X = To(t)XTi(—t), t € R, X € Hom (27, 232). The
module structure is defined by means of the formula

fX:c_/f xdT—/f (To(t) X Ty (—t))z dr.

We note that the representation 7" is continuous in the strong operator topology.

We denote by the symbol ad 4, 4, the operator ada, 4,X = A2 X — X A;. In the case A} = Ay = A,
ada, 4,X =adsX = AX — X A is the commutator. Operator X belongs to D(ad 4, 4,), if XD(A;) C
D(As), and the operator A3 X — X A; has a bounded extension on 27. In what follows we shall denote
this extension by the same symbol A2 X — X A;. We note that the spectrum of the operator ada, a,
is the set

U(adAl,Ag) = {/\2 — A A € J(Al),)\g S U(Ag)},
where (A1), 0(Asg) are respectively the spectra of the operators A, As.

Lemma 9. If X € Hom (21, 22) has a compact Beurling spectrum, then X € D(ada, a,), i.e., the
operator Ao X — —XA; € Hom (21, Z3) is correct.

Theorem 3. If the Beurling spectrum A(X,T) of an operator X € Hom (27, 22) is a compact set,
then the inequality

|A2X — XAy < ) -1 X
holds true.

The proof follows from Theorem [I] and the above results.
Let 27, %5 be separable infinite-dimensional space with unconditional bases (e;g) and (e’,;), respec-
tively. The matrix (zy) of the operator X € Hom (27, £2) is determined by the identities

oo
"
= g TynnCo,-
m=1

Suppose that strongly continuous isometric representations 7y : R — End 2%, k = 1, 2, introduced by
the identities

[e.e] o
T (t)x = Z el Th(t)x = Z e B el
n=1 n=1

are correct. Consider the bounded representation
T: R — End Hom(27, 23), T(t)X = To(t)XT1(—t),
where z € 27, f € LY(R), t € R, X € Hom(.27, 25), and the operator of the form

(fX)x:/f(T)Tg(T)XTl(—T)xdT.

As x = e}, we obtain the identities

/f VTo(T) X Ty (—7)el, dT:/f(T)TQ(T>Xe_inT€;LdT

/f VT (T _””Xe dT—/f VT (T _I"Tmene" dr

R

= Z /f el(m— ")Txmne” dr = Z f(n—m)zpner.

mlR m=1
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Thus, the matrix of operator X reads as (f(n - m)xmn) Hence, fX = 0 if and only if f(n —m) =0,
m,n € N for z,,, # 0, i.e., the Beurling spectrum of operator X reads as

A(X) = {m,n € N | thereexists f € LY(R) such that f(n —m) = 0 and Ty, # 0}.

10.
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