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ON BERNSTEIN INEQUALITY FOR VECTORS

IN BANACH SPACES

E.E. DIKAREV

Abstract. We obtain the Bernstein inequality for the vectors in the Banach space of
the isometric representation of a one-parametric group of the operators. We introduce the
notion of an entire at infinity function. For such functions and for the norms of commutation
operators we obtain the Bernstein inequality.
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Introduction

Consider the Banach space C2𝜋(R) of continuous 2𝜋-periodic complex-valued functions defined on
R as well as trigonometric polynomials 𝑥 ∈ C2𝜋(R) of the form

𝑥(𝑡) =

𝑛∑︁
𝑘=−𝑛

𝛼𝑘e
i𝑘𝑡, |𝛼−𝑛|+ |𝛼𝑛| > 0. (1)

S.N. Bernstein obtained the following inequality

max
𝑡∈[0,2𝜋]

⃒⃒
𝑥′(𝑡)

⃒⃒
6 𝑛 · max

𝑡∈[0,2𝜋]
|𝑥(𝑡)|.

It was generalized in various directions. For instance, Bernstein inequality was obtained for an entire
function of exponential type 𝜎 bounded on the real axis (see [1]):

sup
𝑡∈R

⃒⃒
𝑥′(𝑡)

⃒⃒
6 𝜎 · sup

𝑡∈R
|𝑥(𝑡)|.

Let X be a complex Banach space. By EndX we denote the Banach algebra of linear bounded
operators acting in X .

We shall call a closed linear operator 𝐴 : D(𝐴) ⊂ X → X correct (see [2]) (or self-adjoint [3, 4]),
if the operator i𝐴 is the generator (generating operator) of a strongly continuous group of isometric
operators 𝑇 : R→ EndX .

In particular, in the classical Bernstein theorem operator 𝐴 is defined as 𝐴 = i−1 d
d𝑡 = −i dd𝑡 , it acts

in the space of uniformly continuous bounded complex-valued functions Cbu(R) and is the generator
of the group of shifts. We observe that the spectrum of the operator obeys 𝜎(𝐴) ⊂ R (see [3]). In
paper by A.G. Baskakov [5] it was proven for a bounded correct operator in a Banach space that
‖𝐴‖ = 𝑟(𝐴), where 𝑟(𝐴) is the spectral radius of operator 𝐴.

In the present Bernstein inequality is obtained for the vectors in a Banach space, in which an
isometric group of operators with the generator i𝐴 acts. The generator can be an unbounded operator.
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We obtain applications of Bernstein inequality for the functions of exponential type at infinity and
the estimates for the commutation operator. For such operator we obtain the estimate

‖𝐴𝑥‖ 6 𝑟(𝑥) · ‖𝑥‖, 𝑥 ∈ X , (2)

where 𝑟(𝑥) is the spectral radius of the vector 𝑥 which will be defined below.
In particular for 𝑥 ∈ C2𝜋(R) being a trigonometrical polynomial (1) we have 𝑟(𝑥) = 𝑛. Thus,

estimate (2) is a direct generalization of Bernstein inequality.

1. Properties of Beurling spectrum

Let L1(R) be the Banach algebra of all summable on R complex-valued functions with the convo-
lution of functions as the multiplication and with the norm

‖𝑓‖1 =

∫︁
R

|𝑓(𝑡)|d𝑡, 𝑓 ∈ L1(R),

and let 𝑇 : R → EndX , where X is a Banach space, be a strongly isometric representation. Then
X is equipped by the structure of L1(R)-module by the formula

𝑓𝑥 =

∫︁
R

𝑓(𝑡)𝑇 (−𝑡)𝑥 d𝑡, 𝑓 ∈ L1(R), 𝑥 ∈ X . (3)

The module structure on Cb(R) is defined by formula (3) by means of the representation
(︀
𝑇 (𝑡)𝜙

)︀
(𝑠) =

𝜙(𝑠 + 𝑡), 𝜙 ∈ Cb(R), 𝑡, 𝑠 ∈ R, i.e., by the usual convolution of functions. In view of formula (3), a
Banach L1(R)-module X will be sometimes denoted as (X , 𝑇 ).

Definition 1 (See [3, 4, 5]). Beurling spectrum of a vector 𝑥 in the Banach L1(R)-module X
is the set Λ(𝑥) in R being the complement in R of set {𝜆0 ∈ R | there exists a function 𝑓0 ∈
L1(R) such that ̂︀𝑓0(𝜆0) ̸= 0 and 𝑓0𝑥 = 0}.

Example 1. The Beurling spectrum of a trigonometrical polynomial (1) is the set of 𝑘 satisfying
𝛼𝑘 ̸= 0.

Definition 2. Let 𝑀 be an arbitrary subset in Banach module X . Beurling spectrum of set
𝑀 is the set Λ(𝑀) in R being the complement in R of the set {𝜆0 ∈ R | there exists 𝑓0 ∈
L1(R) such that ̂︀𝑓0(𝜆0) ̸= 0 and 𝑓0𝑥 = 0 for each 𝑥 ∈𝑀}.

Lemma 1. The following properties of Beurling spectrum for vectors in Banach L1(R)-module
(X , 𝑇 ) hold true:

1. Λ(𝑥) is a closed subspace in R and Λ(𝑥) = ∅ ⇔ 𝑥 = 0;

2. Λ(𝑓𝑥) ⊂
(︀
supp ̂︀𝑓 )︀∩Λ(𝑥), 𝑓 ∈ L1(R), 𝑥 ∈ X . In particular, if 𝑥 has a compact Beurling spectrum,

then the vector 𝑓𝑥 has a compact Beurling spectrum as well;

3. 𝑓𝑥 = 0 if ̂︀𝑓 = 0 on set Λ(𝑥) and
(︀
supp ̂︀𝑓 )︀ ∩ Λ(𝑥) is at most countable;

4. 𝑓𝑥 = 𝑥 if set Λ(𝑥) is compact and ̂︀𝑓 ≡ 1 is the vicinity of set Λ(𝑥).

Remark 1 (See [3]). If 𝑓𝑥 = 0 for each function 𝑓 ∈ L1(R), it implies 𝑥 = 0.

Definition 3. A linear subspace 𝐸 of L1(R)-module (X , 𝑇 ) is called submodule, if it is invariant
w.r.t. all the operators 𝑇 (𝑡), 𝑡 ∈ R, and 𝑇 (𝑓), 𝑓 ∈ L1(R).

Let Δ be a closed set in R. The submodule

X (Δ) =
{︀
𝑥 ∈ X | Λ(𝑥) ⊂ Δ

}︀
is called spectral submodule.

Lemma 2. Let X be a Banach L1(R)-module, Δ be a closed set in R. Then X (Δ) is a closed
submodule and Λ

(︀
X (Δ)

)︀
⊂ Δ.
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Lemma 3. Let 𝑓 ∈ L1(R) be so that supp ̂︀𝑓 is a compact set and [−𝑎, 𝑎], 𝑎 > 0 is the smallest

segment comprising supp ̂︀𝑓 . Then 𝑓 is infinitely differentiable. Moreover, it can be continued to an

entire function ̃︀𝑓 : C→ C of exponential type 6 𝑎, i.e., the estimate⃒⃒ ̃︀𝑓(𝑧)⃒⃒ 6 1

2𝜋
max

⃒⃒ ̂︀𝑓(𝜆)⃒⃒ · e𝑎|𝑧|, 𝑧 ∈ C

holds true.

Lemma 4. Let ̂︀𝑓 ≡ 1 in a vicinity of the set Λ(𝑥), where 𝑥 is an element of a Banach L1(R)-module
X . Then the identities

𝑇 (𝑡)𝑥 = 𝑇 (𝑡)(𝑓𝑥) = 𝑓𝑡𝑥, 𝑡 ∈ R, where 𝑓𝑡(𝑠) =
(︀
𝑆(𝑡)𝑓

)︀
(𝑠) = 𝑓(𝑡+ 𝑠), 𝑠 ∈ R, 𝑥 ∈ X ,

hold true.

Proof. The first identity is implied by Property 4 of Lemma 1. Then

𝑇 (𝑡)(𝑓𝑥) =𝑇 (𝑡)

∫︁
R

𝑓(𝜏)𝑇 (−𝜏)𝑥 d𝜏 =

∫︁
R

𝑓(𝜏)𝑇 (𝑡)𝑇 (−𝜏)𝑥 d𝜏

=

∫︁
R

𝑓(𝜏)𝑇 (𝑡− 𝜏)𝑥 d𝜏 =

∫︁
R

(︀
𝑆(𝑡)𝑓

)︀
(𝑠)𝑇 (−𝑠)𝑥 d𝑠 = 𝑓𝑡𝑥.

In what follows we make use of the powers 𝐴𝑛 : D(𝐴𝑛) ⊂ X → X of operator 𝐴 which we denote
according book [6].

Definition 4. For 𝑛 = 0, 1, . . . the operator 𝐴𝑛 is defined by the induction by the relations 𝐴0 = 𝐼,
𝐴1 = 𝐴 and

D(𝐴𝑛) =
{︀
𝑥 ∈ X

⃒⃒
𝑥 ∈ D(𝐴𝑛−1), 𝐴𝑛−1𝑥 ∈ D(𝐴)

}︀
,

𝐴𝑛𝑥 = 𝐴(𝐴𝑛−1𝑥), 𝑥 ∈ D(𝐴𝑛).

Lemma 5. Let a vector 𝑥 in L1(R)-module (X , 𝑇 ) has a compact Beurling spectrum Λ(𝑥) and a

function 𝑓 ∈ L1(R) is such that ̂︀𝑓(𝜆) = 𝜆 is a neighborhood U of set Λ(𝑥). Then 𝑥 ∈ D(𝐴𝑛) for each
𝑛 > 1 and 𝑓𝑥 = 𝐴𝑥.

Proof. We choose a function 𝜙 ∈ L1(R) such that ̂︀𝜙 ≡ 1 in a neighborhood V of set Λ(𝑥) and supp ̂︀𝜙 is
a compact set. By Lemma 1, 𝜙𝑥 = 𝑥. Moreover, we can choose 𝜙 to satisfy the following properties: 𝜙

is infinitely differentiable, 𝜙′ ∈ L1(R), and ̂︀𝜙′(𝜆) = i𝜆̂︀𝜙(𝜆). Consider the function 𝜓 = −i𝜙, 𝜓 ∈ L1(R).

Therefore, ̂︀𝜓′(𝜆) = 𝜆 ̂︀𝜙′(𝜆). Moreover, 𝑓 − 𝜓 ∈ L1(R), and ̂︀𝑓 − ̂︀𝜓′ = 0 in the neighborhood U ∩ V of
set Λ(𝑥). Therefore, by Property 2 of Lemma 1, (𝑓 − 𝜓′)𝑥 = 0 that implies 𝑓𝑥 = 𝜓′𝑥. Thus, it is
sufficient to prove the lemma for function 𝜓′.

Since function 𝜙 satisfies the hypothesis of Lemma 4, the identities

lim
𝑡→0

𝑇 (𝑡)𝑥− 𝑥

𝑡
= lim

𝑡→0

𝑇 (𝑡)(𝜙𝑥)− 𝜙𝑥

𝑡
= lim

𝑡→0

𝜙𝑡𝑥− 𝜙𝑥

𝑡
= lim

𝑡→0

(𝜙𝑡 − 𝜙)𝑥

𝑡
= 𝜙′𝑥 = i𝜓′𝑥 = i𝐴𝑥

hold true. Thus, 𝑥 ∈ D(𝐴). Moreover, the identity 𝜙′𝑥 = i𝐴𝑥 yields 𝜓′𝑥 = 𝐴𝑥, or 𝑓𝑥 = 𝐴𝑥.
The obtained representation 𝐴𝑥 = 𝑓𝑥 and Property 2 of Lemma 1 imply that the vector 𝑓𝑥 has a

compact Beurling spectrum and thus by the proven above 𝑓𝑥 = 𝐴𝑥 ∈ D(𝐴), at that, 𝐴2𝑥 = 𝑓𝐴𝑥. It
follows from the definition of 𝐴𝑛 that 𝑥 ∈ D(𝐴𝑛) for each 𝑛 > 1.

Theorem 1. If 𝑥 ∈ X has a compact Beurling spectrum, then 𝑥 ∈ D(𝐴𝑚) for each 𝑚 ∈ N,
Λ(𝐴𝑚𝑥) ⊂ Λ(𝑥) and the estimates

‖𝐴𝑚𝑥‖ 6 𝑟(𝑥)𝑚 · ‖𝑥‖
hold true for each 𝑚 > 1.
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Proof. The fact 𝑥 ∈ D(𝐴𝑚) follows from Lemma 5. Let us show that Λ(𝐴𝑚𝑥) ⊂ Λ(𝑥). Assume that

𝜆0 /∈ Λ(𝑥). Then by the definition there exists a function 𝑓0 ∈ L1(R) such that ̂︀𝑓0(𝜆0) ̸= 0 and 𝑓0𝑥 = 0.
Then 𝑓0(𝐴𝑥) = 𝐴𝑓0𝑥 = 0 and it implies

Λ(𝐴𝑥) ⊂ Λ(𝑥), Λ(𝐴𝑛𝑥) ⊂ Λ(𝑥). (4)

Consider the vector 𝑦 of the form

𝑦 = 𝑟(𝑥)

∞∑︁
𝑘=−∞

𝑇
(︁
𝑘𝜋−𝜋
𝑟(𝑥)

)︁
𝑥(︀

𝜋/2− 𝑘𝜋
)︀2 . (5)

Let a function 𝜓 ∈ L1(R) be so that ̂︀𝜓(𝜆) = 𝜆 in a vicinity of set Λ(𝑥). Then by Lemma 5 the identity
𝐴𝑥 = 𝜓𝑥 holds true. By Lemma 4, for each function 𝑓 ∈ L1(R) we obtain the identities

𝑓(𝑦 −𝐴𝑥) = 𝑓(𝑦 − 𝜓𝑥) = 𝑟(𝑥) ·

(︃ ∞∑︁
𝑘=−∞

𝑓 𝑘𝜋−𝜋
𝑟(𝑥)(︀

𝜋/2− 𝑘𝜋
)︀2
)︃
𝑥− (𝜓 * 𝑓)𝑥 = 𝑔𝑥− (𝜓 * 𝑓)𝑥 = 𝜙𝑥,

where the Fourier transform of 𝑔 ∈ L1(R) reads as

̂︀𝑔(𝜆) = 𝑟(𝑥)
∞∑︁

𝑘=−∞

̂︀𝑓(𝜆)e𝑖 𝑘𝜋−𝜋
𝑟(𝑥)

𝜆(︀
𝜋/2− 𝑘𝜋

)︀2
and 𝜙 = 𝑔 − 𝜓 * 𝑓 . Since 𝑥 has a compact Beurling spectrum, we have 𝑟(𝑥) < ∞. The series in
the right hand side of (5) converges absolutely. Function 𝜙 satisfies the hypothesis of Property 3 in
Lemma 1. Thus, 𝑓(𝑦−𝐴𝑥) = 0 for each function 𝑓 ∈ L1(R), and this is why 𝑦−𝐴𝑥 = 0 by Remark 1.
The estimates

‖𝐴𝑥‖ = 𝑟(𝑥) ·

⃦⃦⃦⃦
⃦⃦ ∞∑︁
𝑘=−∞

𝑇
(︁
𝑘𝜋−𝜋
𝑟(𝑥)

)︁
𝑥(︀

𝜋/2− 𝑘𝜋
)︀2
⃦⃦⃦⃦
⃦⃦ 6 𝑟(𝑥)

∞∑︁
𝑘=−∞

1(︀
𝜋/2− 𝑘𝜋

)︀2 · ‖𝑥‖ = 𝑟(𝑥) · ‖𝑥‖

hold true. Inclusion (4) and the proven above yield⃦⃦
𝐴𝑛𝑥

⃦⃦
=
⃦⃦
𝐴𝑛−1𝐴𝑥

⃦⃦
6 𝑟(𝑥)𝑛‖𝑥‖, 𝑛 > 2.

2. Bernstein inequality for entire at infinity function

By Cbu(R) we denote a closed subspace of uniformly continuous bounded complex-valued functions
in Cb(R) and the symbol C0(R) stands for the closed subspace

{︀
𝑥 ∈ Cbu(R)

⃒⃒
lim

|𝑡|→∞

⃒⃒
𝑥(𝑡)

⃒⃒
= 0
}︀
.

Definition 5. We call a function 𝑥 ∈ Cbu(R) entire at infinity of exponential type 𝜎 > 0, if for
each 𝜀 > 0 there exists 𝑥0 ∈ Cbu(R) which can be continued to an entire function ̃︁𝑥0 : C → C of
exponential type 𝜎 + 𝜀 such that 𝑥(𝑡) = 𝑥0(𝑡) + 𝑦0(𝑡), where 𝑦0 ∈ C0(R).

Lemma 6. Each function 𝑓 ∈ L1(R) obeying supp ̂︀𝑓 ∈ [−𝜎, 𝜎] can be continued to an entire on C
function of exponential type 𝑎. Moreover, for each 𝑧 ∈ C, the function 𝑓𝑧(𝑠) = 𝑓(𝑠+ 𝑧), 𝑠 ∈ R,belongs
to algebra L1(R) and the function 𝐹 : C→ L1(R), 𝐹 (𝑧) = 𝑓𝑧 is entire of exponential type 𝜎.

Proof. Let us show that 𝑓 can be continued to a function of exponential type 𝜎. We write function 𝑓
as

𝑓(𝑡) =
1

2𝜋

∫︁
R

̂︀𝑓(𝜆)ei𝜆𝑡 d𝜆 =
1

2𝜋

𝜎∫︁
−𝜎

̂︀𝑓(𝜆)ei𝜆𝑡 d𝜆,
and let

𝑓(𝑧) =
1

2𝜋

𝜎∫︁
−𝜎

̂︀𝑓(𝜆)ei𝜆𝑧 d𝜆, 𝑧 ∈ C.
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The estimate ⃒⃒
𝑓(𝑧)

⃒⃒
6

1

2𝜋
2𝜎 · max

𝜆∈[−𝜎,𝜎]

⃒⃒ ̂︀𝑓(𝜆)⃒⃒ · e𝜎|𝑧|
is valid. Thus, we have obtained the continuation of function 𝑓 to an entire on C function of exponential

type 𝜎. Since
(︀d𝑓𝑧

d𝑧

)︀
(𝑠) = d𝑓(𝑧−𝑠)

d𝑧 , 𝑧 ∈ C, 𝑠 ∈ R, function 𝐹 is entire of exponential type 𝜎.

Lemma 7. Function 𝑥 ∈ Cbu(R) can be continued to a function of exponential type 𝜎 if and only
if Λ(𝑥) ⊂ [−𝜎, 𝜎].

Proof. Necessity. Suppose that there exists 𝜆0 > 𝜎 + 𝛿 for some 𝛿 > 0. We choose 𝑓0 ∈ L1(R) so

that ̂︀𝑓0(𝜆0) ̸= 0, and let 𝑥0 = 𝑓0 * 𝑥, then Λ(𝑥0) ⊂ [𝜆0 − 𝛿, 𝜆0 + 𝛿]. Consider the function 𝑦0(𝑡) =
(𝑓0 * 𝑥)(𝑡)e−i𝜆0𝑡, Λ(𝑦0) ⊂ [−𝛿, 𝛿]. Thus, we have constructed the function (𝑓0 * 𝑥)(𝑧) = 𝑦0(𝑧)e

𝑖𝜆0𝑧 of
exponential type > 𝜎 + 𝛿.

Sufficiency. Let Λ(𝑥) ⊂ [−𝜎, 𝜎]. We choose 𝑓 ∈ L1(R) such that ̂︀𝑓 = 1 in the vicinity of the

spectrum and supp ̂︀𝑓 ⊂ [−𝜎 − 𝜀, 𝜎 + 𝜀] for some 𝜀 > 0. Then 𝑓 * 𝑥 = 𝑥, 𝑓 is the entire function with
the properties in Lemma 6. By the same symbol 𝑥 we denote the continuation of 𝑥 on C. We let
𝑥(𝑧) =

∫︀
R

𝑓(𝑧 − 𝑠)𝑥(𝑠) d𝑠 and have

𝑥(𝑧) 6
∫︁
R

|𝑓(𝑧 − 𝑠)|𝑥(𝑠) d𝑠 6 ‖𝑓𝑧‖1 · ‖𝑥‖, 𝑧 ∈ C, 𝑠 ∈ R.

Since ‖𝑓𝑧‖1 6 Const · e(𝜎+𝜀)|𝑧|, 𝑧 ∈ C, 𝑠 ∈ R, then 𝑥 is a function of exponential type 6 𝜎 + 𝜀. Since
𝜀 > 0 is arbitrary, we obtain that 𝑥 is a function of exponential type 𝜎.

Lemma 8. A function 𝑥 ∈ Cbu(R) is an entire at infinity function of exponential type 𝜎 > 0 if and

only if (𝑥− 𝑓 * 𝑥) ∈ C0(R) for each summable function 𝑓 with the property ̂︀𝑓 ≡ 1 on [−𝜎, 𝜎].

Definition 6. A function 𝑥 ∈ Cbu(R) is called slowly varying at infinity, if for each 𝛼 ∈ R the
inclusion 𝑆(𝛼)𝑥 − 𝑥 ∈ C0(R) is valid, or, in other words, for each 𝛼 ∈ R the identity

lim
|𝑡|→∞

⃒⃒
𝑥(𝑡+ 𝛼)− 𝑥(𝑡)

⃒⃒
= 0

holds true.

The set of all slowly varying at infinity functions in Cbu(R) will be indicated by Csl(R).
We note that each slowly varying at infinity function is equivalent to an entire at infinity function

of exponential type 0 (see [7]).
Consider the strongly continuous group of shifts 𝑆 : R→ EndCbu(R) acting by the rule

(︀
𝑆(𝑡)𝑥

)︀
(𝑠) =

𝑥(𝑠 + 𝑡), 𝑠, 𝑡 ∈ R. By ̃︀𝑆 : R → End Cbu(R)/C0 we denote the representation defined by the rulẽ︀𝑆(𝑡)̃︀𝑥 = 𝑆(𝑡)𝑥. The module structure is defined by the formula

𝑓̃︀𝑥 =

∫︁
R

𝑓(𝑡)̃︀𝑆(−𝑡)̃︀𝑥 d𝑡, 𝑓 ∈ L1(R), ̃︀𝑥 ∈ Cbu(R).

Let 𝑥 ∈ C0(R) and 𝑦 ∈ Cbu(R) is an element of the class ̃︀𝑦. We introduce the norm of the class of̃︀𝑦 by the rule ⃦⃦̃︀𝑦⃦⃦ = inf
𝑥∈C0(R)

‖𝑦 + 𝑥‖.

Theorem 2. A function 𝑥 is entire at infinity of exponential type of order 𝜎 > 0, if Λ(̃︀𝑥) ⊂ [−𝜎, 𝜎],
or, what is equivalent, if in the class ̃︀𝑥 there exists a differentiable function 𝑥0 satisfying the estimate
‖𝑥′0‖ 6 𝜎

⃦⃦̃︀𝑥⃦⃦.
The proof follows from the above results and Theorem 1.
Here we employ the terminology and the results of papers [8, 9, 10]. Let X1, X2 be Banach spaces

and let i𝐴1, i𝐴2, 𝐴𝑘 ∈ EndX𝑘, 𝑘 = 1, 2, are the generators of isometric groups 𝑇1(𝑡) and 𝑇2(𝑡),
respectively,

𝑇1 : R→ EndX1, 𝑇2 : R→ EndX2.
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The Banach space Hom (X1,X2) is equipped by the structure of Banach module by the representation
𝑇 : R → EndHom (X1,X2) of the form 𝑇 (𝑡)𝑋 = 𝑇2(𝑡)𝑋𝑇1(−𝑡), 𝑡 ∈ R, 𝑋 ∈ Hom(X1,X2). The
module structure is defined by means of the formula

(𝑓𝑋)𝑥 =

∫︁
R

𝑓(𝜏)
(︀
𝑇 (𝑡)𝑋

)︀
𝑥 d𝜏 =

∫︁
R

𝑓(𝜏)
(︀
𝑇2(𝑡)𝑋𝑇1(−𝑡)

)︀
𝑥 d𝜏.

We note that the representation 𝑇 is continuous in the strong operator topology.
We denote by the symbol ad𝐴1,𝐴2 the operator ad𝐴1,𝐴2𝑋 = 𝐴2𝑋 −𝑋𝐴1. In the case 𝐴1 = 𝐴2 = 𝐴,

ad𝐴1,𝐴2𝑋 = ad𝐴𝑋 = 𝐴𝑋 −𝑋𝐴 is the commutator. Operator 𝑋 belongs to D(ad𝐴1,𝐴2), if 𝑋D(𝐴1) ⊂
D(𝐴2), and the operator 𝐴2𝑋−𝑋𝐴1 has a bounded extension on X1. In what follows we shall denote
this extension by the same symbol 𝐴2𝑋 −𝑋𝐴1. We note that the spectrum of the operator ad𝐴1,𝐴2

is the set

𝜎(ad𝐴1,𝐴2) =
{︀
𝜆2 − 𝜆1 : 𝜆1 ∈ 𝜎(𝐴1), 𝜆2 ∈ 𝜎(𝐴2)

}︀
,

where 𝜎(𝐴1), 𝜎(𝐴2) are respectively the spectra of the operators 𝐴1, 𝐴2.

Lemma 9. If 𝑋 ∈ Hom(X1,X2) has a compact Beurling spectrum, then 𝑋 ∈ D(ad𝐴1,𝐴2), i.e., the
operator 𝐴2𝑋 −−𝑋𝐴1 ∈ Hom(X1,X2) is correct.

Theorem 3. If the Beurling spectrum Λ(𝑋,𝑇 ) of an operator 𝑋 ∈ Hom(X1,X2) is a compact set,
then the inequality ⃦⃦

𝐴2𝑋 −𝑋𝐴1

⃦⃦
6 𝑟(𝑋) · ‖𝑋‖

holds true.

The proof follows from Theorem 1 and the above results.
Let X1, X2 be separable infinite-dimensional space with unconditional bases

(︀
𝑒′𝑘
)︀
and

(︀
𝑒′′𝑘
)︀
, respec-

tively. The matrix (𝑥𝑚𝑛) of the operator 𝑋 ∈ Hom(X1,X2) is determined by the identities

𝑋𝑒′𝑛 =

∞∑︁
𝑚=1

𝑥𝑚𝑛𝑒
′′
𝑚.

Suppose that strongly continuous isometric representations 𝑇𝑘 : R→ EndX𝑘, 𝑘 = 1, 2, introduced by
the identities

𝑇1(𝑡)𝑥 =
∞∑︁
𝑛=1

ei𝑛𝑡𝛼𝑛𝑒
′
𝑛, 𝑇2(𝑡)𝑥 =

∞∑︁
𝑛=1

ei𝑛𝑡𝛽𝑛𝑒
′′
𝑛

are correct. Consider the bounded representation

𝑇 : R→ EndHom(X1,X2), 𝑇 (𝑡)𝑋 = 𝑇2(𝑡)𝑋𝑇1(−𝑡),

where 𝑥 ∈ X1, 𝑓 ∈ L1(R), 𝑡 ∈ R, 𝑋 ∈ Hom(X1,X2), and the operator of the form

(𝑓𝑋)𝑥 =

∫︁
R

𝑓(𝜏)𝑇2(𝜏)𝑋𝑇1(−𝜏)𝑥 d𝜏.

As 𝑥 = 𝑒′𝑛 we obtain the identities

(𝑓𝑋)𝑒′𝑛 =

∫︁
R

𝑓(𝜏)𝑇2(𝜏)𝑋𝑇1(−𝜏)𝑒′𝑛 d𝜏 =

∫︁
R

𝑓(𝜏)𝑇2(𝜏)𝑋e−i𝑛𝜏𝑒′𝑛 d𝜏

=

∫︁
R

𝑓(𝜏)𝑇2(𝜏)e
−i𝑛𝜏𝑋𝑒′𝑛 d𝜏 =

∫︁
R

𝑓(𝜏)𝑇2(𝜏)e
−i𝑛𝜏

∞∑︁
𝑚=1

𝑥𝑚𝑛𝑒
′′
𝑚 d𝜏

=

∞∑︁
𝑚=1

∫︁
R

𝑓(𝜏)ei(𝑚−𝑛)𝜏𝑥𝑚𝑛𝑒
′′
𝑚 d𝜏 =

∞∑︁
𝑚=1

̂︀𝑓(𝑛−𝑚)𝑥𝑚𝑛𝑒
′′
𝑚.
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Thus, the matrix of operator 𝑋 reads as
(︀ ̂︀𝑓(𝑛−𝑚)𝑥𝑚𝑛

)︀
. Hence, 𝑓𝑋 = 0 if and only if ̂︀𝑓(𝑛−𝑚) = 0,

𝑚,𝑛 ∈ N for 𝑥𝑚𝑛 ̸= 0, i.e., the Beurling spectrum of operator 𝑋 reads as

Λ(𝑋) =
{︀
𝑚,𝑛 ∈ N | there exists 𝑓 ∈ L1(R) such that ̂︀𝑓(𝑛 − 𝑚) = 0 and 𝑥𝑚𝑛 ̸= 0

}︀
.
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