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EXACT RELATIONSHIPS BETWEEN CERTAIN
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Abstract. We establish exact estimates relating the classical densities of complex se-
quences (ordinary and averaged) with relative densities and lacunarity and sparsity indices.
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One of the main directions of the theory of entire functions is the studying the dependence
of the function growth on the distribution of its zeroes on the plane. A large amount of the
works related to this part of the complex analysis is devoted to the estimates of the indicators
and types of an entire function of finite order via such usual characteristics of the behavior
of its zeroes as usual averaged and other densities (see, for instance, [1]–[5] and the survey
[6]). Recently also less traditional lacunarity and sparsity indices [7], [8] were begun being
used. Recent studies of extremal problems for entire functions with zeroes on a ray [9], [10]
clearly demonstrated the impossibility of obtaining final results without understanding internal
connections between the densities of zeroes sequences.

As one can see at the example of work [8], the further development of the theory of extremal
problems generates the need in finding and studying laws connecting “quantitative” density
characteristics of tending a sequence to infinity with “qualitative” characteristics like lacunarity
and sparsity indices. By the present such connections are not studied well enough. Covering
this gap, here we find an exact connection of the aforementioned characteristics of growth for
the zeroes sequence of entire functions of finite order.

Thus, the subject of the work are sequences of complex numbers Λ = {𝜆𝑛}∞𝑛=1 tending to
infinity, which we take in order of ascending the moduli

0 < |𝜆1| = . . . = |𝜆𝑛1| < |𝜆𝑛1+1| = . . . = |𝜆𝑛2| < |𝜆𝑛2+1| = . . . = |𝜆𝑛3| < . . .

The indices 𝑛𝑘 at which the moduli of the terms of the sequence have jumps are called central
indices of sequence Λ.

We denote by 𝑛Λ(𝑥) =
∑︀

|𝜆𝑛|6𝑥

1 the counting function of this sequence and 𝑁Λ(𝑥) =
𝑥∫︀
0

𝑛Λ(𝑡)

𝑡
𝑑𝑡

stands for its averaged counting function.
The convergence index for sequence Λ (see [1]) is calculated by the formulae

𝜌Λ = lim
𝑥→+∞

ln𝑛Λ(𝑥)

ln𝑥
= lim

𝑥→+∞

ln𝑁Λ(𝑥)

ln𝑥
.
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In what follows by 𝜌 we denote the convergence index 𝜌Λ for sequence Λ assuming that 𝜌 is a
positive number.

The quantities

∆ 𝜌(Λ) = lim
𝑥→+∞

𝑛Λ(𝑥)

𝑥𝜌
and ∆

*
𝜌(Λ) = lim

𝑥→+∞

𝑁Λ(𝑥)

𝑥𝜌

are called upper 𝜌-densities (usual and averaged) of sequence Λ. Replacing the upper limits
into the lower ones in these identities leads us to the definition of lower and averaged lower
𝜌-density of a sequence:

∆ 𝜌(Λ) = lim
𝑥→+∞

𝑛Λ(𝑥)

𝑥𝜌
, ∆*

𝜌(Λ) = lim
𝑥→+∞

𝑁Λ(𝑥)

𝑥𝜌
.

For the sake of simplification the notations, if it does not lead to an ambiguity, we shall omit
the symbols 𝜌 and Λ in the notations for densities and other introduced characteristics. More-
over, for the space saving, we shall use simultaneously both overline and underline assuming
that they are in the correspondence in all the identities.

We introduce also upper and lower relative densities of a sequence assuming by the definition

𝜈 = lim
𝑥→+∞

𝑁(𝑥)

𝑛(𝑥)
.

Since it always holds

∆ = lim
𝑥→+∞

𝑛(𝑥)

𝑥𝜌
= lim

𝑛→∞

𝑛

|𝜆𝑛|𝜌
= lim

𝑛→∞

𝑛(|𝜆𝑛|)
|𝜆𝑛|𝜌

,

then it is natural to introduce discrete averaged upper and lower density of a sequence by the
formulae ̃︀∆̃︀ = lim

𝑛→∞

𝑁(|𝜆𝑛|)
|𝜆𝑛|𝜌

.

We shall see later (see Theorem 1 and Proposition 1) that ∆* = ∆̃︀ , and if |𝜆𝑛| ∼
𝑛→∞

|𝜆𝑛+1|, then

∆
*

= ̃︀∆.
The sequences satisfying condition ∆

*
= ∆*, or, which is equivalent, ∆ = ∆, are called

measurable. By analogy, as discrete measurable sequences we shall regard those satisfying the

condition ̃︀∆ = ∆̃︀ , meaning the existence of the limit lim
𝑛→∞

𝑁(|𝜆𝑛|)
|𝜆𝑛|𝜌

. In the same way, if there

exists the limit lim
𝑥→+∞

𝑁(𝑥)

𝑛(𝑥)
, we shall say that such sequence is internal measurable. It is useful

to note that in distinction to usual or discrete measurability, the notion of internal measurability
is not associated with any index 𝜌.

We first of all note that none of discrete and internal measurability implies its measurability.
It was shown in work [10] that the class of discrete measurable sequences is rather wide: for
arbitrary numbers 𝜌 > 0, 𝛽 > 0 and 𝛼 ∈ [0, 𝛽] there exist discrete measurable sequences with
the densities ∆ = 𝛼 and ∆ = 𝛽. Here we prove (see below Proposition 9) that the same
statement is valid also for internal measurable sequences.

By the definition of the counting function for sequence Λ = {𝜆𝑛} we have 𝑛Λ(𝑥) = 0 as
𝑥 ∈ [0, |𝜆1|) and 𝑛Λ(𝑥) ≡ 𝑛𝑘 as 𝑥 ∈ [|𝜆𝑛𝑘

|, |𝜆𝑛𝑘+1|), 𝑘 = 1, 2, . . . For the sequence of central
indices 𝑁 = {𝑛𝑘}∞𝑘=1 ⊆ N we define the characteristics

𝜇𝑁 = 𝜇 = lim
𝑘→∞

𝑛𝑘+1

𝑛𝑘

and 𝛿𝑁 = 𝛿 = lim
𝑘→∞

𝑛𝑘+1

𝑛𝑘

.

We shall call 𝜇𝑁 a lacunarity index, and 𝛿𝑁 will be called a sparsity index for sequence 𝑁 . In
the same we define lacunarity index 𝑙Λ and sparsity index 𝑝Λ for sequence Λ = {𝜆𝑛} ⊂ C (more
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precisely, for the sequence |Λ| = {|𝜆𝑛|} ⊂ R+) :

𝑙Λ = 𝑙 = lim
𝑛→∞

|𝜆𝑛+1|
|𝜆𝑛|

= lim
𝑘→∞

|𝜆𝑛𝑘+1
|

|𝜆𝑛𝑘
|

and 𝑝Λ = 𝑝 = lim
𝑘→∞

|𝜆𝑛𝑘+1
|

|𝜆𝑛𝑘
|
.

A sequence Λ is called Hadamard lacunar if its lacunarity index is greater than one, i.e.,
𝑝Λ > 1 (as 𝑝Λ = ∞ we have so called Ostrowsky lacunas). If lacunarity index of sequence Λ
equals one, 𝑙Λ = 1, then Λ is called weakly Hadamard lacunar (shortly weakly lacunar). For
instance, the sequence of all prime numbers is weakly lacunar. As 𝑏 > 1, the same property is
possessed by sequence Λ =

{︀
𝑏𝑛

𝛼}︀
for 𝛼 ∈ (0, 1). If 𝛼 = 1, then 𝑝Λ = 𝑙Λ = 𝑏, while for 𝛼 > 1 it

happens 𝑝Λ = ∞.
The connections between usual and averaged densities of sequence Λ are reflected by classical

inequalities (see [1, Ch. I, Sec. 12], [2, Ch. II, Sec. 4, Subsec. 4]):

∆ 6 𝜌∆* 6 𝜌∆
*
6 ∆ 6 𝜌 𝑒∆

*
. (1)

In book [3, P. 16] the matter is an estimate specifying the latter inequality in the case when
not only the upper but also the lower density of a sequence is known. Namely,

𝜌 𝑒∆
* ≥ ∆ exp

{︀
∆ /∆

}︀
.

The general results on a relative growth of convex functions established in monograph [7]
imply the following inequalities improving all previous relations (see also [11]):

𝜌 𝑎1∆
*
6 ∆ 6 𝜌̃︀𝑎1∆ *

, 𝜌̃︀𝑎2∆ *
6 ∆ 6 𝜌 𝑎2∆

*
. (2)

Here 𝑎1 and 𝑎2 are the roots to equation

𝑎 ln
𝑒

𝑎
= ∆*/∆

*
,

while ̃︀𝑎1 and ̃︀𝑎2 are the roots of a similar equation with a “corrected” right hand side

𝑎 ln
𝑒

𝑎
= ̃︀∆/∆

*
.

The roots to these equations are related by the inequalities 0 6 𝑎1 6 ̃︀𝑎1 6 1 6 ̃︀𝑎2 6 𝑎2 6 𝑒.

In view of (2), by the condition ̃︀∆ = ∆* (see Theorem 1 below) for discrete measurable
sequences the exact identities

∆ = 𝜌 𝑎1∆
*
, ∆ = 𝜌 𝑎2∆

*
(3)

hold true.
Thus, we can state that at the present the relations between usual and averaged densities of

sequences are quite well studied. Unfortunately, this is not true for the relations between the
densities (usual, averaged, relative) and the lacunarity and sparsity indices of sequence Λ. At
the same time, such study is of great value in studying the growth of entire functions whose
zeroes are Λ.

The present work is devoted to finding out the exact relations between the mentioned char-
acteristics of sequences.

In what follows we assume that number 𝜌 > 0 is given and the corresponding quantities are
calculated for this index 𝜌. Moreover, it follows from inequalities (1) that the conditions ∆ = 0

and ∆
*

= 0, as well as conditions ∆ = ∞ and ∆
*

= ∞ are equivalent. This is why in what
follows we assume and sometimes we say it explicitly that the condition 0 < ∆ < ∞ is satisfied.
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Proposition 1. The inequalities

∆𝜇 6 ∆, (4)

∆ 𝑙𝜌 6 ∆, (5)

∆
*
6 ̃︀∆ 𝑙𝜌, (6)

𝜈 𝜇 6 𝜈, (7)

ln 𝑙 6 𝜈 − 𝜈. (8)

Proof. Since the counting function of sequence Λ satisfy the identities 𝑛Λ(𝑡) = 𝑛(𝑡) ≡ 𝑛𝑘 as
𝑡 ∈ 𝐼𝑘 = [|𝜆𝑛𝑘

|, |𝜆𝑛𝑘+1|), 𝑘 = 1, 2, . . .,

∆ = lim
𝑘→∞

sup
𝑥∈𝐼𝑘

𝑛(𝑥)

𝑥𝜌
= lim

𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘
|𝜌
, ∆ = lim

𝑘→∞
inf
𝑥∈𝐼𝑘

𝑛(𝑥)

𝑥𝜌
= lim

𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌

(9)

𝜈 = lim
𝑘→∞

sup
𝑥∈𝐼𝑘

𝑁(𝑥)

𝑛(𝑥)
= lim

𝑘→∞

𝑁(|𝜆𝑛𝑘+1
|)

𝑛𝑘

, 𝜈 = lim
𝑘→∞

inf
𝑥∈𝐼𝑘

𝑁(𝑥)

𝑛(𝑥)
= lim

𝑘→∞

𝑁(|𝜆𝑛𝑘
|)

𝑛𝑘

. (10)

By (9) we easily get

∆ = lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌
𝑛𝑘+1

𝑛𝑘

≥ ∆ lim
𝑘→∞

𝑛𝑘+1

𝑛𝑘

= ∆𝜇,

i.e., inequality (4) holds true. In the same way

∆ = lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌
|𝜆𝑛𝑘+1

|𝜌

|𝜆𝑛𝑘
|𝜌

≥ ∆ lim
𝑘→∞

|𝜆𝑛𝑘+1
|𝜌

|𝜆𝑛𝑘
|𝜌

= ∆ 𝑙𝜌,

that justifies the validity of inequality (5).
In the same way by (10) we obtain (7):

𝜈 = lim
𝑘→∞

𝑁(|𝜆𝑛𝑘+1
|)

𝑛𝑘

≥ lim
𝑘→∞

𝑁(|𝜆𝑛𝑘+1
|)

𝑛𝑘+1

lim
𝑘→∞

𝑛𝑘+1

𝑛𝑘

= 𝜈 𝜇.

Due to the increasing of function 𝑁(𝑥), for arbitrary 𝜀 > 0 and sufficiently large 𝑘 for each
𝑥 ∈ 𝐼𝑘 we have

𝑁(𝑥)

𝑥𝜌
6

𝑁(|𝜆𝑛𝑘+1
|)

|𝜆𝑛𝑘
|𝜌

=
𝑁(|𝜆𝑛𝑘+1

|)
|𝜆𝑛𝑘+1

|𝜌

(︂ |𝜆𝑛𝑘+1
|

|𝜆𝑛𝑘
|

)︂𝜌

< (̃︀∆ + 𝜀)(𝑙 + 𝜖)𝜌.

Passing to the upper limit as 𝑥 → +∞, and then as 𝜀 → 0, we prove (6).
To prove (8) and in what follows we shall make use of the following formula

𝑁(
⃒⃒
𝜆𝑛𝑘+1

⃒⃒
) −𝑁(|𝜆𝑛𝑘

|) = 𝑛𝑘 ln

⃒⃒
𝜆𝑛𝑘+1

⃒⃒
|𝜆𝑛𝑘

|
, (11)

which follows directly from the definition of function 𝑁(𝑥):

𝑁(
⃒⃒
𝜆𝑛𝑘+1

⃒⃒
) −𝑁(|𝜆𝑛𝑘

|) =

|𝜆𝑛𝑘+1
|∫︁

|𝜆𝑛𝑘
|

𝑛(𝑥)

𝑥
𝑑𝑥 = 𝑛𝑘

|𝜆𝑛𝑘+1
|∫︁

|𝜆𝑛𝑘
|

𝑑𝑥

𝑥
= 𝑛𝑘 ln

⃒⃒
𝜆𝑛𝑘+1

⃒⃒
|𝜆𝑛𝑘

|
.

To obtain (8), we write (11) in a convenient form

ln

⃒⃒
𝜆𝑛𝑘+1

⃒⃒
|𝜆𝑛𝑘

|
=

𝑁(
⃒⃒
𝜆𝑛𝑘+1

⃒⃒
)

𝑛𝑘

− 𝑁(|𝜆𝑛𝑘
|)

𝑛𝑘

(12)

and pass to the upper limit taking into account formulae (10). The proof is complete.

The proven proposition implies the following fact.
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Corollary. If a sequence is measurable (∆ = ∆ = ∆) with ∆ > 0 or only internal measurable
(𝜈 = 𝜈 = 𝜈) with 𝜈 > 0, then this sequence and the sequence of its central indices are weakly
lacunar.

Indeed, the first statement is implied by formulae (4) and (5), while the other follows from
inequalities (7) and (8).

The next proposition states relations between usual, relative and discrete densities of se-
quences.

Proposition 2. The inequalities

∆̃︀ 6 min
{︀

∆ 𝜈, ∆ 𝜈
}︀
6 max

{︀
∆ 𝜈, ∆ 𝜈

}︀
6 ̃︀∆ (13)

hold true.

Proof. Employing formulae (9) and (10), we get

∆̃︀ = lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌
𝑁(|𝜆𝑛𝑘+1

|)
𝑛𝑘

6 lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌

lim
𝑘→∞

𝑁(|𝜆𝑛𝑘+1
|)

𝑛𝑘

= ∆ 𝜈

or

∆̃︀ = lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘
|𝜌
𝑁(|𝜆𝑛𝑘

|)
𝑛𝑘

6 lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘
|𝜌

lim
𝑘→∞

𝑁(|𝜆𝑛𝑘
|)

𝑛𝑘

= ∆ 𝜈.

Thus, the inequality ∆̃︀ 6 min
{︀

∆ 𝜈, ∆ 𝜈
}︀

is proven.

The inequality max
{︀

∆ 𝜈, ∆ 𝜈
}︀
6 ̃︀∆ is checked in the same way

̃︀∆ = lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌
𝑁(|𝜆𝑛𝑘+1

|)
𝑛𝑘

≥ lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌

lim
𝑘→∞

𝑁(|𝜆𝑛𝑘+1
|)

𝑛𝑘

= ∆ 𝜈,

̃︀∆ = lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘
|𝜌
𝑁(|𝜆𝑛𝑘

|)
𝑛𝑘

≥ lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘
|𝜌

lim
𝑘→∞

𝑁(|𝜆𝑛𝑘
|)

𝑛𝑘

= ∆ 𝜈.

The proof is complete.

In book [12, Part IV, Ch. 1, Problem 60]) the connection between relative densities of a
sequence and its convergence index was indicated

𝜈 6 1/𝜌 6 𝜈.

Which properties does a sequence possesses once the identity is realized in one of these inequal-
ities? In our opinion, Proposition 2 can provide an interesting information on this issue.

Corollary. If the upper relative density of a sequence attains its minimum, i.e., 𝜈 = 1/𝜌,
then the identities ∆* = ∆̃︀ = ∆ /𝜌 hold true. If the lower relative density of a sequence attains

its maximum, i.e., 𝜈 = 1/𝜌, then ∆
*

= ̃︀∆ = ∆/𝜌.

Indeed, it follows from (1) that ∆ /𝜌 6 ∆*. Under the condition 𝜈 = 1/𝜌 the left estimate in
(13) yields ∆̃︀ 6 ∆ /𝜌. Hence,

∆ /𝜌 6 ∆* 6 ∆̃︀ 6 ∆ /𝜌

that leads us to the first statement of the corollary. The second follows from similar arguments
leading us to the inequalities

∆/𝜌 6 ̃︀∆ 6 ∆
*
6 ∆/𝜌

in the case 𝜈 = 1/𝜌.
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Proposition 3. For each sequence of complex numbers with the convergence index 𝜌 > 0 the
following statements hold true.

If 0 < ∆ < ∞, then the inequality

𝑙𝜌 ≥ 𝛿 (14)

is valid and if 0 < ∆ < ∞, we have

𝑝 𝜌 6 𝜇. (15)

The estimates

ln 𝑝 6 𝜈 (𝜇− 1), (16)

ln 𝑙 ≥ 𝜈
𝛿 − 1

𝛿
(17)

hold true.

Proof. Under the condition ∆ ̸= 0 we can write

∆ = lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘
|𝜌

6 lim
𝑘→∞

𝑛𝑘+1

|𝜆𝑛𝑘+1
|𝜌

1

lim
𝑘→∞

𝑛𝑘+1

𝑛𝑘

lim
𝑘→∞

(︂ |𝜆𝑛𝑘+1
|

|𝜆𝑛𝑘
|

)︂𝜌

= ∆
𝑙𝜌

𝛿
.

Canceling out by ∆, we obtain inequality (14). If ∆ ̸= 0, then

∆ = lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌

6 lim
𝑘→∞

𝑛𝑘+1

|𝜆𝑛𝑘+2
|𝜌

1

lim
𝑘→∞

𝑛𝑘+1

𝑛𝑘

lim
𝑘→∞

(︂
|𝜆𝑛𝑘+2

|
|𝜆𝑛𝑘+1

|

)︂𝜌

= ∆
𝑝 𝜌

𝜇

that implies inequality (15).
Estimates (16), (17) can be proven by a generalized Stolz-Cesáro theorem (see, for instance,

[7]) and formulae (12), (10):

ln 𝑝 = lim
𝑘→∞

ln

⃒⃒
𝜆𝑛𝑘+1

⃒⃒
|𝜆𝑛𝑘

|
= lim

𝑘→∞

𝑁(
⃒⃒
𝜆𝑛𝑘+1

⃒⃒
) −𝑁(|𝜆𝑛𝑘

|)
𝑛𝑘

= lim
𝑘→∞

𝑁(
⃒⃒
𝜆𝑛𝑘+1

⃒⃒
) −𝑁(|𝜆𝑛𝑘

|)
𝑛𝑘+1 − 𝑛𝑘

(︂
𝑛𝑘+1

𝑛𝑘

− 1

)︂
6 lim

𝑘→∞

𝑁(
⃒⃒
𝜆𝑛𝑘+1

⃒⃒
) −𝑁(|𝜆𝑛𝑘

|)
𝑛𝑘+1 − 𝑛𝑘

lim
𝑘→∞

(︂
𝑛𝑘+1

𝑛𝑘

− 1

)︂
6 lim

𝑘→∞

𝑁(|𝜆𝑛𝑘
|)

𝑛𝑘

(𝜇− 1) = 𝜈(𝜇− 1).

Arguing in the same way, we obtain

ln 𝑙 = lim
𝑘→∞

ln

⃒⃒
𝜆𝑛𝑘+1

⃒⃒
|𝜆𝑛𝑘

|
= lim

𝑘→∞

𝑁(
⃒⃒
𝜆𝑛𝑘+1

⃒⃒
) −𝑁(|𝜆𝑛𝑘

|)
𝑛𝑘

= lim
𝑘→∞

𝑁(
⃒⃒
𝜆𝑛𝑘+1

⃒⃒
) −𝑁(|𝜆𝑛𝑘

|)
𝑛𝑘 − 𝑛𝑘−1

(︂
𝑛𝑘 − 𝑛𝑘−1

𝑛𝑘

)︂
≥ lim

𝑘→∞

𝑁(
⃒⃒
𝜆𝑛𝑘+1

⃒⃒
) −𝑁(|𝜆𝑛𝑘

|)
𝑛𝑘 − 𝑛𝑘−1

lim
𝑘→∞

(︂
1 − 1

𝑛𝑘/𝑛𝑘−1

)︂
≥ lim

𝑘→∞

𝑁(|𝜆𝑛𝑘
|)

𝑛𝑘

(︂
1 − 1

𝛿

)︂
,

i.e., inequality ln 𝑙 ≥ 𝜈
𝛿 − 1

𝛿
. The proof is complete.

We shall also need several simply checked facts and it is convenient to summarize them in
the following statement.
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Lemma. I. The function

𝑞1(𝑥) =

⎧⎨⎩
ln𝑥

𝑥− 1
, 𝑥 ̸= 1 ,

1, 𝑥 = 1,

strictly decreases on (0,+∞).

II. The function 𝑞2(𝑥) =
𝑒𝑥−1

𝑥
has the unique minimum in (0,+∞); this minimum equals 1

and is attained at the point 𝑥 = 1.

III. The function 𝑞3(𝑥) =
𝑏 + 𝑎 ln𝑥

𝑥𝜌
, 𝑎 > 0, 𝑏 > 0 has the unique maximum in (0,+∞); this

maximum equals
𝑎

𝜌
𝑒 𝜌 𝑏

𝑎
−1 and it attained at the point 𝑥 = 𝑒

1
𝜌
− 𝑏

𝑎 .

Let us study now the dependence between the sparsity index and its usual and discrete
densities.

Proposition 4. Sparsity index, the density and discrete densities of a sequence with conver-
gence index 𝜌 > 0 are related by the inequalities

(𝑝 𝜌 − 1) ̃︀∆ 6 ∆ ln 𝑝, ∆ 𝑝 𝜌 ln 𝑝 6 (𝑝 𝜌 − 1) ∆̃︀ . (18)

Proof. As 𝑝 = 1, both the inequalities become to a trivial identity 0 = 0. As 𝑝 > 1, we denote

𝑐𝑘 =
|𝜆𝑛𝑘+1

|
|𝜆𝑛𝑘

|
and apply Stolz-Cesáro theorem employing identity (10) and Item I of the previous

lemma: ̃︀∆ = lim
𝑘→∞

𝑁(|𝜆𝑛𝑘
|)

|𝜆𝑛𝑘
|𝜌

6 lim
𝑘→∞

𝑁(|𝜆𝑛𝑘+1
|) −𝑁(|𝜆𝑛𝑘

|)
|𝜆𝑛𝑘+1

|𝜌 − |𝜆𝑛𝑘
|𝜌

= lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘
|𝜌

ln 𝑐𝑘
𝑐 𝜌𝑘 − 1

6
1

𝜌
lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘
|𝜌

lim
𝑘→∞

ln 𝑐 𝜌𝑘
𝑐 𝜌𝑘 − 1

=
∆

𝜌
· ln 𝑝 𝜌

𝑝 𝜌 − 1
.

Thus, ̃︀∆ 6 ∆ · ln 𝑝

𝑝 𝜌 − 1
. In the same way,

∆̃︀ = lim
𝑘→∞

𝑁(|𝜆𝑛𝑘
|)

|𝜆𝑛𝑘
|𝜌

≥ lim
𝑘→∞

𝑁(|𝜆𝑛𝑘+1
|) −𝑁(|𝜆𝑛𝑘

|)
|𝜆𝑛𝑘+1

|𝜌 − |𝜆𝑛𝑘
|𝜌

= lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌

ln 𝑐𝑘

1 − 𝑐−𝜌
𝑘

≥1

𝜌
lim
𝑘→∞

𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌

lim
𝑘→∞

ln 𝑐−𝜌
𝑘

𝑐−𝜌
𝑘 − 1

=
∆

𝜌
· 𝑝

𝜌 ln 𝑝 𝜌

𝑝 𝜌 − 1
,

i.e., ∆̃︀ ≥ ∆ · 𝑝
𝜌 ln 𝑝

𝑝 𝜌 − 1
. The proof is complete.

As a corollary of Proposition 2-4 we can obtain

Proposition 5. If 0 < ∆ < ∞ and the sequence {𝜆𝑛𝑘
}∞𝑘=1 has Hadamard lacunas, then the

estimates
ln 𝑝

𝜇− 1
6 𝜈 6

ln 𝑝

𝑝 𝜌 − 1
(19)

hold true.
If 0 < ∆ < ∞ and the sequence {𝑛𝑘}∞𝑘=1 has Hadamard lacunas, then the estimates

𝑝 𝜌 ln 𝑝

𝑝 𝜌 − 1
6 𝜈 6

𝛿 ln 𝑙

𝛿 − 1
(20)

are valid.
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Proof. Since {𝜆𝑛𝑘
}∞𝑘=1 has Hadamard lacunas, we have 𝑝 > 1. Thus, comparing the right hand

side of inequalities (13) with the first inequality in formula (18), we obtain 𝜈 ∆ 6 ̃︀∆ 6 ∆
ln 𝑝

𝑝 𝜌 − 1
.

It implies the right hand side of relation (19). The left hand side of this relations follows from
(16), since in accordance with (15) we have 𝜇 ≥ 𝑝𝜌 > 1.

In the proof of estimates (20) we act in the same way, now we just combine the left hand
side of (13) and the second inequality in (18) and apply then (17). The proof is complete.

The result is exact in the following sense. The identities in (19), (20) hold if the same is true
for (14), (15). And it holds, for instance, for each sequence Λ = {𝜆𝑛}∞𝑛=1 such that the moduli
of its terms and its central indices form two coherent “almost geometric” sequences, i.e., for
some 𝑞 > 1 the satisfy the conditions

|𝜆𝑛𝑘+1
| ∼ 𝑞 |𝜆𝑛𝑘

|, 𝑛𝑘+1 ∼ 𝑞 𝜌 𝑛𝑘, 𝑘 → ∞.

In this case 𝑙 = 𝑝 = 𝑞, 𝜇 = 𝛿 = 𝑞𝜌 and the formulae

𝜈 =
ln 𝑞

𝑞 𝜌 − 1
, 𝜈 =

𝑞 𝜌 ln 𝑞

𝑞 𝜌 − 1

are valid.

Theorem 1. The lower discrete averaged density ∆̃︀ and lower averaged density ∆* an ar-

bitrary sequence Λ ⊂ C tending to infinity coincide

∆̃︀ = ∆*.

Proof. It is obvious that

∆̃︀ = lim
𝑛→∞

𝑁(|𝜆𝑛|)
|𝜆𝑛|𝜌

≥ lim
𝑥→+∞

𝑁(𝑥)

𝑥𝜌
= ∆*.

In order to obtain the inverse inequality, we consider function Φ(𝑥) =
𝑁(𝑥)

𝑥𝜌
and to study it for

𝑘 ∈ N we let

Φ𝑘(𝑡) =
𝑁(|𝜆𝑛𝑘

|) + 𝑛𝑘 ln 𝑡

𝑡𝜌
, 𝑡 > 0.

Since on the intervals 𝐼𝑘 = [|𝜆𝑛𝑘
|, |𝜆𝑛𝑘+1|) we have 𝑛Λ(𝑡) ≡ 𝑛𝑘, then

Φ(𝑥) =
𝑁(|𝜆𝑛𝑘

|) + 𝑛𝑘 ln 𝑥
|𝜆𝑛𝑘

|

𝑥𝜌
=

1

|𝜆𝑛𝑘
|𝜌

Φ𝑘

(︂
𝑥

|𝜆𝑛𝑘
|

)︂
, 𝑥 ∈ 𝐼𝑘.

According to Item III of Lemma, Φ(𝑥) is either monotone on 𝐼𝑘 or it has the unique maximum
on this interval. In any case we have

inf
𝑥∈𝐼𝑘

{Φ(𝑥)} = min
{︀

Φ(|𝜆𝑛𝑘
|), Φ(|𝜆𝑛𝑘+1

|)
}︀
, 𝑘 ∈ N.

Hence,

∆* = lim
𝑘→∞

inf
𝑥∈𝐼𝑘

Φ(𝑥) = lim
𝑘→∞

min
{︀

Φ(|𝜆𝑛𝑘
|), Φ(|𝜆𝑛𝑘+1

|)
}︀

≥ lim
𝑘→∞

inf
𝑚≥𝑘

Φ(|𝜆𝑚|) = lim
𝑚→∞

Φ(|𝜆𝑚|) = ∆̃︀ , i.e. ∆* ≥ ∆̃︀ .

Comparing with the previous relation, we obtain ∆̃︀ = ∆*. The proof is complete.

In the formulation of the next result we make use of the following standard notation 𝑎+ =
max {𝑎, 0} .



24 G.G. BRAICHEV

Theorem 2. For each sequence Λ ⊂ C tending to infinity with the averaged upper 𝜌-density
∆

*
𝜌 (Λ) = ∆

* ∈ (0, +∞) the inequalities

∆
*
6 ̃︀∆ 𝑒 𝜌 𝜈−1

𝜌 𝜈
, (21)

∆
*
6 ̃︀∆ 𝑒 𝜌 𝜈−1

𝜌 𝜈
, (22)

∆
*
6 ̃︀∆ 𝑙𝜌

ln 𝑙𝜌 + 1
, (23)

∆
*
6 ̃︀∆ 𝑙−𝜌

(ln 𝑙−𝜌 + 1)+
(24)

hold true.

Proof. First of all we observe that inequality (23) specifies inequality (5) in the case 𝑙 > 1. Now
we proceed to the proof.

If ̃︀∆ = ∆
*
, inequalities (21)–(24) are obviously true since each factor in quantity ̃︀∆ in the

right hand sides of these inequalities is at least one.

Let us study the case ̃︀∆ < ∆
*
. We choose a positive number 𝜀 < ∆

* − ̃︀∆. Keeping the
notations of Theorem 1 and employing the definition of upper averaged density, we find the
sequences of indices K and points 𝑥𝑘 so that the relations

∆
*

= lim
𝑘→∞

sup
𝑥∈𝐼𝑘

Φ(𝑥) = lim
𝑘∈K

sup
𝑥∈𝐼𝑘

Φ(𝑥),

Φ(𝑥𝑘) = sup
𝑥∈𝐼𝑘

Φ(𝑥) > ̃︀∆ + 𝜀, 𝑘 ∈ K

hold true. For sufficiently great indices 𝑘, at the end-points of segment 𝐼𝑘 function Φ(𝑥) takes
the values

Φ(|𝜆𝑛𝑘
|) < ̃︀∆ + 𝜀 < Φ(𝑥𝑘).

Thus, neglecting a finite number of the indices in K if it is needed, we can suppose for each
𝑘 ∈ K the point 𝑥𝑘 lies strictly inside 𝐼𝑘, i.e.,

|𝜆𝑛𝑘
| < 𝑥𝑘 < |𝜆𝑛𝑘+1

|, 𝑘 ∈ K.

We denote 𝑐𝑘 =
|𝜆𝑛𝑘+1

|
|𝜆𝑛𝑘

|
and 𝜈𝑘 =

𝑁(|𝜆𝑛𝑘
|)

𝑛𝑘

. Applying Item III of Lemma to function Φ𝑘(𝑡),

due to the identity

Φ(𝑥) =
1

|𝜆𝑛𝑘
|𝜌

Φ𝑘

(︂
𝑥

|𝜆𝑛𝑘
|

)︂
, 𝑥 ∈ 𝐼𝑘,

we obtain

1 <
𝑥𝑘

|𝜆𝑛𝑘
|

= 𝑒
1
𝜌
−𝜈𝑘 < 𝑐𝑘, (25)

Φ(𝑥𝑘) =
𝑛𝑘

|𝜆𝑛𝑘
|𝜌
𝑒𝜌 𝜈𝑘−1 =

𝑁(|𝜆𝑛𝑘
|)

|𝜆𝑛𝑘
|𝜌

𝑒𝜌 𝜈𝑘−1

𝜌 𝜈𝑘
= Φ(|𝜆𝑛𝑘

|) 𝑒
𝜌 𝜈𝑘−1

𝜌 𝜈𝑘
. (26)

Finding the logarithm of (25), we arrive at the inequality

1 − ln 𝑐𝜌𝑘 < 𝜌𝜈𝑘 < 1. (27)

After the above preliminary work, estimate (21) can be easily proven by passing to a limit
in (26):

∆
*

= lim
𝑘∈K

Φ(𝑥𝑘) = lim
𝑘∈K

{︂
Φ(|𝜆𝑛𝑘

|) 𝑒
𝜌 𝜈𝑘−1

𝜌 𝜈𝑘

}︂
6 lim

𝑘→∞
Φ(|𝜆𝑛𝑘

|) lim
𝑘→∞

𝑒𝜌 𝜈𝑘−1

𝜌 𝜈𝑘
6 ̃︀∆𝑒𝜌 𝜈−1

𝜌 𝜈
.
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Here we have used that 𝑞2(𝑥) =
𝑒𝑥−1

𝑥
decreases on the interval (0, 1) in accordance with Item II

of Lemma.
Inequality (22) can be proven in the same way. We write

Φ(𝑥) =
𝑁(|𝜆𝑛𝑘+1

|) + 𝑛𝑘 ln 𝑥
|𝜆𝑛𝑘+1

|

𝑥𝜌
=

1

|𝜆𝑛𝑘+1
|𝜌

Φ𝑘

(︂
𝑥

|𝜆𝑛𝑘+1
|

)︂
, 𝑥 ∈ 𝐼𝑘.

We denote 𝜈 ′
𝑘 =

𝑁(|𝜆𝑛𝑘+1
|)

𝑛𝑘

to obtain

1

𝑐𝑘
<

𝑥

|𝜆𝑛𝑘+1
|

= 𝑒
1
𝜌
−𝜈′𝑘 < 1.

And finding the logarithm,

1 < 𝜌𝜈 ′
𝑘 < 1 + ln 𝑐𝜌𝑘. (28)

The next relation is deduced completely in the same way as formula (25) and it casts into the
form

Φ(𝑥𝑘) =
𝑛𝑘

|𝜆𝑛𝑘+1
|𝜌
𝑒𝜌 𝜈

′
𝑘−1 =

𝑁(|𝜆𝑛𝑘+1
|)

|𝜆𝑛𝑘+1
|𝜌

𝑒𝜌 𝜈
′
𝑘−1

𝜌 𝜈 ′
𝑘

= Φ(|𝜆𝑛𝑘+1
|) 𝑒

𝜌 𝜈′𝑘−1

𝜌 𝜈 ′
𝑘

. (29)

Using again Item II of Lemma, this time on interval (1, +∞), where function 𝑞2(𝑥) increases,
by the passage to a limit, from (28) we get (22):

∆
*

= lim
𝑘∈K

Φ(𝑥𝑘) 6 lim
𝑘→∞

Φ(|𝜆𝑛𝑘+1
|) lim

𝑘→∞

𝑒𝜌 𝜈
′
𝑘−1

𝜌 𝜈 ′
𝑘

6 ̃︀∆ 𝑒𝜌 𝜈−1

𝜌 𝜈
.

In order to prove inequality (23) we employ the definition of lacunarity index. According to
this definition, for each 𝜀 > 0 and each 𝑘 ≥ 𝑘0(𝜀) we have 𝑐𝑘 < 𝑙 + 𝜀. For sufficiently large
𝑘 ∈ K, it allows us to obtain by (28) that 1 < 𝜌𝜈 ′

𝑘 < 1+ln(𝑙+ 𝜖)𝜌, and then by (29) and Item II
we get

Φ(𝑥𝑘) < Φ(|𝜆𝑛𝑘+1
|) 𝑒ln(𝑙+𝜀)𝜌

ln(𝑙 + 𝜀) + 1
< (̃︀∆ + 𝜀)

(𝑙 + 𝜀)𝜌

ln(𝑙 + 𝜀) + 1
.

Passing to the limits as 𝑘 → ∞, 𝑘 ∈ K and 𝜀 → 0, we arrive at the desired estimate (23).
The proof of inequality (24) follows similar lines. Indeed, the inequalities

1 − ln(𝑙 + 𝜖)𝜌 < 1 − ln 𝑐𝑘 < 𝜌𝜈𝑘 < 1, 𝜌 𝜈𝑘 > 0,

follow from (27) that implies 𝜌 𝜈𝑘 > (1 + ln(𝑙+ 𝜖)−𝜌)+. The rest is clear. The proof is complete.

We note that estimates (21) and (22) of Theorem 2 can be written as̃︀∆
∆

* ≥ 𝜌 𝜈𝑒1−𝜌 𝜈 = 𝑒1−𝜌 𝜈 ln
𝑒

𝑒1−𝜌 𝜈
,

̃︀∆
∆

* ≥ 𝑒1−𝜌 𝜈 ln
𝑒

𝑒1−𝜌 𝜈
,

respectively. Since function 𝑎 ln
𝑒

𝑎
strictly increases on the segment [0, 1] and strictly decreases

on the segment [1,∞), the previous inequalities are equivalent to the following ones

𝑒1−𝜌 𝜈 ≥ ̃︀𝑎2, 𝑒1−𝜌 𝜈 6 ̃︀𝑎1, (30)

where ̃︀𝑎1, ̃︀𝑎2 are roots to the equation 𝑎 ln
𝑒

𝑎
=
̃︀∆

∆
* , 0 6 ̃︀𝑎1 6 1 6 ̃︀𝑎2 6 𝑒. Finding the logarithm

of (30), we arrive at the relations

𝜌 𝜈 ̃︀𝑎2 6 ̃︀𝑎2 ln
𝑒̃︀𝑎2 =

̃︀∆
∆

* and 𝜌 𝜈 ̃︀𝑎1 ≥ ̃︀𝑎1 ln
𝑒̃︀𝑎1 =

̃︀∆
∆

* .
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Hence, inequalities (21) and (22) of Theorem 2 can be shortly written in the equivalent form

𝜌 𝜈 ̃︀𝑎2 6 ̃︀∆
∆

* 6 𝜌 𝜈 ̃︀𝑎1.
Proceeding in the same way, we write (23) and (24) as̃︀∆

∆
* ≥ 𝑙−𝜌 ln

𝑒

𝑙−𝜌
and

̃︀∆
∆

* ≥ 𝑙𝜌 ln
𝑒

𝑙𝜌
(31)

that is equivalent to ̃︀𝑎1 ≥ 𝑙−𝜌, ̃︀𝑎2 6 𝑙𝜌. (32)

Let us complete now inequality (21) by a lower estimate in terms of lower averaged and
relative densities.

Proposition 6. The inequalities

∆* 𝑒
𝜌 𝜈−1

𝜌 𝜈
6 ∆

*
6 ̃︀∆ 𝑒𝜌 𝜈−1

𝜌 𝜈
(33)

hold true.

Proof. We need to justify only the left hand side of estimate (33) in a nontrivial case when 0 <

∆* 6 ∆
*
< +∞. We argue by contradiction assuming that ∆

*
< ∆* 𝑒

𝜌 𝜈−1

𝜌 𝜈
. Then 𝜌 𝜈𝑒1−𝜌 𝜈 <

∆*

∆
* , or, which is equivalent, 𝑒1−𝜌 𝜈 ln

𝑒

𝑒1−𝜌 𝜈
<

∆*

∆
* . Therefore, 𝑒1−𝜌 𝜈 > 𝑎2, where, as above, 𝑎2

indicates the greater root of the equation 𝑎 ln
𝑒

𝑎
=

∆*

∆
* . In view of the left hand side in (13) it

yields that
∆*

∆
* = 𝑎2 ln

𝑒

𝑎2
> 𝑎2𝜌 𝜈 ≥ 𝑎2𝜌

∆*

∆
.

The obtained inequality
∆*

∆
* > 𝑎2𝜌

∆*

∆
implies the estimate ∆ > 𝑎2𝜌∆

*
contradicting the latter

relation in (2). The proof is complete.

We note once again in the case of a discrete measurable sequence determined by the condition

∆* = ̃︀∆ the inequalities in Proposition 6 becomes identities justifying the exactness of estimates
(33).

In work [11], for the roots 𝑎1 and 𝑎2 of equation 𝑎 ln
𝑒

𝑎
=

∆*

∆
* the representation

𝑎1 = 𝑒 𝑞
𝑞

1−𝑞 , 𝑎2 = 𝑒 𝑞
1

1−𝑞

was found via the parameter 𝑞 =
𝑎2
𝑎1

. It was shown that in the case of a discrete measurable

sequence of complex numbers with the lacunarity index 𝑙 the identity 𝑞 = 𝑙𝜌 holds true. We
employ these facts to obtain the next result; it is interesting to compare it with estimates (23),
(24) in Theorem 2.

Proposition 7. For an arbitrary sequence of complex numbers with finite positive averaged
densities ∆*, ∆

*
and the lacunarity index 𝑙 the inequalities

∆
* ≥ ∆* 𝑙

𝜌
𝑙𝜌−1

𝑙𝜌 − 1

𝑒 ln 𝑙𝜌
, (34)

∆* 𝑙𝜌 − 1

𝑎2 ln 𝑙𝜌
6 ∆

*
6 ∆* 𝑙𝜌 − 1

𝑎1 𝑙𝜌 ln 𝑙𝜌
. (35)
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As above, 𝑎1 and 𝑎2 are the roots to equation 𝑎 ln
𝑒

𝑎
=

∆*

∆
* . The presence of the discrete

measurability provides the identities in (34), (35).

Proof. It follows from inequalities (5) and (1) that 𝑙𝜌 6
∆

∆
6

𝑎2
𝑎1

= 𝑞, i.e., 𝑙𝜌 6 𝑞. Employing

Item I of Lemma, we see that the expression 𝑎2(𝑞) = 𝑒 𝑞
1

1−𝑞 increases as 𝑞 does. Hence,

𝑎2(𝑞) ≥ 𝑎2(𝑙
𝜌). Since the function 𝑎 ln

𝑒

𝑎
decreases on the interval [1,+∞), we have

∆*

∆
* = 𝑎2(𝑞) ln

𝑒

𝑎2(𝑞)
6 𝑎2(𝑙

𝜌) ln
𝑒

𝑎2(𝑙𝜌)
= 𝑒 𝑙

𝜌
1−𝑙𝜌

ln 𝑙𝜌

𝑙𝜌 − 1

that implies (34). Inequalities (35) can be proven by similar arguments if one also notes that

𝑎1 = 𝑎1(𝑞) = 𝑒 𝑞
𝑞

1−𝑞 decreases as 𝑞 increases. For instance, the right hand side of (35) follows
from the relations

∆*

∆
* = 𝑎1(𝑞) ln

𝑒

𝑎1(𝑞)
≥ 𝑎1 ln

𝑒

𝑎1(𝑙𝜌)
= 𝑎1 𝑙

𝜌 ln 𝑙𝜌

𝑙𝜌 − 1
.

The proof is complete.

As it has been observed, the discrete measurability of a sequence does not imply its measur-
ability. It is interesting to know what are the additional conditions ensuring the measurability.
As we see by Proposition 1, one of such condition is a weak lacunarity of a sequence. Indeed,

as 𝑙 = 1, it follows from (6) that ∆* 6 ∆
*
6 ̃︀∆ = ∆*, i.e., ∆* = ∆

*
. Another condition is the

internal measurability of a sequence that implies, in accordance with inequality (8) in Propo-
sition 1, its weak lacunarity. However, we can obtain a stronger statement from Theorem 2.

Proposition 8. Let Λ be a discrete measurable sequence of complex numbers. Then each of
the conditions 𝜈 = 1

𝜌
or 𝜈 = 1

𝜌
implies the measurability of this sequence.

Proof. The discrete measurability means that ̃︀∆ = ∆*. And each of the conditions from the

proposition, in accordance with formulae (21) and (22), imply the inequalities ∆* 6 ∆
*
6 ̃︀∆ 6

∆* that yields the measurability.

There appears a natural question: whether only the weak lacunarity or only the internal
measurability (with the discrete one) of a sequence implies its measurability? We shall give
the negative answer to both the questions by using the notion of Valiron’s specified order-
ing. We remind that it indicates a differentiable on R+ function 𝜌(𝑥) satisfying two condi-
tions lim

𝑥→+∞
𝜌(𝑥) = 𝜌 > 0 and lim

𝑥→+∞
𝜌′(𝑥)𝑥 ln𝑥 = 0 which are equivalent to one condition

lim
𝑥→+∞

𝑥ℎ′(𝑥)

ℎ(𝑥)
= 𝜌 for the function ℎ(𝑥) = 𝑥𝜌(𝑥) or, which is more convenient for our aims, to

the condition

lim
𝑥→+∞

𝑥𝐿′(𝑥)

𝐿(𝑥)
= 0 (36)

for the function 𝐿(𝑥) = ℎ(𝑥)𝑥−𝜌.

Proposition 9. Given any 𝜌 > 0, 𝛽 > 0 and 𝛼 ∈ [0, 𝛽], there exist internal measurable
weakly lacunar sequences with 𝜌-densities ∆ = 𝛼 and ∆ = 𝛽.

Proof. Suppose numbers 𝜌, 𝛽 and 𝛼 satisfy the hypothesis of the proposition. If 𝛼 > 0, to
construct the desired sequence we take the function 𝛼(𝑥) ≡ 𝛼. If 𝛼 = 0, we let 𝛼(𝑥) = ln−𝛾 𝑥,
where 𝛾 ∈ (0, 1). As 𝐿(𝑥) we choose then the function

𝐿(𝑥) =
1

𝜌

√︀
𝛼(𝑥)𝛽

(︃√︃
𝛽

𝛼(𝑥)

)︃sin ln𝛾 𝑥

,
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and it is easy to check that it satisfies condition (36). We define then the function 𝑛(𝑥) =
[𝑥ℎ′(𝑥)] and choose sequence Λ so that its counting function coincides with 𝑛(𝑥). Here ℎ(𝑥) =
𝑥𝜌 𝐿(𝑥), and [𝑥] denotes the integer part of number 𝑥. The results of monograph [7] follow that
as 𝑥 → +∞, conditions 𝑁(𝑥) ∼ ℎ(𝑥) and 𝑛(𝑥) ∼ 𝑥ℎ′(𝑥) for the counting functions of Λ are
equivalent. Sequence Λ is internal measurable since by the construction it satisfies

lim
𝑥→+∞

𝑁(𝑥)

𝑛(𝑥)
= lim

𝑥→+∞

ℎ(𝑥)

𝑥ℎ′(𝑥)
=

1

𝜌
.

On the other hand,

𝜌∆ * =𝜌 lim
𝑥→+∞

𝑁(𝑥)

𝑥𝜌
= 𝜌 lim

𝑥→+∞

ℎ(𝑥)

𝑥𝜌
= 𝜌 lim

𝑥→+∞
𝐿(𝑥)

= lim
𝑥→+∞

√︀
𝛼(𝑥)𝛽

(︃√︃
𝛽

𝛼(𝑥)

)︃sin ln𝛾 𝑥

= lim
𝑥→+∞

√︀
𝛼2(𝑥) = lim

𝑥→+∞
𝛼(𝑥) = 𝛼

and

𝜌∆
*

= 𝜌 lim
𝑥→+∞

𝑁(𝑥)

𝑥𝜌
= 𝜌 lim

𝑥→+∞
𝐿(𝑥) = lim

𝑥→+∞

√︀
𝛼(𝑥)𝛽

(︃√︃
𝛽

𝛼(𝑥)

)︃sin ln𝛾 𝑥

= 𝛽.

Applying the corollary of Proposition 2, we obtain

∆ = 𝜌∆ * = 𝛼 and ∆ = 𝜌∆
*

= 𝛽.

Thus, the constructed sequence has prescribed 𝜌-densities, is internal measurable and its weak
lacunarity follows from inequality (8) of Proposition 1. The proof is complete.

Summarizing the above arguments, we can formulate the following statement.

Proposition 10. An arbitrary sequence Λ = {𝜆𝑛}∞𝑛=1 of complex numbers with the conver-

gence index 𝜌 > 0 and 0 < ∆ < ∞ is measurable if and only if it is discrete measurable and at
least one of the following conditions holds

a) sequence Λ is weakly lacunar, i.e., 𝑙Λ = lim
𝑛→∞

|𝜆𝑛+1|
|𝜆𝑛|

= 1;

b) the condition 𝜈 = lim
𝑥→+∞

𝑁(𝑥)

𝑛(𝑥)
=

1

𝜌
holds true;

c) the condition 𝜈 = lim
𝑥→+∞

𝑁(𝑥)

𝑛(𝑥)
=

1

𝜌
holds true;

d) sequence Λ is internal measurable, i.e., there exists the limit

lim
𝑥→+∞

𝑁(𝑥)

𝑛(𝑥)

(︂
=

1

𝜌

)︂
.

Proof. The sufficiency of the discrete measurability of sequence Λ with each of conditions a) or
d) for its measurability has already been discussed before Proposition 8, and similar discussion
for conditions b) and c) was made in Proposition 8.

Suppose now sequence Λ is measurable, i.e., ∆ = ∆ = ∆. Its discrete measurability follows
immediately from the definition. The weak lacunarity follows from inequality (5) of Propo-
sition 1, and its internal measurability is implied by inequalities (1) and the existence of the
limit

𝜈 = lim
𝑥→+∞

𝑁(𝑥)

𝑛(𝑥)
= lim

𝑥→+∞

𝑁(𝑥)/𝑥𝜌

𝑛(𝑥)/𝑥𝜌
=

∆/𝜌

∆
=

1

𝜌
.

The proof is complete.
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