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ONE DIMENSIONAL STOCHASTIC DIFFERENTIAL

EQUATIONS: PATHWISE APPROACH

M.A. ABDULLIN, N.S. ISMAGILOV, F.S. NASYROV

Abstract. We study path-wise analogues of one dimensional stochastic differential equa-
tions with symmetric integrals. We find existence and uniqueness conditions for solutions,
the conditions of continuity and differentiability w.r.t. a parameter, as well as the con-
ditions of linearization for such equations. We also study the structure of the solutions.
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1. Introduction. Symmetric integral and its properties.

In the stochastic analysis (see, for instance, [5]) two kinds of integrals are mainly employed,
these are Itō integral and Stratonovic integral. The latter happened to be more susceptible to
a generalization and its deterministic analogue is a symmetric integral. Symmetric integrals
were introduced by the third author, and the systematic exposition of the theory of symmetric
integrals and some results on the theory of equations with symmetric integrals were provided
in monograph [8].

The main aim of these studies is to move to the language of the theory of functions the
part of the stochastic analysis which can constructed with involving the notion of symmetric
integral. Under such approach the integration can be made along arbitrary continuous function
(realization of a stochastic process), and the integrands are not necessary to be predictible.

In what follows we provide the definition and some properties of symmetric integral (for more
detail cf. [6], [8]).

Let 𝑋(𝑠), 𝑠 ∈ [0,+∞), be an an arbitrary continuous function, then as a symmetric integral
we call ∫︁ 𝑡

0

𝑓(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠) = lim
𝑛→∞

∫︁ 𝑡

0

𝑓(𝑠,𝑋(𝑛)(𝑠))(𝑋(𝑛))′(𝑠)𝑑𝑠, (1)

where 𝑋(𝑛)(𝑠) is the polyline constructed by the partition {𝑡(𝑛)𝑘 } of the segment [0, 𝑡] and the

function 𝑋(𝑠), at that, max
𝑘

(𝑡
(𝑛)
𝑘 − 𝑡

(𝑛)
𝑘−1) → 0 as 𝑛→ ∞.

We shall say that condition (𝑆) holds true for a pair of functions (𝑋(𝑠), 𝑓(𝑠, 𝑢)) if the following
assumptions are satisfied:
(a) 𝑋(𝑠), 𝑠 ∈ [0, 𝑡], is a continuous function;
(b) For a.e. 𝑢 the function 𝑓(𝑠, 𝑢), 𝑠 ∈ [0, 𝑡], is right continuous and has a bounded variation;
(c) The total variation |𝑓 |(𝑡, 𝑢) w.r.t. variable 𝑠 of the function 𝑓(𝑠, 𝑢) on [0, 𝑡] is locally
summable w.r.t. variable 𝑢;
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(d) For a.e. 𝑢 we have
∫︀ 𝑡

0
1(𝑠 : 𝑋(𝑠) = 𝑢)|𝑓 |(𝑑𝑠, 𝑢) = 0.

It was shown in [6], [8] that if functions (𝑋(𝑠), 𝑓(𝑠, 𝑢)) satisfy condition (𝑆), then symmetric

integral
∫︀ 𝑡

0
𝑓(𝑠,𝑋(𝑠) * 𝑑𝑋(𝑠) exists.

Important properties of symmetric integral.

1. Suppose that (𝑋(𝑠), 𝑓(𝑠, 𝑢)) satisfy condition (𝑆), then∫︁ 𝑡

0

𝑓(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠) =

∫︁ 𝑋(𝑡)

𝑋(0)

𝑓(𝑡, 𝑢)𝑑𝑢−
∫︁
𝑅

∫︁ 𝑡

0

𝜅(𝑢,𝑋(0), 𝑋(𝑠))𝑓(𝑑𝑠, 𝑢)𝑑𝑢, (2)

where 𝜅(𝑢, 𝑎, 𝑏) = 𝑠𝑖𝑔𝑛(𝑏− 𝑎)1(𝑎 ∧ 𝑏 < 𝑢 < 𝑎 ∨ 𝑏).
2. For symmetric integral, the differential corresponding to the stochastic differential with
Stratonovich integral holds true.
Let a function 𝐹 (𝑡, 𝑢) has continuous partial derivatives 𝐹 ′

𝑡 and 𝐹 ′
𝑢, then there exists the

symmetric integral
∫︀ 𝑡

0
𝐹 ′
𝑢(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠) and the formula

𝐹 (𝑡,𝑋(𝑡)) − 𝐹 (0, 𝑋(0)) =

∫︁ 𝑡

0

𝐹 ′
𝑢(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠) +

∫︁ 𝑡

0

𝐹 ′
𝑠(𝑠,𝑋(𝑠))𝑑𝑠 (3)

holds true.

3. Let 𝑌 (𝑠), 𝑠 ∈ 𝑅+, be a continuous function and let 𝑋(𝑠) = 𝑔(𝑠, 𝑌 (𝑠)), where function
𝑔(𝑠, 𝑦), 𝑠 ∈ 𝑅+, 𝑦 ∈ 𝑅 and its partial derivatives 𝑔′𝑠(𝑠, 𝑦) and 𝑔′𝑦(𝑠, 𝑦) are jointly continuous.
Assume the conditions:

∙ Functions 𝑓(𝑠, 𝑢), 𝑓 ′
𝑠(𝑠, 𝑢), 𝜑(𝑠, 𝑦), 𝜑′

𝑠(𝑠, 𝑦), where 𝜑(𝑠, 𝑦)=𝑓(𝑠, 𝑔(𝑠, 𝑦))𝑔′𝑦(𝑠, 𝑦), are jointly
continuous.

∙ Pairs of functions (𝑋(𝑠), 𝑓(𝑠, 𝑢)) and (𝑌 (𝑠), 𝜑(𝑠, 𝑦)) satisfy condition (𝑆) on [0, 𝑡].

Then the formula for the change of variables in the symmetric integral∫︁ 𝑡

0

𝑓(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠) =

∫︁ 𝑡

0

𝑓(𝑠, 𝑔(𝑠, 𝑌 (𝑠)))𝑔′𝑦(𝑠, 𝑌 (𝑠)) * 𝑑𝑌 (𝑠)+

+

∫︁ 𝑡

0

𝑓(𝑠, 𝑔(𝑠, 𝑌 (𝑠)))𝑔′𝑠(𝑠, 𝑌 (𝑠))𝑑𝑠.

holds true.

Let 𝑊 (𝑠) = 𝑊 (𝑠, 𝜔) be a standard Wiener process, then in the framework of Itō formula for

almost all trajectories of the Wiener process the pathwise symmetric integral
∫︀ 𝑡

0
𝑓(𝑠,𝑊 (𝑠)) *

𝑑𝑊 (𝑠) coincides with the stochastic Stratonovich integral
∫︀ 𝑡

0
𝑓(𝑠,𝑊 (𝑠)) * 𝑑𝑊 (𝑠). This is why

we shall employ the same notation for both kinds of integrals.

2. On existence and uniqueness of solutions to ordinary differential
equations with symmetric integrals

A new type of integral posed the problem on moving a part of the results in the theory
of stochastic differential equations (SDE) to the deterministic language. Although the class
of integrands for the symmetric integral is rather narrow, it happened to be sufficient for
constructing a meaningful theory of deterministic analogues of SDE.

We consider the Cauchy problem for the equation with the symmetric integral

𝑑𝜉𝑡 = 𝜎(𝑡,𝑋(𝑡), 𝜉𝑡) * 𝑑𝑋(𝑡) + 𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)𝑑𝑡, 𝜉0 = 𝜉(0), 𝑡 ∈ [0, 𝑡0], (4)

where 𝑋(𝑡), 𝑡 ∈ [0, 𝑡0], is a continuous function.
A solution to Cauchy problem (4) is a function 𝜉𝑡 = 𝜙(𝑡,𝑋(𝑡)) possessing continuous deriva-

tives 𝜙′
𝑡(𝑡, 𝑣), 𝜙′

𝑣(𝑡, 𝑣) such that the differential with the symmetric integral of this function
coincide with the right hand side of equation in (4).
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Theorem 1. Let 𝑋(𝑡), 𝑡 ∈ [0, 𝑡0], be a continuous function and the coefficients of the
equation 𝜎(𝑡, 𝑣, 𝜑) and 𝑏(𝑡, 𝑣, 𝜑) are jointly continuous. Suppose that a function 𝜙(𝑡, 𝑣),
𝜙(0, 𝑋(0)) = 𝜉(0) possesses continuous derivatives 𝜙′

𝑡(𝑡, 𝑣), 𝜙′
𝑣(𝑡, 𝑣), and for a.e. 𝑡 ∈ [0, 𝑡0]

satisfies the system of equations

𝜙′
𝑡(𝑡,𝑋(𝑡)) = 𝑏(𝑡,𝑋(𝑡), 𝜙(𝑡,𝑋(𝑡))), (5)

𝜙′
𝑣(𝑡,𝑋(𝑡)) = 𝜎(𝑡,𝑋(𝑡), 𝜙(𝑡,𝑋(𝑡))). (6)

Then for each 𝑡 ∈ [0, 𝑡0] there exists the symmetric integral∫︁ 𝑡

0

𝜎(𝑠,𝑋(𝑠), 𝜙(𝑠,𝑋(𝑠))) * 𝑑𝑋(𝑠)

and 𝜉𝑡 = 𝜙(𝑡,𝑋(𝑡)) is a solution to the equation in (4).

Proof. Let a function 𝜙(𝑡, 𝑣), 𝜙(0, 𝑋(0)) = 𝜉(0), possessing continuous derivatives 𝜙′
𝑡(𝑡, 𝑣),

𝜙′
𝑣(𝑡, 𝑣) satisfies conditions (5) and (6) for a.e. 𝑡 ∈ [0, 𝑡0]. We note that due to the continuity of

the expressions in the both sides of identities (5) and (6), the validity of identities (5) and (6)
for a.e. 𝑡 ∈ [0, 𝑡0] is equivalent to its validity for each 𝑡 ∈ [0, 𝑡0]. Then in view of the formulae
for the differential with a symmetric integral we have

𝜙(𝑡,𝑋(𝑡)) − 𝜉(0) =

∫︁ 𝑡

0

𝜙′
𝑣(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠) +

∫︁ 𝑡

0

𝜙′
𝑠(𝑠,𝑋(𝑠)) 𝑑𝑠 =

=

∫︁ 𝑡

0

𝜎(𝑠,𝑋(𝑠), 𝜉𝑠) * 𝑑𝑋(𝑠) +

∫︁ 𝑡

0

𝑏(𝑠,𝑋(𝑠), 𝜉𝑠) 𝑑𝑠.

Therefore, function 𝜉(𝑡) = 𝜙(𝑡,𝑋(𝑡)) solves Cauchy problem (4).

Theorem 2. Let 𝑋(𝑡), 𝑡 ∈ [0, 𝑡0], be a continuous almost nowhere differentiable function
and the coefficients of equations 𝜎(𝑡, 𝑣, 𝜑) and 𝑏(𝑡, 𝑣, 𝜑) satisfy the conditions
(a) Function 𝜎(𝑡, 𝑣, 𝜑) is jointly continuous and has continuous partial derivatives 𝜎′

𝑡(𝑡, 𝑣, 𝜑)
and 𝜎′

𝜑(𝑡, 𝑣, 𝜑);
(b) Function 𝑏(𝑡, 𝑣, 𝜑) is jointly continuous.

Then the following conditions are equivalent
1. Cauchy problem (4) has the solution 𝜉𝑡 = 𝜙(𝑡,𝑋(𝑡)) with function 𝜙(𝑡, 𝑣);
2. Function 𝜙(𝑡, 𝑣) possessing continuous derivatives 𝜙′

𝑡(𝑡, 𝑣), 𝜙′
𝑣(𝑡, 𝑣), 𝜙′′

𝑡𝑣(𝑡, 𝑣) and being
such that 𝜙(0, 𝑋(0)) = 𝜉(0) for a.e. 𝑡 ∈ [0, 𝑡0] satisfies conditions (5) and (6).

Proof. Let 𝜉𝑡 = 𝜙(𝑡,𝑋(𝑡)) be a solution to the equation in (4), then due to the formulae for the
differential and for calculating the symmetric integral for each 𝑡 ∈ [0, 𝑡0] we have

𝜙(𝑡,𝑋(𝑡)) − 𝜙(0, 𝑋(0)) =

∫︁ 𝑋(𝑡)

𝑋(0)

𝜙′
𝑣(𝑡, 𝑣)𝑑𝑣 +

∫︁ 𝑡

0

𝜙′
𝑠(𝑠,𝑋(0)) 𝑑𝑠 =

=

∫︁ 𝑋(𝑡)

𝑋(0)

𝜎(𝑡, 𝑣, 𝜙(𝑡, 𝑣))𝑑𝑣 +

∫︁ 𝑡

0

[︃
𝑏(𝑠,𝑋(𝑠), 𝜙(𝑠,𝑋(𝑠))) −

∫︁ 𝑋(𝑠)

𝑋(0)

(𝜎(𝑠, 𝑣, 𝜙(𝑠, 𝑣))′𝑠𝑑𝑣

]︃
𝑑𝑠.

We denote

Φ(𝑡, 𝑣) = 𝜙′
𝑣(𝑡, 𝑣) − 𝜎(𝑡, 𝑣, 𝜙(𝑡, 𝑣)),

𝑔(𝑡,𝑋(𝑡)) = 𝑏(𝑡,𝑋(𝑡), 𝜙(𝑡,𝑋(𝑡))) − 𝜙′
𝑡(𝑡,𝑋(0)) −

∫︁ 𝑋(𝑡)

𝑋(0)

(𝜎(𝑡, 𝑣, 𝜙(𝑡, 𝑣))′𝑡𝑑𝑣,

then the identity obtained above can be written as∫︁ 𝑋(𝑡)

𝑋(0)

Φ(𝑡, 𝑣)𝑑𝑣 =

∫︁ 𝑡

0

𝑔(𝑠,𝑋(𝑠))𝑑𝑠. (7)
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We note that the right hand side in identity (7) is continuously differentiable w.r.t. 𝑡 as the
integral with the variable upper limit, hence, the same true for the left hand side. Differentiating
then both sides of identity (7) w.r.t. variable 𝑡, we get

𝑔(𝑡,𝑋(𝑡)) −
∫︁ 𝑋(𝑡)

𝑋(0)

Φ′
𝑡(𝑡, 𝑣)𝑑𝑣 =

𝑑

𝑑𝑡

(︃∫︁ 𝑋(𝑡)

𝑋(0)

Φ(𝑝, 𝑣)𝑑𝑣

)︃⃒⃒⃒⃒
⃒
𝑝=𝑡

, 𝑡 ∈ [0, 𝑡0]. (8)

We let

𝑎𝑡(ℎ) =
1

ℎ

∫︁ 𝑋(𝑡+ℎ)

𝑋(𝑡)

Φ(𝑡, 𝑣)𝑑𝑣, 𝑟𝑡(ℎ) =
1

𝑋(𝑡+ ℎ) −𝑋(𝑡)

∫︁ 𝑋(𝑡+ℎ)

𝑋(𝑡)

Φ(𝑡, 𝑣)𝑑𝑣,

if 𝑋(𝑡+ ℎ) ̸= 𝑋(𝑡), 𝑟𝑡(ℎ) = Φ(𝑡,𝑋(𝑡)) in the case 𝑋(𝑡+ ℎ) = 𝑋(𝑡). By formula (8), for each 𝑡
there exists a finite limit 𝑎(𝑡) = lim

ℎ→0
𝑎𝑡(ℎ), and the limit 𝑟(𝑡) = lim

ℎ→0
𝑟𝑡(ℎ) exists and is finite due

to the continuity of function Φ(𝑡, 𝑣) w.r.t. variable 𝑣, and at that, for each ℎ ̸= 0 the identity

𝑎𝑡(ℎ)

𝑟𝑡(ℎ)
=
𝑋(𝑡+ ℎ) −𝑋(𝑡)

ℎ
(9)

is valid. But function 𝑋(𝑡) is almost nowhere differentiable and hence, for a.e. 𝑡 the limit in
the left hand side of (9) as ℎ→ 0 is either infinite or does not exist. The latter is possible only
in the case when either 𝑎(𝑡) ̸= 0, 𝑟(𝑡) = 0 or 𝑎(𝑡) = 𝑟(𝑡) = 0, i.e., in any case 𝑟(𝑡) = 0. Thus,
for each 𝑡 ∈ [0, 𝑡0] relation (6) holds true. Then, in view of (6), formula

𝜙′
𝑣(𝑡,𝑋(𝑡)) * 𝑑𝑋(𝑡) + 𝜙′

𝑡(𝑡,𝑋(𝑡))𝑑𝑡 = 𝜎(𝑡,𝑋(𝑡), 𝜉𝑡) * 𝑑𝑋(𝑡) + 𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)𝑑𝑡

implies the validity of condition (5).

It seems that there are no well-developed methods for solving system of equations (5), (6),
which is an unusual system of equations along a trajectory of function 𝑋(𝑠). This is why it is
reasonable to solve the following chain of equations instead of system (5), (6):

𝜙′
𝑣(𝑡, 𝑣)=𝜎(𝑡, 𝑣, 𝜙(𝑡, 𝑣)), 𝜙′

𝑡(𝑡,𝑋(𝑡))=𝑏(𝑡,𝑋(𝑡), 𝜙(𝑡,𝑋(𝑡))), 𝜙(0, 𝑋(0))=𝜉(0). (10)

In this case we can employ the methods of the theory of ordinary differential equations (ODE).
Indeed, if it exists, the general solution to the first equation in (10) depends on an arbitrary
function 𝐶(𝑡): 𝜙(𝑡, 𝑣) = 𝜙*(𝑡, 𝑣, 𝐶(𝑡)). Here 𝜙*(𝑡, 𝑣, 𝐶) is a known function and by the theorem
on differentiability w.r.t. the parameter of solution to ODE function 𝐶(𝑡) is smooth. Substitut-
ing the found function 𝜙*(𝑡, 𝑣, 𝐶(𝑡)) into the second equation in (10), we arrive at the Cauchy
problem for unknown function 𝐶(𝑡)

(𝜙*)′𝑡(𝑡,𝑋(𝑡), 𝐶(𝑡)) + (𝜙*)′𝐶(𝑡,𝑋(𝑡), 𝐶(𝑡))𝐶 ′(𝑡) = 𝑏(𝑡,𝑋(𝑡), 𝜙*(𝑡,𝑋(𝑡), 𝐶(𝑡))),

𝜙*(0, 𝑋(0), 𝐶(0)) = 𝜉(0). It is clear that if it exists, a solution to chain (10) gives a solution
to system (5), (6). It means that the solvability of equation (1) can be reduced to the issue on
solvability conditions for ODE in chain (10).

Let us consider in more details the Cauchy problem for a simpler equation with symmetric
integral

𝑑𝜉𝑡 = 𝜎(𝑡, 𝜉𝑡) * 𝑑𝑋(𝑡) + 𝑏(𝑡, 𝜉𝑡)𝑑𝑡, (11)

where 𝑋(𝑡) is a continuous function.
Suppose that in the domain 𝐺 = {(𝑠, 𝜑)} ⊆ 𝑅2 the following conditions hold true:

∙ There exists a constant 𝜎0 such that |𝜎(𝑡, 𝜑)| ≥ 𝜎0 > 0.
∙ Function 𝜎(𝑡, 𝜑) is continuously differentiable w.r.t. both variables.
∙ Function 𝑏(𝑡, 𝜑) is continuous and satisfies local Lipshitz condition w.r.t. 𝜑, i.e., for each

point (𝑡0, 𝜑0) ∈ 𝐺 there exists a neighborhood 𝑈 of this point such that |𝑏(𝑡, 𝜑1)−𝑏(𝑡, 𝜑2)| ≤
𝐿|𝜑1 − 𝜑2| for all (𝑡, 𝜑𝑘) ∈ 𝑈 , 𝑘 = 1, 2, where 𝐿 is independent of the points in 𝑈 .
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We note that the first relation in (10) leads us immediately to the identity

Φ(𝑡, 𝜑, 𝑣) ≡
∫︁

𝑑𝜑

𝜎(𝑡, 𝜑)
− 𝑣 = 0.

Since by our assumptions for (𝑡, 𝜑) ∈ 𝐺, 𝑣 ∈ 𝑅 there exist continuous derivatives Φ′
𝑡(𝑡, 𝜑, 𝑣),

Φ′
𝑣(𝑡, 𝜑, 𝑣) and the non-zero derivative Φ′

𝜑(𝑡, 𝜑, 𝑣), by the implicit function theorem (see [4])
there exists (locally) a function 𝜑 = 𝜑*(𝑡, 𝑣) being continuously differentiable w.r.t. 𝑡 and 𝑣.
For each point (𝑡0, 𝜑0) ∈ 𝐺, by 𝐽0(𝑡0, 𝜑0) we denote the maximal interval where there exists the
implicit function 𝜑 = 𝜑(𝑡, 𝑣, 𝑡0, 𝜑0) with initial conditions 𝜑(𝑡,𝑋(𝑡0)) = 𝜑0.

The second equation in (10) can be written as

𝐶 ′(𝑡) =
𝑏(𝑡, 𝜑(𝑡,𝑋(𝑡) + 𝐶(𝑡))) − (𝜑)′𝑡(𝑡, 𝑣)|𝑣=𝑋(𝑡)+𝐶(𝑡)

𝜎(𝑡, 𝜑(𝑡,𝑋(𝑡) + 𝐶(𝑡)))
. (12)

Let 𝐶(𝑡0) be determined by the identity 𝜑(𝑡0, 𝑋(𝑡0) + 𝐶(𝑡0)) = 𝜑0. We observe that the
right hand side of equation (11) is continuous in 𝐺 and in view of the fact that 𝜎(𝑡, 𝜑) is
continuously differentiable on 𝐺 and 𝜑(𝑡, 𝑣) is continuously differentiable w.r.t. both vari-
ables, formula (𝜑)′𝑣(𝑡, 𝑣)=𝜎(𝑡, 𝑣, 𝜑(𝑡, 𝑣)) implies the continuous differentiability of the function
(𝜑)′𝑡(𝑡, 𝑣)|𝑣=𝑋(𝑡)+𝐶 w.r.t. variable 𝐶. Therefore, by Theorem 2.3.2 in [4], 𝐺(1) = {(𝑡, 𝐶) :
(𝑡, 𝜑(𝑡,𝑋(𝑡) + 𝐶)) ∈ 𝐺} is the uniqueness domain for equation (11) and 𝐶(𝑡) = 𝐶(𝑡, 𝑡0, 𝐶0) is
a solution to equation (11) with initial condition (𝑡0, 𝐶0) defined on the set 𝐷 = {(𝑡, 𝑡0, 𝐶0) :
(𝑡0, 𝐶0) ∈ 𝐺(1), 𝑡 ∈ 𝐽1(𝑡0, 𝐶0)}, where 𝐽1(𝑡0, 𝐶0) is the maximal interval of existence for the
solution to equation (11). This is why for each initial condition (𝑡0, 𝜑0) ∈ 𝐺 there exists the
solution 𝜉𝑡 = 𝜑*(𝑡,𝑋(𝑡) + 𝐶(𝑡)) on the interval 𝐽(𝑡0, 𝜑0) = 𝐽0(𝑡0, 𝜑0) ∩ 𝐽1(𝑡0, 𝐶0).

Example 1. Consider the linear Itō equation with constant coefficients

𝜉𝑡 − 𝜉0 =

∫︁ 𝑡

0

[𝑎𝜉𝑠 + 𝑏]𝑑𝑊 (𝑠) +

∫︁ 𝑡

0

[𝑒𝜉𝑠 + 𝑓 ]𝑑𝑠.

Here the first term in the right hand side is the stochastic Itō integral. Passing to the corre-
sponding equation with stochastic Stratonovich integral, we obtain

𝜉𝑡 − 𝜉0 =

∫︁ 𝑡

0

[𝑎𝜉𝑠 + 𝑏] * 𝑑𝑊 (𝑠) +

∫︁ 𝑡

0

[ℎ𝜉𝑠 + 𝑔]𝑑𝑠, (13)

where ℎ = 𝑒− 𝑎2/2, 𝑔 = 𝑓 − 𝑎𝑏/2. We seek a solution to (13) as 𝜉𝑡 = 𝜑(𝑡,𝑊 (𝑡)). We compose
two equations

𝜑′
𝑢(𝑡, 𝑢) = 𝑎𝜑(𝑡, 𝑢) + 𝑏, (14)

𝜑′
𝑡(𝑡, 𝑢)|𝑢=𝑊 (𝑡) = ℎ𝜑(𝑡,𝑊 (𝑡)) + 𝑔, 𝜑(0,𝑊 (0)) = 𝜉0. (15)

Solution to equation (14) reads as ln(𝑎𝜑+ 𝑏) = 𝑢+ 𝐶(𝑡) or

𝜑(𝑡, 𝑢) =
1

𝑎

(︀
𝑒𝑢+𝐶(𝑡) − 𝑏

)︀
. (16)

Substituting the obtained expression into equation (12), we arrive at the Cauchy problem for
unknown function 𝐶(𝑡):

1

𝑎
𝑒𝑊 (𝑡)+𝐶(𝑡)𝐶 ′(𝑡) =

ℎ

𝑎

(︀
𝑒𝑊 (𝑡)+𝐶(𝑡) − 𝑏

)︀
+ 𝑔,

1

𝑎

(︀
𝑒𝑊 (0)+𝐶(0)) − 𝑏

)︀
= 𝜉0.

By the change 𝑧(𝑡) = 𝑒𝐶(𝑡) the obtained ODE is reduced to the linear non-homogeneous ODE
with constant coefficients

𝑧′(𝑡) − ℎ𝑧(𝑡) = 𝑒−𝑊 (𝑡)(𝑎𝑔 − 𝑏ℎ),

whose solution is

𝑧(𝑡) =

(︂
(𝑎𝑔 − 𝑏ℎ)

∫︁ 𝑡

0

𝑒−𝑊 (𝑠)𝑒−ℎ𝑠𝑑𝑠+ 𝐶*
)︂
𝑒ℎ𝑠.



8 M.A. ABDULLIN, N.S. ISMAGILOV, F.S. NASYROV

In order to construct solution to equation (13), it remains to find constant 𝐶* by means of
initial condition and substitute it into the latter formula.

Let us prove a generalization of Grönwall’s lemma.

Lemma 1. Let 𝛿(𝑠, 𝑣), 𝐵(𝑠, 𝑣), 𝑠 ∈ [𝑎, 𝑡0], 𝑣 ∈ 𝑅, and 𝑋(𝑠), 𝑠 ∈ [𝑎, 𝑡0], be continuous
functions, 𝐶(𝑠), 𝑠 ∈ [𝑎, 𝑡0], be a continuously differentiable function. Suppose that the pair of
functions (𝛿(𝑠, 𝑣)𝐵(𝑠, 𝑣), 𝑋(𝑠)) satisfies condition (𝑆) on [𝑎, 𝑡0] and the identity

𝛿(𝑡,𝑋(𝑡)) = 𝐶(𝑡) +

∫︁ 𝑡

𝑎

𝛿(𝑠,𝑋(𝑠))𝐵(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠), 𝑡 ∈ [𝑎, 𝑡0], (17)

holds true. If 𝛿(𝑠,𝑋(𝑠)) ̸= 0 as 𝑠 ∈ (𝑎, 𝑡0] and the integrals∫︁ 𝑡

𝑎

(𝛿(𝑠,𝑋(𝑠)))−1𝐶 ′(𝑠)𝑑𝑠,

∫︁ 𝑡

𝑎

𝐵(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠), 𝑡 ∈ (𝑎, 𝑡0),

are finite, then for the same 𝑡

|𝛿(𝑡,𝑋(𝑡))|=|𝛿(𝑎,𝑋(𝑎))| exp

{︂∫︁ 𝑡

𝑎

(𝛿(𝑠,𝑋(𝑠)))−1𝐶 ′(𝑠)𝑑𝑠+

∫︁ 𝑡

𝑎

𝐵(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠)

}︂
.

Proof. Let 𝑎 < 𝜀 < 𝑡 ≤ 𝑡0, then by the formula for the differential and relation (17) we have

𝑑 (ln |𝛿(𝑠,𝑋(𝑠))|) =
𝑑𝛿(𝑠,𝑋(𝑠))

𝛿(𝑠,𝑋(𝑠))
= (𝛿(𝑠,𝑋(𝑠)))−1𝐶 ′(𝑠)𝑑𝑠+𝐵(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠).

Therefore,

|𝛿(𝑡,𝑋(𝑡))| = |𝛿(𝜀,𝑋(𝜀))| exp

{︂∫︁ 𝑡

𝜀

(𝛿(𝑠,𝑋(𝑠)))−1𝐶 ′(𝑠)𝑑𝑠+

∫︁ 𝑡

𝜀

𝐵(𝑠,𝑋(𝑠)) * 𝑑𝑋(𝑠)

}︂
.

Passing in the latter expression to the limit as 𝜀→ 𝑎, we obtain formula (17).

Basing on Lemma 1, we can prove the uniqueness theorem for solutions to ordinary differential
equations with symmetric integral.

Theorem 3. Suppose that function 𝜎(𝑡, 𝑣, 𝜑) is jointly continuous and has continuous partial
derivatives 𝜎′

𝑡(𝑡, 𝑣, 𝜑) and 𝜎′
𝜑(𝑡, 𝑣, 𝜑), and a function 𝑏(𝑡, 𝑣, 𝜑) and its derivative 𝑏′𝜑(𝑡, 𝑣, 𝜑) are

jointly continuous. If there exists a solution to Cauchy problem (4), then it is unique.

Proof. Let 𝜉
(1)
𝑡 = 𝜙(1)(𝑡,𝑋(𝑡)), 𝜉

(2)
𝑡 = 𝜙(2)(𝑡,𝑋(𝑡)) be two solutions to Cauchy problem (4). Let

us show that then 𝜉
(1)
𝑡 = 𝜉

(2)
𝑡 for all 𝑡 ∈ [0, 𝑡0]. We let 𝛿(𝑡,𝑋(𝑡)) = 𝜙(1)(𝑡,𝑋(𝑡)) − 𝜙(2)(𝑡,𝑋(𝑡)),

and by the initial condition 𝛿(𝑡,𝑋(𝑡)) = 0 as 𝑡 = 0. By the continuity of functions 𝜉
(1)
𝑡 , 𝜉

(2)
𝑡

the set {𝑡 ∈ [0, 𝑡0] : 𝜉
(1)
𝑡 = 𝜉

(2)
𝑡 } is closed. Suppose that the function 𝛿(𝑡,𝑋(𝑡)) is non-zero on

some non-empty set 𝐿0, then 𝐿0 is open and thus it can be represented as the union of at most
finitely many intervals 𝐿0 = ∪𝑘(𝑎𝑘, 𝑏𝑘). We fix an interval (𝑎𝑘, 𝑏𝑘), and in what follows we shall
denote it as (𝑎, 𝑏). For 𝑠 ∈ (𝑎, 𝑏) we let

𝑔1(𝑠,𝑋(𝑠)) =
𝜎(𝑠,𝑋(𝑠), 𝜉

(1)
𝑠 ) − 𝜎(𝑠,𝑋(𝑠), 𝜉

(2)
𝑠 )

𝜉
(1)
𝑠 − 𝜉

(2)
𝑠

,

𝑔2(𝑠,𝑋(𝑠)) =
𝑏(𝑠,𝑋(𝑠), 𝜉

(1)
𝑠 ) − 𝑏(𝑠,𝑋(𝑠), 𝜉

(2)
𝑠 )

𝜉
(1)
𝑠 − 𝜉

(2)
𝑠

.

We adopt the notations of Lemma 1:

𝐶(𝑡) =

∫︁ 𝑡

𝑎

[︀
𝑏(𝑠, 𝜙(1)(𝑠,𝑋(𝑠))) − 𝑏(𝑠, 𝜙(2)(𝑠,𝑋(𝑠)))

]︀
𝑑𝑠,

𝐵(𝑡, 𝑢) = 𝜎(𝑡, 𝜙(1)(𝑡, 𝑢)) − 𝜎(𝑡, 𝜙(2)(𝑡, 𝑢)).
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Since the pair of functions (𝑔1(𝑠, 𝑣), 𝑋(𝑠)) possesses property (𝑆), and 𝑔2(𝑠,𝑋(𝑠)) is summable
on each segment [𝑎, 𝑎1] ⊂ [𝑎, 𝑏), then the hypothesis of Lemma 1 is satisfied and therefore

relation (17) holds true on set 𝑡 ∈ [𝑎, 𝑏). But 𝛿(𝑎,𝑋(𝑎)) = 0, and thus 𝜉
(1)
𝑡 = 𝜉

(2)
𝑡 for each

𝑡 ∈ [𝑎, 𝑏) and 𝐿0 = ∅. Therefore, Theorem 3 holds true.

Remark. It is well-known that in the stochastic analysis there is a notion of weak solution
and a strong solution is a weak one. Let us show that in the pathwise analysis function 𝑋(𝑡)
can be found by means of solution 𝜉𝑡 to equation (1), namely, the following identity holds true:

𝑋(𝑡) −𝑋(0) =

∫︁ 𝑡

0

1

𝜎(𝑠,𝑋(𝑠), 𝜉𝑠)
* 𝑑𝜉𝑠 −

∫︁ 𝑡

0

𝑏(𝑠,𝑋(𝑠), 𝜉𝑠)

𝜎(𝑠,𝑋(𝑠), 𝜉𝑠)
𝑑𝑠. (18)

Indeed, in view of the formula of change the variables in symmetric integrals and equation in
(4), the right hand side of relation (18) is equal to∫︁ 𝑡

0

1

𝜎(𝑠,𝑋(𝑠), 𝜉𝑠)
[𝜎(𝑠,𝑋(𝑠), 𝜉𝑠) * 𝑑𝑋(𝑠) + 𝑏(𝑠,𝑋(𝑠), 𝜉𝑠)𝑑𝑠] −

∫︁ 𝑡

0

𝑏(𝑠,𝑋(𝑠), 𝜉𝑠)

𝜎(𝑠,𝑋(𝑠), 𝜉𝑠)
𝑑𝑠.

3. On structure of solution to equations with symmetric integral

It was shown in the previous section that solution to equation (11) reads as
𝜉(𝑡) = 𝜑(𝑡,𝑋(𝑡) + 𝐶(𝑡)). This fact can be rather useful while studying SDE. Suppose, for
instance, that function 𝜎(𝑡, 𝜑) and 𝑏(𝑡, 𝜑) in equation (11) are deterministic and 𝑋(𝑡) ≡ 𝑊 (𝑡)
is a trajectory of a Wiener process. Then all the probabilistic information on solution to
SDE is contained in 𝑊 (𝑡) + 𝐶(𝑡) since the diffusion process determined as a solution to equa-
tion (11) is a deterministic function of the sum of the Wiener process and a random smooth
drift. The structure of solution to equation (11) was first found in works [8], [7] for the case
𝜎(𝑠, 𝜑, 𝑢) = 𝜎(𝑠, 𝜑) ̸= 0.

The aim of the present section is to find the structure of a solution to equation (4) in more
general situation since in many cases the knowledge of the structure allows one to simplify
essentially the studies of both the equations with symmetric integrals and SDE. The methods
of group analysis happened to be effective for solving this problem.

The group analysis is one of the methods by means of which it is possible to know a lot of
studied differential equation. The techniques of group analysis are well-developed and are used
for studying both ordinary and partial differential equations. It was expounded rather in detail
in works [1], [2].

Let 𝐺 be an one-parametric group �̄� = 𝑓(𝑢, 𝜑, 𝑎), 𝜑 = 𝑔(𝑢, 𝜑, 𝑎) with the infinitesimal
operator 𝑋 = 𝜉(𝑢, 𝜑) 𝜕

𝜕𝑢
+ 𝜂(𝑢, 𝜑) 𝜕

𝜕𝜑
. We shall say the the first order differential equation 𝑑𝜑

𝑑𝑢
=

𝜎(𝜑, 𝑢) admits group 𝐺, if

𝑑𝜑

𝑑�̄�
= 𝜎(𝜑, �̄�).

As a rule, it is impossible to find the group admitted by a first order differential equation,
but there exist equations whose admitted group is known. Each group 𝐺 with the operator
𝑋 = 𝜉(𝑢, 𝜑) 𝜕

𝜕𝑢
+ 𝜂(𝑢, 𝜑) 𝜕

𝜕𝜑
can be reduced to the group of shifts along one of the axis by an

appropriate change of variables. Canonical variables 𝜑 = 𝜑(𝜑, 𝑢), �̂� = �̂�(𝜑, 𝑢) are determined
by the relations (cf. [1])

𝜉(𝑢, 𝜑)
𝜕𝜑

𝜕𝑢
+ 𝜂(𝑢, 𝜑)

𝜕𝜑

𝜕𝜑
= 0, 𝜉(𝑢, 𝜑)

𝜕�̂�

𝜕𝑢
+ 𝜂(𝑢, 𝜑)

𝜕�̂�

𝜕𝜑
= 1. (19)

At that, if group 𝐺 is admissible, by passing to the canonical variables one reduces this equation
to the form where one of these variables is missing and the equation can be solved by quadrature.

Suppose the conditions of the unique solvability for equation in (4) hold true and the coef-
ficients of the equation are smooth enough, say, possess third continuous derivatives. We note
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that in accordance with Theorem 1 solving of equation in (4) can be reduced to solving of a
chain of two ordinary differential equations (10).

Consider the first equation in the chain

𝜑′
𝑢(𝑠, 𝑢) = 𝜎(𝑠, 𝑢, 𝜑(𝑠, 𝑢)). (20)

This is a first order ordinary differential equation where 𝑠 is a parameter. In a general case,
if a solution to (20) exists, then the structure of the solution to (20) is Ψ(𝜑(𝑠, 𝑢), 𝑢, 𝐶(𝑠)) =
0, where 𝐶(𝑠) is an arbitrary function. In order to find function 𝐶(𝑠), one should express
𝜑(𝑠, 𝑢) = 𝜑*(𝑠, 𝑢, 𝐶(𝑠)) from this identity and substitute the result into the second equation in
chain (10). Finally we get an ordinary differential equation for unknown function 𝐶(𝑠). Initial
conditions 𝜑(0, 𝑋(0)) = 𝜂(0) pass to the initial condition 𝜑*(0, 𝑋(0), 𝐶(0)) = 𝜉(0) for 𝐶(𝑠).

We note that we aim to determine the structure of equation in (4), and the latter, as we
see from the above arguments, is determined completely by equation (20). This is why we
shall consider particular equations (20) with known admissible groups, we shall integrate them
finding in this way the structure of solutions to the corresponding equations with symmetric
integral.

In what follows we provide some examples of constructing the structure of solutions. A more
detailed set of possible structures of solutions to equation in (4) is given in Table 1.

. Consider equation

𝜉(𝑡) − 𝜉(0) =

𝑡∫︁
0

𝜎(𝑠, 𝜉(𝑠)) * 𝑑𝑋(𝑠) +

𝑡∫︁
0

𝑏(𝑠, 𝜉(𝑠))𝑑𝑠, 𝑡 ∈ [0, 𝑇 ]. (21)

The first equation in chain (10) can be integrated in this case

𝜑′
𝑢(𝑠, 𝑢) = 𝜎(𝑠, 𝜑(𝑠, 𝑢)), 𝜑(𝑠, 𝑢) = Ψ(𝑠, 𝑢+ 𝐶(𝑠)), (22)

where Ψ is found by (22), and 𝐶(𝑡) can be determined as a solution to a differential equation
if we substitute function Ψ(𝑠,𝑋(𝑠) +𝐶(𝑠)) into the second equation in chain (10). We observe
that the infinitesimal operator of the group admitted by equation (22) reads as 𝑋 = 𝜕

𝜕𝑢
. Thus,

𝜉(𝑠) = Ψ(𝑠,𝑋(𝑠) + 𝐶(𝑡)) is a solution to SDE.

B. Let

𝜎(𝑠, 𝑢, 𝜑) = 𝐹 (𝑠, 𝑘𝑢+ 𝑙𝜑), (23)

where 𝑘 and 𝑙 are known constants. The infinitesimal operator of the transformations group
admitted by equation (23) is 𝑋=𝑙 𝜕

𝜕𝑢
− 𝑘 𝜕

𝜕𝜑
. Let us find the canonical variables

𝑙
𝜕𝜑

𝜕𝑢
− 𝑘

𝜕𝜑

𝜕𝜑
= 0, 𝑙

𝜕�̂�

𝜕𝑢
− 𝑘

𝜕�̂�

𝜕𝜑
= 1.

Solving these equation, we shall get, for instance, 𝜑 = 𝑢
𝑙

+ 𝜑
𝑘
, �̂� = 𝑢

𝑙
. The inverse change

𝜑 = 𝑘(𝜑− �̂�), 𝑢 = 𝑙�̂�. Passing to new variables, we have

𝜑′
�̂� =

𝑙𝐹 (𝑙𝑘𝜑)

𝑘
+ 1, 𝜑 = Ψ(𝑠, �̂�+ 𝐶(𝑠)).

Structure of solution: 𝜂(𝑠)=𝑘

(︂
Ψ

(︂
𝑠,
𝑋(𝑠)

𝑙
+𝐶(𝑠)

)︂
−𝑋(𝑠)

𝑙

)︂
.

C. Consider the case

𝜎(𝑠, 𝑢, 𝜑) = 𝐹

(︂
𝑠,
𝜑

𝑢

)︂
, 𝑠 ∈ [𝑡1, 𝑡2], 𝑡1 > 0. (24)
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Since in this case equation (20) is a homogeneous type, it admits the group with the infinitesimal
operator 𝑋 = 𝑢 𝜕

𝜕𝑢
+ 𝜑 𝜕

𝜕𝜑
. Equations (19) for finding canonical variables are

𝜑
𝜕𝜑

𝜕𝑢
+ 𝑢

𝜕𝜑

𝜕𝜑
= 0, 𝜑

𝜕�̂�

𝜕𝑢
+ 𝑢

𝜕�̂�

𝜕𝜑
= 1.

Solutions to these equations can be represented as 𝜑 = 𝜑
𝑢
, �̂� = ln𝑢. The inverse change is

𝜑 = 𝜑𝑒�̂�, 𝑢 = 𝑒�̂�. Passing to new variables, we have

𝜑′
�̂� = (𝐹 (𝑠, 𝜑) − 𝜑), 𝜑 = Ψ(𝑠, �̂�+ 𝐶(𝑠)).

The structure of solution read as 𝜉(𝑠) = 𝑋(𝑠)Ψ (𝑠, ln |𝑋(𝑠)| + 𝐶(𝑠)).

D. Consider the following example

𝜎(𝑠, 𝑢, 𝜑) =
𝜑

𝑢+ 𝐹 (𝑠, 𝜑)
. (25)

The infinitesimal operator of the group admitted by equation (25) is known: 𝑋 = 𝜑 𝜕
𝜕𝑢

. Equa-

tions (19) determining canonical variables are 𝜑𝜕𝜑
𝜕𝑢

= 0, 𝜑𝜕�̂�
𝜕𝑢

= 1. Solutions to these equations

can be represented as 𝜑 = 𝜑, �̂� = 𝑢
𝜑
. The inverse change is 𝜑 = 𝜑, 𝑢 = 𝜑�̂�. Passing to new

variables, we have �̂�′
𝜑

= 𝐹 (𝑠,𝜑)

𝜑2
, 𝜑 = Ψ(𝑠, �̂�+ 𝐶(𝑠)). We obtain the structure of solutions in the

form 𝜑− Ψ
(︁
𝑠, 𝑋(𝑠)

𝜑
+ 𝐶(𝑠)

)︁
= 0.

Table 1. Structure of solutions to some equations of the form 𝜉(𝑡) −

𝜉(0)=
𝑡∫︀
0

𝜎(𝑠, 𝜉(𝑠), 𝑋(𝑠))*𝑑𝑋(𝑠)+
𝑡∫︀
0

𝑏(𝑠, 𝜉(𝑠), 𝑋(𝑠))𝑑𝑠.

Equation 𝜑𝑢 = 𝜎(𝑠, 𝑢, 𝜑) Operator of the group Structure of solution 𝜂(𝑡)

1. 𝜎 = 𝐹 (𝑠, 𝜑) 𝜕
𝜕𝑢 Ψ(𝑠,𝑋(𝑠) + 𝐶(𝑠))

2. 𝜎 = 𝐹 (𝑠, 𝑢) 𝜕
𝜕𝜑 Ψ(𝑠,𝑋(𝑠)) + 𝐶(𝑡)

3. 𝜎=𝐹 (𝑠, 𝑘𝑢+𝑙𝜑), 𝑘, 𝑙 – const 𝑙 𝜕
𝜕𝑢 − 𝑘 𝜕

𝜕𝜑 𝑘(Ψ(𝑠, 𝑋(𝑠)
𝑙 + 𝐶(𝑠))− 𝑋(𝑠)

𝑙 )

4. 𝜎 = 𝐹 (𝑠, 𝜑
𝑢 ), 𝑢 ̸= 0 𝑢 𝜕

𝜕𝑢 + 𝜑 𝜕
𝜕𝜑 𝑋(𝑠) ·Ψ(𝑠, ln |𝑋(𝑠)|+ 𝐶(𝑠))

5. 𝜎 = 𝑢𝑘𝐹 (𝑠, 𝜑
𝑢𝑘 ), 𝑢 ̸= 0 𝑢 𝜕

𝜕𝑢 + 𝑘𝜑 𝜕
𝜕𝜑 (𝑋(𝑠))𝑘Ψ(𝑠, ln |𝑋(𝑠)|+ 𝐶(𝑠))

6. 𝑢𝜎 = 𝐹 (𝑠, 𝑢𝑒−𝜑), 𝑢 ̸= 0 𝑢 𝜕
𝜕𝑢 + 𝜕

𝜕𝜑 ln |𝑋(𝑠)| −Ψ(𝑠, ln |𝑋(𝑠)|+ 𝐶(𝑠))

7. 𝜎 = 𝜑𝐹 (𝑠, 𝜑𝑒−𝑢) 𝜕
𝜕𝑢 + 𝜑 𝜕

𝜕𝜑 𝑒𝑋(𝑠)Ψ(𝑠,𝑋(𝑠) + 𝐶(𝑠))

8. 𝜎 = 𝜑
𝑢 + 𝑢𝐹 (𝑠, 𝜑

𝑢 ), 𝑢 ̸= 0 𝜕
𝜕𝑢 + 𝜑

𝑢
𝜕
𝜕𝜑 𝑋(𝑠)Ψ(𝑠,𝑋(𝑠) + 𝐶(𝑠))

9. 𝑢𝜎 = 𝜑+ 𝑢𝐹 (𝑠, 𝜑
𝑢 ), 𝑢 ̸= 0 𝑢2 𝜕

𝜕𝑢 + 𝑢𝜑 𝜕
𝜕𝜑 𝑋(𝑠)Ψ(𝑠,− 1

𝑋(𝑠) + 𝐶(𝑠))

10. 𝜎 = 𝜑
𝑢+𝐹 (𝑠,𝜑) 𝜑 𝜕

𝜕𝑢 𝜑−Ψ(𝑠, 𝑋(𝑠)
𝜑 + 𝐶(𝑠)) = 0

11. 𝑢𝜎 = 𝜑+ 𝐹 (𝑠, 𝑢), 𝑢 ̸= 0 𝑢 𝜕
𝜕𝜑 𝑋(𝑠)(Ψ(𝑠,𝑋(𝑠)) + 𝐶(𝑠))

12. 𝑢𝜎 = 𝜑
ln |𝑢|+𝐹 (𝑠,𝜑) , 𝑢 ̸= 0 𝜑𝑢 𝜕

𝜕𝑢 𝜑−Ψ(𝑠, ln |𝑋(𝑠)|
𝜑 + 𝐶(𝑠)) = 0

* function Ψ has a certain form and is determined by equation (20)
** in cases 10 and 12 structure of solution Ψ is determined implicitly
*** function 𝐶(𝑠) can be found by the second equation in chain (12).
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4. On continuous and differentiability w.r.t. parameter of equations with
symmetric integrals

Consider the equation with symmetric integral

𝑑𝜉𝑡 = 𝜎(𝑡, 𝜇, 𝜉𝑡) * 𝑑𝑋(𝑡) + 𝑏(𝑡, 𝜇, 𝜉𝑡)𝑑𝑡. (26)

Suppose that in the domain 𝐺𝜇 = {(𝑡, 𝜇, 𝜑)} functions 𝜎(𝑡, 𝜇, 𝜑) and 𝑏(𝑡, 𝜇, 𝜑) are defined and
they satisfy the conditions

1. Functions 𝜎(𝑡, 𝜇, 𝜑), 𝑏(𝑡, 𝜇, 𝜑), 𝜎′
𝑡(𝑡, 𝜇, 𝜑), 𝜎′

𝜑(𝑡, 𝜇, 𝜑) and 𝑏′𝜑(𝑡, 𝜇, 𝜑) are continuous.
2. There exists a positive number 𝜎0 such that |𝜎(𝑡, 𝜇, 𝜑)| ≥ 𝜎0.

Then by the arguments from Section 2, the domain 𝐺 = {(𝑡, 𝜉) : (𝑡, 𝜇, 𝜉) ∈ 𝐺𝜇} is the uniqueness
domain for the solution to equation (26) with 𝜉𝑡 = 𝜉(𝑡, 𝑡0, 𝜉(0), 𝜇) and with the initial condition
(𝑡0, 𝜉(0)) which is defined on the set 𝐷𝜇={(𝑡, 𝑡0, 𝜉(0), 𝜇):(𝑡0, 𝜉(0), 𝜇) ∈ 𝐺𝜇}, 𝑡 ∈ 𝐽(𝑡0, 𝜉(0), 𝜇),
where 𝐽(𝑡0, 𝜉(0), 𝜇) is the maximal existence interval for solution to (26).

Theorem 4. Under the above assumptions the function 𝜉(𝑡, 𝑡0, 𝜉(0), 𝜇) is continuous in 𝐷𝜇.

Proof. Solution to equation (26) reads as

𝜉𝑡 = 𝜙(𝑡, 𝜇,𝑋(𝑡) + 𝐶(𝑡, 𝜇)), (27)

where the function 𝜙(𝑡, 𝜇, 𝑣) is determined by the relation

Φ(𝑡, 𝜇, 𝜑, 𝑣) ≡
∫︁

𝑑𝜑

𝜎(𝑡, 𝜇, 𝜑)
− 𝑣 = 0. (28)

By the hypothesis of the theorem, in the domain 𝐺𝜇 × 𝑅 the function Φ(𝑡, 𝜇, 𝜑, 𝑣) is jointly
continuous and has continuous derivatives Φ′

𝑡(𝑡, 𝜇, 𝜑, 𝑣), Φ′
𝑣(𝑡, 𝜇, 𝜑, 𝑣) and a non-zero derivative

Φ′
𝜑(𝑡, 𝜇, 𝜑, 𝑣). This is why by the implicit function theorem there exists a function 𝜑(𝑡, 𝜇, 𝑣)

with continuous partial derivatives 𝜑′
𝑡(𝑡, 𝜇, 𝑣) and 𝜑′

𝑣(𝑡, 𝜇, 𝑣). For each point (𝑡0, 𝜇, 𝜑0) ∈ 𝐺𝜇 by
𝐽 (0)(𝑡0, 𝜇, 𝜑0) we denote the maximal interval in which the implicit function 𝜑 = 𝜑*(𝑡, 𝜇, 𝑣, 𝑡0, 𝜑0)
with initial data 𝜑*(𝑡0) = 𝜑0 is defined.

Then function 𝐶(𝑡, 𝜇) in (27) is determined as the solution to the Cauchy problem

𝐶 ′
𝑡(𝑡, 𝜇) =

𝑏(𝑡, 𝜇, 𝜑(𝑡, 𝜇,𝑋(𝑡) + 𝐶(𝑡, 𝜇)))

𝜎(𝑡, 𝜇, 𝜑(𝑡, 𝜇,𝑋(𝑡) + 𝐶(𝑡, 𝜇)))
−
∫︁ 𝜑(𝑡,𝜇,𝑋(𝑡)+𝐶(𝑡,𝜇))

0

(︂
1

𝜎(𝑡, 𝜇, 𝜓)

)︂′

𝑡

𝑑𝜓, (29)

𝜑(𝑡0, 𝜇,𝑋(𝑡0) + 𝐶(𝑡0, 𝜇)) = 𝜉0.

Consider the set 𝐺
(1)
𝜇 = {(𝑡, 𝜇, 𝐶) : (𝑡, 𝜇, 𝐶, 𝜑(𝑡, 𝜇,𝑋(𝑡) + 𝐶) ∈ 𝐺𝜇), then by Theorem 2.3.2 in

[4] the set 𝐺(1)={(𝑡, 𝐶) : (𝑡, 𝐶, 𝜇) ∈ 𝐺
(1)
𝜇 } is the uniqueness domain for equation (29) for each

fixed 𝜇.
Let 𝐶(𝑡, 𝑡0, 𝐶0, 𝜇) be the solution to equation (29) with initial data 𝜑(𝑡0, 𝜇,𝑋(𝑡0) + 𝐶0) = 𝜉0

defined on the set 𝐷
(1)
𝜇 = {(𝑡, 𝑡0, 𝐶0, 𝜇) ∈ 𝐺

(1)
𝜇 , 𝑡 ∈ 𝐽 (1)(𝑡0, 𝐶0, 𝜇)}, where 𝐽 (1)(𝑡0, 𝐶0, 𝜇) is

the maximal existence interval for solution. By Theorem 5.1.1 in [4], 𝐷
(1)
𝜇 is the domain

and 𝐶(𝑡, 𝑡0, 𝐶0, 𝜇) is continuous in 𝐷
(1)
𝜇 . Hence, solution (27) is continuous in 𝐷𝜇, where

𝐽(𝑡0, 𝐶0, 𝜇) = 𝐽 (0)(𝑡0, 𝜇, 𝜑0) ∩ 𝐽 (1)(𝑡0, 𝐶0, 𝜇).

Theorem 5. Assume the hypothesis of Theorem 4 and let the derivatives 𝜎′
𝜇(𝑡, 𝜇, 𝜑),

𝜎′′
𝑡𝜇(𝑡, 𝜇, 𝜑), 𝑏′𝜇(𝑡, 𝜇, 𝜑) be continuous in domain 𝐺𝜇. Then solution 𝜉𝑡 = 𝜑(𝑡, 𝜇,𝑋(𝑡) + 𝐶(𝑡0, 𝜇, 𝜉(0)))

to Cauchy problem (26) has continuous derivatives 𝜂𝜇𝑡 = 𝜕
𝜕𝜇
𝜉𝑡 and 𝜂

𝜉(0)
𝑡 = 𝜕

𝜕𝜉(0)
𝜉𝑡 in the domain

𝐷𝜇. At that the formula

𝑑𝜂𝜇𝑡 =

[︂
𝜕

𝜕𝜇
𝜎(𝑡, 𝜇, 𝜉𝑡)+

𝜕

𝜕𝜑
𝜎(𝑡, 𝜇, 𝜉𝑡)𝜂

𝜇
𝑡

]︂
* 𝑑𝑋(𝑡) +

[︂
𝜕

𝜕𝜇
𝑏(𝑡, 𝜇, 𝜉𝑡) +

𝜕

𝜕𝜑
𝑏(𝑡, 𝜇, 𝜉𝑡)𝜂

𝜇
𝑡

]︂
𝑑𝑡, (30)
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𝜕

𝜕𝜇
𝜂
𝜉(0)
𝑡0 =

𝜕

𝜕𝜇
𝜉𝑡0 ,

hold true.

Proof. Here we follow the main lines of the proof of Theorem 4. The hypothesis of Theorem 5
implies that the solution to equation (26) reads as (27) and by the implicit function theo-
rem 𝜑(𝑡, 𝜇, 𝑣) has continuous partial derivatives w.r.t. the variables (𝑡, 𝜇, 𝑣). For each point
(𝑡0, 𝜇, 𝜑0) ∈ 𝐺𝜇 by 𝐽 (0)(𝑡0, 𝜇, 𝜑0) we denote the maximal interval in which the implicit function
𝜑 = 𝜑*(𝑡, 𝜇, 𝑡0, 𝜑0) with initial data 𝜑*(𝑡0) = 𝜑0 exist.

Due to Theorem 5.2.1 in [4], the solution 𝐶(𝑡, 𝑡0, 𝐶0, 𝜇) in Theorem 4 has a continuous
derivative w.r.t. variable 𝜇. This is why the solution 𝜉(𝑡, 𝑡0, 𝜉(0), 𝜇) is continuous and it has

continuous derivatives 𝜂𝜇𝑡 = 𝜕
𝜕𝜇
𝜉𝑡 and 𝜂

𝜉(0)
𝑡 = 𝜕

𝜕𝜉(0)
𝜉𝑡 in 𝐷𝜇. We employ the fact that by

Theorem 2 the solution to equation (26) satisfies the relation like (5) and (6). Differentiating
the obtained identities w.r.t. 𝜇 and applying then Theorem 2 once again for the resulting
relation, we arrive at formula (30).

5. Linearization of first order equations with symmetric integrals. Inverse
transform.

1. Consider the equation with symmetric integral

𝑑𝜉𝑡 = 𝜎(𝑡,𝑋(𝑡), 𝜉𝑡) * 𝑑𝑋(𝑡) + 𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)𝑑𝑡, 𝑡 ∈ [0, 𝑡0], (31)

where 𝑋(𝑡), 𝑡 ∈ [0, 𝑡0], is a continuous almost nowhere differentiable function.
Our aim is to show how one can equation (31) into the linear equation

𝑑𝜂(𝑡) = 𝐴(𝑡)𝜂(𝑡) * 𝑑𝑋(𝑡) +𝐵(𝑡)𝜂(𝑡)𝑑𝑡 (32)

by an appropriate change of variables 𝜂(𝑡) = 𝑔(𝑡, 𝜉𝑡) In what follow we assume that functions
𝜎(𝑡,𝑋, 𝜉), 𝑏(𝑡,𝑋, 𝜉) satisfy the hypothesis of Theorem 1, 𝜎(𝑡,𝑋, 𝜉) ̸= 0 for each 𝑡,𝑋, 𝜉, and
functions 𝐴(𝑡), 𝐵(𝑡) are continuously differentiable.

By means of the formula for the differential of symmetric integral and relation (31) we have

𝑑𝑔(𝑡, 𝜉𝑡) = [𝑔′𝑡(𝑡, 𝜉𝑡) + 𝑔′𝜉(𝑡, 𝜉𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)]𝑑𝑡+ [𝑔′𝜉(𝑡, 𝜉𝑡)𝜎(𝑡,𝑋(𝑡), 𝜉𝑡)] * 𝑑𝑋(𝑡).

Comparing differentials 𝑑𝜂(𝑡) calculated by the latter formula and formula (32), we arrive at
the relation

0 ≡
[︀
𝑔′𝑡(𝑡, 𝜉𝑡) + 𝑔′𝜉(𝑡, 𝜉𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡) −𝐵(𝑡)𝑔(𝑡, 𝜉𝑡)

]︀
𝑑𝑡+

+
[︀
𝑔′𝜉(𝑡, 𝜉𝑡)𝜎(𝑡,𝑋(𝑡), 𝜉𝑡) − 𝐴(𝑡)𝑔(𝑡, 𝜉𝑡)

]︀
* 𝑑𝑋(𝑡).

By the arguments similar to those in Theorem 1, we obtain

𝑔′𝜉(𝑡, 𝜉𝑡) =

[︂
𝐴(𝑡)

𝜎(𝑡,𝑋(𝑡), 𝜉𝑡)
𝑔(𝑡, 𝜉𝑡)

]︂
,

𝑔′𝑡(𝑡, 𝜉𝑡) = 𝐵(𝑡)𝑔(𝑡, 𝜉𝑡) − 𝑔′𝜉(𝑡, 𝜉𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡) =

[︂
𝐵(𝑡) − 𝐴(𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)

𝜎(𝑡,𝑋(𝑡), 𝜉𝑡)

]︂
𝑔(𝑡, 𝜉𝑡).

Then we can employ formula (31), but in this case we obtain the solution to the equation in
the form 𝜂𝑡 = 𝜂𝑡(𝑡,𝑋(𝑡)), while we need 𝜂𝑡 = 𝜂*𝑡 (𝑡, 𝜉𝑡). This is why in the general case we need
to express 𝑋(𝑡) in terms of 𝜉𝑡. It can be done by solving equation (31): 𝜉𝑡 = 𝜙(𝑠,𝑋(𝑠)), and
expressing then 𝑋(𝑡) in terms of 𝜉𝑡.

In any case we arrive at the case 𝜎(𝑡,𝑋(𝑡), 𝜉𝑡) = 𝜎(𝑡, 𝜉𝑡), and by Theorem 1 the function
𝜂𝑡 = 𝑔(𝑡, 𝜉𝑡) solves the linear equation with symmetric integral

𝑑𝜂𝑡 =

[︂
𝐴(𝑡)

𝜎(𝑡, 𝜉𝑡)

]︂
𝜂𝑡 * 𝑑𝜉𝑡 +

[︂
𝐵(𝑡) − 𝐴(𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)

𝜎(𝑡, 𝜉𝑡)

]︂
𝜂𝑡𝑑𝑡. (33)
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We seek the solution to equation (33) as 𝜂𝑡 = 𝑔(𝑡, 𝜉𝑡) and obtain the chain of two equations

𝑔′𝜉(𝑡, 𝜉) =
𝐴(𝑡)

𝜎(𝑡, 𝜉)
𝑔(𝑡, 𝜉), 𝑔′𝑡(𝑡, 𝜉)|𝜉=𝜉𝑡 =

[︂
𝐵(𝑡) − 𝐴(𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)

𝜎(𝑡, 𝜉𝑡)

]︂
𝑔(𝑡, 𝜉𝑡).

The first equation determines 𝑔(𝑡, 𝜉) up to unknown function 𝐶(𝑡),

𝑔(𝑡, 𝜉) = 𝐶(𝑡) exp

(︂
𝐴(𝑡)

∫︁
𝑑𝜉

𝜎(𝑡, 𝜉)

)︂
. (34)

By differentiating we get

𝑔′𝑡(𝑡, 𝜉)= exp

(︂
𝐴(𝑡)

∫︁
𝑑𝜉

𝜎(𝑡, 𝜉)

)︂{︂
𝐶 ′(𝑡)−𝐶(𝑡)

[︂
𝐴′(𝑡)

∫︁
𝑑𝜉

𝜎(𝑡, 𝜉)
−𝐴(𝑡)

∫︁
𝜎′
𝑡(𝑡, 𝜉)

𝜎2(𝑡, 𝜉)
𝑑𝜉

]︂}︂
.

Substituting the determined expression (34) for 𝑔(𝑡, 𝜉) into the second equation, we obtain
equation for unknown 𝐶(𝑡):

𝐶 ′(𝑡) = 𝐶(𝑡)

[︂
𝐵(𝑡)−𝐴(𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)

𝜎(𝑡, 𝜉𝑡)
+ 𝐴′(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝑑𝜉

𝜎(𝑡, 𝜉)
−𝐴(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝜎′
𝑡(𝑡, 𝜉)

𝜎2(𝑡, 𝜉)
𝑑𝜉

]︂
.

Therefore,

𝐶 ′(𝑡)

𝐶(𝑡)
= 𝐵(𝑡) − 𝐴(𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)

𝜎(𝑡, 𝜉𝑡)
− 𝐴′(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝑑𝜉

𝜎(𝑡, 𝜉)
− 𝐴(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝜎′
𝑡(𝑡, 𝜉)

𝜎2(𝑡, 𝜉)
𝑑𝜉. (35)

or

𝐶(𝑡) = 𝐶* exp

(︂
𝐵(𝑡) − 𝐴(𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)

𝜎(𝑡, 𝜉𝑡)
−𝐴′(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝑑𝜉

𝜎(𝑡, 𝜉)
− 𝐴(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝜎′
𝑡(𝑡, 𝜉)

𝜎2(𝑡, 𝜉)
𝑑𝜉

)︂
,

where 𝐶* is an arbitrary constant. Substituting the found value of 𝐶(𝑡) into (34), we find the
desired transformation 𝑔(𝑡, 𝜉𝑡):

𝑔(𝑡, 𝜉𝑡) = 𝐶* exp

(︂
𝐴(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝑑𝜉

𝜎(𝑡, 𝜉)
+𝐵(𝑡) − 𝐴(𝑡)𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)

𝜎(𝑡, 𝜉𝑡)
−

−𝐴′(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝑑𝜉

𝜎(𝑡, 𝜉)
− 𝐴(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝜎′
𝑡(𝑡, 𝜉)

𝜎2(𝑡, 𝜉)
𝑑𝜉

)︂
. (36)

2. By simple transformations one can make sure that the function 𝜂𝑡 = 𝑔(𝑡, 𝜉𝑡) is indeed a
solution to the linear equation. In order to do it, we find the total derivative (formally since 𝜉𝑡
is non-differentiable; one should calculate the differentials) of the expression(︂

𝐴(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝑑𝜉

𝜎(𝑡, 𝜉)

)︂′

𝑡

=

= 𝐴′(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝑑𝜉

𝜎(𝑡, 𝜉)
+

𝐴(𝑡)

𝜎(𝑡, 𝜉𝑡)
[𝜎(𝑡, 𝜉𝑡)𝑋

′(𝑡) + 𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)] + 𝐴(𝑡)

∫︁ 𝜉𝑡

𝜉0

(︂
1

𝜎(𝑡, 𝜉)

)︂′

𝑡

𝑑𝜉.

Employing this formula, by simple algebraic transformation we can rewrite the right hand side
of relation (35) as

𝐵(𝑡) + 𝐴(𝑡)𝑋 ′(𝑡) −
(︂
𝐴(𝑡)

∫︁ 𝜉𝑡

𝜉0

𝑑𝜉

𝜎(𝑡, 𝜉)

)︂′

𝑡

.

Thus, 𝜂𝑡 = 𝑔(𝑡, 𝜉𝑡) = 𝐶 exp
(︁∫︀ 𝑡

0
𝐵(𝑠)𝑑𝑠+

∫︀ 𝑡

0
𝐴(𝑠) * 𝑑𝑋(𝑠)

)︁
, and the function in the right hand

side is the solution to linear equation (32).

3. Consider the inverse problem of passing from linear equation (32) to equation (31) by an
appropriate change of variables.
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Of course, the inverse transform can be found by formula (36), but it is possible to construct
a direct method which is often more preferable. Consider the assumed change of variables
𝜉𝑡 = Φ(𝑡, 𝜂𝑡) and let us fund the differential of this function. We have

𝑑𝜉𝑡 = 𝜎(𝑡,𝑋(𝑡), 𝜉𝑡) * 𝑑𝑋(𝑡) + 𝑏(𝑡,𝑋(𝑡), 𝜉𝑡)𝑑𝑡 =
[︀
Φ′

𝑡(𝑡, 𝜂𝑡) + Φ′
𝜂(𝑡, 𝜂𝑡)𝐵(𝑡)𝜂𝑡

]︀
𝑑𝑡+

+Φ′
𝜂(𝑡, 𝜂𝑡)𝐴(𝑡)𝜂𝑡 * 𝑑𝑋(𝑡).

Therefore, by (6) for a.e. 𝑡 the identities

𝜎(𝑡,𝑋(𝑡), 𝜉𝑡) = Φ′
𝜂(𝑡, 𝜂𝑡)𝐴(𝑡)𝜂𝑡, 𝑏(𝑡,𝑋(𝑡), 𝜉𝑡) = Φ′

𝑡(𝑡, 𝜂𝑡) + Φ′
𝜂(𝑡, 𝜂𝑡)𝐵(𝑡)𝜂𝑡

hold true. Employing the former relation, we rewrite the latter as 𝑏(𝑡,𝑋(𝑡), 𝜉𝑡) = Φ′
𝑡(𝑡, 𝜂𝑡) +

𝐵(𝑡)
𝐴(𝑡)

𝜎(𝑡,𝑋(𝑡), 𝜉𝑡). Therefore, the function 𝜉𝑡 = Φ(𝑡, 𝜂𝑡) solves the equation with symmetric

integral

𝑑𝜉𝑡 =
𝜎(𝑡,𝑋(𝑡), 𝜉𝑡)

𝐴(𝑡)𝜂𝑡
* 𝑑𝜂𝑡 +

[︂
𝑏(𝑡,𝑋(𝑡), 𝜉𝑡) −

𝐵(𝑡)

𝐴(𝑡)
𝜎(𝑡,𝑋(𝑡), 𝜉𝑡)

]︂
𝑑𝑡.
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