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AT INFINITY FUNCTIONS WITH SUMMABLE
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Abstract. In the article we define a Banach algebra of periodic at infinity functions. For
this class of functions we introduce the notions of a Fourier series, its absolute convergence,
and invertibility. We obtain an analogue of Wiener’s theorem on absolutely convergent
Fourier series for periodic at infinity functions whose Fourier coefficients are summable
with a weight.
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1. Introduction

Let 𝑙1(Z) be the Banach space of two-sided summable sequences 𝑎 : Z→ C with the norm
‖𝑎‖1 =

∑︀
𝑘∈Z |𝑎(𝑘)| < ∞.

By the symbol 𝐶𝜔(R) we shall indicate the Banach space of all continuous 𝜔-periodic func-
tions 𝑓 : R→ C.

We say that a function 𝑓 ∈ 𝐶𝜔(R) has an absolutely convergent Fourier series if it can be

represented as the series 𝑓(𝑡) =
∑︀

𝑘∈Z 𝑎(𝑘)𝑒𝑖
2𝜋𝑘
𝜔

𝑡, 𝑡 ∈ R, where 𝑎 ∈ 𝑙1(Z). We denote the set of
all such functions by 𝐴𝐶𝜔(R). We observe that 𝐴𝐶𝜔(R) is a Banach algebra (cf. [1]) with the
pointwise multiplication and the norm

‖𝑓‖𝐴𝐶 = ‖𝑎‖1 =
∑︁
𝑘∈Z

|𝑎(𝑘)|.

In terms of the introduced notations Wiener’s theorem reads as follows.

Theorem 1. If a function 𝑓 belongs to 𝐴𝐶𝜔(R) and 𝑓(𝑡) ̸= 0 for each 𝑡 ∈ R, then

1/𝑓 ∈ 𝐴𝐶𝜔(R), i.e. 1/𝑓(𝑡) =
∑︀

𝑘∈Z 𝑏(𝑘)𝑒𝑖
2𝜋𝑘
𝜔

𝑡, where 𝑏 ∈ 𝑙1(Z).

The proof of Theorem 1 is given in [2].
Wiener’s theorem was generalized in several directions. We mention Bochner-Fillips theorem

[3] for the functions with values in a Banach algebra, as well as papers [4], [5], where Wiener’s
theorem was proved for the operators whose matrices have absolutely summable diagonals. The
references to the studies related with applications of the results are given in [6].

In the present paper we extend Wiener’s theorem for the class of periodic at infinity functions.
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We introduce the set of periodic at infinite functions. Let 𝑋 be a complex Banach space,
𝐸𝑛𝑑𝑋 be the Banach algebra of linear bounded operators acting in 𝑋.

By the symbol 𝐶𝑏,𝑢 = 𝐶𝑏,𝑢(R, 𝑋) we denote the Banach space of continuous and bounded
on R functions with values in 𝑋, the norm in this space is ‖𝑥‖∞ = sup

𝑡∈R
‖𝑥(𝑡)‖𝑋 . The symbol

𝐶0 = 𝐶0(R, 𝑋) will be employed to indicate the closed subspace of 𝐶𝑏,𝑢 consisting of the
functions decaying at infinity.

In the Banach space 𝐶𝑏,𝑢 we consider an isometric group of operators (or representation)
𝑆 : R→ 𝐸𝑛𝑑𝐶𝑏,𝑢 acting by the rule

(𝑆(𝛼)𝑥)(𝑡) = 𝑥(𝑡 + 𝛼), 𝛼 ∈ R. (1)

Definition 1. A function 𝑥 ∈ 𝐶𝑏,𝑢(R, 𝑋) is called slowly varying or stationary at infinity
if

𝑆(𝛼)𝑥− 𝑥 ∈ 𝐶0(R, 𝑋) for each 𝛼 ∈ R.
For instance, a function 𝑓 ∈ 𝐶𝑏,𝑢(R,C) being 𝑓(𝑡) = sin ln(1 + 𝑡2) is slowly varying at infinity.
Definition 2. A function 𝑥 ∈ 𝐶𝑏,𝑢(R, 𝑋) is called periodic at infinity of period 𝜔 > 0 if

𝑆(𝜔)𝑥− 𝑥 ∈ 𝐶0(R, 𝑋).

The definition of periodic at infinity function was suggested by A.G. Baskakov and was employed
in paper [7].

We denote the set of slowly varying at infinity functions by the symbol 𝐶𝑠𝑙 = 𝐶𝑠𝑙(R, 𝑋),
while the symbol 𝐶𝜔,∞ = 𝐶𝜔,∞(R, 𝑋) stands for the functions periodic at infinity of period 𝜔.

In case 𝑋 = C, the considered spaces will be indicated as 𝐶𝑏,𝑢(R), 𝐶0(R), 𝐶𝑠𝑙(R), 𝐶𝜔,∞(R).
We note that 𝐶𝜔,∞(R, 𝑋) is a Banach space with the norm

‖𝑥‖∞ = sup
𝑡∈R

‖𝑥(𝑡)‖𝑋 .

Moreover, 𝐶𝑠𝑙(R, 𝑋) and 𝐶𝜔,∞(R, 𝑋) form Banach algebras with pointwise multiplication if 𝑋
is a Banach algebra.

Definition 3. Given a function 𝑥 ∈ 𝐶𝜔,∞(R, 𝑋), we call the series

𝑥(𝑡) ∼
∑︁
𝑛∈Z

𝑥𝑛(𝑡)𝑒𝑖
2𝜋𝑛
𝜔

𝑡, 𝑡 ∈ R,

its generalized Fourier series, where the functions 𝑥𝑛, 𝑛 ∈ Z, are defined by the formulae

𝑥𝑛(𝑡) =
𝑒−𝑖 2𝜋𝑛

𝜔
𝑡

𝜔

𝜔∫︁
0

𝑥(𝑡 + 𝜏)𝑒−𝑖 2𝜋𝑛
𝜔

𝜏𝑑𝜏, 𝑡 ∈ R, 𝑛 ∈ Z, (2)

and are called Fourier coefficients for function 𝑥. We shall say that the generalized Fourier
series of function 𝑥 converges absolutely if there exist functions 𝑦𝑛 ∈ 𝐶𝑠𝑙(R, 𝑋), 𝑛 ∈ Z, such
that 𝑦𝑛 − 𝑥𝑛 ∈ 𝐶0(R, 𝑋) and

∑︀
𝑛∈Z ‖𝑦𝑛‖∞ < ∞.

In what follows we shall omit the word “generalized”. It is also possible that a considered
Fourier series does not converge to function 𝑥. In this case it is regarded as a formal series.

Example 1. As an example of a function in 𝐶𝜔,∞(R) with an absolutely convergent Fourier
series we consider the function 𝑓 : R→ C defined as

𝑓(𝑡) =
∑︁

𝑛∈Z∖{0}

(︂
1

𝑛2
sin(𝛼𝑛 ln(1 + 𝑡2))

)︂
𝑒𝑖

2𝜋𝑛
𝜔

𝑡, 𝑡 ∈ R, 𝛼𝑛 ∈ R. (3)

We note that the functions 𝑓𝑛, 𝑛 ∈ Z, constructed for function 𝑓 by formula (2) do not coincide
with the functions 𝑦𝑛 : 𝑡 ↦→ 1

𝑛2 sin𝛼𝑛 ln(1 + 𝑡2), 𝑡 ∈ R, 𝑛 ∈ Z, however, 𝑓𝑛 − 𝑦𝑛 ∈ 𝐶0(R).
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Remark 1. If 𝑥 ∈ 𝐶𝜔(R), then the Fourier series in Definition 3 coincides with the usual
Fourier series of function 𝑥.

In what follows we shall make use of the notation

𝑒𝑛(𝑡) = 𝑒𝑖
2𝜋𝑛
𝜔

𝑡, 𝑡 ∈ R, 𝑛 ∈ Z.

We observe that the mapping 𝑥 ↦→ 𝑃𝑛𝑥 = 𝑥𝑛𝑒𝑛 : 𝐶𝜔,∞(R, 𝑋) → 𝐶𝜔,∞(R, 𝑋), 𝑛 ∈ Z,
is a bounded operator obeying ‖𝑃𝑛‖ ≤ 1. Moreover, Im (𝑃 2

𝑛 − 𝑃𝑛) ⊂ 𝐶0(R, 𝑋) for the image
Im (𝑃 2

𝑛 −𝑃𝑛) of the operator 𝑃 2
𝑛 −𝑃𝑛 (the proof is given in the end of Section 3), however, the

operators 𝑃𝑛, 𝑛 ∈ Z, are not projectors.
Till the end of this section the symbol 𝑋 will indicate a Banach algebra.
Definition 4. We call a function 𝑥 ∈ 𝐶𝑏,𝑢(R, 𝑋) invertible w.r.t. subspace 𝐶0(R, 𝑋) if

there exists a function 𝑦 ∈ 𝐶𝑏,𝑢(R, 𝑋) such that 𝑥𝑦 − 1 ∈ 𝐶0(R, 𝑋). We call function 𝑦 inverse
for 𝑥 w.r.t. subspace 𝐶0(R, 𝑋).

Remark 2. From Definition 4 it immediately follows that a function 𝑥 ∈ 𝐶𝜔,∞(R, 𝑋) is
invertible w.r.t. subspace 𝐶0(R, 𝑋) if and only if it can be represented as 𝑥 = 𝑦 + 𝑥0, where
𝑥0 ∈ 𝐶0(R, 𝑋), and function 𝑦 ∈ 𝐶𝜔,∞(R, 𝑋) is so that inf

𝑡∈R
‖𝑦(𝑡)‖𝑋 > 0. Definition 4 also

implies that a function 𝑥 ∈ 𝐶𝜔,∞(R, 𝑋) is invertible w.r.t. subspace 𝐶0(R, 𝑋) if and only if
there exists a number 𝐴 > 0 such that inf

|𝑡|>𝐴
‖𝑥(𝑡)‖𝑋 > 0.

It is easy to see that if 𝑦1, 𝑦2 are inverse for 𝑥 ∈ 𝐶𝑏,𝑢(R, 𝑋) w.r.t. subspace 𝐶0(R, 𝑋), then
𝑦1 − 𝑦2 ∈ 𝐶0(R, 𝑋).

Consider a function 𝑎 ∈ 𝐶𝜔,∞(R, 𝑋) and introduce the notation 𝑑𝑎(𝑘) = ‖𝑎𝑘‖∞, 𝑘 ∈ Z,
where 𝑎𝑘 is the 𝑘-th Fourier coefficient for function 𝑎 defined by formula (2).

The considered function is supposed to satisfy one of the conditions in the following assump-
tion.

Assumption 1. Function 𝑎 ∈ 𝐶𝜔,∞(R, 𝑋) satisfies one of the conditions:

1)
∑︀
𝑘∈Z

𝑑𝑎(𝑘)𝛼(𝑘) < ∞, where 𝛼 : Z→ R+ is a weight obeying the relation lim
|𝑘|→∞

ln𝛼(𝑘)
|𝑘| = 0;

2) lim
|𝑘|→∞

𝑑𝑎(𝑘)|𝑘|𝛾 = 0, 𝑘 ∈ Z, 𝛾 > 1;

3) 𝑑𝑎(𝑘) ≤ 𝐶𝑜𝑛𝑠𝑡 exp(−𝜀|𝑘|), 𝑘 ∈ Z, 𝜀 > 0.
In particular, the assumption holds true, if the Fourier series of function 𝑎 has a finite number

of non-zero Fourier coefficients, that is, there exists 𝑀 ∈ N such that 𝑑𝑎(𝑘) = 0, |𝑘| ≥ 𝑀 + 1.

The main result of the present work is

Theorem 2. If an invertible w.r.t. subspace 𝐶0(R, 𝑋) function 𝑎 ∈ 𝐶𝜔,∞(R, 𝑋) satisfies
one of the conditions 1)–3) of Assumption 1, then its inverse 𝑏 w.r.t. 𝐶0(R, 𝑋) obeys the
corresponding condition among the following ones:

1’)
∑︀
𝑘∈Z

𝑑𝑏(𝑘)𝛼(𝑘) < ∞;

2’) lim
|𝑘|→∞

𝑑𝑏(𝑘)|𝑘|𝛾 = 0;

3’) 𝑑𝑏(𝑘) ≤ 𝐶𝑜𝑛𝑠𝑡 exp(−𝜀0|𝑘|), 𝑘 ∈ Z for some 𝜀0 > 0.

We note that quantities 𝐶𝑜𝑛𝑠𝑡 and 𝜀0 depend on quantities 𝐶𝑜𝑛𝑠𝑡 and 𝜀 in the conditions of
Assumption 1.

2. Periodic vectors and their Fourier series

Let ℬ be a Banach algebra with the unit and 𝜔 is a positive number. Consider a 𝜔−periodic
isometric strongly continuous group of operators (representation) 𝑇 : R→ 𝐸𝑛𝑑ℬ acting in 𝐵



WIENER’S THEOREM FOR PERIODIC AT INFINITY FUNCTIONS . . . 143

and having the properties

𝑇 (𝑡)(𝑎𝑏) = 𝑇 (𝑡)𝑎 · 𝑇 (𝑡)𝑏,
𝑇 (𝑡)𝑒 = 𝑒, 𝑡 ∈ R, (4)

where 𝑎, 𝑏 are arbitrary elements in ℬ, and 𝑒 is the unit in algebra ℬ.
Thus, each of the operators 𝑇 (𝑡), 𝑡 ∈ R, is a homomorphism of algebra ℬ, and each function

𝑡 ↦→ 𝑇 (𝑡)𝑎 : R→ ℬ, 𝑎 ∈ ℬ is a continuous 𝜔-periodic function.
The above properties immediately yield that if an element 𝑎 ∈ ℬ is invertible, then

𝑒 = 𝑇 (𝑡)𝑒 = 𝑇 (𝑡)(𝑎𝑎−1) = (𝑇 (𝑡)𝑎)𝑇 (𝑡)𝑎−1 = (𝑇 (𝑡)𝑎−1)𝑇 (𝑡)𝑎, 𝑎 ∈ ℬ,

and hence, (𝑇 (𝑡)𝑎)−1 = 𝑇 (𝑡)𝑎−1.
Consider the Fourier series (see [8])

𝑇 (𝑡)𝑎 ∼
∑︁
𝑛∈Z

𝑎𝑛𝑒
𝑖 2𝜋𝑛

𝜔
𝑡, 𝑡 ∈ R,

of the function 𝑡 ↦→ 𝑇 (𝑡)𝑎 : R → ℬ, 𝑎 ∈ ℬ, where the Fourier coefficients are defined by the
formulae

𝑎𝑛 =
1

𝜔

𝜔∫︁
0

𝑇 (𝑡)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡, 𝑛 ∈ Z. (5)

We call the series 𝑎 ∼
∑︀

𝑛∈Z 𝑎𝑛 Fourier series of an element 𝑎 ∈ ℬ and 𝑎𝑛, 𝑛 ∈ Z, are called
Fourier coefficients of this element.

If the Fourier series of an element 𝑎 ∈ ℬ converges absolutely, i.e. the condition
∑︀

𝑛∈Z ‖𝑎𝑛‖ <
∞ holds true, then the identity 𝑎 =

∑︀
𝑛∈Z 𝑎𝑛 is valid.

Lemma 1. Let 𝑎 ∈ ℬ. Then 𝑇 (𝛼)𝑎𝑛 = 𝑒𝑖
2𝜋𝑛
𝜔

𝛼𝑎𝑛, 𝑛 ∈ Z, for each 𝛼 ∈ R, where 𝑎𝑛, 𝑛 ∈ Z,
are the Fourier coefficients of an element 𝑎. At that, the operators 𝑃𝑛 defined by the formula

𝑃𝑛𝑎 = 𝑎𝑛 = 1
𝜔

𝜔∫︀
0

𝑇 (𝑡)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡, 𝑛 ∈ Z, are the projectors with ‖𝑃𝑛‖ ≤ 1, 𝑛 ∈ Z.

Proof. We take an arbitrary element 𝑎 ∈ ℬ and fix an arbitrary number 𝛼 ∈ R. Let 𝑎𝑛, 𝑛 ∈ Z,
be the Fourier coefficient of element 𝑎 defined by formula (5). Then they satisfy the following
chain of identities

𝑇 (𝛼)𝑎𝑛 =𝑇 (𝛼)

⎛⎝ 1

𝜔

𝜔∫︁
0

𝑇 (𝑡)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡

⎞⎠ =
1

𝜔

𝜔∫︁
0

𝑇 (𝛼)𝑇 (𝑡)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡

=
1

𝜔

𝜔∫︁
0

𝑇 (𝛼 + 𝑡)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡 =
𝑒𝑖

2𝜋𝑛
𝜔

𝛼

𝜔

𝜔+𝛼∫︁
𝛼

𝑇 (𝜏)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝜏𝑑𝜏

=
𝑒𝑖

2𝜋𝑛
𝜔

𝛼

𝜔

𝜔∫︁
0

𝑇 (𝜏)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝜏 = 𝑒𝑖
2𝜋𝑛
𝜔

𝛼𝑎𝑛, 𝑛 ∈ Z.

That is, we have shown that 𝑇 (𝛼)𝑎𝑛 = 𝑒𝑖
2𝜋𝑛
𝜔

𝛼𝑎𝑛, 𝑛 ∈ Z, for each 𝛼 ∈ R.
Now let us show that the operators 𝑃𝑛, 𝑛 ∈ Z, defined by the formula 𝑃𝑛𝑎 = 𝑎𝑛 are projectors,

i.e. 𝑃 2
𝑛 = 𝑃𝑛, 𝑛 ∈ Z.
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Let 𝑎 ∈ ℬ. Then

𝑃𝑛𝑎 =
1

𝜔

𝜔∫︁
0

𝑇 (𝑡)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡, 𝑛 ∈ Z,

𝑃 2
𝑛𝑎 = 𝑃𝑛(𝑃𝑛𝑎) =

1

𝜔

𝜔∫︁
0

𝑇 (𝑡)𝑎𝑛𝑒
−𝑖 2𝜋𝑛

𝜔
𝑡𝑑𝑡 =

1

𝜔

𝜔∫︁
0

𝑎𝑛𝑑𝑡 = 𝑎𝑛 = 𝑃𝑛𝑎, 𝑛 ∈ Z.

Let us show that ‖𝑃𝑛‖ ≤ 1, 𝑛 ∈ Z. Employing the property ‖𝑇 (𝑡)‖ = 1, 𝑡 ∈ R, we obtain

‖𝑃𝑛‖ = sup
‖𝑎‖≤1

‖𝑃𝑛𝑎‖ = sup
‖𝑎‖≤1

‖ 1

𝜔

𝜔∫︁
0

𝑇 (𝑡)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡‖ ≤

≤ sup
‖𝑎‖≤1

1

𝜔

𝜔∫︁
0

‖𝑇 (𝑡)𝑎‖𝑑𝑡 ≤ sup
‖𝑎‖≤1

1

𝜔

𝜔∫︁
0

‖𝑇 (𝑡)‖‖𝑎‖𝑑𝑡 ≤ 1.

The proof is complete.

Given an element 𝑎 ∈ ℬ, we consider the operator 𝐴 ∈ 𝐸𝑛𝑑ℬ of the form

𝐴𝑥 = 𝑎𝑥, 𝑥 ∈ ℬ.
We associate with this operator a 𝜔-periodic operator-valued function Φ𝐴 : R→ 𝐸𝑛𝑑ℬ defined
by the formula

Φ𝐴(𝑡) = 𝑇 (𝑡)𝐴𝑇 (−𝑡), 𝑡 ∈ R.
We associate with function Φ𝐴 its Fourier series

Φ𝐴(𝑡) ∼
∑︁
𝑛∈Z

𝐴𝑛𝑒
𝑖 2𝜋𝑛

𝜔
𝑡, 𝑡 ∈ R,

where the Fourier coefficients are defined by the formulae

𝐴𝑛 =
1

𝜔

𝜔∫︁
0

𝑇 (𝑡)𝐴𝑇 (−𝑡)𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡, 𝑛 ∈ Z. (6)

We call a series
∑︀

𝑛∈Z𝐴𝑛 Fourier series of operator 𝐴, and the operators 𝐴𝑛 are called
Fourier coefficients of this operator. We define a two-sided number sequence (𝑑𝐴(𝑛)) by letting
𝑑𝐴(𝑛) = ‖𝐴𝑛‖, 𝑛 ∈ Z.

Lemma 2. The Fourier coefficients 𝐴𝑛, 𝑛 ∈ Z, of an operator 𝐴 satisfy the representations
𝐴𝑛𝑥 = 𝑎𝑛𝑥, 𝑛 ∈ Z, 𝑥 ∈ ℬ. At that, ‖𝐴𝑛‖ = ‖𝑎𝑛‖, 𝑛 ∈ Z.

Proof. Let us show that 𝐴𝑛𝑥 = 𝑎𝑛𝑥 for each 𝑥 ∈ ℬ.
Employing formulae (5) and (6) as well as the fact that the operators 𝑇 (𝑡), 𝑡 ∈ R, form a

homomorphism of the algebra, we obtain

𝐴𝑛𝑥 =
1

𝜔

𝜔∫︁
0

𝑇 (𝑡)𝐴𝑇 (−𝑡)𝑥𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡 =
1

𝜔

𝜔∫︁
0

𝑇 (𝑡)(𝑎𝑇 (−𝑡)𝑥)𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡

=
1

𝜔

𝜔∫︁
0

(𝑇 (𝑡)𝑎)𝑇 (𝑡)(𝑇 (−𝑡)𝑥)𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡 =

⎛⎝ 1

𝜔

𝜔∫︁
0

𝑇 (𝑡)𝑎𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡

⎞⎠𝑥 = 𝑎𝑛𝑥.

The inequality ‖𝐴𝑛𝑥‖ ≤ ‖𝑎𝑛‖‖𝑥‖ holds true for each 𝑥 ∈ ℬ.
Since 𝑎𝑛 = 𝐴𝑛𝑒 and ‖𝑒‖ = 1, then ‖𝐴𝑛‖ = ‖𝑎𝑛‖, 𝑛 ∈ Z. The proof is complete.
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We observe that if the Fourier series of an operator 𝐴 converges absolutely, i.e.∑︁
𝑛∈Z

𝑑𝐴(𝑛) =
∑︁
𝑛∈Z

‖𝑎𝑛‖ < ∞,

then function Φ𝐴 is continuous in the uniform operator topology.
We suppose that for the considered operator one of the conditions in the following assumption

is fulfilled.

Assumption 2. Operator 𝐴 ∈ 𝐸𝑛𝑑ℬ satisfies one of the following conditions:

1)
∑︀
𝑘∈Z

𝑑𝐴(𝑘)𝛼(𝑘) < ∞, where 𝛼 : Z→ R+ is a weight satisfying the relation lim
|𝑘|→∞

ln𝛼(𝑘)
|𝑘| = 0;

2) lim
|𝑘|→∞

𝑑𝐴(𝑘)|𝑘|𝛾 = 0, 𝑘 ∈ Z, 𝛾 > 1;

3) 𝑑𝐴(𝑘) ≤ 𝐶𝑜𝑛𝑠𝑡 exp(−𝜀|𝑘|), 𝑘 ∈ Z, 𝜀 > 0.
In particular, the assumption holds true if the Fourier series of operator 𝐴 comprises finitely

many non-zero Fourier coefficients, i.e. there exists 𝑀 ∈ N such that 𝑑𝐴(𝑘) = 0, |𝑘| ≥ 𝑀 + 1.

In what follows we shall make use of

Theorem 3. Suppose that an operator 𝐴 ∈ 𝐸𝑛𝑑ℬ is invertible and satisfies one of Con-
ditions 1)–3) of Assumption 2. Then the inverse operator 𝐵 = 𝐴−1 ∈ 𝐸𝑛𝑑ℬ satisfies the
corresponding condition among the following ones:

1’)
∑︀
𝑘∈Z

𝑑𝐵(𝑘)𝛼(𝑘) < ∞;

2’) lim
|𝑘|→∞

𝑑𝐵(𝑘)|𝑘|𝛾 = 0;

3’) 𝑑𝐵(𝑘) ≤ 𝐶𝑜𝑛𝑠𝑡 exp(−𝜀0|𝑘|), 𝑘 ∈ Z, for some 𝜀0 > 0.

This theorem follows from [9, Thm. 1].

3. Harmonic analysis of periodic at infinity functions

Throughout this section 𝑋 stands for a Banach algebra with unit.
It is clear that the group of shifts 𝑆 defined by formula (1) is not periodic in the space of

periodic at infinity functions.
In what follows, by the symbol ℬ we denote the factor-space 𝐶𝜔,∞(R, 𝑋)/𝐶0(R, 𝑋) which

becomes an algebra if we define the multiplication as

̃︀𝑥̃︀𝑦 = ̃︁𝑥𝑦, ̃︀𝑥, ̃︀𝑦 ∈ ℬ. (7)

In this factor-space we construct as isometric group of operators 𝑇 : R→ 𝐸𝑛𝑑ℬ acting by the
rule

𝑇 (𝑡)̃︀𝑥 = 𝑆(𝑡)𝑥 = 𝑆(𝑡)𝑥 + 𝐶0(R, 𝑋), 𝑡 ∈ R, (8)

where 𝑥 is an element of class ̃︀𝑥 ∈ ℬ.
Since

𝑇 (𝜔)̃︀𝑥 =𝑆(𝜔)𝑥 = 𝑆(𝜔)𝑥 + 𝐶0(R, 𝑋)

=(𝑆(𝜔)𝑥− 𝑥) + 𝑥 + 𝐶0(R, 𝑋) = 𝑥 + 𝐶0(R, 𝑋) = ̃︀𝑥,
representation 𝑇 is 𝜔-periodic. Moreover, the strong continuity of presentation 𝑆 implies the
same for representation 𝑇 .

In terms of group 𝑇 , the belonging of a class ̃︀𝑥 to algebra ℬ means that 𝑇 (𝜔)̃︀𝑥 = ̃︀𝑥. The
Fourier series of a function 𝑥 ∈ 𝐶𝜔,∞(R, 𝑋) being an element of a class ̃︀𝑥 reads as 𝑥(𝜏) ∼
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∑︀
𝑛∈Z 𝑥𝑛(𝜏)𝑒𝑖

2𝜋𝑛
𝜔

𝜏 , where the Fourier coefficients 𝑥𝑛, 𝑛 ∈ Z, are determined by formula (2),
while the mean 𝑥0 is

𝑥0(𝑡) =
1

𝜔

𝜔∫︁
0

𝑥(𝑡 + 𝜏)𝑑𝜏, 𝑡 ∈ R.

We have

Lemma 3. The Fourier coefficients of a function 𝑥 ∈ 𝐶𝜔,∞(R, 𝑋) possess the property 𝑥𝑛 ∈
𝐶𝑠𝑙(R, 𝑋), 𝑛 ∈ Z.

Proof. Let us show first that mean 𝑥0 of function 𝑥 ∈ 𝐶𝜔,∞(R, 𝑋) belongs to space 𝐶𝑠𝑙(R, 𝑋).
We take an arbitrary number 𝛼 ∈ R and let us show that (𝑆(𝛼)𝑥0 − 𝑥0) ∈ 𝐶0(R, 𝑋). From
Lemma 1 it follows immediately that the class ̃︀𝑥0 comprising function 𝑥0 obeys the identity
𝑇 (𝛼)̃︀𝑥0 = ̃︀𝑥0, i.e. 𝑥0 satisfies (𝑆(𝛼)𝑥0 − 𝑥0) ∈ 𝐶0(R, 𝑋). Since number 𝛼 ∈ R is arbitrary, the
definition of slowly varying at infinity function yields 𝑥0 ∈ 𝐶𝑠𝑙(R, 𝑋).

Now let us prove this property for the Fourier coefficients 𝑥𝑛, 𝑛 ∈ Z, of function 𝑥. Intro-
ducing the notation 𝑦(𝑡) = 𝑥(𝑡)𝑒𝑖

2𝜋𝑛
𝜔

𝑡, 𝑡 ∈ R, 𝑛 ∈ Z, we obtain that 𝑆(𝜔)𝑦 − 𝑦 ∈ 𝐶0(R, 𝑋),

i.e. 𝑦 ∈ 𝐶𝜔,∞(R, 𝑋). Then the mean of function 𝑦 defined by the formula 𝑦0(𝑡) = 1
𝜔

𝜔∫︀
0

𝑥(𝑡 +

𝜏)𝑒−𝑖 2𝜋𝑛
𝜔

(𝑡+𝜏)𝑑𝜏 , 𝑡 ∈ R, belongs to space 𝐶𝑠𝑙(R, 𝑋). Comparing the latter formula with formula
(2), we obtain that 𝑥𝑛 ∈ 𝐶𝑠𝑙(R, 𝑋), 𝑛 ∈ Z. The proof is complete.

Thus, we have the factor-algebra ℬ = 𝐶𝜔,∞(R, 𝑋)/𝐶0(R, 𝑋) and the 𝜔-periodic strongly
continuous isometric group of operators (representation) 𝑇 acting in this factor-algebra and
defined by formula (8).

With representation 𝑇 we associate its Fourier series

𝑇 (𝑡)̃︀𝑥 ∼
∑︁
𝑛∈Z

̃︁𝑃𝑛̃︀𝑥𝑒𝑖 2𝜋𝑛
𝜔

𝑡, 𝑡 ∈ R, ̃︀𝑥 ∈ ℬ.

The Fourier coefficients of representation 𝑇 read as

̃︁𝑃𝑛̃︀𝑥 =
1

𝜔

𝜔∫︁
0

𝑇 (𝑡)̃︀𝑥𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡, 𝑛 ∈ Z.

On the elements of the considered classes we have

(𝑃𝑛𝑥)(𝜏) =
1

𝜔

𝜔∫︁
0

(𝑆(𝑡)𝑥)(𝜏)𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡 =
1

𝜔

𝜔∫︁
0

𝑥(𝑡 + 𝜏)𝑒−𝑖 2𝜋𝑛
𝜔

𝑡𝑑𝑡 = 𝑥𝑛(𝜏)𝑒𝑖
2𝜋𝑛
𝜔

𝜏 ,

where 𝑥𝑛, 𝑛 ∈ Z, are the Fourier coefficients of function 𝑥 defined by formula (2).
Directly from formula (5) it follows that the Fourier coefficient of representation 𝑇 satisfy

the identity ̃︁𝑃𝑛̃︀𝑥 = ̃︁𝑥𝑛, 𝑛 ∈ Z.
Let 𝑥 be an element of class ̃︀𝑥 ∈ ℬ. Then the latter identity means that ̃︂𝑃𝑛𝑥 = ̃︁𝑥𝑛, i.e.

𝑃𝑛𝑥 − 𝑥𝑛 ∈ 𝐶0(R, 𝑋), 𝑛 ∈ Z. Since ̃︁𝑃𝑛 are projectors, the identity ̃︁𝑃𝑛

2̃︀𝑥 = ̃︁𝑃𝑛̃︀𝑥 = ̃︁𝑥𝑛,

𝑛 ∈ Z, holds true. This is why ̃︂𝑃 2
𝑛𝑥 = ̃︁𝑥𝑛, i.e. 𝑃 2

𝑛𝑥 − 𝑥𝑛 ∈ 𝐶0(R, 𝑋), 𝑛 ∈ Z. It follows
that 𝑃 2

𝑛𝑥− 𝑃𝑛𝑥 ∈ 𝐶0(R, 𝑋), 𝑛 ∈ Z, i.e. Im (𝑃 2
𝑛 − 𝑃𝑛) ⊂ 𝐶0(R, 𝑋).

If the Fourier series of class ̃︀𝑥 ∈ ℬ converges absolutely, i.e. the condition∑︁
𝑛∈Z

‖̃︁𝑥𝑛‖ < ∞



WIENER’S THEOREM FOR PERIODIC AT INFINITY FUNCTIONS . . . 147

holds true, then from the properties of the norm in the factor-space it follows that in this case
there exist elements 𝑦𝑛 in classes ̃︁𝑥𝑛 satisfying∑︁

𝑛∈Z

‖𝑦𝑛‖∞ < ∞.

We note that function 𝑥 ∈ 𝐶𝜔,∞(R, 𝑋) is invertible w.r.t. 𝐶0(R, 𝑋) if and only if the class̃︀𝑥 ∈ ℬ, comprising it, is invertible. This statement is implied by Definition 4.

4. Proof of Theorem 2

In order to obtain the main results, as algebra 𝐵, we consider the factor-algebra
𝐶𝜔,∞(R, 𝑋)/𝐶0(R, 𝑋), and as the representation 𝑇 : R→ 𝐸𝑛𝑑ℬ, we consider the 𝜔-periodic
group of isometric operators 𝑇 : R→ 𝐸𝑛𝑑ℬ defined by formula (8).

Let us show that group 𝑇 possesses properties (4).
By employing formulae (7) and (8), we obtain that

𝑇 (𝑡)(̃︀𝑥̃︀𝑦) =𝑇 (𝑡)(̃︁𝑥𝑦) = ˜𝑆(𝑡)(𝑥𝑦) = 𝑆(𝑡)𝑥𝑆(𝑡)𝑦 + 𝐶0(R, 𝑋)

= (𝑇 (𝑡)̃︀𝑥)𝑇 (𝑡)̃︀𝑦, 𝑥 ∈ ̃︀𝑥, 𝑦 ∈ ̃︀𝑦, 𝑡 ∈ R,
i.e. property (4) indeed holds for group 𝑇 .

Consider the operator 𝐴 ∈ 𝐸𝑛𝑑ℬ
𝐴̃︀𝑥 = ̃︀𝑎̃︀𝑥, ̃︀𝑎 ∈ ℬ. (9)

With this operator we associate the 𝜔-periodic operator-valued function Φ𝐴 : R → 𝐸𝑛𝑑ℬ
defined by the formula

Φ𝐴(𝑡) = 𝑇 (𝑡)𝐴𝑇 (−𝑡), 𝑡 ∈ R.
Theorem 3 holds true for the considered operator.

Proof of Theorem 2. Consider the Banach algebra ℬ = 𝐶𝜔,∞(R, 𝑋)/𝐶0(R, 𝑋) and the 𝜔-
periodic isometric group of operators 𝑇 acting in this algebra and defined by formula (8).

Given the invertible function 𝑎 ∈ 𝐶𝜔,∞(R, 𝑋) introduced in the hypothesis of the theorem,
we construct the class ̃︀𝑎 ∈ ℬ which is invertible as well. Denoting the inverse class by the

symbol ̃︀𝑏, we obtain that ̃︀𝑎̃︀𝑏 = ̃︀1.
We introduce the operator 𝐴 ∈ 𝐸𝑛𝑑ℬ by formula (9). This is the operator of multiplication

by element ̃︀𝑎 ∈ ℬ and it is invertible. Then its inverse acts as

𝐵̃︀𝑥 = ̃︀𝑏̃︀𝑥, ̃︀𝑏 ∈ ℬ.
Theorem 3 also holds for operator 𝐴, and hence, there exists an element 𝑏 of class ̃︀𝑏 such
that 𝑎𝑏 − 1 ∈ 𝐶0(R, 𝑋) and it satisfies the appropriate condition in Theorem 2. The proof is
complete.

Corollary 1. If a function 𝑎 ∈ 𝐶𝜔,∞(R, 𝑋) is invertible w.r.t. subspace 𝐶0(R, 𝑋) and it has
the absolutely convergent Fourier series, then the Fourier series of the inverse w.r.t. 𝐶0(R, 𝑋)
function converges absolutely as well.

Corollary 2. If a function 𝑎 ∈ 𝐶𝜔,∞(R, 𝑋) is invertible w.r.t. subspace 𝐶0(R, 𝑋) and its
Fourier series converges absolutely, then there exists a function 𝑏 ∈ 𝐶𝜔,∞(R, 𝑋) with an abso-
lutely convergent Fourier series such that 𝑎𝑏− 1 ∈ 𝐶0(R, 𝑋).

In conclusion we should mention that in recent paper [10] almost periodic at infinity functions
were introduced. And there naturally appear the questions similar to ones studied in the present
paper.
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