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INTERPOLATION WITH MULTIPLICITY BY SERIES OF

EXPONENTIALS IN 𝐻(C) WITH NODES ON REAL AXIS

S.G. MERZLYAKOV, S.V. POPENOV

Abstract. In the space of entire functions, we study the problem on interpolation with
multiplicity by the functions from a closed subspace which is invariant with respect to
the operator of differentiation. The discrete set of the nodes for the interpolation with
multiplicity is located on the real axis in the complex plane. The proof is based on the
passage from the subspace to its subspace consisting of all series of exponentials converging
in the topology of uniform convergence on compact sets. We obtain a solvability criterion
for the problem of interpolation with multiplicity by series of exponentials for real nodes
in the terms of location of exponents of exponentials.
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1. Preliminaries

Denote by 𝐻(C) the space of entire functions with the topology of uniform convergence on
compact sets. As a corollary of classical Weierstrass and Mittag-Leffler theorems, we obtain
that the following problem of the interpolation with multiplicities by the functions in 𝐻(C)
(see [1, p. 32]) is solvable.

For each locally analytic function 𝜔 on a given discrete set of points {𝜇𝑘} in the complex plane
and natural numbers 𝑚𝑘, 𝑘 ∈ N, there exists an entire function 𝑔 such that |𝜔(𝑧) − 𝑔(𝑧)| =
𝑂(|𝑧 − 𝜇𝑘|𝑚𝑘) as 𝑧 → 𝜇𝑘, 𝑘 ∈ N. We shall call points 𝜇𝑘 interpolation nodes and numbers 𝑚𝑘

will be called multiplicities of nodes 𝜇𝑘.
This statement is equivalent to the solvability of the problem on interpolation with multi-

plicity by entire functions in the traditional formulation.
For an arbitrary discrete set of interpolation nodes 𝜇𝑘 ∈ C with multiplicities 𝑚𝑘 and for

each interpolation data

𝑏𝑗𝑘 ∈ C, 𝑗 = 0, 1, · · · ,𝑚𝑘 − 1, 𝑘 ∈ N,
there exists an entire function 𝑔 such that

𝑔(𝑗)(𝜇𝑘) = 𝑏𝑗𝑘, 𝑗 = 0, 1, · · · ,𝑚𝑘 − 1, 𝑘 ∈ N.

In the case of a finite number of interpolation nodes 𝜇𝑘, 𝑘 = 1, 2, . . . , 𝑟, with multiplicities
𝑚𝑘, there was studied the problem of interpolation not only by polynomials, but also by the
functions in the kernels of linear and nonlinear differential operators in various functional
spaces, for instance, the multi-points Vallée Poussin problem ([2]). In the category of the
spaces of holomorphic functions, for a finite-dimensional kernel of a differential operators with
constant coefficients of finite order, this problem is equivalent to the algebraic problem on the
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existence and uniqueness of solutions to a non-homogeneous system of linear equations with
constant coefficients. It leads one to the known results ([3]) on the unique solvability of a global
holomorphic Cauchy problem (or holomorphic multi-points Vallée Poussin problem) and there
are also some advances in the case of partial differential operators of special form in space
𝐻(C𝑛) ([4]-[6]).

In the monograph [7], there were considered computational aspects of the problem on inter-
polation by finite sums of exponents in a finite number of nodes.

We also mention that in surveys [8], [9], there was formulated an unsolved problem on
interpolation by the functions in the infinite-dimensional kernel of so-called algebraic differential
operator in space 𝐻(C) and some results were mentioned.
We denote by 𝑃C the space of entire functions of exponential type with the traditional

(𝐿𝑁*)-topology ensuring a topological isomorphism between the strong dual space 𝐻*(C) and
the space 𝑃C, and this isomorphism is implemented by the Laplace transform ℒ of functionals
𝐹 ∈ 𝐻*(C). More precisely, a linear continuous one-to-one Laplace transform ℒ of functionals
𝐹 ∈ 𝐻*(C) is defined as ℒ : 𝐹 ↦−→ ℒ𝐹 (𝑧) =

⟨︀
𝐹𝜆, 𝑒

𝜆𝑧
⟩︀
, ℒ𝐹 ∈ 𝑃C, and then the usual duality is

employed.
Each function 𝜙 ∈ 𝑃C, 𝜙 ̸≡ 0, generates a linear continuous surjective convolution operator

𝑀𝜙 : 𝐻(C) ↦−→ 𝐻(C) in the space of entire functions 𝐻(C). Its action on functions 𝑓 ∈ 𝐻(C)
is defined as

𝑀𝜙[𝑓 ](𝑧) = ⟨𝐹𝜆, 𝑓(𝑧 + 𝜆)⟩ , 𝑧 ∈ C,

where 𝐹 = ℒ−1𝜙 ∈ 𝐻*(C), see details in [10], [11], and below in the proof of Theorem 1.
An entire function 𝜙 of exponential type is called characteristic function for the convolution
operator 𝑀𝜙.

By Ker𝑀𝜙 = {𝑓 ∈ 𝐻(C) : 𝑀𝜙[𝑓 ] = 0} we denote the kernel of convolution operator 𝑀𝜙.
This kernel is a closed subspace in 𝐻(C) and it is invariant w.r.t. the differentiation operator.
In paper [12], the following theorem was proven (see also [13]).

Theorem A. Fix a number 𝛼 ∈
[︀
0,
𝜋

2

)︀
. Denote by 𝜙 an entire function of exponential type

with simple zeroes 𝜆𝑛 so that there are infinitely many of 𝜆𝑛 in each of the angles 𝐴𝛼(0) = {𝑧 ∈
C : | arg 𝑧| 6 𝛼} and 𝐴𝛼(𝜋) = {𝑧 ∈ C : | arg 𝑧 − 𝜋| 6 𝛼}. Suppose that an infinite discrete set
of interpolation nodes {𝜇±𝑘}+∞

𝑘=1 lies on the real axis and 𝜇±𝑘 → ±∞, 𝑘 → +∞. Denote by 𝜓
an arbitrary entire function having simple zero at each of the nodes 𝜇±𝑘 and no zeroes at any
other point.

Then for each entire function 𝑔, there exists an entire function 𝑓 ∈ Ker𝑀𝜙 such that the
function 𝑟 = (𝑔 − 𝑓)/𝜓 is entire.

In the proof in [12], there was considered the case of simple interpolation (i.e., the multiplicity
for each 𝜇±𝑘 was equal to one) and it was noticed that the method of the proof can be extended
for the case of the interpolation with multiplicity. Such extension is indeed possible but serious
technical problems appear.

We observe that the divisibility condition in Theorem A is equivalent to the relation |𝑓(𝑧)−
𝑔(𝑧)| = 𝑂(|𝑧 − 𝜇±𝑘|) as 𝑧 → 𝜇±𝑘 for each 𝑘 ∈ N. Hence, in contrast to the classical problem
of interpolation by functions in space 𝐻(C), it is stated in Theorem A that in space of entire
function 𝐻(C), we have the solvability for the following problem on simple interpolation by the
functions in closed subspace Ker𝑀𝜙 with an infinite sequence of nodes 𝜇±𝑘 of multiplicity 1 on
the real axis.

For each interpolation data 𝑏±𝑘 ∈ C, 𝑘 = 1, 2, . . . , there exists an entire function 𝑓 ∈ Ker𝑀𝜙,
such that 𝑓(𝜇±𝑘) = 𝑏±𝑘, 𝑘 = 1, 2, · · ·
In other words, in Theorem A, the solvability of the Vallée Poussin multi-points problem for

convolution operators in space 𝐻(C) was proven (see also [14]).
Theorem A has such a formulation since Fischer representations are used in the proof (see,

for instance, [3]–[6], [12], [13] and the references therein). If 𝜓 ∈ 𝐻(C), by
(︀
𝜓
)︀
we denote the
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closed ideal in 𝐻(C) generated by function 𝜓,(︀
𝜓
)︀
= {ℎ ∈ 𝐻(C) : ℎ = 𝜓 · 𝑟, 𝑟 ∈ 𝐻(C)}.

Theorem A on the solvability of the interpolation problem is equivalent to the Fischer rep-
resentation

𝐻(C) = Ker𝑀𝜙 +
(︀
𝜓
)︀
,

where 𝜓 is an arbitrary entire function having simple zero at each of nodes 𝜇±𝑘 and no zero at
any other point.

There is no uniqueness of the interpolation under the assumptions of the considered problem,
i.e. Ker𝑀𝜙 ∩

(︀
𝜓
)︀
̸= {0} (see Proposition below). In view of this, it seems natural to pass to a

closed subspace of kernel Ker𝑀𝜙 in order to solve the problem on interpolation by the functions
in a smaller subspace of 𝐻(C). In particular, it is also reasonable that Theorem A treats the
case when all zeroes of the characteristic function 𝜙 are simple.
As it is well-known, the kernel of each convolution operator 𝑀𝜙 in 𝐻(C) admits the spectral

synthesis, i.e., Ker𝑀𝜙 coincides with the closure of the linear span of all polynomial-exponential
monomials 𝑧𝜈𝑒𝜆𝑛𝑧 lying in this kernel; the closure is understood in the sense of the topology in
𝐻(C).

In particular, in the present paper we prove the solvability of the problem on the interpolation
with multiplicity by the functions in the closed subspace of kernel Ker𝑀𝜙 consisting of all entire
functions 𝑓 represented by the series of exponentials converging in space 𝐻(C),

𝑓(𝑧) =
∞∑︁
𝑛=1

𝑐𝑛𝑒
𝜆𝑛𝑧, 𝑧 ∈ C,

that gives a new and simpler proof of Theorem A.

2. Auxiliary results

In what follows we shall need some properties of the polynomials of exponentials with real
exponents. Such polynomials were studied in monograph [18].

Consider an arbitrary polynomial of exponentials

𝑝(𝑧) =
𝑠∑︁

𝑘=0

𝑎𝑘(𝑧)𝑒
𝜔𝑘𝑧, 𝜔0 < 𝜔1 < · · · < 𝜔𝑠, (1)

where 𝑎𝑘(𝑧) are some polynomials and let 𝑎0 · 𝑎𝑠 ̸≡ 0.
By Theorem 12.9 of monograph [18], one can get easily

Lemma 1. There exists 𝑐1 > 0 such that in the exterior of the circle {𝑧 ∈ C : |𝑧| > 𝑐1} the
following statement holds true: there exist positive constants 𝑐2, 𝑐3 and two real numbers 𝑚0,
𝑚𝑠 obeying either 𝑚0 > 𝑚𝑠 or 𝑚0 = 𝑚𝑠 = 0 such that

|𝑝(𝑧)| > 𝑐2𝑒
𝜔0 Re 𝑧, (2)

for each 𝑧 in the domain 𝑈0 = {𝑧 ∈ C : Re(𝑧 +𝑚0 ln 𝑧)} < −𝑐3, and
|𝑝(𝑧)| > 𝑐2𝑒

𝜔𝑠 Re 𝑧, (3)

for each 𝑧 in the domain 𝑈𝑠 = {𝑧 ∈ C : Re(𝑧 +𝑚𝑠 ln 𝑧)} > 𝑐3.

For each fixed 𝑐 ∈ R, we consider the curve Re(𝑧 + 𝑚 ln 𝑧) = 𝑐, 𝑚 ̸= 0. It is symmetric
w.r.t. the real axis. As 𝑚 > 0, this curve lies in some half-plane Re 𝑧 < 𝐴, 𝐴 > 0, while
as 𝑚 < 0, it lies in some half-plane Re 𝑧 > −𝐴, 𝐴 > 0. If a point 𝑧 = 𝑥 + 𝑖𝑦 lies on this

curve, then
⃒⃒⃒𝑦
𝑥

⃒⃒⃒
→ ∞, arg 𝑧 → 𝜋

2
, |𝑧| = |𝑦|(1 + 𝑜(1)) as |𝑧| → ∞. The considered curve tends

asymptotically to the exponential curve 𝑥+𝑚 ln |𝑦| = 𝑐.

Given 𝛼 ∈ (0,
𝜋

2
), we denote

𝐴𝛼(𝜋) = {𝑧 ∈ C : | arg 𝑧 − 𝜋| 6 𝛼}, 𝐴𝛼(0) = {𝑧 ∈ C : | arg 𝑧| 6 𝛼}.
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Lemma 2. For an arbitrary polynomial of exponentials 𝑝 of form (1), there exists such
𝑟 = 𝑟(𝑝) > 0 that for each 𝑧, |𝑧| > 𝑟, the following estimates hold true.
If 𝜔0 < 0 and 𝑧 ∈ 𝐴𝛼(𝜋), then

|𝑝(𝑧)| > 𝑐3𝑒
(|𝜔0| cos𝛼)|𝑧|. (4)

If 𝜔𝑠 > 0 and 𝑧 ∈ 𝐴𝛼(0), then

|𝑝(𝑧)| > 𝑐3𝑒
(𝜔𝑠 cos𝛼)|𝑧|. (5)

Proof. It is easy to see that all the points 𝑧 in angles 𝐴𝛼(𝜋), 𝐴𝛼(0) located outside some circle
lie in domains 𝑈0, 𝑈𝑠, respectively. Therefore, estimates (2) and (3) for the polynomial of
exponents 𝑝 in domains 𝑈0 and 𝑈𝑠 as |𝑧| > 𝑐1 imply the estimates outside some circle in angles
𝐴𝛼(𝜋) and 𝐴𝛼(0), respectively. Since

𝜔0Re 𝑧 = |𝜔0| · | cos(arg 𝑧)| · |𝑧| > |𝜔0| · | cos(𝜋 − 𝛼)| · |𝑧|
in the angle 𝐴𝛼(𝜋) = {|arg 𝑧 − 𝜋| 6 𝛼 < 𝜋/2}, estimate (2) implies estimate (4). Since

𝜔𝑠Re 𝑧 =
(︀
𝜔𝑠 cos(arg 𝑧)

)︀
|𝑧| > (𝜔𝑠 cos𝛼)|𝑧|

in the angle 𝐴𝛼(0) = {|arg 𝑧| 6 𝛼 < 𝜋/2}, estimate (3) yields estimate (5). The proof is
complete.

Consider two arbitrary infinite discrete sequences of complex numbers 𝒱− = {𝑣−𝑗} and
𝒱+ = {𝑣𝑗} such that Re 𝑣−𝑗 < 0, Re 𝑣𝑗 > 0. Denote 𝒱 = 𝒱− ∪ 𝒱+. We introduce the following
conditions

lim sup
𝑗→∞

|Re 𝑣−𝑗|
ln |𝑣−𝑗|

= ∞. (6)

lim sup
𝑗→∞

Re 𝑣𝑗
ln |𝑣𝑗|

= ∞. (7)

If sequences 𝒱−, 𝒱+ lie in the angles 𝐴𝛼(𝜋), 𝐴𝛼(0), respectively, then conditions (6) and (7)
hold true.

We indicate by 𝐼𝒱± the ideals in 𝑃C,

𝐼𝒱− = {𝑓 ∈ 𝑃C : 𝑓(𝑣−𝑗) = 0, 𝑗 ∈ N}.

𝐼𝒱+ = {𝑓 ∈ 𝑃C : 𝑓(𝑣𝑗) = 0, 𝑗 ∈ N}.
They are closed subspaces in 𝑃C.

Lemma 3. In the described situation, if at least one of conditions (6) or (7) holds true for
𝒱, then none of polynomials of exponentials 𝑝 ̸≡ 0 of form (2) can be an element of ideals 𝐼𝒱±.

Proof. Suppose 𝑝|𝒱− = 0 or 𝑝|𝒱+ = 0. It follows from estimates (2) and (3) that outside some
circle, an arbitrary polynomial of exponentials 𝑝 of form (1) has no zeroes in domains 𝑈0, 𝑈𝑠,
and in their definitions, constants 𝑐1, 𝑐2,𝑚0,𝑚𝑠 depend on 𝑝. It is easy to see that conditions (6)
and (7) imply that for arbitrary domains 𝑈0, 𝑈𝑠 of such form there exists a circle whose radius
depends on 𝑝, and outside this circle, there exist two infinite sequences of points in 𝒱− and 𝒱+

lying in 𝑈0 and 𝑈𝑠, respectively. We obtain the contradiction. The proof is complete.

3. Main theorem

Suppose that we are given an infinite discrete set of real interpolation nodes ℳ = ℳ−∪ℳ+,
where ℳ− = {𝜇−𝑘}𝜏2𝑘=1, 𝜇−𝑘 < 0, or ℳ− = ∅, and ℳ+ = {𝜇𝑘}𝜏1𝑘=1, 𝜇𝑘 > 0, or ℳ− = ∅. Here
𝜏1 6 +∞, 𝜏2 6 +∞.

Let us assume that all the interpolation nodes are taken in the increasing order of index 𝑘,
i.e., in such a way that 𝜇−𝑘−1 < 𝜇−𝑘, 𝜇𝑘 < 𝜇𝑘+1. Suppose that to each node 𝜇±𝑘 ∈ ℳ, the
multiplicity 𝑚±𝑘 ∈ N is associated.
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Consider an infinite discrete sequence of complex numbers Λ = {𝜆𝑛}𝑛∈N. Suppose that the
condition

lim sup
𝑛→∞

ln𝑛

|𝜆𝑛|
= 𝑑 <∞ (8)

holds true. We denote

Σ(Λ) = {𝑓 ∈ 𝐻(C) : 𝑓(𝑧) =
∞∑︁
𝑛=1

𝑐𝑛𝑒
𝜆𝑛𝑧, 𝑧 ∈ C}.

Under condition (8) for the exponents 𝜆𝑛, the pointwise convergence of the series of exponentials
for each 𝑧 ∈ C implies that the series converges in the topology of space 𝐻(C) ([15]).
Consider the following problem on interpolation with multiplicity by the series of exponentials

with set of nodes ℳ.
Given an arbitrary entire function 𝑔, find a series of exponentials 𝑓 ∈ Σ(Λ) such that for

each 𝜇±𝑘 ∈ ℳ
|𝑓(𝑧)− 𝑔(𝑧)| = 𝑂(|𝑧 − 𝜇±𝑘|𝑚±𝑘), 𝑧 → 𝜇±𝑘.

The solvability of this problem is equivalent to the following representation

𝐻(C) = Σ(Λ) +
(︀
𝜓ℳ

)︀
.

Here 𝜓ℳ stands for an entire function with zeroes of multiplicity 𝑚±𝑘 at all the nodes
𝜇±𝑘 ∈ ℳ and with no zero at any other point. Moreover, we denote by(︀

𝜓ℳ
)︀
= {ℎ ∈ 𝐻(C) : ℎ = 𝜓ℳ · 𝑟, 𝑟 ∈ 𝐻(C)} (9)

the closed ideal in 𝐻(C) generated by function 𝜓ℳ.

Theorem 1. 1. Suppose that set of nodes ℳ+ is finite or infinite. The problem of interpo-
lation with multiplicity by the series of exponentials in Σ(Λ) with set of nodes ℳ is solvable in

space 𝐻(C) if and only if the set Λ ∩ 𝐴𝛼(𝜋) is infinite for some 𝛼 ∈ (0,
𝜋

2
).

2. Suppose that both the sets of nodes ℳ− and ℳ+ are infinite. The problem of interpolation
with multiplicity by the series of exponentials in Σ(Λ) with set of nodes ℳ is solvable in space

𝐻(C) if and only if both the sets Λ ∩ 𝐴𝛼(𝜋) and Λ ∩ 𝐴𝛼(0) are infinite for some 𝛼 ∈ (0,
𝜋

2
).

Proof. Let us prove the necessity of conditions in Assertions 1 and 2.
Suppose that the problem on interpolation with multiplicity by series of exponentials in

Σ(Λ) is solvable under the hypothesis of Assertion 1. Assume that for each 𝛼 ∈ (0,
𝜋

2
), the set

Λ ∩ 𝐴𝛼(𝜋) is finite or empty. Then

lim
𝑛→∞

Re𝜆𝑛
|𝜆𝑛|

= 0.

For 𝑥 < 0 consider the function

ℎ(𝑥) = sup
𝑛
{𝑥Re𝜆𝑛 − |𝜆𝑛|}, ℎ(𝑥) <∞.

Consider an arbitrary function 𝑓 ∈ Σ(Λ) and let us prove that for each 𝑥 < 0 the estimate
|𝑓(𝑥)| 6 𝐶𝑒ℎ(𝑥), 𝐶 > 0, holds true. Indeed,

|𝑓(𝑥)| 6
∞∑︁
𝑛=1

|𝑐𝑛| 𝑒𝑥Re𝜆𝑛 6 𝑒ℎ(𝑥)
∞∑︁
𝑛=1

|𝑐𝑛| 𝑒|𝜆𝑛|.

For a fixed 𝜀 > 0 we denote 𝐵 = 𝑑 + 2𝜀 + 1, where quantity 𝑑 is defined in condition (8). It
was shown in the proof of Theorem 3.1.1 in monograph [15] that there exists a constant 𝐴 > 0
such that

⃒⃒
𝑐𝑛𝑒

𝜆𝑛𝑧
⃒⃒
6 𝐴 for each 𝑧, |𝑧| 6 𝐵, and each 𝑛 ∈ N.
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It follows that |𝑐𝑛| 6 𝐴𝑒−𝐵|𝜆𝑛|. We have obtained that for each 𝑥 < 0

|𝑓(𝑥)| 6 𝐴𝑒ℎ(𝑥)
∞∑︁
𝑛=1

𝑒(1−𝐵)|𝜆𝑛| = 𝐴𝑒ℎ(𝑥)
∞∑︁
𝑛=1

𝑒−(𝑑+2𝜀)|𝜆𝑛|.

Condition (8) implies that (𝑑+ 𝜀) |𝜆𝑛| > ln𝑛, 𝑛 > 𝑛0, i.e.,
∞∑︁
𝑛=1

𝑒−(𝑑+2𝜀)|𝜆𝑛| <∞.

The proven estimate shows that all the functions 𝑓 in Σ(Λ) have a regulated growth rate as
𝑥 → −∞. But it means that the considered problem on simple interpolation by the functions
in the kernel of this operator is unsolvable for the interpolation data having a greater rate than
it is dictated by this estimate. We obtain the contradiction. The necessity of conditions in
Assertion 1 is proven.
The necessity of conditions in Assertion 2 can be proven in the same way.
Let us prove the sufficiency of the conditions in Assertions 1 and 2.
Under the hypothesis of Assertion 1 it is sufficient to prove the representation

𝐻(C) = Σ(Λ) +
(︀
𝜓1

)︀
,

where 𝜓1 is an entire function having infinite zero set consisting of 𝜇−𝑘 ∈ ℳ− of multiplicity
𝑚−𝑘 and having at most finite set of zeroes which are all 𝜇𝑘 ∈ ℳ+ of multiplicity 𝑚𝑘.
Similarly, under the hypothesis of Assertion 2 we shall show that

𝐻(C) = Σ(Λ) +
(︀
𝜓2

)︀
,

where 𝜓2 is a some entire function having two infinite sets of zeroes 𝜇−𝑘 ∈ ℳ− of multiplicity
𝑚−𝑘 and 𝜇𝑘 ∈ ℳ+ of multiplicity 𝑚𝑘.
Here

(︀
𝜓1

)︀
,
(︀
𝜓2

)︀
are the closed ideals in 𝐻(C) defined in (9).

In a general situation, subspace Σ(Λ) is not necessary closed in 𝐻(C). We also observe the
following. If the theorem holds for Λ0 ⊂ Λ, it also holds for Λ. In what follows, we shall pass
to a closed subspace in Σ(Λ).

The results of monograph [10, p. 268] yield the following statement.
Each entire function in the closure of linear span of the system consisting of polynomial-

exponential monomials with the exponents having a finite upper density counting multiplicities
is represented by the series of exponents if and only if 𝛿 < ∞, where 𝛿 is Bernstein-Leont’ev
condensation index defined below.

In view of said above, in what follows, we pass to the subsequences of exponents in Λ.
Under the hypothesis of Assertion 1 we choose an infinite subsequence {𝑡𝜈} ∈ Λ ∩ 𝐴𝛼(𝜋),

𝜈 ∈ N, such that the sequence {𝑡𝜈}𝜈∈N satisfies the condition

|𝑡𝜈+1| > 2|𝑡𝜈 |. (10)

Under the hypothesis of Assertion 2, we choose two infinite subsequences, {𝑡2𝑛−1} in Λ∩𝐴𝛼(𝜋)
and {𝑡2𝑛} in Λ ∩ 𝐴𝛼(0) so that sequence {𝑡𝜈}𝜈∈N satisfies separation condition (10).
By 𝐺 we denote the entire function with simple zeroes at 𝑡𝜈 ,

𝐺(𝑧) =
∞∏︁
𝜈=1

(︂
1− 𝑧

𝑡𝜈

)︂
,

where 𝑡𝜈 is any of two chosen subsequences.
Function 𝐺 has the minimal type of growth for the order 1 and Ker𝑀𝐺 consists of all entire

functions 𝑓(𝑧) represented by the series of exponentials,

𝑓(𝑧) =
∞∑︁
𝜈=1

𝑐𝜈𝑒
𝑡𝜈𝑧, 𝑧 ∈ C,

converging in the topology of space 𝐻(C).
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Since space Ker𝑀𝐺 admits the spectral synthesis, this statement is implied by Theorem 4.2.4
of monograph [10]. Let us show that as a result of choice of 𝑡𝜈 , we have 𝛿 = 0, where

𝛿 = lim sup
𝜈→∞

1

|𝑡𝜈 |
ln

1⃒⃒
𝐺′(𝑡𝜈)

⃒⃒ .
In both the cases, the set of zeroes {𝑡𝜈} of function 𝐺 satisfies condition (10) and hence, function
𝐺 has the minimal type for order 1. For such function we always have 𝛿 > 0, since the derivative
𝐺′ has also the zero type for order 1, i.e.,

1

|𝐺′(𝑡𝜈)|
> 𝑒−𝜀|𝑡𝜈 |, 𝜀 > 0, 𝜈 > 𝜈0.

The estimates

|𝐺′(𝑡𝜈)| >
1

|𝑡𝜈 |
∏︁
𝑗 ̸=𝜈

(︂⃒⃒
1− |𝑡𝜈 |

|𝑡𝑗|
⃒⃒)︂
.

ln |𝐺′(𝑡𝜈)| > ln
1

|𝑡𝜈 |
+
∑︁
𝑗<𝜈

ln
(︁ |𝑡𝜈 |
|𝑡𝑗|

− 1
)︁
+
∑︁
𝑗>𝜈

ln
(︁
1− |𝑡𝜈 |

|𝑡𝑗|

)︁
are valid. The second term is positive and then, in view of (10), we obtain

1

|𝐺′(𝑡𝜈)|
6 |𝑡𝜈 |𝑒−𝐴, 𝐴 =

∞∑︁
𝑘=1

ln
(︁
1−

(︂
1

2

)︂𝑘)︁
.

We see that 𝛿 6 0. Hence, 𝛿 = 0.
We denote Λ− = Λ∩𝐴𝛼(𝜋), Λ+ = Λ∩𝐴𝛼(0). The sets can be finite, and one of them can be

empty. In what follows, without loss of generality, we shall assume that under the hypothesis
of Assertion 1 Λ = Λ−, while under the hypothesis of Assertion 2 Λ = Λ− ∪Λ+, and moreover,
the elements of sequence Λ satisfies separation condition (10) in the aforementioned sense. We
denote by 𝐺1, 𝐺2 entire functions with zero sets Λ−, Λ, respectively.

In view of these notations, the fact proved above implies that Ker𝑀𝐺1 = Σ(Λ−) and
Ker𝑀𝐺2 = Σ(Λ). Thus, to prove the sufficiency of the conditions in both the assertions of
Theorem 1, it is sufficient to show that under each of their hypotheses, space 𝐻(C) admits the
corresponding Fischer representation,

𝐻(C) = Ker𝑀𝐺1 +
(︀
𝜓1

)︀
.

𝐻(C) = Ker𝑀𝐺2 +
(︀
𝜓2

)︀
.

Entire functions 𝜓1, 𝜓2 are determined in the beginning of the proof. It will be shown that for
𝑘 = 1 and 𝑘 = 2, the following two statements hold true.
(I) The subspace Ker𝑀𝐺𝑘

+
(︀
𝜓𝑘

)︀
is dense in space 𝐻(C);

(II) The subspace Ker𝑀𝐺𝑘
+
(︀
𝜓𝑘

)︀
is closed in space 𝐻(C).

In what follows we use the scheme of the proof given in work [13] which is based on the duality
with employing Laplace transform ℒ for the functionals in the strong dual space 𝐻*(C).

We define separately a continuous bilinear form [·, ·] : 𝐻(C) × 𝑃C ↦−→ C by the formula
[𝜓, 𝜙] = ⟨ℒ−1𝜙, 𝜓⟩, 𝜓 ∈ 𝐻(C), 𝜙 ∈ 𝑃C. By means of the mapping 𝜙 ↦−→ [·, 𝜑] = ⟨ℒ−1𝜙, ·⟩,
where ℒ−1𝜙 ∈ 𝐻*(C), we define an isomorphism between 𝑃C and strong dual space 𝐻*(C).
According to the introduced duality, each function in space 𝑃C is in one-to-one correspondence
with some linear continuous functional in 𝐻*(C).
Each function 𝐺 ∈ 𝑃C, 𝐺 ̸≡ 0, generates the convolution operator 𝑀𝐺 : 𝑃C ↦−→ 𝑃C,

𝑀𝐺[𝜓](𝑧) =
[︀
𝑆𝑧

(︀
𝜓(𝜆)

)︀
, 𝐺𝜆

]︀
=

⟨︀
(ℒ−1𝐺)𝜆, 𝜓(𝑧 + 𝜆)

⟩︀
,

in the space of entire functions 𝐻(C), where 𝑆𝑧 is the shift operator 𝑆𝑧
(︀
𝜓(𝜆)

)︀
= 𝜓(𝜆+ 𝑧).

It is known that 𝑀𝐺 is linear continuous surjective operator. Its adjoint operator is the
operator 𝐴𝐺 of multiplication by the characteristic function 𝐺 and it acts on the functions
𝜔 ∈ 𝑃C as 𝜔 ↦−→ 𝐺 · 𝜔.
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As it is known, (𝑀*)-space 𝐻(C) is reflexive, that is, its second strong dual space 𝐻**(C) is
canonically isomorphic to space 𝐻(C). This is why, in view of this canonical isomorphism, the
mapping 𝜓 ↦−→ [𝜓, ·] defines an isomorphism between (𝑀*)-space 𝐻(C) and strongly adjoint
one 𝑃 *

C, and each function in 𝐻(C) is in one-to-one correspondence with some linear continuous
functional in strong dual space 𝑃 *

C.
More precisely, this isomorphism is understood as follows: the canonical isomorphism between

𝐻(C) and 𝐻**(C) reads as 𝜓 ↦−→ Θ𝜓 = 𝐹𝜓, 𝐹𝜓 ∈ 𝑃 *
C, ⟨𝐹𝜓, 𝜙⟩ = [𝜓, 𝜙] = ⟨ℒ−1𝜙, 𝜓⟩. Here

𝜓 ∈ 𝐻(C), 𝜙 ∈ 𝑃C.

Each function 𝜓 ∈ 𝐻(C), 𝜓 ̸≡ 0 generates a convolution operator ̃︁𝑀𝜓 : 𝑃C ↦−→ 𝑃C,̃︁𝑀𝜓[𝜙](𝑧) =
[︀
(Θ𝜓)𝜆, 𝑆𝑧

(︀
𝜙(𝜆)

)︀]︀
, in space 𝑃C of entire functions of exponential type. Here

𝑆𝑧 is the shift operator, 𝑆𝑧
(︀
𝜙(𝜆)

)︀
= 𝜙(𝜆+ 𝑧), 𝜆 ∈ C.

Then we obtaiñ︁𝑀𝜓[𝜙](𝑧) =
⟨︀
(ℒ−1𝑆𝑧𝜙)𝜆, 𝜓(𝜆)

⟩︀
=

⟨︀
𝑒𝑧𝜆(ℒ−1

𝜙)𝜆, 𝜓(𝜆)
⟩︀
=

⟨︀
(ℒ−1𝜙)𝜆, 𝑒

𝑧𝜆𝜓(𝜆)
⟩︀
, 𝜙 ∈ 𝑃C.

By employing the well-known formula for Borel inverse transformation ([10]), we then get that

convolution operator ̃︁𝑀𝜓 reads as

̃︁𝑀𝜓[𝜙](𝑧) =
1

2𝜋𝑖

∫︁
𝐶

𝜓(𝜆)𝑒𝑧𝜆𝛾𝜙(𝜆) 𝑑𝜆, 𝜙 ∈ 𝑃C,

where 𝛾𝜙 is the function associated with function 𝜙 in the sense of Borel, and 𝐶 is a rectifiable
closed contour enveloping all singularity points of function 𝛾𝜙. An entire function 𝜓 is called

characteristic function of convolution operator ̃︁𝑀𝜓.

It is known that ̃︁𝑀𝜓 is a linear continuous surjective operator. Denote Ker ̃︁𝑀𝜓 = {𝑓 ∈ 𝑃C :̃︁𝑀𝜓[𝑓 ] = 0}.
Operator ̃︁𝑀𝜓 is adjoint to the operator ̃︀𝐴𝜓 of multiplication by an entire function 𝜓 in space

𝐻(C), which acts on functions 𝑔 ∈ 𝐻(C) as follows: 𝑔 ↦−→ 𝜓 · 𝑔. Operator ̃︀𝐴𝜓 is linear and
continuous and its image coincides with the closed ideal (𝜓).
If 𝑋1 is a subspace in a topological vector space 𝑋, by 𝑋0

1 we denote its polar (or annihilator),
that is, the set of the functionals in 𝑋* vanishing on 𝑋1.

In view of the introduced duality, the polar of set
(︀
Ker𝑀𝐺

)︀0
coincides with the ideal defined

as (︀
𝐺
)︀
𝑃C

= {ℎ ∈ 𝑃C : ℎ = 𝐺 · 𝑟; 𝑟 ∈ 𝑃C},
and

(︀
𝐺
)︀
𝑃C

=
(︀
𝐺
)︀
∩ 𝑃C, and the ideal

(︀
𝐺
)︀
𝑃C

is a closed subspace in 𝑃C. The proof of these

facts will be adduced later. In view of the introduced duality, the polar of set
(︀
(𝜓)

)︀0
coincides

with Ker ̃︁𝑀𝜓.

Since
(︀
Ker𝑀𝐺 + (𝜓)

)︀0
=

(︀
Ker𝑀𝐺

)︀0 ∩ (︀
(𝜓)

)︀0
, in view of the duality, we have proven that(︀

Ker𝑀𝐺 + (𝜓)
)︀0

=
(︀
𝐺
)︀
𝑃C

∩Ker ̃︁𝑀𝜓.

In view of the duality, Lemma 2 in paper [16] implies that the space Ker𝑀𝐺 +
(︀
𝜓
)︀
is closed

in 𝐻(C) if and only if the space
(︀
Ker𝑀𝐺

)︀0
+
(︀
(𝜓)

)︀0
=

(︀
𝐺
)︀
𝑃C

+Ker ̃︁𝑀𝜓 is closed in 𝑃C.

Hence, we have obtained that for 𝑘 = 1 and 𝑘 = 2, Statements (𝐼) and (𝐼𝐼) are equivalent
to the following two dual statements in (𝐿𝑁*)-space 𝑃C.

(𝐼*) The identity
(︀
𝐺𝑘

)︀
𝑃C

∩Ker ̃︁𝑀𝜓𝑘
= {0} holds true.

(𝐼𝐼*) The space
(︀
𝐺𝑘

)︀
𝑃C

+Ker ̃︁𝑀𝜓𝑘
is closed in space 𝑃C.

An important aspect in the proof of dual statements (𝐼*) and (𝐼𝐼*) is the following well-
known fact (see, for instance, [17]).

Let 𝑓 be an arbitrary function with the zero set {𝑡𝑘} and the multiplicities of 𝑡𝑘 are 𝑝𝑘,

𝑘 ∈ N. The closed subspace Ker ̃︁𝑀𝑓 in space 𝑃C is the linear span of all monomials {𝑧𝜈𝑒𝑡𝑘𝑧},
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𝜈 = 0, 1, · · · , 𝑝𝑘 − 1, 𝑘 ∈ N, i.e., it consists only of polynomials of exponentials,

Ker ̃︁𝑀𝑓 = {𝑝 ∈ 𝑃C : 𝑝(𝑧) =

𝑢𝑝∑︁
𝑘=1

𝑎𝑘(𝑧)𝑒
𝑡𝑘𝑧}.

Here, for each 𝑘 ∈ N, functions 𝑎𝑘 are arbitrary polynomials of degree at most 𝑝𝑘 − 1, respec-
tively.

This is the fundamental principle Ker ̃︁𝑀𝜓 in space 𝑃C and it be proved rather easily.
Let us prove Statement (𝐼*) under the hypotheses of Assertions 1 and 2 of Theorem 1.

Under the hypotheses of both of these items, suppose 𝑝 ∈ Ker ̃︁𝑀𝜓𝑘
, 𝑝 ̸≡ 0, then function 𝑝 is

a polynomial of exponentials

𝑝(𝑧) =
∑︁

Finℳ−

𝑎−𝑗(𝑧)𝑒
𝜇−𝑗𝑧 +

∑︁
Finℳ+

𝑎𝑘(𝑧)𝑒
𝜇𝑘𝑧

of the form (1). In the right hand side, we have finite sums over finite subsets Finℳ− ⊂ ℳ−,
Finℳ+ ⊂ ℳ+. In this representation we take into account the possibility of the case Finℳ− = ∅
or Finℳ+ = ∅ and this is why we adopt the convention that for an arbitrary sequence {𝑏𝑘} we
have

∑︀
∅
𝑏𝑘 = 0.

Let us show that under the hypotheses of Assertions 1 and 2, the polynomial of exponentials
𝑝 ̸≡ 0 can not belong to (𝐺1)𝑃C . This fact follows from Lemma 3. Indeed, according to the
hypothesis of Theorem 1, Λ− ⊂ 𝐴𝛼(𝜋) and it implies the sequence 𝑣−𝑘 = 𝜆−𝑘 satisfies condition
(6) of Lemma 3.

Moreover, we need to show that (𝐺1)𝑃C = 𝐼𝒱− . By definition, (𝐺1)𝑃C ⊂ 𝐼𝒱− . Then, by
Lindelöf theorem for the functions in space 𝑃C, we have

(︀
𝐺
)︀
𝑃C

=
(︀
𝐺
)︀
∩ 𝑃C, i.e., the inverse

inclusion holds true as well.
Ideal 𝐼𝒱− in Lemma 3 is closed since the topology in 𝑃C is stronger than that of uniform

convergence on compact sets. It is proven that ideal (𝐺1)𝑃C is closed in 𝑃C.
Statement (𝐼*) under the hypothesis of Assertion 1 is proven. To prove it under the hypothesis

of Assertion 2, it remains to observe that ideal (𝐺2)𝑃C is contained in ideal (𝐺1)𝑃C .
We have obtained, under the hypotheses of both of Assertions 1 and 2, that we have algebraic

direct sums (𝐺𝑘)𝑃C ⊕ Ker ̃︁𝑀𝜓𝑘
, 𝑘 = 1, 2. Under the hypothesis of each of Assertions 1 and 2,

let us prove the closedness of these subspaces in 𝑃C (i.e., we shall prove Statement (𝐼𝐼*)). As
it is known ([19]), the closedness of each subspace 𝑋 in (𝐿𝑁*)-space 𝑃C is equivalent to its
sequential closedness.

Under the hypothesis of Assertion 1, let us consider an arbitrary sequence {𝑔𝑙}, 𝑙 ∈ N, of

functions in the algebraic direct sum (𝐺1)𝑃C ⊕ Ker ̃︁𝑀𝜓1 and suppose that it converges to a

function 𝑔 ∈ 𝑃C in space 𝑃C. Let us show that limiting function 𝑔 belongs to (𝐺1)𝑃C⊕Ker ̃︁𝑀𝜓1 .
The convergence of {𝑔𝑙} in (𝐿𝑁*)-topology of space 𝑃C means the following:

1. {𝑔𝑙} converges to 𝑔 in the topology of space 𝐻(C);
2. There exist 𝐴 > 0, 𝐵 > 0 such that for each 𝑙 ∈ N, the estimate

|𝑔𝑙(𝑧)| 6 𝐴𝑒𝐵|𝑧|, 𝑧 ∈ C, (11)

holds true.

Sequence {𝑔𝑙} consists of the functions 𝑔𝑙 = 𝑝𝑙 +𝑅𝑙, where 𝑅𝑙 ∈ (𝐺1)𝑃C , i.e., 𝑅𝑙|Λ− = 0, and

𝑝𝑙 ∈ Ker ̃︁𝑀𝜓1 .

If sequence {𝑔𝑙} contains infinitely many terms with 𝑅𝑙 ≡ 0, then 𝑔 ∈ Ker ̃︁𝑀𝜓1 . If sequence
{𝑔𝑙} contains infinitely many terms with 𝑝𝑙 ≡ 0, then 𝑔 ∈ (𝐺1)𝑃C . For such sequences {𝑔𝑙} we

have 𝑔 ∈ (𝐺1)𝑃C ⊕Ker ̃︁𝑀𝜓1 .
Thus, in what follows we can assume that sequence {𝑔𝑙} is so that 𝑅𝑙 ̸≡ 0, 𝑝𝑙 ̸≡ 0 for each 𝑙.
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By the fundamental principle for the kernel Ker ̃︁𝑀𝜓1 in space 𝑃C,

𝑝𝑙(𝑧) =
∑︁

Fin
(𝑙)

ℳ−

𝑎
(𝑙)
−𝑗(𝑧)𝑒

𝜇−𝑗𝑧 +
∑︁

Fin
(𝑙)

ℳ+

𝑎
(𝑙)
𝑘 (𝑧)𝑒𝜇𝑘𝑧. (12)

If in this representation we have Fin
(𝑙)

ℳ− ̸= ∅ for some fixed 𝑙, i.e., there exists at least one

𝑎
(𝑙)
−𝑗 ̸≡ 0 associated with the exponent 𝜇−𝑗, by 𝑞𝑙 we denote the index of the minimal among all

such 𝜇−𝑗. If in this representation Fin
(𝑙)

ℳ+ ̸= ∅ for some fixed 𝑙, i.e., there exists at least one

𝑎
(𝑙)
𝑘 ̸≡ 0 associated with the exponent 𝜇𝑘, we denote by 𝑢𝑙 the index of the maximal among all

such 𝜇𝑘.
Let sequence {𝑔𝑙} be so that the set {𝑞𝑙} is infinite. Let us show that it is bounded.
By the hypothesis of Assertion 1, for an arbitrary sequence {𝑔𝑙}, the set {𝑢𝑙} is either empty or

bounded. Then without loss of generality we can assume in the representations by polynomials

of exponentials Fin
(𝑙)

ℳ− ̸= ∅ for each 𝑙. Indeed, it is sufficient to consider ̃︀𝑔𝑙 = 𝑔𝑙 · 𝑒−𝑎𝑧 for some

𝑎 ∈ R+. Then 𝑎
(𝑙)
−𝑞𝑙 ̸≡ 0 for each 𝑙.

Suppose that the set of numbers {𝑞𝑙} is unbounded. All 𝑝𝑙 are of the form (1). Since 𝑎
(𝑙)
−𝑞𝑙 ̸≡ 0,

employing estimate (4) in Lemma 2 and estimate (11), we obtain the following estimate for the
function 𝑅𝑙 = 𝑔𝑙 − 𝑝𝑙, 𝑅𝑙 ̸≡ 0,

|𝑅𝑙(𝑧)| > |𝑝𝑙(𝑧)| − |𝑔𝑙(𝑧)| > 𝑐3𝑒
(|𝜇−𝑞𝑙

| cos𝛼)|𝑧| − 𝐴𝑒𝐵|𝑧|

for each 𝑧 in domain 𝐴𝛼(𝜋), |𝑧| > 𝑟. Here 𝑟 = 𝑟(𝑙). By assumption, there exists 𝜇−𝑞𝑙0 such that

|𝜇−𝑞𝑙0 | >
𝐵

cos𝛼
.

We see that |𝑅𝑙0(𝑧)| > 0 for each 𝑧 in domain 𝐴𝛼(𝜋), |𝑧| > 𝑟1(𝑙0).We obtain the contradiction
since by the hypothesis of Assertion 1, domain 𝐴𝛼(𝜋), |𝑧| > 𝑟1(𝑙0), contains an infinite discrete
sequence from Λ− and we know that 𝑅𝑙0|Λ− = 0.

We have proven the following: if sequence of functions 𝑔𝑙 = 𝑝𝑙 + 𝑅𝑙 in (𝐺1)𝑃C ⊕ Ker ̃︁𝑀𝜓1

converges in 𝑃C, then |𝜇−𝑞𝑙 | 6
𝐵

cos𝛼
for each 𝑙 and the set of numbers {𝑞𝑙} in the representations

of the polynomials of exponentials is bounded. The set of numbers {𝑢𝑙} is finite or empty for
each sequence {𝑔𝑙} by the hypothesis of Assertion 1.
Therefore, sequence {𝑝𝑙} of polynomials of exponentials belongs to some finite-dimensional

subspace 𝑋 ⊂ Ker ̃︁𝑀𝜓1 . Statement (𝐼*) means that all the terms of the converging sequence
𝑔𝑙 = 𝑝𝑙 +𝑅𝑙 lie in the algebraically direct sum 𝑋 ⊕ (𝐺1)𝑃C .

In each topological vector space, an algebraically direct sum of a finite-dimensional subspace
and a closed subspace is a closed subspace [20, p. 41] Hence, the limiting function 𝑔 of sequence

𝑔𝑙 = 𝑝𝑙 +𝑅𝑙 belongs to Ker ̃︁𝑀𝜓1 ⊕ (𝐺1)𝑃C . Statement (𝐼𝐼*) is proven.
Statements (𝐼*) and (𝐼𝐼*) imply Assertion 1 of Theorem 1.
Under the hypothesis of Assertion 2, let us prove that the algebraically direct sum (𝐺2)𝑃C ⊕

Ker ̃︁𝑀𝜓2 is a closed subspace in 𝑃C. By the hypothesis of Assertion 2, there exist two infinite sets
of interpolation nodes 𝜇𝑘 of multiplicity 𝑚𝑘 and of interpolations nodes 𝜇−𝑘 with multiplicity
𝑚−𝑘. Moreover, the angles 𝐴𝛼(𝜋) and 𝐴𝛼(0) comprise two infinite sequences of points in Λ−

and Λ+, respectively.
Consider an arbitrary converging sequence of functions {𝑔𝑙} ⊂ Ker𝑀𝐺2 ⊕

(︀
𝜓2

)︀
of the form

𝑔𝑙 = 𝑅𝑙 + 𝑝𝑙, 𝑙 ∈ N, where 𝑝𝑙 ∈ Ker ̃︁𝑀𝜓1 , 𝑅𝑙 ∈ (𝐺2)𝑃C . As in the above proof of closedness

for (𝐺1)𝑃C ⊕ Ker ̃︁𝑀𝜓1 , we can assume that 𝑝𝑙 ̸≡ 0, 𝑅𝑙 ̸≡ 0 for each 𝑙. The polynomials of
exponentials 𝑝𝑙 ̸≡ 0 satisfy representation (12). If sequence {𝑔𝑙} is so that the set of numbers
{𝑢𝑙} is finite or empty, it has been proven above that the set of numbers {𝑞𝑙} is bounded.
Suppose that sequence {𝑔𝑙} is so that set {𝑢𝑙} is infinite.
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If sequence {𝑝𝑙} is such that it comprises an infinite set of terms with negative exponents in

their representations, we can assume that 𝑎
(𝑙)
−𝑞𝑙 ̸≡ 0 for all terms of such sequence. This can

be achieved by passing to a subsequence. Then, as in the proof of Assertion 1, we show that
the set of numbers {𝑞𝑙} associated with all such terms is bounded. Moreover, for the further
purposes, we mention that for each sequence of such type without loss of generality we can

assume that 𝑎
(𝑙)
𝑢𝑙 ̸≡ 0 for each 𝑙.

If sequence {𝑝𝑙} contains at most finitely many of such terms, we can assume that 𝑎
(𝑙)
𝑢𝑙 ̸≡ 0

for each 𝑙 considering ̃︀𝑔𝑙 = 𝑔𝑙 · 𝑒𝑎𝑧 for some 𝑎 ∈ R+.
By assumption, for sequence {𝑝𝑙} of each of the latter two types of sets, the set {𝑢𝑙} is

unbounded. Sequence {𝑔𝑙} satisfies estimate (11). Since 𝑎
(𝑙)
𝑢𝑙 ̸≡ 0 for each 𝑙, employing estimate

(5) in Lemma 2 and estimate (11), we obtain that for each 𝑧 in domain 𝐴𝛼(0), |𝑧| > 𝑟, 𝑟 = 𝑟(𝑙),

|𝑅𝑙(𝑧)| > 𝑐3𝑒
(𝜇𝑢𝑙 cos𝛼)|𝑧| − 𝐴𝑒𝐵|𝑧|.

Since set Λ+ is infinite, as in the proof of Assertion 1, it is easy to get a contradiction and we
conclude that the set of numbers {𝑢𝑙} associated to an arbitrary converging sequence {𝑢𝑙} is
bounded. The above arguments yield both the sets {𝑞𝑙} and {𝑢𝑙} involved in the representation
of an arbitrary converging sequence {𝑔𝑙} of polynomials of exponentials are bounded. We
complete the proof by the same arguments as in the proof of Assertion 1.

Assertion 2 is proven, and thus the same is for Theorem 1.

4. Discussion of hypotheses and examples

Let us show that there can not be the uniqueness of the interpolation under the assumptions
of the problem.

Suppose that set Λ satisfies condition (8). Moreover, let set Λ and set of nodes ℳ ⊂ R
satisfy the hypothesis of Theorem 1, then the problem on interpolation with multiplicity by
series of exponentials 𝑓 in Σ(Λ) with nodes ℳ is solvable. Let 𝜓 = 𝜓ℳ be an entire function
with the zero set 𝑍𝜓 = ℳ taken counting the multiplicities.

Proposition 1. Subspace Σ(Λ) ∩
(︀
𝜓
)︀
is nonzero and infinite-dimensional.

Proof. By Theorem 1, the representation Ker𝑀𝜙 +
(︀
𝜓
)︀
= 𝐻(C) holds true. Let us show that

Σ(Λ) ∩
(︀
𝜓
)︀
̸= {0}.

There exist 𝑔 ∈
(︀
𝜓
)︀
, 𝑔 ̸≡ 0,𝑔 /∈ Σ(Λ) and 𝑥0 ∈ R such that 𝑔(𝑥0) ̸= 0, 𝜓(𝑥0) ̸= 0. We

indicate by 𝜓1 an entire function with zero set 𝑍𝜓1 = ℳ∪ {𝑥0}, then ideal
(︀
𝜓1

)︀
is a subspace

of
(︀
𝜓
)︀
.

By Theorem 1, 𝐻(C) = Σ(Λ)+
(︀
𝜓1

)︀
, in particular, 𝑔 = 𝑓 +𝜓1 ·𝑟, where 𝑓 ∈ Σ(Λ), and 𝑓 ̸≡ 0

since 𝑔 /∈
(︀
𝜓1

)︀
. Function 𝑟 belongs to 𝐻(C) and 𝑟 ̸≡ 0 since 𝑔 /∈ Σ(Λ).

By the relations 𝑟 ̸≡ 0 and 𝑓 = 𝑔 − 𝜓1 · 𝑟 we see that 𝑓 ∈ Σ(Λ) ∩
(︀
𝜓
)︀
and 𝑓 ̸≡ 0. The first

statement is proven.
We note that 𝑓 /∈ Σ(Λ) ∩

(︀
𝜓1

)︀
, since 𝑓(𝑥0) = 𝑔(𝑥0) ̸= 0. It has been proven that the strict

inclusion Σ(Λ) ∩
(︀
𝜓1

)︀
⊂ Σ(Λ) ∩

(︀
𝜓
)︀
holds true.

Suppose that the subspace Σ(Λ)∩
(︀
𝜓
)︀
is finite-dimensional. Continuing the above procedure,

we obtain the sequence of strict inclusions Σ(Λ)∩
(︀
𝜓𝑘+1

)︀
⊂ Σ(Λ)∩

(︀
𝜓𝑘

)︀
. In finitely many steps

we obtain Σ(Λ)∩
(︀
𝜓𝑙0

)︀
= {0}. It contradicts to what has been above. The proof is complete.

In conclusion we address a more general situation described before Lemma 3. Consider an
infinite discrete sequence of complex numbers 𝒱 = 𝒱− ∪𝒱+, where 𝒱+ = {𝑣𝑗}, 𝒱− = {𝑣−𝑗} are
two infinite discrete sequence and Re 𝑣𝑗 > 0, Re 𝑣−𝑗 < 0. Suppose that conditions (6) and (7)
in Lemma 3 hold and assume that sets 𝒱−, 𝒱+ are the sets of zeroes for entire functions Φ1,
Φ2 of exponential type, respectively.
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For an arbitrary discrete set Ω = {𝜔𝑘}, 𝜔𝑘 ∈ R, with multiplicity {𝑛𝑘}, by 𝜓Ω we denote an
entire function having simple zeroes at the points 𝜔𝑘 with multiplicities 𝑛𝑘 and no zero at any
other point.

Remark 1. Lemma 3 implies the following two statements.
Subspaces Ker𝑀Φ1 +

(︀
𝜓Ω

)︀
and Ker𝑀Φ2 +

(︀
𝜓Ω

)︀
are dense in space 𝐻(C).

Indeed, 𝐼𝒱− = (Φ1)𝑃C . This has been shown in the proof of Theorem 1. Therefore, by

Lemma 3,
(︀
Φ1

)︀
𝑃C

∩ Ker ̃︁𝑀𝜓Ω
= {0}, since each function in Ker ̃︁𝑀𝜓Ω

satisfies (1) due to the

fundamental principle for Ker ̃︁𝑀𝜓Ω
in space 𝑃C. This statement by duality is equivalent to the

first one. The second statement is obtained by the transformation 𝑧 → −𝑧 of plane C.
Let us discuss two examples related to the essentiality of the conditions imposed for the set

of exponents for exponentials Λ and interpolation nodes ℳ.
Example 1 adduced below shows that conditions (6) and (7) in the statements in Remark 1

are close to the necessary ones. In order to simplify this example, we note that after the
transformation 𝑧 → −𝑧 of plane C, Assertion 1 of Theorem 1 becomes
1′. Suppose that the set of nodes ℳ− is finite or empty. The problem on interpolation with

multiplicity by the series of exponentials in Σ(Λ) with the set of nodes ℳ is solvable in space

𝐻(C) if and only if the set Λ ∩ 𝐴𝛼(0) is infinite for some 𝛼 ∈ (0,
𝜋

2
).

Example 1. Let 𝜙(𝑧) = 𝑧 − 𝑒𝑧 and the set of interpolation nodes ℳ contains some set of
nodes 𝜇𝑘 > 1, 𝑘 ∈ N. The problem on simple interpolation by the functions in Ker𝑀𝜙 with the
set of nodes ℳ is unsolvable, and generally speaking, the subspace 𝑀𝜙 +

(︀
𝜓ℳ

)︀
is not dense in

space 𝐻(C).

It is easy to show that the function 𝜙(𝑧) = 𝑧 − 𝑒𝑧 has infinitely many zeroes
Λ = {𝜆𝑛, 𝜆𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛}. Since 𝜆𝑛 = 𝑒𝜆𝑛 , we obtain, in particular, that 𝑥𝑛 − ln |𝜆𝑛| = 0. It
follows that Re𝜆𝑛 → +∞ and 𝜆𝑛 satisfy neither the hypothesis of Theorem 1 nor condition
(7). Moreover, 𝜙′(𝜆𝑛) = 1 − 𝑒𝜆𝑛 = 1 − 𝜆𝑛. Hence, all the zeroes of function 𝜙 are simple and
the condensation index 𝛿 is zero for function 𝜙. Therefore, Ker𝑀𝜙 = Σ(Λ).
In particular, if the set of nodes ℳ contains 𝜇0 = 0 of multiplicity 𝑚0 = 2 and 𝜇1 = 1 of

multiplicity 𝑚1 = 1, then the polynomial of exponents 𝑝 = 𝜙 belongs to Ker ̃︁𝑀𝜓ℳ ∩
(︀
𝜙
)︀
𝑃C
, i.e.,

by the equivalent dual statement (I *), the subspace 𝑀𝜙 +
(︀
𝜓ℳ

)︀
is not dense in space 𝐻(C).

Our second example shows that there exist convolution operators in the considered class such
that the problem on interpolation by the functions in the kernel of the convolution operator
with the interpolation nodes 𝜇𝑘 is in general unsolvable.

Example 2. Suppose that the set of interpolation nodes comprises points 𝜇1 ∈ R,
𝜇2 = 𝜇1 + 𝑖 ∈ C, and 𝜙(𝑧) = 1 − 𝑒𝑖𝑧. Then the problem on simple interpolation by the entire
functions in Ker𝑀𝜙 = {𝑓 ∈ 𝐻(C) : 𝑓(𝑧) = 𝑓(𝑧 + 𝑖)} is unsolvable.

In this example 𝜆𝑛 = 2𝜋𝑛 ∈ R. All the functions in kernel 𝑀𝜙 are periodic with the period
𝑖, and thus there is no possibility to impose arbitrary interpolation data in the nodes 𝜇1 ∈ R,
𝜇2 = 𝜇1 + 𝑖 ∈ C.

In conclusion, the authors express their sincere gratitude to Valentin Vasil’evich Napalkov
for the permanent stimulating discussion and to the referees for valuable remarks.
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