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CONSTRUCTION OF GENERALIZED SOLUTION

FOR FIRST ORDER DIVERGENCE TYPE EQUATION

V.A. KORNEEV

Abstract. We consider Cauchy problem for a first order divergence type equation with
the right hand side independent of the unknown function and with a discontinuous initial
condition. This equation was first mentioned by J.M. Burgers in 1940 and it is a model
equation for the system of equations describing the non-stationary gas motion. Various
properties of the solution to this problem were studied in works by O.A. Oleinik (1957),
J. Whitham (1974), S.N. Kruzhkov (1970), E.Yu. Panov (2006). The original problem is
reduced to Cauchy problem for Hamilton-Jacobi equation with a continuous initial con-
dition. It is suggested to apply the method of singular characteristics to this problem,
while this method was developed A.A. Melikyan for game problems. The effectiveness of
technique is demonstrated by the example when in the original equation the derivative
w.r.t. the spatial variable is applied to a cubic polynomial of the unknown function, and
the boundary condition is specified as a “raising” step. The Hamiltonian in the modified
problem is a third degree polynomial of a partial derivative for the unknown function, and
the boundary condition is given by a piecewise linear convex function with a break in the
origin. We single out the domains of the parameters for which the construction of a gener-
alized solution is possible, and we describe the procedure of constructing the solution. It
is shown that the solution involves nonsmooth singularities called the dispersal and equiv-
ocal surfaces according to the terminology of differential games. The constructing of the
solution is illustrated by figures.
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1. Introduction

In many problems on waves propagation, one considers a continuous distribution of some
matter or some media state. In the one-dimensional case, letting x to be time coordinate, and
y to be the spatial coordinate, one can define the density v(x, y) per unit of length and the
expenditure q(x, y) per unit of time. We define the flow rate w(x, y) by the identity w = q/v.
Supposing that the studied matter is conserved, we can assume that the rate of changing of its
total amount in each interval y1 < y < y2 should be compensated by the total flow through the
section y1, y2, i.e.,

d

dx

y2
∫

y1

v(x, y)dy + q(x, y2)− q(x, y1) = 0.
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If v(x, y) has continuous derivatives, we can pass to the limit as y1 → y2 to obtain the conser-
vation law

∂v

∂x
+
∂q

∂y
= 0.

The simplest problem on waves propagation appears in the case when on the basis of theoretical
or empirical arguments, one can postulate some functional relation between q and v as q=ϕ(v).
Then we obtain the conservation law in the form

∂v

∂x
+
∂ϕ(v)

∂y
= 0. (1)

In gas dynamics ([1], [2]), equation (1) is employed for approximate construction of discontin-
uous solution for flow of ideal gas without viscosity and heat conductivity.

Consider Cauchy problem for the first order equation

∂v

∂x
+
∂ϕ(v)

∂y
= f1(x, y, v), x ≥ x0,

v(x0, y) = ψ1(y), x, y ∈ R1, f1(x, y, v), ϕ(v) ∈ C∞.

(2)

Here ψ1(y) is a bounded piecewise smooth function. If f1(x, y, v) ≡ 0, in accordance with
said above, this equation is the conservation law or the transport equation. If the free term
f1(x, y, v) is independent of v, it can be regarded as an external source exciting waves ([2]).

Many physical problems leading one to problem (2) and its generalizations were considered in
[2], [?]. First the equation in (2) was mentioned in the work by Burgers [4] and it is a model one
for the system of equations describing non-stationary gas motion. In work by O.A. Oleinik [5]
for the case ϕvv(v) 6= 0, the uniqueness of the generalized solution to problem (2) was proven. A
further development for this approach was made in works by N.S. Kruzhkov [6] and E.Yu. Panov
[7], where there were studied existence, uniqueness and stability of generalized solutions to
equation (2). In physics, equation (2) is usually called quasilinear transport equation or non-
homogeneous transport equation. Transport equation describes various processes related with
particles propagation in a matter ([8]).

Definition 1.0. Suppose a function v(x, y) defined on a domain Ω has several smooth-
ness components Ω1, Ω2, . . . Ωn and respectively, several curves of first kind discontinuity
Γ1,Γ2 . . . ,Γk, and

Ω =
(

n
⋃

i=1

Ωi

)

⋃

(

k
⋃

i=1

Γi)

According to works [1], [9], [10], we call function v(x, y) a generalized solution to equation (2)
in domain Ω if the following conditions hold true,

1) in the smoothness domains Ωi, i = 1, . . . , n, function v(x, y) satisfies (2) in the classical
sense;

2) on the discontinuity curves y = y(x), Rankine-Hugoniot condition

y′(x)=
[ϕ(v)]

[v]
≡
ϕ(v2(x))−ϕ(v1(x))

v2(x)− v1(x)
, where v1(x)=v(x, y(x)− 0), v2(x)=v(x, y(x) + 0)

holds true except a finite number of the intersection points Γi, i = 1, . . . , k.
3) Discontinuity stability condition is valid: as v2 > v1 (v2 < v1), the graph of function ϕ(v)

lies not lower (respectively, not upper) than the chord connection the point of this graph with
abscissae v1, v2. This condition can be written as the inequalities

ϕ(v∗)− ϕ(v2)

v∗ − v2
≤ y′(x) ≤

ϕ(v∗)− ϕ(v1)

v∗ − v1
, y = y(x),

which hold true for all v∗ between the values v1, v2.
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As ϕ′′

vv(v) 6= 0, stability conditions for generalized solution are simplified and cast into the
form

ϕ′

v(v2) ≤ y′(x) ≤ ϕ′

v(v1).

In work [10], for problem (2) with zero right hand side (f1(x, y, v)≡0), it was proven that
the generalized condition in Definition 1.0 is entropic. In work [7], for problem (2) with zero
right hand side under the assumptions that y ∈ Rn, ϕ ∈ C1, and the derivative ϕ′(v) and the
initial condition ψ1(y) belong to the class of locally-bounded functions L∞

loc(R
n) and satisfy the

restrictions for the growth

|ϕ′(v)| ≤ C0(1 + |v|p−1), p > 1, C0 = const,

α = (p− 1)−1, |ψ1(y)| ≤M(1 + |y|α) a.e. on Rn,
(3)

the existence and uniqueness of solution v(x, y) were proven in the class of functions

Bα = {v(x, y) ∈ L∞

loc(ΠT )| ∃M =M(x) ∈ L∞

loc([x0, x0 + T )),

|v(x, y)| ≤M(x)(1 + yα) a.e. on ΠT .},
(4)

where ΠT = (x0, x0 + T )×Rn, x0 < x0 + T ≤ +∞.
In work [7], for problem (2) with function ϕ(v) = |v|p−1v, p > 1, and f1(x, y, v)≡0, a family

of non-zero generalized solutions not belonging to class Bα was constructed.
In the present work we assume that f1(x, y, v) is independent of v. Then we can consider

Cauchy problem


















∂u

∂x
+ ϕ(

∂u

∂y
) = f(x, y), u(x0, y) = ψ(y), x, y ∈ R1,

f(x, y) =

∫ y

y0

f1(x, y)dy, ψ(y) =

∫ y

y0

ψ1(y)dy.
(5)

Here the value of y0 is taken arbitrarily in the smoothness interval for ψ1(y), function ψ(y) is
continuous but not a smooth one. Differentiating its solution w.r.t. y, one can get a solution
to problem (2).

Problem (5) is a boundary value problem for Hamilton-Jacobi equation appearing in control
theory, mechanics, physics. In control theory, the equation in (5) is the basis for dynamic
programming and is called basic equation or Bellman-Isaacs equation. For a wide class of the
problems [11], [12], it was proven that the viscous solution of Cauchy problem for Hamilton-
Jacobi equation is identical to optimal result function of the problem (Bellman-Isaacs function,
game price). This is why the method of singular characteristic ([13]) can be applied for solving
problem (5).

2. Definition of continuous generalized solution

Consideration of non-autonomous control problems and differential games leads one to the
boundary value problem

{

H(x, S(x), p) = 0, p = ∂S/∂x = Sx, x ∈ Ω ⊂ Rn,

S(x) = w(x), x ∈M ⊂ ∂Ω, x, p ∈ Rn,
(6)

where function H and set M read as
{

H = p1 +H∗(x1, . . . , xn, S, p2, . . . , pn),

M = {x ∈ Rn : x1 = c1 = const}.
(7)

Set Ω is the half-space (or a layer) on the right or on the left of set M . Functions H∗, w are
continuous w.r.t. their variables on the sets Ω × Rn and M , respectively. Equation H = 0 in
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(6) with function H like in (7) is usually referred as Hamilton-Jacobi equation. Problem (6)
can have no classical solution S(x) ∈ C1(Ω) even functions H w are smooth.

Problem (6), (7) is called initial (terminal), if

Ω = {x ∈ Rn : x1 > c1} ({x ∈ Rn : x1 < c1}). (8)

Let us provide the definition of generalized solution by M.G. Crandall and P.L. Lions [14] for
boundary value problem (6), (7).

Definition 1.1. A continuous function S : Ω → R
1 is called generalized (viscous) solution

to initial problem (6)–(8) if for each test function ϕ(x) ∈ C1(Ω) the inequality

H(x0, S(x0), ϕx(x0)) ≥ 0 (H(x0, S(x0), ϕx(x0)) ≤ 0) (9)

holds true at the points of local minimum (maximum) of the difference S(x) − ϕ(x). In the
case of the terminal problem, inequalities (9) are opposite.

In work [11], the definition of minimax solution was given and the equivalency of minimax
and generalized (viscous) solution was proven. Under the condition that function H(x, s, p) for
problem (6)-(8) is non-increasing w.r.t. s and is Lipshitz w.r.t. p, the existence and uniqueness
of minimax solution was proven.

It was shown in work [15], that a generalized solution to Cauchy problem for quasilinear
equation (2) is the superdifferential discriminator of minimax solution to Cauchy problem for
Hamilton-Jacobi equation (5). In particular, given a smooth minimax solution to problem
(5) with a Hamiltonian independent on the unknown function, its derivative w.r.t. the phase
variable is a generalized solution to problem (2) in the sense of Definition 1.0. The questions
on relations between two different definitions of generalized solutions are treated also in works
[1], [16].

In work [6], for problem (2) in the strip x ∈ [0, T ], y ∈ R1, the unique solvability in the class
of bounded measurable functions was proven. Problem (13), (14) considered below obey the
restrictions formulated in that work.

According to said above, in order to construct a generalize solution to problem (2) where the
right hand side is independent of the unknown functions, by integrating equation and initial
conditions w.r.t. y one can reduce problem (2) to problem (5) which is a particular case of
problem (6)-(8) with a Hamiltonian independent of the unknown function. In the obtained
problem, one can employ the method of singular characteristics for constructing generalized
solution in the sense of Definition 1.1.

3. Characteristics methods. Singular manifolds

For local constructing of a classical solution to problem (6) by characteristics method, the
existence of second derivatives for functions S(x), H(x, S, p) ([18]) is sufficient. Then con-
struction of classical solution to problem (6) is reduced to integrating the system of regular
characteristics

ẋ = Hp, Ṡ = 〈p,Hp〉, ṗ = −Hx − pHS, (10)

with initial conditions

x1 = c1, xi = zi−1, pi(c1, z) =
∂w(c1, z)

∂zi
, i = 2, . . . , n, z = (z1, . . . , zn−1) ∈ R

n−1,

p1 = −H∗(c1, z1 . . . , zn−1, w(c1, y), p2, . . . , pn), S(c1, z) = w(c1, z).

As the differentiation parameter in equations (10), one can regard coordinate x1. In the vicin-
ity of the points where functions S, H do not have the required smoothness, the mentioned
procedure of constructing the solution, generally speaking, does not work.

Definition 2.1. By regular point of a generalized solution to equation (6) we call any internal
point x0 of domain Ω for solution S(x) such that in its neighborhood D function S(x) is twice
differentiable and satisfies main equation H(x, S(x), p) = 0 in (6, where function H(x, S, p) is
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twice differentiable in the vicinity of the point (x0, S(x0), p0) ∈ R2n+1, p0 = Sx(x
0). All points

not being regular are called singular. Singular set consists of singular points ([13, p. 57]).
In the case singular sets are surfaces, they can be classified by the behavior of regular charac-

teristics and the smoothness of functions S(x), H(x, S, p) in its neighborhood. Let us provide
briefly its classification. Hereinafter, while describing various behaviors, we mean the behavior
of its phase components.

Dispersal surface. Regular characteristics approach on both sides, S(x) /∈ C1.

Equivocal surface. Regular characteristics approach on one side and leave on the other,
S(x) /∈ C1. For H ∈ C1, the characteristics leave with tangency.

Switching surface. It is similar with the equivocal one, but S(x) ∈ C1, H /∈ C1.

Universal surface. Regular characteristics leave on both sides, S(x) ∈ C1 and H(x, S, p) /∈
C1.

Focal surface. It is similar with the universal one, S(x) /∈ C1. As H ∈ C1, the characteristics
leave with tangency. If a focal surface is degenerate to a point, we obtain the vertex of an
integral funnel.

At the points of singular surface, the following lemma holds true ([13, p. 60]).

Lemma 1. Let S(x) be a generalized solution to problem (6), (7), which can be represented
by the identity

S(x) = min
[

S+(x), S−(x)
]

S+(x), S−(x) ∈ C1(D) (11)

in a neighborhood D of a singular surface. Then on surface Γ, testing function h(τ) satisfies
the condition

h(τ) = H(x, S(x), p+(1+τ)/2+p−(1−τ)/2) ≤ 0, |τ | ≤ 1, x ∈ Γ,

ps = ∂Ss/∂x, s = +,−, h(−1) = h(1) = 0.
(12)

If problem (6),(7) is terminal or generalized solution S(x) can be represented as S(x) =
max [S+(x), S−(x)], inequality (12) changes the sign.

To prove Lemma 1, it is sufficient to take the test function ϕ(x) = S+(1 + τ)/2 + S−(1− τ)/2
in (9).

4. Formulation of problem. General form of function h(τ)

Consider Cauchy problem

vx+ϕy(v) = f, x ≥ 0, ϕ(v) = av3+bv2+cv+d; x, y ∈ R1, (13)

v(0, y) = ψ1(y) =

{

ρ1, y > 0

ρ2 y < 0.
(14)

for various parameters a, b, c, d, e, f . If we let ρ1=g+1, ρ2=g−1, following the procedure de-
scribed in Introduction, we obtain Hamilton-Jacobi initial problem

H = p+ ϕ(q)− fy = 0, ϕ(q) = aq3 + bq2 + cq + d; (15)

S(0, y) = |y|+ gy, p = ∂S/∂x, q = ∂S/∂y, x > 0. (16)

Solution to problem (13), (14) as a = 0, f = 0 has two kinds of singularities, see, for instance,
[2].

As ρ1 > ρ2, b > 0, there is a space between two characteristics with different boundary
conditions, and this space is covered by a fan of characteristics. This is the first kind of
singularities.

For values ρ2 > ρ1, b > 0 there appears the second kind of singularities which is a shock
wave, the wave breaks and the characteristics intersect.
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According to Section 3, the vertex of an integral fun and a dispersal surface correspond to to,
see [17, p. 1664-1673]. In the same work [17, p. 1664-1673], problem (13), (14) was considered
for the case ρ2 > ρ1 and it was shown that apart a dispersal surface, a generalized solution
to the appropriate Hamilton-Jacobi initial problem has also an equivocal surface. Let us show
that in the case ρ1 > ρ2 the solution has similar features.

Since the function S(0, y) in (16) is represented as

S(0, y)=max [y(−1+g), y(1+g)] ,

one should expect that in the vicinity of singular surfaces

S(x, y)=max
[

S+(x, y), S−(x, y)
]

.

The further construction of the solution justified this assumption.
We note that for problem (15),(16), function h(τ) in (12) reads as

h (τ) =
1

4

(

τ 2 − 1
)

(ατ + β)(q+ − q−)2, τ ∈ [−1; 1], (17)

α = a(q+ − q−)/2, β = 3a (q+ + q−)/2 + b. (18)

The sigh change for function h(τ) happens only due to the linear factor w.r.t. τ . This is why
the condition h(τ) ≥ 0 is equivalent to inequality

µ(τ) = ατ + β ≤ 0, τ ∈ [−1; 1]. (19)

Below we shall find out for which relations between the parameters the existence of various
singular surfaces is possible and we shall provide the procedure of constructing the solution.

5. Primary solution. Dispersal surface

Equations for regular characteristic (10) of problem (15), (16) read as

ẋ = Hp = 1, ẏ = Hq = ϕq(q) = 3aq2 + 2bq + c,

ṗ = −Hx = 0, q̇ = −Hy = f, Ṡ = pHp + qHq.
(20)

Here as the differentiation parameter one can regard coordinate x. Employing identities (15),
(16) and differentiating function S(0, y), we obtain initial conditions for system (20) at an
arbitrary point (0, y0) of axis y,

x = 0, y = y0, p = −ϕ(q0) + fy0, q = sgn y0 + g, S = |y0|+ gy0. (21)

It follows that all the regular characteristics of problem (20) are cubic parabolas on the plane
x, y

yq(x, x0, y0)=a (x−x0)
3f 2+(3 aq+b)(x−x0)

2f+(3 aq2+2 bq+c)(x−x0) + y0. (22)

According to (20)–(22), in the vicinity of the boundary, which axis y, for boundary values

x0 = 0, q0 =

{

q01 = g + 1, y0 > 0
q02 = g − 1, y0 < 0

(23)

we obtain two families of curves, the upper and lower one, respectively,

yxak1(x, 0, y0) = y0 + ax3f 2 + (3 a (g+1) + b) x2f+

+
(

3 a (g+1)2 + 2 b (g+1) + c
)

x,

yxak2(x, 0, y0) = y0 + ax3f 2 + (3 a (g−1) + b) x2f+

+
(

3 a (g−1)2 + 2 b (g−1) + c
)

x.































(24)

We observe that as a = 0, f 6= 0, regular characteristics in (22), (24) are quadratic in x
functions, but the solution to the problem can be constructed by analogy with solution studied
by Witham for the case a = 0, f = 0 with linear regular characteristic. As a = 0, f 6= 0, there
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appear no new singularities and the behavior of solution is preserved. This is why in what
follows we assume that a 6= 0, f 6= 0. We provide the case a = 0, f 6= 0 as a simple situation
while constructing the integral funnel.

Consider the difference of regular characteristics (24) leaving from the origin,

yxak1(x, 0, 0)−yxak2(x, 0, 0)=6 fax2 + (12 ag + 4 b)x. (25)

It follows from (25) that if the parameters of the problem satisfy the conditions
[

3ag + b < 0,
3ag + b = 0, fa < 0,

(26)

then two families of regular trajectories with values q0 = ±1+ g intersect at origin and there is
no domain not covered by regular characteristics. In this and the subsequent section conditions
(26) are supposed to be satisfied.

Integrating expression Ṡ = pHp + qHq along the trajectories of system (20) and substituting
then values x0 = 0, q0 from (23) and y0 from (22), letting y = yq(x, x0, y0), we obtain function
S(x, y) called primary solution to problem (15), (16),

S(x, y) = max [S1(x, y), S2(x, y)] ,

Si(x, y) = q0iy −
a

4
f 3x4 −

(

aq0i+
b

3

)

f 2x3−

−
(

3 aq0i
2+2bq0i+c

) fx2

2
−

(

aq0i
3+bq0i

2+cq0i + d
)

x+ fxy,

q0i = g − (−1)i, i = 1, 2.











































(27)

In what follows we shall provide the examples of domains for which the primary solution is
a generalized one to problem (15),(16). Identity S = S1, (S = S2) holds true above (below) the
cubic parabola determined by the continuity condition S1 = S2,

ydisp(x) = ax3f 2 + (3 ag + b) x2f +
(

3 ag2 + 2 bg + a+ c
)

x. (28)

For dispersal surface (28) the relations

q+ = q1(x) = g+1+fx, q− = q2(x) = g−1+fx,

α = a(q+−q−)/2 = a, β = 3 a(q+ + q−)/2 + b = 3a(g + fx) + b

}

(29)

are valid.
By (29) and Lemma 1 we obtain the necessary condition for existing surface (curve) (28)

max
τ∈[−1;1]

µ(τ) = |a|+ 3a(g + fx) + b ≤ 0 (30)

Introducing function disp(x)

disp(x) = |a|+ 3a(g + fx) + b (31)

and observing that disp(0) = |a| + 3ag + b, we obtain that dispersal curve (28) exists in the
vicinity of the origin if and only if one of the conditions

|a|+ 3ag + b < 0 or

[

|a|+ 3ag + b = 0,
fa ≤ 0.

(32)

holds true.
Conditions (32) are stronger than condition (26). If condition (26) is satisfied and conditions

(32) are not, an equivocal surface leave from the origin. The method of constructing this surface
is discussed in the next section.
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Figure 1. Dispersal surface

For values
[

|a|+ 3ag + b ≤ 0,
fa ≤ 0,

(33)

disp(x)≤0 as x∈[0,+∞) and the dispersal surface (curve) goes from the origin to infinity. The
procedure of constructing the dispersal curve and generalized solution in case (33) is clarified
by Figure 1. We perform the construction for the values

a=1, b=−a−3 a g=1/2, c=0, d=0, g=−1/2, f=−1.

The bold curve is the dispersal curve separating the half-plane (x, y), x > 0 into two domains.
In each of these domain the solution to problem (15), (16) is given by functions S1(x, y), S2(x, y)
as it is indicated on the figure. The solution to problem (13), (14) in these domain is determined
by the relations

v1(x, y) = g + 1 + f x, v2(x, y) = g − 1 + f x (34)

The thin lines show regular characteristics. We obtain

Lemma 2. For values of the parameters (33), the solution to problem (15), (16) is given by
the relations (27), and the solution to problem (13), (14) as ρ1 = g+ 1, ρ2 = g− 1 is given by
the relations

v(x, y) =

{

g + 1 + f x, y > ydisp(x)
g − 1 + f x, y < ydisp(x).

(35)

For the values
[

|a|+ 3ag + b < 0,
fa > 0,

(36)

disp(x) vanishes at zero 0 as

x∗ = −
|a|+ 3ag + b

3af
.
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The value x∗ as a > 0 is associated with the point (x∗1, y
∗

1), while as a < 0, it is associated
with the point (x∗2, y

∗

2) on the dispersal curve (28)

x∗i =
a(−1)i − 3 ag − b

3af
, i = 1, 2,

y∗i=−
((−1)i+1a+b+3 ag) (9 a2g2+6 agb+(−1)i3 a2g−2 b2+(−1)iba+10 a2+9 ac)

27 a2f
.

(37)

Exactly at these points parabola (28) touches one of the characteristics of primary solution
(24). As a > 0, one of the characteristics (critical) of the upper family of parabolas (24)
touches parabola (28) at the point (x∗1, y

∗

1). As a < 0, one of the characteristics (critical) of the
lower family of parabolas (24) touches parabola (28) at the point (x∗2, y

∗

2). The bifurcation of
the dispersal curve into another kind of singularity can happen exactly at these points.

Since x∗2 − x∗1 = 2/(3f) and x∗1 6= x∗2 for each a 6= 0 and f 6= 0, the dispersal surface can not
bifurcate into the focal one or the integral funnel and vise versa.

It follows from said above that the condition of one-side touching at the points (x∗1, y
∗

1) as
a > 0 and f > 0, (x∗2, y

∗

2) as a < 0 and f < 0 select equivocal surface among aforementioned
singular surfaces.

6. Construction of equivocal surface

In this section, condition (36) is assumed to hold true. In the general case, on an equivocal
surface we have three necessary conditions which are identity (6), touching condition, and
continuity condition

H(x, S(x), p) = 0,
〈

Hp, p− ∂S+/∂x
〉

= 0, F1(x, S) ≡ S − S+(x) = 0. (38)

Here S+(x) is a smooth function coinciding with the solution on the side of the surface where the
regular characteristics do not touch the surface. It was shown in work [19] that in the general
case (6), the equivocal surface (curve) for H∈C1 is constructed by integrating the system,

ẋ = Hp, Ṡ = 〈p,Hp〉, ṗ = −Hx − pHS −
{{H,F1}, H}

{{F1, H}, F1}

(

p−
∂S+

∂x

)

,

F1(x, S) ≡ S − S+(x), {F,H} = 〈Fx + pFs, Hp〉 − 〈Hx + pHs, Fp〉 .

(39)

The left hand sides of identities (38) are the first integrals for system (39). In notations
of problem (15), (16), S+(x1, x2) = S+(x, y). Employing (15), (27), (38), (39), we obtain
differential equation with initial conditions for the equivocal curve,

dy

dx
=Hq,

dq

dx
=−

S+
xx+fϕq(q)

(S+
y −q)ϕqq(q)

,

x=x∗1, y(x
∗

1)=y
∗

1, S
+(x, y)=S2(x, y), q=g+1+f x∗1 as a>0, f>0,

x=x∗2, y(x
∗

2)=y
∗

2, S
+(x, y)=S1(x, y), q=g−1+f x∗2 as a<0, f<0.

(40)

Equation ẋ=Hp=1 and equation for p here are omitted, since p is not involved in (40). After
integration of equations (40), the values of p for both equivocal curves are determined by the
identity H = 0, and quantity S can be found by the integration after determination of other
variables.

Case a¿0, f¿0. By help of (40) we can obtain that the equivocal curve leaving from the
point (x∗1, y

∗

1) as a > 0 and f > 0 is determined by the solution to Cauchy problem

dy

dx
= ϕq,

dq

dx
=

(3 afx− 3 a+ 2 b+ 3 ag + 3 aq) f

2(3 aq + b)
,

x = x∗1, y = y∗1, q = q∗1 = q(x∗1) = g + 1 + fx∗1 =
2a− b

3a
.

(41)
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Figure 2. 0A is the dispersal surface, AB is the equivocal surface

System (41) has an analytic solution satisfying Lemma 1 on the segment [x∗1, xm1],

yeq1(x) = y∗1 −
2(ϕ(q)− ϕ(q∗1))

f
, qeq1(x)=q

∗

1−
f

2
(x−x∗1)=

1−g−fx

2
−
b

2a
,

xm1 = −
3 ag − 3 a+ b

3fa
, ym1 = yeq1(xm1), x ∈ [x∗1, xm1].

(42)

Indeed, the testing function µ(τ) for equivocal surface (42) reads as

µ(τ) = µ1(τ) =
(1− τ) (3 xfa− 3 a+ 3 ag + b)

4
≤ 0, τ ∈ [−1; 1]. (43)

Identity µ1(τ) = 0 as τ 6= 1 is attained for x = xm1, where xm1 is the abscissa of the point
(xm1, ym1) in (42) where it ends since as x > xm1, the inequality µ1(τ) ≤ 0 is false for τ 6= 1.
At this point, the numerator and denominator of the right hand side of the second equation in
(41) vanish and exactly at this point we have the coincidence of the values of qeq1(x), q2(x), as
well as the values of the derivatives for functions yxak2(x, xm1, ym1) and yeq1(x) in (42), that is,
a characteristics from the lower family of parabolas touches the equivocal surface. Then the
equivocal curve becomes a regular characteristics.

The construction of the dispersal and equivocal surfaces for the case when a > 0 and f > 0 is
demonstrated by Figure 2 for the values of the parameters a = 1, b = −1, c = d = 0, g = −2/3,
f = 1/3.

The bold solid line and bold dashed line in Figure 2 separate the half-plane x > 0 into three
domains, in each of those the generalized solution is determined by an appropriate formula. In
the domains adjacent to axis y, the generalized solution to problem (15), (16) is determined
by the formulae S1(x, y) and S2(x, y) for the domains lying respectively above and below the
dispersal curve 0A.
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Let us describe the procedure of constructing the generalized solution S(x, y) = Seq1(x, y) in
the domain above equivocal curve AB. We shall denote the coordinate of a point on equivocal
curve AB by ξ, η, i.e., ξ = x, η = y. The values of the function Seq1( ξ, η) on the equivocal
curve (42) are determined by the relations

Seq1( ξ, η) = S2(x
∗

1, y
∗

1) +

ξ
∫

x∗

1

(p+ q Hq) dx =

= S2(x
∗

1, y
∗

1) +

ξ
∫

x∗

1

(−ϕ(qeq1(x)) + fη(x) + qeq1(x)ϕq(qeq1(x)) dx,

η = y∗1 +

ξ
∫

x∗

1

Hq dx = y∗1 +

ξ
∫

x∗

1

ϕq(qeq1(x)) dx, ξ ∈ [x∗1, xm1].

(44)

From the domain adjacent from below to equivocal curve AB, the regular characteristics come
on it. The generalized solution S(x, y) coincides with function S2(x, y) in this domain. In the
domain adjacent from above to equivocal curve AB, we construct the family of characteristics
yeq1x(x, ξ), according to equation (20) this family is tangential to equivocal surface AB,

yeq1x(x, ξ) = a (x−ξ)3f 2+(3 aqeq1(ξ)+b)(x−ξ)
2f+

+(3 aq2eq1(ξ)+2 bqeq1(ξ)+c)(x−ξ) + η(ξ), ξ ∈ [x∗1, xm1], ξ ≤ x.
(45)

We denote the solution in this domain by Seq1(x, y). The family of characteristics yeq1x(x, ξ)
for Figure 2 is defined by the formulae

yeq1x(x, ξ) =
x3

9
−
x2 ξ

2
+

3 x ξ2

4
−
ξ3

3
+ x2 − 3 x ξ +

3 ξ2

2
+

8 x

3
+

2

3
.

The construction of function seq1(x, y) for problem (15), (16) and of function veq1(x, y) for ap-
propriate problem (13), (14) is made by integration along the family of characteristics yeq1x(x, ξ)

Seq1(x, y) = Seq1(ξ, η(ξ)) +

x
∫

ξ

(p+ q Hq) dx
′ = Seq1(ξ, η(ξ))+

+

ξ
∫

x∗

1

(fyeq1x(x
′, ξ)−ϕ(qeq1x(x

′, ξ))+qeq1x(x
′, ξ)ϕq(qeq1x(x

′, ξ)) dx′,

veq1(x, y)=qeq1x(x, ξ), qeq1x(x, ξ) = qeq1(ξ) + f (x− ξ)=
1−g−3 f ξ

2
−

b

2a
+ f x,

x∈[ξ, xm1], y=yeq1x(x, ξ), ξ ∈ [x∗1, xm1].

(46)

Case a¡0, f¡0. The equivocal curve leaving from the point (x∗2, y
∗

2) as a < 0 and f < 0 is
determined by the solution to Cauchy problem

dy

dx
= ϕq,

dq

dx
=

(3 afx+ 3 a+ 2 b+ 3 ag + 3 aq) f

2(3 aq + b)
,

x = x∗2, y = y∗2, q = q∗2 = q(x∗2) = g − 1 + fx∗2 = −
2a+ b

3a
.

(47)
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System (47) has analytic solution satisfying Lemma 1 on the segment [x∗2, xm2],

yeq2(x)=y
∗

2 −
2(ϕ(q)− ϕ(q∗2))

f
, qeq2(x)=q

∗

2−
f

2
(x−x∗2)=

−1−g−fx

2
−
b

2a
,

xm2 = −
3 ag + 3 a+ b

3fa
, ym2 = yeq2(xm2).

(48)

Indeed, testing function µ(τ) for equivocal surface (48) reads as

µ(τ) = µ2(τ) =
(1 + τ) (3 xfa+ 3 a+ 3 ag + b)

4
≤ 0, τ ∈ [−1; 1]. (49)

Identity µ2(τ) = 0 as τ 6= −1 is attained for x = xm2, where xm2 is the abscissa of the point
(xm2, ym2), where it ends since as x > xm2, the inequality µ2(τ) ≤ 0 is false for τ 6= −1. At
this point, the numerator and the denominator of the right hand side in the second equation
in (47) vanish and exactly at this point the values of q1(x), qeq2(x) coincide and the same
happen for the derivatives of function yxak1(x) yeq2(x) in (48), i.e., a characteristics in the
upper family of parabolas touches the equivocal curve. Then the equivocal curve becomes a
regular characteristics. Construction of functions Seq2(ξ, η), Seq2(x, y), veq2(x, y) for problems
(15), (16), and (13), (14) is done by analogy with the case a > 0, f > 0,

Seq2( ξ, η)=S2(x
∗

2, y
∗

2)+

ξ
∫

x∗

2

(−ϕ(qeq2(x))+fη(x)+qeq2(x)ϕq(qeq2(x)) dx,

η=y∗2+

ξ
∫

x∗

2

ϕq(qeq2(x)) dx, Seq2(x, y) = Seq2(ξ, η(ξ))+

+

ξ
∫

x∗

2

(fyeq2x(x
′, ξ)−ϕ(qeq2x(x

′, ξ))+qeq2x(x
′, ξ)ϕq(qeq2x(x

′, ξ)) dx′,

veq2(x, y)=qeq2x(x, ξ), qeq2x(x, ξ) = qeq2(ξ) + f (x− ξ), x∈[ξ, xm2],

y=yeq2x(x, ξ), ξ ∈ [x∗2, xm2].

(50)

We summarize the above facts as

Lemma 3. For the values of parameters (36), the half-plane x ≥ 0 is separated into three
domains by the curves whose parts are the ordinate axis, dispersal curve (28)

y=ydisp(x), x∈[0, x
∗], x∗=

{

x∗1, a > 0, f > 0
x∗2, a < 0, f < 0

, y∗=ydisp(x
∗),

the equivocal curve in (42), (48)

y=yeq(x), x∈[x
∗, xm], yeq(x) =

{

yeq1(x), a > 0, f > 0
yeq2(x), a < 0, f < 0

,

xm =

{

xm1, a > 0, f > 0
xm2, a < 0, f < 0

,

and two regular characteristics y1(x), x∈[x
∗,+∞), y2(x), x∈[xm,+∞), ym=yeq(xm),

y1(x) =

{

yxak1(x, x
∗, y∗), a > 0, f > 0

yxak2(x, x
∗, y∗), a < 0, f < 0

,

y2(x) =

{

yxak2(x, xm, ym), a > 0, f > 0
yxak1(x, xm, ym), a < 0, f < 0

.



CONSTRUCTION OF GENERALIZED SOLUTION FOR FIRST ORDER EQUATION. . . 89

In two domains adjacent to axis y, respectively for the upper and the lower domain, the gen-
eralized solution to problem (15), (16) is determined by the formulae S1(x, y) and S2(x, y) in
(27), and the solution to problem (13), (14) as ρ1=g+1, ρ2=g−1 is given by relations (34). In
third domain adjacent to the equivocal curve, the generalized solution to problem (15), (16) and
(13), (14) is determined by the formulas in (46) where a > 0, f > 0 and (49) for a < 0, f < 0.

7. Absence of focal surface

Let us show that in problems described by equation (15) the focal surface is absent no matter
what the boundary condition are. On a focal surface, necessary conditions should be satisfied.
These are equation (6), the continuity condition w(x, y)=S(1)(x, y)−S(2)(x, y)=0, the condition
of touching the surface w(x, y)=0 by the regular characteristics, i.e., there should be touching
condition for both sides. Writing down these conditions, we arrive at the equations system for
the vectors (p1, q1), (p2, q2), (pi = ∂S(i)/∂x, qi = ∂S(i)/∂y, i = 1, 2),

p1 + ϕ(q1)− fy = 0; p2 + ϕ(q2)− fy = 0,

p1 − p2 + (q1 − q2)ϕq(qi) = 0,

ϕq(q) = 3aq2 + 2bq + c, i = 1, 2.











(51)

A focal surface can be constructed by solving equations system ([13])


















ẏ = Hq1 = H̄q2, Ṡ = q1Hq1 −H∗ = q2H̄q2 − H̄∗, H∗ = ϕ(q1)− fy

q̇1 = K(x, y, q1, q2), q̇2 = K(x, y, q2, q1),

K(x, y, q1, q2) =
[Hx +HyHq1]

∗

(q1 − q2)Hq1q1

−
Hq1x +Hq1yHq1

Hq1q1

.

(52)

The overline indicates the replacement of arguments p1, q1 by p2, q2, square brackets with
asterisk denotes the jump of the function on the required focal surface Γf , i.e., [f ]

∗ = f(p1, q1)−
f(p2, q2).

Considering system (51), we arrive at two equations for q1, q2,

(q1 − q2)
2 (2 aq1 + b+ aq2) = 0

− (q1 − q2)
2 (aq1 + b+ 2 aq2) = 0,

having just coinciding solutions q1 ≡ q2. This is why system (51) has the only solutions p1 ≡ p2,
q1 ≡ q2, i.e., conditions (51) lead to the smoothness of required solution S(x, y) and the focal
surface is absent.

8. Integral funnel

Suppose now condition (26) is false, i.e.,
[

3ag + b > 0,
3ag + b = 0, fa > 0.

(53)

As it was noticed in Section 5, among regular trajectories with values q0 = ±1+g in the vicinity
of the origin, there is a domain not filled by regular trajectories. We shall try to cover this
domain by regular trajectories (22) not satisfying (23). In Figure 3 we show an example of such
successful filling of this domain by the regular characteristics with values q0 ∈ [−1 + g,+1+ g]
for the case a = 0. Under the figure we provide the corresponding values of the parameters.
For values a = 0, it is always possible to cover whole the space by the regular characteristics
leaving from ordinate axis.

As a 6= 0, there can be situations, when between regular trajectories leaving from origin with
values q0=±1+g, there appear a space which can not be covered by the regular trajectories
(22). An example of such situation is demonstrated in Figure 4. The parameters are chosen so
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Figure 3. Integral funnel: a = 0, b = 1, c = d = 0, f = 1, g = −0.5

that the linear in x term in (25) vanishes, and the quadratic one is positive, i.e., 3ag + b = 0,
fa > 0. For these values of the parameters, the regular characteristics with values q0 = ±1+ g
have a joint tangential at the origin and there are no other regular characteristics with the
same tangential, since in (22), the linear in x term involves the qudratic in q0 factor. It follows
that in this case, by a choice of q0, it is impossible to cover whole the domain x > 0 by regular
characteristics leaving from origin. In Section 6, there was proven the absence of focal surface.
This is why, for such values of the parameters, the approach employed in the present work does
not give the solution.

It is obvious that if the coefficients at the linear and quadratic in x terms in (22) are increasing
w.r.t. q0 functions on the segment [−1+g, 1+g], then the regular characteristics leaving from the
origin with values q0 ∈ [−1+ g,+1+ g] cover the domain formed by the regular characteristics
leaving from the origin with the values q0 = ±1+g. The next lemma describes the construction
of the solution in this case.

Lemma 4. Suppose the parameters of the problem satisfy the conditions








g > +1−
b

3 a
as a > 0, f > 0,

g < −1 −
b

3 a
as a < 0, f < 0.

Then regular characteristics leaving from the ordinate axis cover uniquely whole the domain
x > 0. The half-plane x ≥ 0 is separated into three domains by the curves whose parts are
the ordinate axis and two regular curves yxak1(x, 0, 0), yxak2(x, 0, 0). In two domains adjacent
to the ordinate axis, respectively for in the upper and lower domains, the generalized solution
to problem (15), (16) is determined by the formulae S1(x, y) and S2(x, y) in (27), and the
solution to problem (13), (14) as ρ1 = g + 1, ρ2 = g − 1 given by the relations (34). In the
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Figure 4. a = 2, b = 3, c = 0, f = 1, g = −0.5

third domain located between the curves yxak1(x, 0, 0), yxak2(x, 0, 0), the generalized solutions to
problems (15), (16) and (13), (14) are given by the formulae S3(x, y), v3(x, y) implicitly

S3( x, y)=

x
∫

0

(p+q Hq) dx=

x
∫

0

(fy3(x, q0)−ϕ(q3(x, q0))+q3(x, q0)ϕq(q3(x, q0))) dx,

v3(x, y) = q3(x, q0), q3(x, q0)=q0+f x,

y=y3(x, q0)=a x
3f 2+(3 aq0+b)x

2f+(3 aq0
2+2 bq0+c)x, q0 ∈ [g−1, g+1]

On Figure 5 we provide an example of constructing an integral funnel for the considered
case. We note that in the case the hypothesis of Lemma 4 is false and conditions (36) hold
true, behind the equivocal surface, the integral funnel (depression wave) follows the equivocal
surface.

9. Summary

The Cauchy problem for a known quasilinear first order equation with the right hand side
independent of the unknown function and a discontinuous initial condition is reduced to Cauchy
problem for Hamilton-Jacobi equation with a continuous initial condition. It is proposed to
apply the method of singular characteristics to this problem; this method was developed by
A.A. Melikyan for game and control problems. The efficiency of this approach is demonstrated
for quasilinear problem (3.1), (3.2) in the case when the original function ϕ involved in the
equation is a cubic polynomial w.r.t. the unknown function, while the initial condition is
introduced as a “raising” step. We find the domains of the parameters, for which it is possible
to construct the generalized solution to quasilinear problem (3.1), (3.2) and we write down a
similar procedure for the constructing the solution. The appropriate formulae for constructing
the solution to problem (3.1), (3.2) as well as for constructing the solution to the auxiliary
initial Hamilton-Jacobi problem (3.3),(3.4) are provided in Lemmata 2-4.
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Figure 5. Integral funnel: a = 1, b = 1, c = d = 0, f = 1, g = 2/3

The described approach of constructing the generalized solution was employed in works [20],
[21].
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