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UNCONDITIONAL BASES OF REPRODUCING KERNELS

IN HILBERT SPACES OF ENTIRE FUNCTIONS

K.P. ISAEV, R.S. YULMUKHAMETOV

Abstract. We consider the existence of unconditional bases of reproducing kernels in a
functional Hilbert space of entire functions. It is proved that under certain conditions,
unconditional bases of reproducing kernels do not exist. It is shown that in particular
spaces, some known theorems on the absence of unconditional bases are the consequences
of these results.
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1. Introduction

Let 𝐻 be a functional Hilbert space of entire functions. That is, the functionals 𝛿𝑧 : 𝑓 → 𝑓(𝑧)
are continuous for each 𝑧 ∈ C. Then each functional 𝛿𝑧 is generated by an element 𝑘𝑧(𝜆) ∈ 𝐻
in the sense 𝛿𝑧(𝑓) = (𝑓(𝜆), 𝑘𝑧(𝜆)). The function 𝑘(𝜆, 𝑧) = 𝑘𝑧(𝜆) is called reproducing kernel.

The function ‖𝑘𝑧(𝜆)‖𝐻 = (𝑘(𝑧, 𝑧))
1
2 called Bergman function of space 𝐻. The main properties

of reproducing kernels in Hilbert spaces are presented in work [1]. Denote 𝐾(𝑧) = ‖𝑘𝑧(𝜆)‖2𝐻 .
In what follows, we make additional assumptions for space 𝐻,

𝐾(𝑧) > 0, 𝑧 ∈ C; (1)

if 𝑓 ∈ 𝐻 and 𝑧0 is a zero of function 𝑓(𝑧), then

𝑓(𝑧)

𝑧 − 𝑧0
∈ 𝐻. (2)

The system of elements 𝑒𝑘, 𝑘 = 1, 2, . . ., in a Hilbert space is called unconditional basis (cf.
[2]) if it is complete and there exist numbers 𝑐, 𝐶 > 0, such that for each set of numbers 𝑐1, 𝑐2,
. . . , 𝑐𝑛 the relation

𝑐

𝑛∑︁
𝑘=1

|𝑐𝑘|2||𝑒𝑘||2 ≤ ||
𝑛∑︁

𝑘=1

𝑐𝑘𝑒𝑘||2 ≤ 𝐶

𝑛∑︁
𝑘=1

|𝑐𝑘|2||𝑒𝑘||2

holds true. It is known (cf. [3], [4]), that if a system 𝑒𝑘, 𝑘 = 1, 2, . . ., is an unconditional basis,
then each element of space 𝐻 is uniquely represented by the series

𝑥 =
∞∑︁
𝑘=1

𝑥𝑘𝑒𝑘,

and

𝑐

∞∑︁
𝑘=1

|𝑥𝑘|2||𝑒𝑘||2 ≤ ||𝑥||2 ≤ 𝐶
∞∑︁
𝑘=1

|𝑥𝑘|2||𝑒𝑘||2. (3)
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Given a sequence of complex numbers {𝑧𝑗}∞𝑗=1 ⊂ C, let us consider the system {𝑘(𝜆, 𝑧𝑗)}∞𝑗=1.
We shall be interested in the question on the conditions for the sequence {𝑧𝑗}∞𝑗=1 guaranteeing
that the corresponding system of reproducing kernels is an unconditional basis in space 𝐻.

In the dual formulation, the problem on unconditional bases of reproducing kernels in Hilbert
space of entire functions becomes an interpolation problem. In some special cases, by Fourier-
Laplace transformation, the problem becomes equivalent to that on unconditional bases formed
by exponentials. The basic examples here are classical Fourier series in 𝐿2(−𝜋, 𝜋), interpolation
theorem in Paley-Wiener space (Kotelnikov theorem).

In weighted spaces of entire functions

𝐹𝜙 = {𝑓 ∈ 𝐻(C) : ‖𝑓‖2 :=

∫︁
C
|𝑓(𝑧)|2𝑒−2𝜙(𝑧) 𝑑𝑚(𝑧) < ∞}, (4)

where 𝜙(𝑧) is a subharmonic function, 𝑑𝑚(𝑧) Lebesgue measure, the problem on unconditional
bases of reproducing kernels was treated in many works. Among recent ones, we mention [5],
[6], [8], [9].

In the present work, in Section 3, we prove that under certain conditions there are uncon-
ditional bases in space 𝐻. In Section we demonstrate how the proven theorems imply known
theorems for particular spaces.

2. Formulation of main results

In Section 3 we shall prove

Theorem 1. If a system {𝑘(𝜆, 𝑧𝑗)}∞𝑗=1 is an unconditional basis in space 𝐻, there exists an
entire function 𝐿 with simple zeroes at the points 𝑧𝑗, 𝑗 = 1, 2, . . ., satisfying relation

1

𝑃
𝐾(𝑧) ≤

∞∑︁
𝑖=𝑗

|𝐿(𝑧)|2𝐾(𝑧𝑗)

|𝐿′(𝑧𝑗)|2|𝑧 − 𝑧𝑗|2
≤ 𝑃𝐾(𝑧), 𝑧 ∈ C, (5)

where 𝑃 is a some positive constant.

We introduce one more characteristic for the continuous on the plane functions 𝑢 measuring
the deviation of a given function from harmonic ones. For a continuous function 𝑢, 𝑧 ∈ C and
a positive number 𝑝, by 𝜏(𝑢, 𝑧, 𝑝) we denote the supremum of all 𝑟 > 0 such that

inf{ sup
𝑤∈𝐵(𝑧,𝑟)

|𝑢(𝑤) − ℎ(𝑤)|, ℎis harmonic in 𝐵(𝑧, 𝑟)} ≤ 𝑝.

Here 𝐵(𝑧, 𝑟) is a circle centered at 𝑧 of radius 𝑟. Immediately from the definition it follows that
if 𝜏(𝑢, 𝑧0, 𝑝) = ∞ for some point 𝑧0, then 𝜏(𝑢, 𝑧, 𝑝) ≡ ∞. We have the following statement.

Lemma 1. If for a function 𝑢, the characteristics 𝜏(𝑢, 𝑧, 𝑝) is finite, then function
𝜏(𝑧) = 𝜏(𝑢, 𝑧, 𝑝) satisfies Lipshitz condition,

|𝜏(𝑧1) − 𝜏(𝑧2)| ≤ |𝑧1 − 𝑧2|
for all 𝑧1 and 𝑧2.

A simple proof of this lemma can be found in [7].
In work [10], it was shown (Lemma 1.1) that in the case 𝑢 is a continuous subharmonic

function, the quantity 𝜏 = 𝜏(𝑢, 𝜆, 𝑝) is well-defined by the condition: if 𝐻(𝑧) is the smallest
harmonic majorant of function 𝑢 in the circle 𝐵(𝜆, 𝜏), then

max
𝑧∈𝐵(𝜆,𝜏)

(𝐻(𝑧) − 𝑢(𝑧)) = 2𝑝.

The function
ln𝐾(𝑧) = 2 sup

||𝐹 ||≤1

ln |𝐹 (𝑧)|



UNCONDITIONAL BASES OF REPRODUCING KERNELS . . . 69

is subharmonic and continuous on the whole plane (we suppose that 𝐾(𝑧) > 0). In what
follows, by 𝜏(𝑧) we denote the function 𝜏(ln𝐾(𝑤), 𝑧, ln(5𝑃 )), where 𝑃 is the constant in (5).
Hence,

inf{ sup
𝑧∈𝐵(𝜆,𝜏(𝜆))

| ln𝐾(𝑧) − ℎ(𝑧)|, h is harmonic in 𝐵(𝑧, 𝜏(𝑧))} = ln(5𝑃 ).

The next theorem was proven in [7] (see Theorem 1).

Theorem 2. Let 𝐿(𝑧) be an entire function with simple zeroes 𝑧𝑖, 𝑖 = 1, 2, . . . satisfying the
double-sided estimate

1

𝑃
𝐾(𝑧) ≤

∞∑︁
𝑖=1

|𝐿(𝑧)|2𝐾(𝑧𝑖)

|𝐿′(𝑧𝑖)|2|𝑧 − 𝑧𝑖|2
≤ 𝑃𝐾(𝑧)

with some 𝑃 . Then
1) In each circle 𝐵(𝑧, 2𝜏(𝑧)) there exists at least one zero 𝑧𝑖 of function 𝐿.
2) For each 𝑖, 𝑗, 𝑖 ̸= 𝑗, inequality

|𝑧𝑖 − 𝑧𝑗| ≥
max(𝜏(𝑧𝑖), 𝜏(𝑧𝑗))

10𝑃
3
2

holds true.
3) For each 𝑖 in each circle 𝐵(𝑧𝑖,

𝜏(𝑧𝑖)

20𝑃
3
2

) the relation

1

56𝑃 8
𝐾(𝑧) ≤ 𝐾(𝑧𝑖)|𝐿(𝑧)|2

|𝐿′(𝑧𝑖)|2|𝑧 − 𝑧𝑖|2
≤ 𝑃𝐾(𝑧)

is valid.

In Section 3 we shall prove Theorems 3,4.

Theorem 3. Let 𝑧𝑖, 𝑖 = 1, 2, . . . , be the zeroes of function 𝐿(𝑧) satisfying the hypothesis of
the previous theorem. Then for each finite set of zeroes 𝐵 containing at least two zeroes, there
exists an index 𝑛 such that ∑︁

𝑧𝑖∈𝐵, 𝑖 ̸=𝑛

𝜏 2(𝑧𝑖)

|𝑧𝑖 − 𝑧𝑛|2
≤ (4𝑃 )12.

Corollary. Let 𝑧𝑖, 𝑖 = 1, 2, . . . , be the zeroes of function 𝐿(𝑧) satisfying the hypothesis of
the previous theorem and 𝑏 = 1

20𝑃
3
2
. Then for each finite set of zeroes 𝐵 containing at least two

zeroes, there exists an index 𝑛 such that∑︁
𝑧𝑖∈𝐵, 𝑖 ̸=𝑛

∫︁
𝐵(𝑧𝑖, 𝑏𝜏(𝑧𝑖))

𝑑𝑚(𝑧)

|𝑧 − 𝑧𝑛|2
≤ 410𝑃 9.

Theorem 4. Let 𝐻 be the functional Hilbert space of entire functions satisfying conditions
(1) and (2). Suppose that for each positive number 𝑝 there exists a number 𝛿 = 𝛿(𝑝) > 0 such
that the function 𝜏(𝑧) = 𝜏(ln𝐾(𝜆), 𝑧, 𝑝) satisfies the condition

inf
𝑧∈𝐵(𝜆,2𝜏(𝜆))

𝜏(𝑧) ≥ 𝛿𝜏(𝜆) (6)

for all 𝜆 ∈ C and 𝜏(𝑧) = 𝑜(|𝑧|) as |𝑧| −→ ∞. Then there exist no unconditional bases of
reproducing kernels in space 𝐻.

A slight modification of the proof of this theorem leads one to essentially weaker assumptions.

Theorem 5. Let 𝐻 be the functional Hilbert space of entire functions satisfying condi-
tions (1) and (2). Suppose for each positive number 𝑝 there exists a number 𝛿 = 𝛿(𝑝) > 0
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and a sequence of circles 𝐵(𝜁𝑗, 𝑅𝑗) (depending on number 𝑝) such that the function 𝜏(𝑧) =
𝜏(ln𝐾(𝜆), 𝑧, 𝑝) satisfies the condition

inf
𝑧∈𝐵(𝜆,2𝜏(𝜆))

𝜏(𝑧) ≥ 𝛿𝜏(𝜆)

for all 𝜆 ∈ 𝐵(𝜁𝑗, 𝑅𝑗). And moreover,

max
𝑧∈𝐵(𝜁𝑗 ,𝑅𝑗)

𝜏(𝑧) = 𝑜(𝑅𝑗), 𝑗 −→ ∞.

Then there exist no unconditional bases of reproducing kernels in space 𝐻.

3. Proof of main statements

Proof of Theorem 1. Let 𝑘(𝜆, 𝑧) =
∑︀∞

𝑗=1 𝑐𝑗(𝑧)𝑘(𝜆, 𝑧𝑗), 𝜆 ∈ C. We observe that 𝑐𝑗(𝑧𝑘) = 𝛿𝑘𝑗 ,

where 𝛿𝑘𝑗 is the Kronecker delta. Let {𝑆𝑗(𝜆)}∞𝑗=1 ⊂ 𝐻 be the biorthogonal system for the

system 𝑘(𝜆, 𝑧𝑗), i.e., (𝑆𝑗(𝜆), 𝑘(𝜆, 𝑧𝑘)) = 𝛿𝑘𝑗 . Then

(𝑘(𝜆, 𝑧), 𝑆𝑗(𝜆)) =
∞∑︁
𝑘=1

𝑐𝑘(𝑧)(𝑘(𝜆, 𝑧𝑘), 𝑆𝑗(𝜆)),

hence, 𝑆𝑗(𝑧) = 𝑐𝑗(𝑧). This is why 𝑆𝑗(𝑧𝑘) = 𝛿𝑗𝑘. We note that 𝑧𝑘, 𝑘 ̸= 𝑗 are simple zeroes of
function 𝑆𝑗(𝑧). Indeed, if for some 𝑚 ̸= 𝑗 the quantity 𝑆 ′

𝑗(𝑧𝑚) was equal to zero, then the
function (𝑧𝑗 − 𝑧𝑚)𝑆𝑗(𝑧)/(𝑧 − 𝑧𝑚) belong to 𝐻 due to (2) would vanish at the points 𝑧𝑘, 𝑘 ̸= 𝑗
and would be equal to one at the point 𝑧𝑗, i.e., at all the points 𝑧𝑘, 𝑘 = 1, 2, 3, . . ., it would
coincide with function 𝑆𝑗(𝑧). But due to the completeness of the system {𝑘(𝜆, 𝑧𝑘)} in space
𝐻, the system of points 𝑧𝑘, 𝑘 = 1, 2, 3, . . ., is the uniqueness set for space 𝐻. Thus, functions
(𝑧𝑗 − 𝑧𝑚)𝑆𝑗(𝑧)/(𝑧 − 𝑧𝑚) and 𝑆𝑗(𝑧) would have to identically coincide.

The function 𝐿(𝑧) = 𝑆1(𝑧)(𝑧− 𝑧1) is an entire one. The points 𝑧𝑘, 𝑘 = 1, 2, . . ., are its simple
zeroes. It is obvious that

𝑆1(𝑧) =
𝐿(𝑧)

𝐿′(𝑧1)(𝑧 − 𝑧1)
.

As 𝑗 > 1,
𝐿(𝑧)

𝐿′(𝑧𝑗)(𝑧 − 𝑧𝑗)
=

𝑆1(𝑧)

𝐿′(𝑧𝑗)
+

𝑆1(𝑧)(𝑧𝑗 − 𝑧1)

𝐿′(𝑧𝑗)(𝑧 − 𝑧𝑗)
∈ 𝐻

and it coincides with 𝑆𝑗(𝑧) at all the points 𝑧𝑘, 𝑘 = 1, 2, . . .. Again due to the completeness of
the system {𝑘(𝜆, 𝑧𝑘)},

𝑆𝑗(𝑧) =
𝐿(𝑧)

𝐿′(𝑧𝑗)(𝑧 − 𝑧𝑗)
, 𝑗 = 2, 3, . . . ,

this is why

𝑘(𝜆, 𝑧) =
∞∑︁
𝑖=1

𝐿(𝑧)

𝐿′(𝑧𝑖)(𝑧 − 𝑧𝑖)
𝑘(𝜆, 𝑧𝑖), 𝜆 ∈ C.

Employing (3), we arrive at the statement of the theorem. Above arguments mean that the
system

𝐿(𝑧)

𝐿′(𝑧𝑗)(𝑧 − 𝑧𝑗)
, 𝑗 = 1, 2, . . . ,

is the biorthogonal one for the original system of reproducing kernels. The proof is complete.

Proof of Theorem 3. By the hypothesis of the theorem, the estimate∑︁
𝑧𝑖∈𝐵

𝐾(𝑧𝑖)|𝐿(𝑧)|2

|𝐿′(𝑧𝑖)|2|𝑧 − 𝑧𝑖|2
≤ 𝑃𝐾(𝑧) (7)
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holds true for each 𝑧. Since set 𝐵 is finite, there exists an index 𝑛 such that

𝐾(𝑧𝑛)

|𝐿′(𝑧𝑛)|2𝜏 2(𝑧𝑛)
= min

𝑧𝑖∈𝐵

(︂
𝐾(𝑧𝑖)

|𝐿′(𝑧𝑖)|2𝜏 2(𝑧𝑖)

)︂
.

By Item 3 of Theorem 2, for the points 𝑧 on the boundary of the circle 𝐵
(︁
𝑧𝑛,

1

20𝑃
3
2
𝜏(𝑧𝑛)

)︁
the

estimate
1

56𝑃 8
𝐾(𝑧) ≤ 202𝑃 3 𝐾(𝑧𝑛)|𝐿(𝑧)|2

|𝐿′(𝑧𝑛)|2𝜏 2(𝑧𝑛)
is valid, or

𝐾(𝑧)

|𝐿(𝑧)|2
≤ 4258𝑃 11 𝐾(𝑧𝑛)

|𝐿′(𝑧𝑛)|2𝜏 2(𝑧𝑛)
.

Together with estimate (7) it implies

4258𝑃 11 𝐾(𝑧𝑛)

|𝐿′(𝑧𝑛)|2𝜏 2(𝑧𝑛)
≥ 1

𝑃

∑︁
𝑧𝑖∈𝐵

𝐾(𝑧𝑖)

|𝐿′(𝑧𝑖)|2|𝑧 − 𝑧𝑖|2
.

Therefore, for the points 𝑧 on the boundary of the circle 𝐵
(︁
𝑧𝑛,

1

20𝑃
3
2
𝜏(𝑧𝑛)

)︁
,

4258𝑃 12 𝐾(𝑧𝑛)

|𝐿′(𝑧𝑛)|2𝜏 2(𝑧𝑛)
≥

∑︁
𝑧𝑖∈𝐵

𝐾(𝑧𝑖)

|𝐿′(𝑧𝑖)|2𝜏 2(𝑧𝑖)
· 𝜏 2(𝑧𝑖)

|𝑧 − 𝑧𝑖|2
.

Taking into consideration the choice of index 𝑛, for the points 𝑧 on the boundary of

𝐵
(︁
𝑧𝑛,

1

20𝑃
3
2
𝜏(𝑧𝑛)

)︁
, we have

4258𝑃 12 𝐾(𝑧𝑛)

|𝐿′(𝑧𝑛)|2𝜏 2(𝑧𝑛)
≥ 𝐾(𝑧𝑛)

|𝐿′(𝑧𝑛)|2𝜏 2(𝑧𝑛)

∑︁
𝑧𝑖∈𝐵

𝜏 2(𝑧𝑖)

|𝑧 − 𝑧𝑖|2
,

or ∑︁
𝑧𝑖∈𝐵

𝜏 2(𝑧𝑖)

|𝑧 − 𝑧𝑖|2
≤ 4258𝑃 12. (8)

By Item 2 of Theorem 2, for the mentioned points 𝑧 as 𝑖 ̸= 𝑛, the estimate

|𝑧 − 𝑧𝑖| ≤ |𝑧 − 𝑧𝑛| + |𝑧𝑛 − 𝑧𝑖| =
𝜏(𝑧𝑛)

20𝑃
3
2

+ |𝑧𝑛 − 𝑧𝑖| ≤
3

2
|𝑧𝑛 − 𝑧𝑖|

holds true, and hence, the desired estimate is implied by (8),∑︁
𝑧𝑖∈𝐵, 𝑖 ̸=𝑛

𝜏 2(𝑧𝑖)

|𝑧𝑛 − 𝑧𝑖|2
≤ (4𝑃 )12.

The proof is complete.

Proof of Corollary of Theorem 3. Since for the points 𝑧 ∈ 𝐵(𝑧𝑖, 𝑏𝜏(𝑧𝑖)) we have

|𝑧 − 𝑧𝑛| ≥ |𝑧𝑖 − 𝑧𝑛| − |𝑧 − 𝑧𝑖| ≥
1

2
|𝑧𝑖 − 𝑧𝑛|,

then ∫︁
𝐵(𝑧𝑖, 𝑏𝜏(𝑧𝑖))

𝑑𝑚(𝑧)

|𝑧 − 𝑧𝑛|2
≤ 4𝜋𝑏2𝜏 2(𝑧𝑖)

|𝑧𝑖 − 𝑧𝑛|2
.

It yields ∑︁
𝑧𝑖∈𝐵, 𝑖 ̸=𝑛

∫︁
𝐵(𝑧𝑖, 𝑏𝜏(𝑧𝑖))

𝑑𝑚(𝑧)

|𝑧 − 𝑧𝑛|2
≤ 4𝜋𝑏2(4𝑃 )12 =

4𝜋

400𝑃 3
(4𝑃 )12 ≤ 410𝑃 9.

Proof of Theorem 4. We shall make use of the following statement (see [11], p. 216).
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Lemma (On cover by balls). Suppose a set 𝐴 ⊂ R𝑝 is covered by balls so that each point
𝑥 ∈ 𝐴 is the center of some ball 𝑆(𝑥) of radius 𝑟(𝑥). If sup𝑥∈𝐴 𝑟(𝑥) < ∞, then from system
{𝑆(𝑥)}, it is possible to select at most countable subsystem {𝑆(𝑥𝑘)} covering set 𝐴 and having
the multiplicity not exceeding some number 𝑁(𝑝) depending only on the space dimension.

It is easy to check that 𝑁(2) = 6.
We prove theorem by contradiction. Assume the hypothesis of the theorem holds true,

but in space 𝐻 there exists an unconditional basis of reproducing kernels {𝑘(𝜆, 𝑧𝑖)}. Then
Theorems 1,2, and 3 hold true. We let 𝑝 = ln(5𝑃 ) and 𝜏(𝑧) = 𝜏(ln𝐾(𝜆), 𝑧, ln(5𝑃 )).

We choose an arbitrary 𝜀 > 0 and suppose a number 𝑅 is large enough to satisfy

max
|𝑧|≤𝑅

𝜏(𝑧) ≤ 𝜀𝑅. (9)

Such 𝑅 exists due to the condition for 𝜏(𝑧). Indeed, there exists 𝑅′ such that as |𝑧| ≥ 𝑅′, the
inequality 𝜏(𝑧) < 𝜀|𝑧| holds. If we take 𝑅 > 2𝑅′

𝜀
, then as |𝑧| ∈ [ 𝜀

2
𝑅;𝑅], we have 𝜏(𝑧) < 𝜀|𝑧| ≤

𝜀𝑅. By Lemma 1, the relation 𝜏(𝑧) ≤ 𝜏(0) + |𝑧| is valid and thus, if |𝑧| ∈ [𝜏(0); 𝜀
2
𝑅], then

𝜏(𝑧) ≤ 2|𝑧| ≤ 𝜀𝑅. Finally, choosing 𝑅 greater that 1
𝜀

max|𝑧|≤𝜏(0) 𝜏(𝑧), we get relation (9).
Consider the system of circles 𝐵(𝜆, 2𝜏(𝜆)), 𝜆 ∈ 𝐵(0, 𝑅). By Item 1 of Theorem 2, each of

these circles contains at least one of 𝑧𝑖 and these circles cover 𝐵(0, 𝑅). By lemma on cover by
balls, there exists at most countable set of circles 𝐵𝑛 = 𝐵(𝜆𝑛, 2𝜏(𝜆𝑛)) covering 𝐵(0, 𝑅) so that
each point of the latter circle belongs to at most 𝑁(2) = 6 circles of the cover. In each of the
circles 𝐵𝑛, we choose one 𝑧𝑖(𝑛). At that, some of 𝑧𝑖(𝑛) can be chosen several times, but by the
properties of subcover, the multiplicity of each index is at most six. We renumber the selected
indices associating with them the index of the circle in which the index was chosen. We obtain
the set of the numbers {𝑤𝑛}, where each number appears at most six times. We then apply
Theorem 3 to this set. There exists a number 𝑚 such that, with the multiplicity taken into
account, the estimate ∑︁

𝑤𝑛 ̸=𝑤𝑚

𝜏 2(𝑤𝑛)

|𝑤𝑛 − 𝑤𝑚|2
≤ 6(4𝑃 )12 (10)

holds true.
In our notations 𝑤𝑛 ∈ 𝐵𝑛 = 𝐵𝑛(𝜆𝑛, 2𝜏(𝜆𝑛)). We then consider 𝑛 such that

𝑤𝑚 /∈ 𝐵′
𝑛 = 𝐵𝑛(𝜆𝑛, 3𝜏(𝜆𝑛)). Then for each 𝑤 ∈ 𝐵𝑛 we have |𝑤 − 𝑤𝑚| ≥ 𝜏(𝜆𝑛). Moreover,

|𝑤𝑛 − 𝑤𝑚| 6 |𝑤𝑛 − 𝑤| + |𝑤 − 𝑤𝑚| ≤ 4𝜏(𝜆𝑛) + |𝑤 − 𝑤𝑚| ≤ 5|𝑤 − 𝑤𝑚|,
or

1

|𝑤 − 𝑤𝑚|2
≤ 25

|𝑤𝑛 − 𝑤𝑚|2
, 𝑤 ∈ 𝐵𝑛, 𝑤𝑚 /∈ 𝐵′

𝑛.

Integrating this inequality over circle 𝐵𝑛, we obtain∫︁
𝐵𝑛

𝑑𝑚(𝑤)

|𝑤 − 𝑤𝑚|2
≤ 100𝜋𝜏 2(𝜆𝑛)

|𝑤𝑛 − 𝑤𝑚|2
, 𝑤𝑚 /∈ 𝐵′

𝑛.

Since 𝑤𝑛 ∈ 𝐵(𝜆𝑛, 2𝜏(𝜆𝑛)), by condition (6), 𝜏 2(𝑤𝑛) ≥ 𝛿2𝜏 2(𝜆𝑛). Hence, the latter estimate and
(10) imply ∑︁

𝑤𝑛 ̸=𝑤𝑚 /∈𝐵′
𝑛

∫︁
𝐵𝑛

𝑑𝑚(𝑤)

|𝑤 − 𝑤𝑚|2
≤ 100𝜋

𝛿2

∑︁
𝑤𝑛 ̸=𝑤𝑚 /∈𝐵′

𝑛

𝜏 2(𝑤𝑛)

|𝑤𝑛 − 𝑤𝑚|2
≤ 600(4𝑃 )12

𝛿2
:= 𝐶. (11)

If index 𝑛 is so that 𝑤𝑚 ∈ 𝐵′
𝑛, then for each 𝑤 ∈ 𝐵𝑛 we have

|𝑤 − 𝑤𝑚| ≤ |𝑤 − 𝜆𝑛| + |𝑤𝑚 − 𝜆𝑛| ≤ 2𝜏(𝜆𝑛) + 3𝜏(𝜆𝑛) = 5𝜏(𝜆𝑛).

By the choice of number 𝑅, we have |𝑤 − 𝑤𝑚| ≤ 5𝜀𝑅, i.e., circles 𝐵𝑛 lie inside the circle
𝐵(𝑤𝑚, 5𝜀𝑅). It means that the circles of the cover, whose indices are involved in the summation
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in (11), cover the set 𝐶(𝑅) = 𝐵(0, 𝑅) ∖𝐵(𝑤𝑚, 5𝜀𝑅). Therefore,∫︁
𝐶(𝑅)

𝑑𝑚(𝑤)

|𝑤 − 𝑤𝑚|2
≤ 𝐶.

We make the change of variables 𝑤 = 𝑅𝜁, 𝑤𝑚 = 𝑅𝜁𝑚, 𝜁𝑚 ∈ 𝐵(0, 1 + 2𝜀) to obtain∫︁
𝐵(0,1)∖𝐵(𝜁𝑚,5𝜀)

𝑑𝑚(𝜁)

|𝜁 − 𝜁𝑚|2
≤ 𝐶.

Number 𝜀 > 0 was chosen arbitrary, and tending 𝜀 to zero, we obtain the contradiction. The
proof of Theorem 4 is complete.

4. Weighted Hilbert spaces of entire functions

In this section we consider more specific Hilbert spaces.
First we prove a statement allowing, under some assumptions for a subharmonic function

𝑢, to relate the asymptotic behavior of characteristics with the behavior of the Laplacian of
function 𝑢.

Lemma 2. Suppose a subharmonic on the plane function 𝑢 is twice continuously differen-
tiable and for each number 𝑝 > 0, there exists a number 𝑏 = 𝑏(𝑝) ≥ 1 such that the condition

1

𝑏
≤ ∆𝑢(𝑤)

∆𝑢(𝑧)
≤ 𝑏, 𝑤 ∈ 𝐵(𝑧,

√︀
8𝑝𝑏(∆𝑢(𝑧))−

1
2 ) (12)

holds true. Then the estimates√︃
8𝑝

𝑏∆𝑢(𝑧)
≤ 𝜏(𝑢, 𝑧, 𝑝) ≤

√︃
8𝑝𝑏

∆𝑢(𝑧)
(13)

are valid.

Proof. For the sake of brevity, we introduce the notation 𝜌(𝑧) = (∆𝑢(𝑧))−
1
2 . As it was observed

above, quantity 𝜏 = 𝜏(𝑢, 𝑧, 𝑝) can be determined by the condition

max
𝑤∈𝐵(𝑧,𝜏)

(𝐻𝑢(𝑤) − 𝑢(𝑤)) = 2𝑝,

where 𝐻𝑢 is the minimal harmonic majorant for function 𝑢 in circle 𝐵(𝑧, 𝜏). By Green formula,

ℎ𝑢(𝑤) − 𝑢(𝑤) =

∫︁
𝐵(𝑧,𝑟)

𝐺(𝑤, 𝜁)𝑑𝜇𝑢(𝜁),

where ℎ𝑢 is the minimal harmonic majorant for function 𝑢 in circle 𝐵(𝑧, 𝑟), 𝐺(𝑤, 𝜁) is the
Green function for this circle and 𝜇𝑢 is the associated measure of function 𝑢. In our case
2𝜋𝑑𝜇𝑢(𝜁) = ∆𝑢(𝜁)𝑑𝑚(𝜁), hence, quantity 𝜏 can be determined by the condition

max
𝑤∈𝐵(𝑧,𝜏)

∫︁
𝐵(𝑧,𝜏)

𝐺(𝑤, 𝜁)
∆𝑢(𝜁)

2𝜋
𝑑𝑚(𝜁) = 2𝑝.

If we let 𝑟 =
√︁

8𝑝
𝑏
𝜌(𝑧) (𝑟 ≤

√
8𝑝𝑏(∆𝑢(𝑧))−

1
2 ), then

max
𝑤∈𝐵(𝑧,𝑟)

∫︁
𝐵(𝑧,𝑟)

𝐺(𝑤, 𝜁)
∆𝑢(𝜁)

2𝜋
𝑑𝑚(𝜁) ≤ 𝑏∆𝑢(𝑧) max

𝑤∈𝐵(𝑧,𝑟)

∫︁
𝐵(𝑧,𝑟)

𝐺(𝑤, 𝜁)
𝑑𝑚(𝜁)

2𝜋
.

The function 𝑣(𝑤) = |𝑤 − 𝑧|2 is subharmonic, its associated measure is identically equal to 2
𝜋
,

and the minimal harmonic majorant in circle 𝐵(𝑧, 𝑟) is identically equal to 𝑟2. Thus,

max
𝑤∈𝐵(𝑧,𝑟)

∫︁
𝐵(𝑧,𝑟)

𝐺(𝑤, 𝜁)
𝑑𝑚(𝜁)

2𝜋
=

1

4
max

𝑤∈𝐵(𝑧,𝑟)
(𝑟2 − |𝑤 − 𝑧|2) =

𝑟2

4
.
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Hence,

max
𝑤∈𝐵(𝑧,𝑟)

∫︁
𝐵(𝑧,𝑟)

𝐺(𝑤, 𝜁)
∆𝑢(𝜁)

2𝜋
𝑑𝑚(𝜁) ≤ 𝑏𝑟2

4
∆𝑢(𝑧),

and under the hypothesis of the theorem,

max
𝑤∈𝐵(𝑧,𝑟)

∫︁
𝐵(𝑧,𝑟)

𝐺(𝑤, 𝜁)
∆𝑢(𝜁)

2𝜋
𝑑𝑚(𝜁) ≤ 𝑏𝑟2

4
∆𝑢(𝑧) = 2𝑝.

It implies the lower bound for 𝜏 = 𝜏(𝑢, 𝑧, 𝑝).
In the same way, taking 𝑟 =

√
8𝑝𝑏𝜌(𝑧), we get the estimate

max
𝑤∈𝐵(𝑧,𝑟)

∫︁
𝐵(𝑧,𝑟)

𝐺(𝑤, 𝜁)
∆𝑢(𝜁)

2𝜋
𝑑𝑚(𝜁) ≥ ∆𝑢(𝑧)

𝑏
max

𝑤∈𝐵(𝑧,𝑟)

∫︁
𝐵(𝑧,𝑟)

𝐺(𝑤, 𝜁)
𝑑𝑚(𝜁)

2𝜋
≥

≥ ∆𝑢(𝑧)

𝑏
· 𝑟

2

4
= 2𝑝.

It yields the upper estimate for 𝜏 = 𝜏(𝑢, 𝑧, 𝑝).

Let us show that Theorems 4 and 5 allow us to describe the situations of absence of uncon-
ditional bases in various spaces.

A) It was shown in work [9] that if 𝜙(𝑧) = 𝜙(|𝑧|) is a subharmonic twice differentiable on

the plane function and 𝜌(𝑧) = (∆𝜙(𝑧))−
1
2 obeys the conditions

0 < inf
𝑟>0

𝜌(𝑟) and 𝜌(𝑟) = 𝑜(𝑟), 𝑟 → ∞, (14)

and also
𝜌(𝑟 + 𝜌(𝑟)) = (1 + 𝑜(1))𝜌(𝑟), 𝑟 → ∞ and 𝜌(2𝑟) ≍ 𝜌(𝑟), 𝑟 > 0, (15)

then in space 𝐹𝜙 (4) there exist no unconditional bases of reproducing kernels.
The condition 𝜌(2𝑟) ≍ 𝜌(𝑟), 𝑟 > 0, means that there exist constants 𝑐, 𝐶 > 0 such that

𝑐 <
𝜌(2𝑟)

𝜌(𝑟)
< 𝐶

for all 𝑟 > 0.
Conditions (14) mean that 𝜙(𝑥) increases faster that (ln𝑥)2 and not faster that 𝑥2 as 𝑥 → ∞.
Validity of (15) implies that for 𝜙(𝑧), condition (12) of Lemma 4.1 holds true, and thus,

estimates (13) are valid. Then conditions (14) yield the estimates√︃
8𝑝

𝑏∆𝜙(𝑧)
≤ 𝜏(ln𝐾(𝜆), 𝑧, 𝑝) ≤

√︃
8𝑝𝑏

∆𝜙(𝑧)
.

Thus, the hypothesis of Theorem 4 hold true that means the absence of unconditional bases
of reproducing kernels.

B) Consider Smirnov space 𝐸2(𝐷) and Bergman space 𝐵2(𝐷), where 𝐷 is a bounded convex
domain in the complex plane.

Space 𝐸2(𝐷) is the completion of the space of polynomials w.r.t. the norm

‖𝑝‖2 =

∫︁
𝜕𝐷

|𝑝(𝑧)|2 𝑑𝑠(𝑧),

where 𝑑𝑠(𝑧) is the differential of the boundary of 𝐷.
Space 𝐵2(𝐷) comprises the functions analytic in 𝐷 and square integrable w.r.t. the planar

Lebesgue measure,

𝐵2(𝐷) = {𝑓 ∈ 𝐻(𝐷) :

∫︁
𝐷

|𝑓(𝑧)|2 𝑑𝑚(𝑧) < ∞}.

The system {𝑒𝜆𝑧, 𝜆 ∈ C} is complete in these spaces. This fact allows us to describe the
adjoint spaces 𝐸*

2(𝐷) and 𝐵*
2(𝐷) in terms of Fourier-Laplace transformation. To each linear
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continuous functional 𝑆 in these spaces, we associated an entire function ̂︀𝑆(𝜆) = 𝑆(𝑒𝜆𝑧), 𝜆 ∈ C
called Fourier-Laplace transform of functional 𝑆.

It is shown in work [12] that Fourier-Laplace transform is an isomorphism between space

𝐸*
2(𝐷) and the Hilbert space of entire functions ̂︀𝐸2(𝐷) with the norm

||𝐹 ||2 =

∫︁ ∞

0

∫︁ 2𝜋

0

|𝐹 (𝑟𝑒𝑖𝜙)|2

𝐾(𝑟𝑒𝑖𝜙)
𝑑∆(𝜙)𝑑𝑟, (16)

where

∆(𝜙) =

∫︁ 𝜙

0

ℎ(𝛼)𝑑𝛼 + ℎ′(𝜙), ℎ(𝜙) = max
𝑧∈𝐷

𝑅𝑒 𝑧𝑒𝑖𝜙,

𝐾(𝜆) = ‖𝑒𝜆𝑧‖2𝐸2(𝐷) =

∫︁
𝜕𝐷

|𝑒𝜆𝑧|2 𝑑𝑠(𝑧).

In work [13], there was that space 𝐵*
2(𝐷) is isomorphic to the Hilbert space of entire functionŝ︀𝐵2(𝐷) with the norm defined by formula (16), where

𝐾(𝜆) = ‖𝑒𝜆𝑧‖2𝐵2(𝐷) =

∫︁
𝐷

|𝑒𝜆𝑧|2 𝑑𝑚(𝑧). (17)

Thanks to this fact, the problems on unconditional bases of exponentials {𝑒𝜆𝑘𝑧}∞𝑘=1 in spaces
𝐸2(𝐷) and 𝐵2(𝐷) happen to be equivalent to the problems on unconditional bases of repro-
ducing kernels in the adjoint spaces of entire functions.

It was shown in work [7] that if the boundary of a domain contains a point with a finite
nonzero curvature, there exist no unconditional bases in Bergman space. This can be obtained
by Theorem 5, since Bergman function in the adjoint space coincides with function (17) in some

angle in the complex plane 𝜏(𝜆) ≍
√︀

|𝜆| (cf. Lemma 7 in [7]).
It was shown in work [14] that if the boundary of a domain contains an arc so that the

curvature in its points is separated from zero and infinity by some constants, then there exist
no unconditional bases of exponentials in Smirnov space. This theorem can be obtained from
Theorem 5 in the same way.

C) Let 𝐼 be a bounded interval on the real axis, ℎ(𝑡) be a convex function defined on this
interval and 𝐿2(𝐼, ℎ) be the space of locally integrable functions on 𝐼 satisfying the condition

||𝑓 || :=

√︃∫︁
𝐼

|𝑓(𝑡)|2𝑒−2ℎ(𝑡) 𝑑𝑡 < ∞.

In works [15], [16], [17], space ̂︀𝐿2(𝐼, ℎ) was described. It was proven that space ̂︀𝐿2(𝐼, ℎ) is
isomorphic (as a Banach space) to the space of entire functions 𝐹 obeying the conditions

|𝐹 (𝑧)| ≤ 𝐶𝐹

√︀
𝐾(𝑧), 𝑧 ∈ C.

||𝐹 ||2 =

∫︁
R

∫︁
R

|𝐹 (𝑥 + 𝑖𝑦)|2

𝐾(𝑥)
𝑑̃︀ℎ′(𝑥)𝑑𝑦 < ∞,

where

𝐾(𝑧) =

∫︁
𝐼

|𝑒2𝑧𝑡|𝑒−2ℎ(𝑡)𝑑𝑡, (18)

̃︀ℎ(𝑥) = sup
𝑡∈𝐼

(𝑥𝑡− ℎ(𝑡)).

Thus, the problem on unconditional bases of exponentials in space 𝐿2(𝐼, ℎ) becomes equiv-
alent to the problem on unconditional bases of reproducing kernels in the adjoint space of

entire functions ̂︀𝐿2(𝐼, ℎ) and Bergman function is determined there by formula (18). Thus,
Theorems 4 or Theorem 5 can be applied as a test for the absence of unconditional bases of
exponentials in space 𝐿2(𝐼, ℎ).
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