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ON SOLVABILITY OF HOMOGENEOUS RIEMANN-HILBERT

PROBLEM WITH COUNTABLE SET OF COEFFICIENT

DISCONTINUITIES AND TWO-SIDE CURLING AT INFINITY

OF ORDER LESS THAN 1/2

R.B. SALIMOV, P.L. SHABALIN

Abstract. We consider the homogeneous Riemann-Hilbert problem in the complex upper
half-plane with a countable set of coefficients’ discontinuities and two-side curling at infinity.
In the case the problem index has a power singularity of order less than 1/2, we obtain
general solution and completely study the solvability of the problem in a special functional
class.
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1. Introduction

In the theory of analytic functions, the Hilbert boundary value problem for the half-plane is
the problem on finding a function 𝐹 (𝑧) analytic in the upper half-plane 𝐷 and satisfying the
prescribed boundary condition

𝑎(𝑡)Re𝐹 (𝑡) − 𝑏(𝑡)Im𝐹 (𝑡) = 𝑐(𝑡), (1)

𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) are given functions of the variable 𝑡 on the real axis 𝐿, 𝑎2(𝑡) + 𝑏2(𝑡) ̸= 0. The
complete description of solvability for problem (1) was obtained in the class of bounded up
to the boundary functions provided the coefficients and the right hand side in the boundary
conditions belong to 𝐻𝐿(𝜇) (see, for instance, [1, p. 150], [2, p. 280]), in the class of the functions
with power singularities at the discontinuity points of the coefficients as 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) have
a finite number of jumping discontinuities and are Hölder continuous in the intervals between
the discontinuity points (see, for instance, [3]), in the class of bounded in 𝐷 functions when
the problem has continuous as 𝑡 ∈ (−∞,+∞) coefficients and a two-sided curling at infinite
of power order 𝜌 < 1/2 (see [4], [5]). The latter problem with a two-sided curling at infinity
of power order less than 1 was formulated by I.E. Sandrygailo [6]. He obtained preliminary
results on its solvability in the class of bounded functions and in the class of bounded functions
decaying exponentially at infinity under certain restrictions for the properties of the singularity.
However, the method by N.I. Muskhelishvili employed in this work together with the ideas and
results of [7] did not allowed the author to choose the class of solutions in which it would be
possible to study the solvability completely.

The Hilbert problem for the half-plane with a countable set of discontinuity points for the
coefficients was studied first in [8], [9], where the formulae for the general solution in used classes
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were given and the methods for constructing the examples of entire functions with prescribed
properties were developed. In the present paper we suggest the complete description for the
solvability of the Hilbert problem with a countable set of discontinuity points for the coefficients
and a two-sided curling at infinity of order 𝜌 < 1/2.

2. Formulation and solving of homogeneous problem in class of functions
with singularities at discontinuity points

Let 𝐿 be the real axis in the complex plane of the variable 𝑧 = 𝑥 + 𝑖𝑦, 𝐷 be the half-plane
Im 𝑧 > 0, 𝑡 be a point on 𝐿. We should find a function 𝐹 (𝑧) analytic in the domain 𝐷 and
satisfying prescribed boundary condition (1), where 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) are real functions of 𝑡 defined
on 𝐿, continuous everywhere except the points of jumping discontinuities 𝑡𝑗, 𝑗 = ±1,±2, · · · ,
and 𝑎2(𝑡) + 𝑏2(𝑡) ̸= 0 at all the continuity points of the coefficients, 0 < 𝑡1 < · · · < 𝑡𝑘 < 𝑡𝑘+1 <
· · · , lim

𝑘→∞
𝑡𝑘 = ∞, 0 > 𝑡−1 > · · · > 𝑡−𝑘 > 𝑡−𝑘−1 > · · · , lim

𝑘→∞
𝑡−𝑘 = −∞. We shall assume that

the boundary condition is satisfied everywhere in 𝐿 except the points 𝑡𝑘, 𝑡−𝑘, 𝑘 = 1,∞. Later
we shall specify certain aspects of the problem formulation.

If 𝑐(𝑡) ≡ 0, the problem is called homogeneous, and if 𝑐(𝑡) ̸≡ 0, it is inhomogeneous. In the
present work we are interested in the homogeneous Hilbert problem.

We rewrite boundary condition (1) with 𝑐(𝑡) ≡ 0 as

Re [𝑒−𝑖𝜈(𝑡)𝐹 (𝑡)] = 0, (2)

where the branch 𝜈(𝑡) = arg[𝑎(𝑡)−𝑖𝑏(𝑡)] is chosen on each interval of continuity of the coefficients
in such a way that the number 𝛿𝑗 = 𝜈(𝑡𝑗 + 0) − 𝜈(𝑡𝑗 − 0) obeys the condition 0 6 𝛿𝑗 < 2𝜋,
𝑗 = ±1,±2, . . .

We introduce the function 𝜙(𝑡) = 𝜈(𝑡)−𝛽(𝑡)𝜋, where 𝛽(𝑡) is an integer-valued function taking
the values 𝛽𝑘, 𝛽−𝑘 in the intervals (𝑡𝑘, 𝑡𝑘+1) and (𝑡−𝑘, 𝑡−𝑘−1), 𝑘 = 1,∞, respectively. For the
interval (𝑡−1, 𝑡1), we choose the value 𝛽0 = 0. We also choose the numbers 𝛽𝑘 so that

0 6 𝜙(𝑡𝑘 + 0) − 𝜙(𝑡𝑘 − 0) < 𝜋,

and the numbers 𝛽−𝑘 are chosen to satisfy

0 6 𝜙(𝑡−𝑘 + 0) − 𝜙(𝑡−𝑘 − 0) < 𝜋.

We denote

𝜅𝑗 =
𝜙(𝑡𝑗 + 0) − 𝜙(𝑡𝑗 − 0)

𝜋
, 𝑗 = ±1,±2, · · · ,

hence, we have 0 6 𝜅𝑘 < 1, 0 6 𝜅−𝑘 < 1, 𝑘 = 1,∞.
We suppose that the discontinuity points satisfy the conditions

∞∑︁
𝑘=1

1

𝑡𝑘
< ∞,

∞∑︁
𝑘=1

1

−𝑡−𝑘

< ∞. (3)

We consider the infinite products

𝑃+(𝑧) =
∞∏︁
𝑘=1

(︂
1 − 𝑧

𝑡𝑘

)︂𝜅𝑘

, 𝑃−(𝑧) =
∞∏︁
𝑘=1

(︂
1 − 𝑧

𝑡−𝑘

)︂𝜅−𝑘

, (4)

where by arg(1− 𝑧/𝑡𝑗) we mean the single-valued branch vanishing as 𝑧 = 0 and continuous in
the 𝑧-plane cut along a part of the real axis connecting the points 𝑡 = 𝑡𝑗, 𝑡 = +∞ as 𝑗 > 0 and
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the points 𝑡 = −∞, 𝑡 = 𝑡𝑗 as 𝑗 < 0. Thus, for the upper sides of the cuts we have

arg𝑃+(𝑡) = −
𝑘∑︁

𝑗=1

𝜅𝑗𝜋, 𝑡𝑘 < 𝑡 < 𝑡𝑘+1,

arg𝑃−(𝑡) =
𝑘∑︁

𝑗=1

𝜅−𝑗𝜋, 𝑡−𝑘−1 < 𝑡 < 𝑡−𝑘,

𝑘 = 1,∞, (5)

arg𝑃+(𝑡) = 0, 𝑡 < 𝑡1, arg𝑃−(𝑡) = 0, 𝑡 > 𝑡−1. (6)

We write boundary condition (2) as

Re [𝑒−𝑖𝜙1(𝑡)𝐹 (𝑡)𝑃+(𝑡)𝑃−(𝑡)] = 0, (7)

where

𝜙1(𝑡) = 𝜙(𝑡) + arg𝑃+(𝑡) + arg𝑃−(𝑡), (8)

the functions arg𝑃+(𝑡), arg𝑃−(𝑡) are determined by the formulae (5), (6).
Introducing a new unknown function 𝐹1(𝑧) = 𝐹 (𝑧)𝑃+(𝑧)𝑃−(𝑧), we write condition (7) as

Re [𝑒−𝑖𝜙1(𝑡)𝐹1(𝑡)] = 0,

and due to formulae (8), (5), the function 𝜙1(𝑡) is continuous at all finite points of 𝐿. Thus, we
have arrived to the Hilbert boundary value problem for the function 𝐹1(𝑧). We shall assume
that the function 𝜙1(𝑡) satisfies the condition

𝜙1(𝑡) =

⎧⎨⎩ 𝜈−𝑡𝜌 + 𝜈(𝑡), 𝑡 > 0,

𝜈+|𝑡|𝜌 + 𝜈(𝑡), 𝑡 < 0,
(9)

(𝜈−)2 + (𝜈+)2 ̸= 0, where 𝜈−, 𝜈+, 𝜌 are constants, 0 < 𝜌 < 1/2, 𝜈(𝑡) is a function continuous
on 𝐿 including the point at infinity and satisfying the Hölder condition with the exponent 𝜇,
0 < 𝜇 6 1 on 𝐿 including the point at infinity ([1, pp. 18, 67]) that is the condition 𝐻𝐿(𝜇) (see
[7, p. 113]).

We shall seek a solution 𝐹 (𝑧) of the homogeneous problem in the class of functions such that
the product

𝐹 (𝑧)𝑃+(𝑧)𝑃−(𝑧) = 𝐹1(𝑧)

is a bounded in 𝐷 function. Hence, the problem is reduced to one considered in [5]. Once the
function 𝐹1(𝑧) is found, by formula

𝐹 (𝑧) = 𝐹1(𝑧)/𝑃+(𝑧)𝑃−(𝑧)

we determine the solution to the homogeneous boundary value problem associated with problem
(2). At a point 𝑡𝑗, this solution, generally speaking, becomes the infinity of order 𝜅𝑗.

Under additional restrictions, we shall study the behavior of this solution to the homogeneous
boundary value problem on the ray 𝑧 = 𝑟𝑒𝑖𝜃, 𝑟 > 0, 𝜃 = const, 0 < 𝜃 < 𝜋, 𝑟 → ∞. As in [9],
(see also [8, p. 112]), we introduce the functions

𝑛*
−(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 6 𝑥 < −𝑡−1,

𝑘−1∑︁
𝑗=1

𝜅−𝑗, −𝑡−𝑘+1 6 𝑥 < −𝑡−𝑘,
𝑛*
+(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 < 𝑥 < 𝑡1,

𝑘−1∑︁
𝑗=1

𝜅𝑗, 𝑡𝑘−1 6 𝑥 < 𝑡𝑘,

and assume the conditions

lim
𝑥→+∞

𝑛*
+(𝑥)

𝑥𝜅+
= ∆+, lim

𝑥→+∞

𝑛*
−(𝑥)

𝑥𝜅−
= ∆−, (10)



ON SOLVABILITY OF HOMOGENEOUS RIEMANN-HILBERT PROBLEM . . . 85

with positive constants ∆+, ∆− and 0 < 𝜅− < 1/2, 0 < 𝜅+ < 1/2. In [9], [8, p. 112], the
structure formulae

ln𝑃+(𝑧) =
𝜋∆+𝑒

−𝑖𝜅+𝜋

sin 𝜋𝜅+

𝑧𝜅+ + 𝐼+(𝑧), 𝐼+(𝑧) = −𝑧

+∞∫︁
0

𝑛*
+(𝜏) − ∆+𝜏

𝜅+

𝜏(𝜏 − 𝑧)
𝑑𝜏 (11)

were obtained for 0 < arg 𝑧 < 2𝜋 and

ln𝑃−(𝑧) =
𝜋∆−

sin𝜋𝜅−
𝑧𝜅− + 𝐼−(𝑧), 𝐼−(𝑧) = 𝑧

+∞∫︁
0

𝑛*
−(𝜏) − ∆−𝜏

𝜅−

𝜏(𝜏 + 𝑧)
𝑑𝜏 (12)

if −𝜋 < arg 𝑧 < 𝜋. Expressing the limiting values of Cauchy type integrals by the Sokhotski
formulae and extracting the real parts from (11), (12), we obtain the identities

ln |𝑃+(𝑡)| =
𝜋∆+ cos(𝜅+𝜋)

sin(𝜅+𝜋)
𝑡𝜅

+

+ 𝐼+(𝑡), 𝑡 > 0,

𝐼+(𝑡) = −
+∞∫︁
0

𝑛*
+(𝜏) − ∆+𝜏

𝜅+

𝜏(𝜏 − 𝑡)
𝑑𝜏, 𝑡 > 0, 𝑡 ̸= 𝑡𝑘, 𝑘 = 1,∞,

(13)

ln |𝑃−(−𝑡)| =
𝜋∆− cos(𝜅−𝜋)

sin(𝜅−𝜋)
𝑡𝜅

−
+ 𝐼−(−𝑡),

𝐼−(−𝑡) = −
+∞∫︁
0

𝑛*
−(𝜏) − ∆−𝜏

𝜅−

𝜏(𝜏 − 𝑡)
𝑑𝜏, 𝑡 > 0, 𝑡 ̸= −𝑡−𝑘, 𝑘 = 1,∞.

(14)

It follows from formulae (4), (13), (14) that the function | exp{𝐼+(𝑧)}| (| exp{𝐼−(𝑧)}|) has a
zero of order 𝜅𝑘 (of order 𝜅−𝑘) at the point 𝑡𝑘 (𝑡−𝑘), 𝑘 = 1,∞.

Lemma 1. Suppose (10) and let 𝛿 be a given small positive number and 𝑧 = 𝑟𝑒𝑖𝜃. Then the
asymptotic estimates

𝐼+(𝑟𝑒𝑖𝜃) = o(r𝜅+), r → +∞, 𝛿 < 𝜃 < 2𝜋 − 𝛿,

𝐼−(𝑟𝑒𝑖𝜃) = o(r𝜅−), r → +∞, −𝜋 + 𝛿 < 𝜃 < 𝜋 + 𝛿

hold true.

Proof. Let 𝛿 be a sufficiently small positive number, then for each 𝜃, 𝛿 < 𝜃 < 2𝜋 − 𝛿 the
inequality |𝜏 − 𝑧| > (𝜏 + 𝑟) sin(𝛿/2) is obvious. Given an arbitrary small positive number 𝜀 and
𝜏 > 𝑟1(𝜀), by (10) we have 𝑛*

+(𝜏) − ∆+𝜏
𝜅+ < 𝜀𝜏𝜅+ and thus

|𝐼+(𝑟𝑒𝑖𝜃)| < 𝑟𝜅+

sin(𝛿/2)

⎛⎝𝑟1−𝜅+

𝑟1(𝜀)∫︁
𝑡1

𝑛*
+(𝜏)

𝜏(𝜏 + 𝑟)
𝑑𝜏+

+∆+𝑟
1−𝜅+

𝑟1(𝜀)∫︁
0

𝑑𝜏

𝜏 1−𝜅+(𝜏 + 𝑟)
+ 𝜀𝑟1−𝜅+

∞∫︁
𝑟1(𝜀)

𝑑𝜏

𝜏 1−𝜅+(𝜏 + 𝑟)

⎞⎟⎠ ,

for 𝑧 = 𝑟𝑒𝑖𝜃, 𝛿 < 𝜃 < 2𝜋 − 𝛿. For a given 𝜀, the first two integrals are of order O(1
𝑟
), while for

the latter we have

𝑟1−𝜅+

∞∫︁
𝑟1(𝜀)

1

𝜏 1−𝜅+(𝜏 + 𝑟)
𝑑𝜏 < 𝑟1−𝜅+

∞∫︁
0

1

𝜏 1−𝜅+(𝜏 + 𝑟)
𝑑𝜏 =

𝜋

sin(𝜋𝜅+)
.
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Hence (cf. [10, p. 178], [8, p. 115]),

𝐼+(𝑟𝑒𝑖𝜃) = o(r𝜅+), r → +∞, 𝛿 < 𝜃 < 2𝜋 − 𝛿.

The estimate for 𝐼−(𝑟𝑒𝑖𝜃) is not more complicated.

It follows from Lemma 1 and the restrictions 𝜅+ < 1/2, 𝜅− < 1/2 that as 𝛿 < 𝜃 < 𝜋− 𝛿, the
solution 𝐹 (𝑟𝑒𝑖𝜃) to homogeneous problem (7) satisfies the condition 𝐹 (𝑟𝑒𝑖𝜃) → 0, 𝑟 → ∞.

As in [5], we introduce the function

𝑃 (𝑧) + 𝑖𝑄(𝑧) = 𝑙𝑒𝑖𝛼𝑟𝜌𝑒𝑖𝜃𝜌, (15)

where 𝑙, 𝛼 are real constants, 𝑟 = |𝑧|, 𝜃 = arg 𝑧 is a single-valued continuous in 𝐷 branch of
arg 𝑧 satisfying the relation 0 6 𝜃 6 𝜋. This function is analytic in the domain 𝐷, and on the
boundary 𝐿, it reads as

𝑃 (𝑡) + 𝑖𝑄(𝑡) = 𝑙|𝑡|𝜌[cos(𝛼 + 𝜃𝜌) + 𝑖 sin(𝛼 + 𝜃𝜌)],

where 𝜃 = 0 as 𝑡 > 0 and 𝜃 = 𝜋 as 𝑡 < 0.
We choose the numbers 𝑙, 𝑙 > 0, 𝛼, 0 6 𝛼 < 2𝜋 so that

𝑙 cos𝛼 = 𝜈−, 𝑙 cos(𝛼 + 𝜋𝜌) = 𝜈+,

i.e., in order to get

𝑙 cos𝛼 = 𝜈−, 𝑙 sin𝛼 =
𝜈− cos(𝜋𝜌) − 𝜈+

sin(𝜋𝜌)
.

We observe that at the same time

𝑙 sin(𝛼 + 𝜋𝜌) =
𝜈− − 𝜈+ cos(𝜋𝜌)

sin(𝜋𝜌)
, 𝑙 =

[(𝜈−)2 + (𝜈+)2 − 2𝜈−𝜈+ cos(𝜋𝜌)]1/2

sin(𝜋𝜌)
,

𝑃 (𝑡) =

⎧⎨⎩ 𝜈−𝑡𝜌, 𝑡 > 0,

𝜈+|𝑡|𝜌, 𝑡 < 0,

𝑄(𝑡) =

⎧⎨⎩ (𝜈− cos(𝜋𝜌) − 𝜈+)𝑡𝜌/sin(𝜋𝜌), 𝑡 > 0,

(𝜈− − 𝜈+ cos(𝜋𝜌))|𝑡|𝜌/sin(𝜋𝜌), 𝑡 < 0,
(16)

and

𝑄(𝑟𝑒𝑖𝜃) = 𝑟𝜌
𝜈− cos(𝜌(𝜋 − 𝜃)) − 𝜈+ cos(𝜌𝜃)

sin(𝜋𝜌)
.

Then by the formula

Γ(𝑧) =
1

𝜋

+∞∫︁
−∞

𝜈(𝑡)
𝑑𝑡

𝑡− 𝑧

we define an analytic bounded in 𝐷 function such that on the boundary its imaginary part
satisfies the identity 𝜙1(𝑡) − 𝑃 (𝑡) = 𝜈(𝑡).

On the contour 𝐿 this function takes the values Γ+(𝑡) = Γ(𝑡) + 𝑖𝜈(𝑡), where

Γ(𝑡) =
1

𝜋

+∞∫︁
−∞

𝜈(𝑡1)
𝑑𝑡1

𝑡1 − 𝑡
.

We write boundary condition (7) as

Im
{︁
𝑖𝑒−Γ+(𝑡)𝑒−𝑖𝑃 (𝑡)+𝑄(𝑡)𝐹 (𝑡)𝑃+(𝑡)𝑃−(𝑡)

}︁
= 0, (17)

transforming, under additional restrictions (3), (9), (10), the boundary conditions of the ho-
mogeneous problem to the form of problem (17).
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In the brackets in formula (17), there is a boundary value of the analytic in 𝐷 function

Φ(𝑧) = 𝑖𝑒−Γ+(𝑧)𝑒−𝑖𝑃 (𝑧)+𝑄(𝑧)𝐹 (𝑧)𝑃+(𝑧)𝑃−(𝑧), (18)

which in view of (12) can be written as follows,

Φ(𝑧) = 𝑖𝑒−Γ+(𝑧) exp{𝑄(𝑧) − 𝑖𝑃 (𝑧)}𝐹 (𝑧)𝑒𝐼+(𝑧)𝑒+𝐼−(𝑧)×

× exp

{︂
𝜋∆+𝑒

−𝑖𝜅+𝜋

sin 𝜋𝜅+

𝑧𝜅+

}︂
exp

{︂
𝜋∆−

sin 𝜋𝜅−
𝑧𝜅−

}︂
.

(19)

According to (17), for the boundary values of the function Φ(𝑧) we have

Im Φ+(𝑡) = 0 (20)

everywhere on 𝐿. It means that the function Φ(𝑧) can be analytically continued in the half-plane
Im 𝑧 < 0 and for each point 𝑧 in this half-plane

Φ(𝑧) = Φ(𝑧), Im 𝑧 < 0. (21)

Let �̃� be the class of solutions 𝐹 (𝑧) to homogeneous problem (17), for which the product
|𝐹 (𝑧)||𝑧 − 𝑡𝑗|𝜅𝑗 is bounded in a vicinity of the point 𝑡𝑗 for each 𝑗 = ±1,±2, . . .

For such solutions, we have to regard the condition Im Φ+(𝑡) = 0 as satisfied also at the
points 𝑡𝑘, 𝑡−𝑘, 𝑘 = 1,+∞. Indeed, continuing the function Φ(𝑧) into the half-plane Im 𝑧 < 0
through the segments 𝑡𝑘−1𝑡𝑘 and 𝑡𝑘𝑡𝑘+1 as it was described above, we obtain the same function
due to (21). For the class �̃� of solutions Φ(𝑧) to problem (17), the quantity |Φ(𝑧)| is bounded
in a vicinity of 𝑡𝑘 and this is why the point 𝑡𝑘 is a removable singularity of the function Φ(𝑧)
obtained by the analytic continuation. Therefore, we can assume Im Φ+(𝑡𝑘) = 0. Thus, as a
result of the aforementioned analytic continuation, we obtain the entire function Φ(𝑧).

The above arguments lead us to Theorem 1.

Theorem 1. Homogeneous boundary value problem (17) has a solution 𝐹 (𝑧) in the class �̃�
if and only if this function satisfies formula (18), where Φ(𝑧) is an arbitrary entire function
with real values on 𝐿.

In what follows we shall seek a solution to homogeneous problem (17) in the class 𝐵* of the
functions 𝐹 (𝑧) for which the product |𝐹 (𝑧)|𝑒Re 𝐼+(𝑧)𝑒Re 𝐼−(𝑧) is a bounded analytic in 𝐷 function.
It is clear that 𝐵* ⊂ �̃�.

In view of the symmetry of formula (18) for the aforementioned entire function Φ(𝑧) (as (20),
(21) hold true),

𝑀(𝑟) := max
06𝜃62𝜋

|Φ(𝑟𝑒𝑖𝜃)| = max
06𝜃6𝜋

|Φ(𝑟𝑒𝑖𝜃)|. (22)

According to (19),

|Φ(𝑟𝑒𝑖𝜃)| = exp{𝑄(𝑟𝑒𝑖𝜃) − Re Γ(𝑟𝑒𝑖𝜃) + Re 𝐼+(𝑟𝑒𝑖𝜃) + Re 𝐼−(𝑟𝑒𝑖𝜃)}|𝐹 (𝑟𝑒𝑖𝜃)|×

× exp

{︂
𝜋∆+𝑟

𝜅+

sin(𝜋𝜅+)
cos(𝜅+(𝜃 − 𝜋)) +

𝜋∆−𝑟
𝜅−

sin(𝜋𝜅−)
cos(𝜅−𝜃)

}︂
, 0 6 𝜃 6 𝜋.

(23)

Since Re Γ(𝑧), |𝐹 (𝑧)|𝑒Re (𝐼+(𝑧)+𝐼−(𝑧)) are bounded in 𝐷 functions, we have

max
06𝜃6𝜋

{︀
exp{−Re Γ(𝑟𝑒𝑖𝜃)}|𝐹 (𝑟𝑒𝑖𝜃)| exp{Re (𝐼+(𝑟𝑒𝑖𝜃) + 𝐼−(𝑟𝑒𝑖𝜃))}

}︀
6 𝐶, (24)

𝐶 = const > 0, and moreover, in accordance with (15) 𝑄(𝑟𝑒𝑖𝜃) 6 𝑙𝑟𝜌. Hence, by (22), (23) we
get

𝑀(𝑟) 6 𝐶 exp

{︂
𝑙𝑟𝜌 +

𝜋∆+

sin(𝜋𝜅+)
𝑟𝜅+ +

𝜋∆−

sin(𝜋𝜅−)
𝑟𝜅−

}︂
,

ln𝑀(𝑟) 6 ln𝐶 + 𝑙𝑟𝜌 +
𝜋∆+

sin(𝜋𝜅+)
𝑟𝜅+ +

𝜋∆−

sin(𝜋𝜅−)
𝑟𝜅− . (25)
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We shall distinguish the cases 𝜌 > max{𝜅+, 𝜅−}, 𝜌 = max{𝜅+, 𝜅−}, and 𝜌 < max{𝜅+, 𝜅−}.
Let 𝜌 > max{𝜅+, 𝜅−}. Then by formula (25) we obtain

ln ln𝑀(𝑟) 6 𝜌 ln 𝑟 + ln

[︂
𝑙 +

ln𝐶

𝑟𝜌
+

𝜋∆+

𝑟𝜌−𝜅+ sin(𝜋𝜅+)
+

𝜋∆−

𝑟𝜌−𝜅− sin(𝜋𝜅−)

]︂
,

lim
𝑟→∞

ln ln𝑀(𝑟)

ln 𝑟
6

lim
𝑟→∞

{︂
𝜌 +

1

ln 𝑟
ln

[︂
𝑙 +

ln𝐶

𝑟𝜌
+

𝜋∆+

𝑟𝜌−𝜅+ sin(𝜋𝜅+)
+

𝜋∆−

𝑟𝜌−𝜅− sin(𝜋𝜅−)

]︂}︂
= 𝜌.

Therefore, the order 𝜌Φ = lim
𝑟→∞

[ln ln𝑀(𝑟)/ ln 𝑟] of the entire function Φ(𝑧) determined by

formulae (18), (20), (21) does not exceed 𝜌.

Theorem 2. Boundary value problem (17) has a solution 𝐹 (𝑧) in the class 𝐵* as 𝜌 >
max{𝜅+, 𝜅−} if and only if the function 𝐹 (𝑧) satisfies formula (18), where Φ(𝑧) is an arbitrary
entire function of order 𝜌Φ 6 𝜌 satisfying condition (20) and, on the contour 𝐿 for all sufficiently
large 𝑡, the inequalities

|Φ(𝑡)| 6 𝐶 exp

{︂
𝜈− cos(𝜋𝜌) − 𝜈+

sin(𝜋𝜌)
𝑡𝜌 +

𝜋∆+ cos(𝜅+𝜋)

sin(𝜋𝜅+)
𝑡𝜅+ +

𝜋∆−

sin(𝜋𝜅−)
𝑡𝜅−

}︂
(26)

if 𝑡 > 0 and

|Φ(𝑡)| 6 𝐶 exp

{︂
𝜈− − 𝜈+ cos(𝜋𝜌)

sin(𝜋𝜌)
|𝑡|𝜌 +

𝜋∆+|𝑡|𝜅+

sin(𝜋𝜅+)
+

𝜋∆− cos(𝜅−𝜋)

sin(𝜋𝜅−)
|𝑡|𝜅−

}︂
(27)

if 𝑡 < 0. Here 𝐶 = const > 0.

Proof. The necessity. Suppose 𝐹 (𝑧) is a solution to boundary value problem (17) in the class
𝐵*. As it was shown above, then relations (18), (20) hold true, where Φ(𝑧) with condition (21)
is an entire function of order 𝜌Φ 6 𝜌. Letting 𝜃 = 0 in (23) and then 𝜃 = 𝜋, in view of (24) we
obtain respectively inequalities (26), (27).

The sufficiency. Suppose a function 𝐹 (𝑧) satisfies formula (18) and Φ(𝑧) is an entire function
of order 𝜌Φ 6 𝜌 obeying condition (20) and inequalities (26), (27); then the function 𝐹 (𝑧)
determined by formula (18) solves problem (17). In view of the latter inequalities and formulae
(23), (16) for the analytic in 𝐷 function 𝐹 (𝑧)𝑒𝐼+(𝑧)+𝐼−(𝑧) as 𝑡 is large enough, and in view of
the fact that Re Γ(𝑧) is a bounded in 𝐷 function, i.e.,

|Re Γ(𝑟𝑒𝑖𝜃)| 6 𝑞, 𝑞 = const, 𝑟 > 0, 0 6 𝜃 6 𝜋, (28)

we get

|𝐹 (𝑡)𝑒𝐼+(𝑡)+𝐼−(𝑡)| 6 𝐶𝑒𝑞, as 𝑡 > 0 and 𝑡 < 0.

Therefore, the inequality

|𝐹 (𝑡)𝑒𝐼+(𝑡)+𝐼−(𝑡)| 6 𝐶, 𝐶 = const > 0

holds true everywhere in 𝐿.
Due to (23) and (15), we have

|𝐹 (𝑟𝑒𝑖𝜃) exp{𝐼+(𝑟𝑒𝑖𝜃) + 𝐼−(𝑟𝑒𝑖𝜃)}| = |Φ(𝑟𝑒𝑖𝜃)| exp
{︀
−𝑙𝑟𝜌 sin(𝛼 + 𝜌𝜃) + Re Γ(𝑟𝑒𝑖𝜃)

}︀
×

× exp

{︂
− 𝜋∆+𝑟

𝜅+

sin(𝜋𝜅+)
cos(𝜅+(𝜃 − 𝜋)) − 𝜋∆−𝑟

𝜅−

sin(𝜋𝜅−)
cos(𝜅−𝜃)

}︂
, 0 6 𝜃 6 𝜋.

By (22) and (28) it implies

max
06𝜃6𝜋

|𝐹 (𝑟𝑒𝑖𝜃) exp{𝐼+(𝑟𝑒𝑖𝜃) + 𝐼−(𝑟𝑒𝑖𝜃)}| 6 𝑀(𝑟)𝑒𝑙𝑟
𝜌+𝑞 exp

{︂
𝜋∆+𝑟

𝜅+

sin(𝜋𝜅+)
+

𝜋∆−𝑟
𝜅−

sin(𝜋𝜅−)

}︂
.
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Since for each 𝜀 > 0 the inequality

𝑀(𝑟) < exp{𝑟𝜌Φ+𝜀}

holds true for all 𝑟 > 𝑟𝜀, choosing the numbers 𝜀, 𝜌1 so that 𝜌 < 𝜌1 < 1, 𝜌Φ + 𝜀 < 𝜌1, by the
former relation we get

max
06𝜃6𝜋

|𝐹 (𝑟𝑒𝑖𝜃) exp{𝐼+(𝑟𝑒𝑖𝜃) + 𝐼−(𝑟𝑒𝑖𝜃)}| < exp{𝑟𝜌1}

for all sufficiently large 𝑟 obeying

𝑟 > 𝑟𝜀,
𝑟𝜌Φ+𝜀

𝑟𝜌1
+

𝑙𝑟𝜌

𝑟𝜌1
+

𝑞

𝑟𝜌1
+

𝜋∆+𝑟
𝜅+

𝑟𝜌1 sin(𝜋𝜅+)
+

𝜋∆−𝑟
𝜅−

𝑟𝜌1 sin(𝜋𝜅−)
< 1.

Therefore, the order of the function 𝐹 (𝑧)𝑒𝐼+(𝑧)+𝐼−(𝑧) inside the angle 0 6 𝜃 6 𝜋 does not exceed
𝜌1 (see, for instance, [11, p. 69]). Thus, according to the Phragmén-Lindelöf principle, we have
|𝐹 (𝑧)𝑒𝐼+(𝑧)+𝐼−(𝑧)| < 𝐶 everywhere in 𝐷, i.e., 𝐹 (𝑧) belongs to the class 𝐵*.

Theorem 3. The general solution in the class 𝐵* to boundary value problem (17) as 𝜌 >
max{𝜅+, 𝜅−} is given by the formula

𝐹 (𝑧) = −𝑖𝑒Γ(𝑧)𝑒𝑖[𝑃 (𝑧)+𝑖𝑄(𝑧)]Φ(𝑧)[𝑃+(𝑧)𝑃−(𝑧)]−1 (29)

or

𝐹 (𝑧) = −𝑖𝑒−𝐼+(𝑧)−𝐼−(𝑧)𝑒Γ(𝑧)𝑒𝑖[𝑃 (𝑧)+𝑖𝑄(𝑧)]Φ(𝑧) exp

{︂
−𝜋∆+𝑒

−𝑖𝜋𝜅+𝑧𝜅+

sin(𝜋𝜅+)
+

𝜋∆−𝑧
𝜅−

sin(𝜋𝜅−)

}︂
,

where Φ(𝑧) is an arbitrary entire function of order 𝜌Φ 6 𝜌 satisfying condition (20) and in-
equalities (26), (27) for sufficiently large |𝑡|.

Proof. Indeed, the function 𝐹 (𝑧) determined by formula (29) satisfies relation (18) that implies
the statement of the theorem.

3. Solvability of homogeneous Hilbert problem

In this section we give the complete description for the solvability of the homogeneous Hilbert
problem in the class 𝐵*.

Theorem 4. Let 𝜌 > max{𝜅+, 𝜅−}, 𝜌 < 1/2.
a) If

𝜈− cos(𝜋𝜌) − 𝜈+ < 0 or 𝜈− − 𝜈+ cos(𝜋𝜌) < 0,

homogeneous boundary value problem (17) has no nontrivial solutions in the class 𝐵*.
b) If {︃

𝜈− cos(𝜋𝜌) − 𝜈+ = 0,

𝜈− − 𝜈+ cos(𝜋𝜌) > 0
or

{︃
𝜈− cos(𝜋𝜌) − 𝜈+ > 0,

𝜈− − 𝜈+ cos(𝜋𝜌) = 0,
(30)

homogeneous boundary value problem (17) has the solution in the class 𝐵* determined by for-
mula (29) where Φ(𝑧) is arbitrary function of order 𝜌Φ, 𝜌Φ 6 𝜌 satisfying condition (20) and
the inequality

|Φ(𝑡)| 6

⎧⎪⎪⎨⎪⎪⎩
𝐶 exp

{︂
𝜋∆+ cos(𝜅+𝜋)

sin(𝜋𝜅+)
𝑡𝜅+ +

𝜋∆−

sin(𝜋𝜅−)
𝑡𝜅−

}︂
, 𝑡 > 0,

𝐶 exp

{︂
𝜈− − 𝜈+ cos(𝜋𝜌)

sin(𝜋𝜌)
|𝑡|𝜌 +

𝜋∆+|𝑡|𝜅+

sin(𝜋𝜅+)
+

𝜋∆− cos(𝜅−𝜋)

sin(𝜋𝜅−)
|𝑡|𝜅−

}︂
, 𝑡 < 0,

(31)
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or, respectively,

|Φ(𝑡)| 6

⎧⎪⎪⎨⎪⎪⎩
𝐶 exp

{︂
𝜈− cos(𝜋𝜌) − 𝜈+

sin(𝜋𝜌)
𝑡𝜌 +

𝜋∆+ cos(𝜅+𝜋)

sin(𝜋𝜅+)
𝑡𝜅+ +

𝜋∆−𝑡
𝜅−

sin(𝜋𝜅−)

}︂
, 𝑡 > 0,

𝐶 exp

{︂
𝜋∆+

sin(𝜋𝜅+)
|𝑡|𝜅+ +

𝜋∆− cos(𝜅−𝜋)

sin(𝜋𝜅−)
|𝑡|𝜅−

}︂
, 𝑡 < 0,

for sufficiently large |𝑡|.
c) If {︃

𝜈− cos(𝜋𝜌) − 𝜈+ > 0,

𝜈− − 𝜈+ cos(𝜋𝜌) > 0,

homogeneous boundary value problem (17) has the solution in the class 𝐵* determined by for-
mula (29) where Φ(𝑧) is arbitrary function of order 𝜌Φ, 𝜌Φ 6 𝜌 satisfying condition (20) and
also inequalities (26), (27) as 𝜌Φ = 𝜌.

Proof. a) Let 𝜌 < 1/2 and the inequality

𝜈− cos(𝜋𝜌) − 𝜈+ < 0

holds true. Then by (26), lim𝑡→+∞ |Φ(𝑡)| = 0, and due to the Phragmén-Lindelöf principle
applied for the plane cut along the positive semi-axis we obtain Φ(𝑧) ≡ 0. It is clear that we
get the same in the case 𝜌 < 1/2 and 𝜈− − 𝜈+ cos(𝜋𝜌) < 0.

b) Suppose the first condition in (30). For the definiteness we assume 𝜅+ > 𝜅−. According
to Theorem 3 and by (20), the entire function Φ(𝑧) involved in formula (29) for the general
solution should be real on the real axis, should satisfy conditions (26), (27) which by the identity
𝜈− cos(𝜋𝜌) − 𝜈+ = 0 become inequality (31), and should have the order 𝜌Φ 6 𝜌 < 1/2. The
existence of such entire functions follows from the constructions made in all the details in [5],
see also [8, p. 100]. Namely, we take the entire function

Φ0(𝑧) =
∞∏︁
𝑘=1

(︂
1 − 𝑧

𝑟𝑘𝑒𝑖𝜃0

)︂(︂
1 − 𝑧

𝑟𝑘𝑒−𝑖𝜃0

)︂
, (32)

where 0 6 𝜃0 6 𝜋, 𝑟𝑘 is a increasing sequence of numbers that we define later. Here arg(1 −
𝑧/𝑟𝑘𝑒

𝑖𝜃0) indicates the branch being continuous and single-valued in the plane cut along the
ray 𝑧 = 𝑟𝑒𝑖𝜃0 , 𝑟 > 𝑟𝑘 and vanishing as 𝑧 = 0; arg(1 − 𝑧/𝑟𝑘𝑒

−𝑖𝜃0) indicates the branch being
continuous and single-valued in the plane cut along the ray 𝑧 = 𝑟𝑒𝑖𝜃0 , 𝑟 > 𝑟𝑘 and vanishing as
𝑧 = 0.

We suppose that the order of the function Φ0(𝑧) is equal to 𝜅0 (i.e., the exponent of the
convergence for the sequence of its zeroes is equal to 𝜅0, see [12, p. 278]). We assume in
addition that for the number of zeroes 𝑛(𝑟) of this entire function lying in a closed disk |𝑧| 6 𝑟,
there exists the limit

lim
𝑟→∞

𝑛(𝑟)

𝑟𝜅0
= ∆0, 0 < ∆0 < ∞. (33)

Under the above assumptions for the sequence of zeroes of entire function (32), in [5], the
formula

ln Φ0(𝑧) = −𝑧𝑒−𝑖𝜃0

∞∫︁
0

𝑛(𝜏) − 𝜏𝜅0∆0

𝜏(𝜏 − 𝑧𝑒−𝑖𝜃0)
𝑑𝜏 − 𝑧𝑒𝑖𝜃0

∞∫︁
0

𝑛(𝜏) − 𝜏𝜅0∆0

𝜏(𝜏 − 𝑧𝑒𝑖𝜃0)
𝑑𝜏+

+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆0𝜋(𝑟𝑒𝑖𝜃)𝜅02 cos((𝜃0 − 𝜋)𝜅0)/ sin(𝜋𝜅0), 0 6 𝜃 < 𝜃0,

∆0𝜋𝑒
−𝑖𝜅0𝜋(𝑟𝑒𝑖𝜃)𝜅02 cos(𝜃0𝜅0)/ sin(𝜋𝜅0), 𝜃0 6 𝜃 < 2𝜋 − 𝜃0,

∆0𝜋𝑒
−2𝑖𝜅0𝜋(𝑟𝑒𝑖𝜃)𝜅02 cos((𝜃0 − 𝜋)𝜅0)/ sin(𝜋𝜅0), 2𝜋 − 𝜃0 6 𝜃 6 2𝜋.

(34)
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is proven for the function ln Φ0(𝑧), 𝑧 = 𝑟𝑒𝑖𝜃, 0 6 𝜃 6 2𝜋.
If we choose the sequence of the zeroes 𝑧𝑘 = 𝑟𝑘𝑒

𝑖𝜃0 of the function Φ0(𝑧) so that

𝑟𝑘 =

(︂
2𝑘 − 1

2∆0

)︂1/𝜅0

, 𝑛(𝑥) =

⎧⎨⎩ 𝑘, 𝑟𝑘 6 𝑥 < 𝑟(𝑘+1),

0, 0 6 𝑥 < 𝑟0,

both integrals in the right hand side of formula (34) are of order 𝑜(𝑟𝜅0) as 𝑟 → +∞, 0 6 𝜃 6 𝜋
(see [5]). On the real axis, the function ln Φ0(𝑧) takes real values

ln Φ0(𝑡) = 2𝐼0(𝑡, 𝜃0) +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆0𝜋2 cos

(︁
(𝜃0 − 𝜋)𝜅0

)︁
sin(𝜋𝜅0)

𝑡𝜅0 , 𝑡 > 0,

∆0𝜋2 cos(𝜃0𝜅0)

sin(𝜋𝜅0)
|𝑡|𝜅0 , 𝑡 < 0,

where

𝐼0(𝑡, 𝜃0) =

∞∫︁
0

(𝑛(𝑥) − 𝑥𝜅0∆0)
𝑡2 − 𝑡𝑥 cos(𝜃0)

𝑥(𝑡2 − 2𝑡𝑥 cos(𝜃0) + 𝑥2)
𝑑𝑥.

Thus, condition (31) for the entire function Φ0(𝑧) is satisfied for each ∆0, 𝜃0 if we take 𝜅0 < 𝜅+,
while in the case 𝜅0 = 𝜅+ the numbers ∆0 > 0, 𝜃0 ∈ (0, 𝜋) should be chosen so that the
inequality

∆02 cos
(︁

(𝜃0 − 𝜋)𝜅0

)︁
6 ∆+ cos(𝜋𝜅+)

holds true.
c) One can construct entire functions of order 𝜌Φ 6 𝜌 satisfying condition (20) and inequalities

(26), (27) in the same way as in Item b) resigning the condition 𝜅0 6 𝜅+ and choosing 𝜅0 6 𝜌.
If we take 𝜅0 < 𝜌, then ∆0, 𝜃0 in formulae (32), (33), (34) are arbitrary, and if 𝜅0 = 𝜌, then
∆0, 𝜃0 should satisfy the system of inequalities⎧⎨⎩ ∆02 cos

(︁
(𝜃0 − 𝜋)𝜅0

)︁
6 𝜈− cos(𝜋𝜌) − 𝜈+,

∆02 cos(𝜃0𝜅0) 6 𝜈− − 𝜈+ cos(𝜋𝜌).

Here the identities hold true if we take

tan(𝜃0𝜅0) =
𝜈− cos(𝜋𝜌) − 𝜈+

(𝜈− − 𝜈+ cos(𝜋𝜌)) sin(𝜋𝜅0)
− cot(𝜋𝜅0), ∆0 =

𝜈− cos(𝜋𝜌) − 𝜈+

2 cos(𝜃0𝜅0)
.

Therefore, the system is compatible.

Theorem 5. Suppose 𝜅+ = 𝜅− = 𝜌 < 1/2. Then homogeneous boundary value problem (17)
a) has no nontrivial solutions in the class 𝐵* if

(𝜈− + 𝜋∆+) cos(𝜋𝜌) − (𝜈+ − 𝜋∆−) < 0, or 𝜈− + 𝜋∆+ − (𝜈+ − 𝜋∆−) cos(𝜋𝜌) < 0;

b) has the solution 𝐹 (𝑧) = 𝐴𝑒Γ(𝑧)𝑒𝑖[𝑃 (𝑧)+𝑖𝑄(𝑧)]/𝑃+(𝑧)𝑃−(𝑧) in the class 𝐵*, where 𝐴 is an
arbitrary real constant, if{︃

(𝜈− + 𝜋∆+) cos(𝜋𝜌) = 𝜈+ − 𝜋∆−,

𝜈− + 𝜋∆+ > (𝜈+ − 𝜋∆−) cos(𝜋𝜌),
or

{︃
(𝜈− + 𝜋∆+) cos(𝜋𝜌) > 𝜈+ − 𝜋∆−,

𝜈− + 𝜋∆+ = (𝜈+ − 𝜋∆−) cos(𝜋𝜌);

c) has the solutions in the class 𝐵* determined by the formula (29), where Φ(𝑧) is arbitrary
entire function of order 𝜌Φ 6 𝜌 satisfying condition (20) and also inequalities (26), (27) as
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𝜌Φ = 𝜌 for sufficiently large |𝑡|, if{︃
(𝜈− + 𝜋∆+) cos(𝜋𝜌) − (𝜈+ − 𝜋∆−) > 0,

𝜈− + 𝜋∆+ − (𝜈+ − 𝜋∆−) cos(𝜋𝜌) > 0.

Proof. Let us prove Case b). Suppose the conditions{︃
(𝜈− + 𝜋∆+) cos(𝜋𝜌) − (𝜈+ − 𝜋∆−) = 0,

𝜈− + 𝜋∆+ − (𝜈+ − 𝜋∆−) cos(𝜋𝜌) > 0

hold true. According to Theorem 3, the general solution of problem (17) is determined by the
formula (29) involving an arbitrary entire function Φ(𝑧) of order 𝜌Φ 6 𝜌 obeying condition (20)
and inequalities (26), (27). Under the assumptions of Theorem 5, the latter casts into the form

|Φ(𝑡)| 6 𝐶 exp

{︂
(𝜈− + 𝜋∆+) cos(𝜋𝜌) + 𝜋∆− − 𝜈+

sin(𝜋𝜌)
𝑡𝜌
}︂
, 𝑡 > 0, (35)

|Φ(𝑡)| 6 𝐶 exp

{︂
𝜈− + 𝜋∆+ − (𝜈+ − 𝜋∆−) cos(𝜋𝜌)

sin(𝜋𝜌)
|𝑡|𝜌

}︂
, 𝑡 < 0,

and by the first assumption in b), inequality (35) becomes |Φ(𝑡)| 6 𝐶 𝑡 > 0. The symmetry
of the function Φ(𝑧) implies that Φ(𝑧) is bounded on the both sides of the cut made along the
positive semi-axis, and since 𝜌Φ < 1/2, the function Φ(𝑧) is bounded on the whole plane, i.e.,
it is constant.

Cases a) and c) can be proven in the same way as in Theorem 4.

Suppose now 𝜌 < max{𝜅+, 𝜅−} < 1/2. As 𝜅+ > 𝜅−, by (25) we have

ln ln𝑀(𝑟) 6 𝜅+ ln 𝑟 + ln

[︂
𝜋∆+

sin(𝜋𝜅+)
+

𝜋∆−

sin(𝜋𝜅−)𝑟𝜅+−𝜅−
+

ln𝐶

𝑟𝜅+
+

𝑙

𝑟𝜅+−𝜌

]︂
,

hence,

𝜌Φ = lim
𝑟→∞

ln ln𝑀(𝑟)

ln 𝑟
6 𝜅+.

Therefore, the order of the entire function Φ(𝑧) determined by the formulae (18), (20), (21)
does not exceed 𝜅+ as 𝜅+ > 𝜅−. In the same way we obtain the inequality 𝜌Φ 6 𝜅− in the case
𝜅− > 𝜅+.

Since the coefficients at 𝑡𝜅+ , 𝑡𝜅− in the right hand side of inequalities (26), (27) are always
strictly positive, as 𝜌Φ < max{𝜅+, 𝜅−}, these inequalities are satisfied immediately. This is why
the next theorem holds true.

Theorem 6. Homogeneous boundary value problem (17) has a solution 𝐹 (𝑧) in the class 𝐵*
as 𝜌 < max{𝜅+, 𝜅−} if and only if formula (18) is satisfied, where Φ(𝑧) is an arbitrary entire
function of order 𝜌Φ 6 max{𝜅+, 𝜅−} satisfying condition (20) and also conditions (26), (27) as
𝜌Φ = max{𝜅+, 𝜅−}.

Theorem 7. As 𝜌 < max{𝜅+, 𝜅−}, the general solution to homogeneous boundary value
problem (17) in the class 𝐵* is determined by formula (29), where Φ(𝑧) is an arbitrary entire
function of order 𝜌Φ 6 max{𝜅+, 𝜅−} taking real values on 𝐿 and also satisfying (26), (27) for
sufficiently large |𝑡| as 𝜌Φ = max{𝜅+, 𝜅−}.

Theorem 8. Suppose 𝜌 < max{𝜅+, 𝜅−} < 1/2. Then homogeneous boundary value problem
(17) has solutions in the class 𝐵* determined by formula (29), where Φ(𝑧) is an arbitrary entire
function of order 𝜌Φ 6 max{𝜅+, 𝜅−} taking real values on 𝐿 and also satisfying inequalities
(26), (27) for sufficiently large |𝑡| as 𝜌Φ = max{𝜅+, 𝜅−}.
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