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SOLVING OF SPECTRAL PROBLEMS
FOR CURL AND STOKES OPERATORS

R.S. SAKS

Abstract. In the work we explicitly solve the spectral problems for curl, gradient-
divergence, and Stokes operators in a ball B of radius R. The eigenfunctions u; of the curl
associated with non-zero eigenvalues 4+, are expressed by explicit formulas, as well as the
vector-functions q, associated with the zero eigenvalue,

rotuf =+, uf, Un(£AR) =0, n- uf]s =0; rotq,=0, n-qulsg=0,

where

d \"si
wn(z):(—z)n< > e k=(mmk), n>0, meN, [k <n

2dz) 2
The same vector-functions are the eigenfunctions for the gradient-divergence operator with
other eigenvalues,
Vdivul =0; Vdivae = s, fix = (@nm/R)?, P (anm) = 0.

The constructed system of vector eigenfunctions is complete and orthogonal in space La(B).

The eigenfunctions (v, ps.) of the Stokes operator in the ball are represented as a sum
of two eigenfunctions of the curl associated with opposite eigenvalues: v, = u! + ug,
Pr = const.

Keywords: curl, gradient-divergence, and Stokes operators, eigenvalues, eigenfunctions,
Fourier series.
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1. INTRODUCTION

1.1. Formulation of problem. Let G be a bounded domain in R? with a piecewise smooth
boundary I', n be the outward normal to I'. In particular, G can be a ball B, |z| < R, with
boundary S.

Problem 1. Find all the eigenvalues A and the eigenfunctions u(x) in Ly(G) for the curl
operator such that
rotu=Xu in G, (1)
n- ulp = 0, (2)
where n - u is the scalar product of the vectors u and n.

As the domain My of the operator R in Problem 1, we choose all the vector-functions v(x)
in the class C2(G) N C(G) satisfying boundary condition (2)) and condition rot v € Ly(G).

The space of test vector-functions D(G) is included into My and is dense in Lo(G) [3].

Thus, the problem is to find the values A for which equation has nonzero solutions u(x)
in the domain Mg, i.e., to determine the pair (A, u) of an eigenvalue A and an eigenfunctions

u # 0.
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1.2. On applications. The eigenfunctions of Problem 1 have application in hydrodynamics,
where they are called the Beltrami fields [9], in celestial mechanics and in the physics of plasma
they are called the force-free fields (see S. Chandrasekhar [I1] and J.B. Taylor [12]).

By Taylor’s theory, on the force-free fields, in the last stable equilibrium before decay, the
speed of the plasma in tokamaks is u(x), for which rot u = Au and \ = const.

According to S. Chandrasekhar, outside the photosphere of a star, the magnetic field H is
so that the Lorentz force L proportional to the cross-product [rot H, H] disappears.

By Arnold theorem [I3] 1965, almost all current-flow lines of the ideal liquid reel on ei-
ther cylinders or tori. At that, stationary flows with the speed v(x) satisfying the condition
[rot v,v] = 0 are excluded from the consideration. The flows with the speed v(x) obeying
equation obviously satisfy this condition. Referring to the calculations of M. Henon [14],
V. Arnold writes that “such flows can have current-flow lines with rather complicated topology
typical for the problems in celestial mechanics.”

In 1970, the author studied the boundary value problems for non-elliptic system

rotu+\u="f (3)

in a bounded domain G with a smooth boundary and proved that for each A # 0, the system
has Fredholm solvable boundary value problems with a non-zero index [I7], [I8]. The problem
of this kind is that with the boundary condition

n-ulr=g. (4)

For a ball B, a way of explicit solving problem (3)),([4) was found (see [19]) and the formulas for
the eigenfunctions of the curl as A # 0 were written as solutions to a homogeneous problem.

The feature of this problem is that the low-order term Au in system improves essentially
its solvability (see §7).

I published this result (formulae ([36)),(37)) in 2000 [21], when I learnt about the applications
and work by S. Chandrasekhar and P.S. Kendall [22] 1957 suggested another approach for
solving spectral problem 1 in a ball and cylinder.

In a ball their method does not work, and in a cylinder it was performed by D. Montgomery;,
L. Turner, G. Vahala [23] 1978, who suggested to employ the eigenfunctions of the curl in
studying a turbulence in a plasma.

Self-adjoint extensions of the operator in Problem 1 were studied by P.E. Berhin [24] 1975,
Y. Giga, Z. Yoshida [25] 1990, and R. Picard [26] 1996.

For other aspects of the theory see book by V.V. Kozlov [4] and the reviews by
V.V. Pukhnachev [9] and by A. Makhalov and V. Nikolaenko [28§].

In 2003, O.A. Ladyzhesnkaya solved the problem “On constructing the basis in the space of
solenoidal fields” [I] and interested in a possibility of explicit calculating the eigenfunctions
for the Stokes operator in simplest domains.

It happened [16] that in the periodic case the vector eigenfunctions (v, py) of the Stokes
operator are so that Vp, = 0 and the vector-functions v;, coincide with the solenoidal eigen-
functions of the curl ui as k # 0 and u} as k = 0.

On their basis, global solutions to the Navier-Stokes equations in a uniformly rotating space
were constructed [29] and the equations describing the interaction between basis vortical flows
were found [30].

Later [15], the author succeeded to calculated the eigenfunctions (v, p,) of the Stokes op-
erator in a ball subject to the condition v,|s = 0. In this case, each vector eigenfunction v,
of the Stokes operator is the sum, v,, = u} + u,,, of the vector eigenfunctions u of the curl
associated with opposite eigenvalues and p,, = const. (see §6).

1.3. Structure of work and main results. In Section 1, the solving of Problem 1 in a
ball as A # 0 is reduced to the solving of the spectral Dirichlet problem for the scalar Laplace
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operator subject to the condition v(0) = 0 at the center of the ball that is solved explicitly
in Section 2. Its eigenvalues are determined by the zeroes of the Bessel functions of a half-
integer order, and the eigenfunctions are the products of the Bessel functions and the spherical
functions.

In Section 3, we give explicit formulae for nonzero eigenvalues +\,, ,, and the eigenfunctions
qim’k(x) of the curl operator in a ball. Formulas (36),(37) were published in [21], while for-
mulas are published here for the first time. They give a possibility to calculate the speed
distribution of the liquid flow qimk(x) inside a ball and conceive of the motion of such flow.

In Section 4, the spectral problem for the gradient-divergence operator is reduced to the
solution of the Neumann problem for the scalar Laplace operator whose solutions are known.
We provide formulae for the eigenfunctions qy, ,, x(x) of the curl operator in a ball associated
with the zero eigenvalue. These formulae are published here for the first time.

In Section 5, we prove that the constructed family of the eigenfunctions

{nm k() Ay 1 (X); Ay s ()} 20, meN, |k <n,

for the curl operator is orthogonal and complete in the space Ly(B) that consists of the square
integrable vector functions f. This family makes an orthonormal basis in Ly (B).

We provide an analogue of Weil expansion [10] of a vector field f in Ly(B) (with zero com-
ponent n - f }S: 0) into a curlfree field a and a solenoidal field b, f(x) = a(x) + b(x).

In Section 6, we determine the relation between the solutions of the spectral problems for the
curl and Stokes operator and give explicitly the solutions to the spectral problem for the Stokes
operator in a ball. Formulae for the eigenfunctions of the Stokes operator are published
here for the first time.

In Section 7, as an example, we provide the solving of the boundary value problem (Z2)),(3)
by the Fourier method in two cases: as A # 0, £\, ,,, and as A = 0. We note that as A = 0, the
solvability of the problem worsens and its kernel becomes infinite-dimensional.

1.4. Study of operator in problem. As )\ # 0, systems and
Vdivu+Au=f (5)

are elliptic by Vainberg and Grushin [6]. The first order operator rot 4+ Al is not elliptic since
the rank of its symbolic matrix o (rot )(£) equals two for each £ € R3\0 and is less than three
[20].

Relation divrotu = 0 for each smooth vector function u and system of equations (1) as
A # 0 imply that divu = 0. Hence, u(x) solves the elliptic system

rotu—Au=0, divu=0. (6)

Such operator, rot + A, is called the reducible to an elliptic operator [6].

It is easy to check that system @ and boundary condition is an overdetermined elliptic
boundary value problem is the sense of the theory by V.A. Solonnikov [7]. It follows from the
relation

(rot +AI)(rot —ADu=—-Au+Vdivu—\u (7)
that as A # 0, a solution u € C?(B) to equation (1) solves also the second order elliptic system
—Au=)u, divu=0. (8)

Moreover, there is a one-to-one correspondence between the solutions u of problem , and
the solutions (u, ¢) to the elliptic boundary value problem

rotu+du+Vg==f ANivu=divf, n-ulr=g, ¢qr=0 9)
where ¢ = 0 in G.
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In accordance with the theory of elliptic boundary value problems, for problem @ in a
bounded domain GG with a smooth boundary I', the estimate

Csllullst1 < [frot uffs + [ldivulls + [0 ufsp /s + flulls (10)

holds true for a vector function u in the Sobolev space H**}(G) = W3t(Q), where C; is a
positive constant, n - u is the trace of the normal component of u on I', and |n - u|sy1/5 is its
norm in H**Y/2(T), s > 0 (see [7], [8], [20], [25]).

This theory implies that as A # 0

a) the number of linear independent solutions to Problem 1 is finite,

b) each (generalized) solution to the problem is infinitely differentiable up to the boundary if
the boundary is infinitely differentiable.

1.5. Reduction of Problem 1 to Dirichlet spectral problem in ball. While construct-
ing the eigenfunctions associated with nonzero eigenvalues of the curl operator in a ball B, we
arrive at the following Dirichlet problem for the Laplace operator.

Problem 2. Find the eigenvalues j1 and the eigenfunctions v(x) of the scalar Laplace oper-
ator —A such that

—Av=pv in B, wvlg=0, v(0)=0. (11)

As the domain Mg, of the operator £; in Problem 2, we choose the functions v(x) in
C2(B) N C(B) satisfying the conditions v|s = 0, v(0) = 0, and Av € Ly(B).

We denote by v(x) = x - u = ru, the scalar product of the vectors x and u. The following
lemma holds true.

Lemma 1. As X\ # 0, for each solution (A\,u) of Problem 1 in the ball B, (A\*,x-u) is a
solution to Problem 2.

Indeed, by (§), (2), and the boundedness of u in a vicinity of zero we have

—Av=—x-Au-—2divu = \v, v|s=Ru|—r =0, v(0)=7ru|—o=0.

2. SOLVING OF SPECTRAL PROBLEM 2.

2.1. Zeroes of functions v,,(z). Let p,,, > 0 be the Bessel functions of half-integer order,
ie., Jn_‘_%(pm,n) =0, where n >0, m =1,2,.... They are also the zeroes of the functions

Yal2) = \/g%;(z) = \/g 2; P (n Sf P+ 1) 5 (12)

As L. Euler showed (see [3], Section 23, P. 356), the cylindrical functions J,, +%(z) of half-integer
order are expressed in terms of the elementary functions, namely,

o) = o () (225). (13

Yu(—2) = (=1)"¥n(2) (14)

and that the zeroes of the functions 1, (z) are located on the real axis symmetrically w.r.t. the
point z = 0.

It implies that
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2.2. Dirichlet spectral problem. It is solved by the separations of variables in spheri-
cal coordinates (r,0, ). By L we denote the operator in the problem. In the textbook by
V.S. Vladimirov [3, Section 26|, it was shown that the eigenvalues of the Laplace operator L in
the ball B are )\im, where Ay, = pnymR_l, n >0, m € N, and the numbers p,, ., > 0 are the

zeroes of the functions 1, (z),

the real eigenfunctions v, associated with eigenvalues N2 read as follows,

n,m

Un(ru 6; 90) - ann()‘n,mr)yrf(ea @)7 (15)

where K = (n,m, k) is a multi-index, n > 0, |k| < n, m € N, ¢, are arbitrary real constants,
P*(cosf) are the associated Legendre functions, 0 < r < R, 0 < 0 < w, Y*(0,¢) are real
spherical functions 0 < ¢ < 2mw. They are

P*(cosf) cos(ky), if k=0,1,..,n;
Yk 0 o n 9 P s 1Yy ].6
w (0:) { P(cos ) sin(|k|e), if k=-1,..,—n. (16)
As n=0,1,2, the functions Y,,(0,¢) = >27_  ar, Y,F(0, ¢) read as follows,

Yy = ago, Y1 = ap1 cosf + (ar1 cosp + a_q1sing)sind, (17)

Yy = ag(3cos®§ — 1) + (a12cos @ + a_128in ) sin 6 cos 0 + (ag cos 2p + a_g 5 sin 2¢p) sin” 6.

By the definition of the spherical functions, the product r"Y*(, ¢) is a homogeneous harmonic
polynomial of order n w.r.t. xy, x9, x3. It follows from formulae . that the functions
ve(x) belong to the class C*°(B) in a ball B of an arbitrary radlus R > 0.
The orthogonality and completeness of the Bessel functions in Ls[(0, R); r] and of the spherical
functions in L(S7) yield that for different x = (n,m, k), the functions v, are orthogonal in

Ly(B).
The system of the functions {v,} is complete in Lo(B) [3]. Being normalized by the condition
f VU X =
T 2T (18)

= Qu a,.cfg/zn Prt 7] R) Yy (prm7 | R) 2drf fYk/ ©) Y*(0, ) sin0dl dp = Ot s

it makes an orthonormal basis in Ly(B). The normalizing factors a, are such that

1+ 0o (2 + |K|)!
_ 1
(anmpi)”' = R|J, n+1/2 (Prm) |\/ 2n+1 (n— |k|)V )

2.3. Equivalent integral equation. It was shown in the book [3, Section 29] that if f €
C'(B) N C(B), the boundary value problem

—Av=pv+f(z), vls=0, veC*B)NC(B), (20)
is equivalent to the integral equation

ow) = [ Glepluety) + f@))dy. ve O(B) 1

B

with the symmetric weakly polar kernel

I Rly|
dmlz —y|  Arlaly? —y R
As the domain M/ of the operator £ in Problem (20), one chooses [3] the functions v in the
class C*(B) N C(B) satisfying the boundary condition v|g = 0 and the belonging Av € Lo(B).

The eigenvalues and the eigenfunctions of the operator £ coincide with the characteristic
numbers and the associated eigenfunctions of the kernel G(z,y).

G(z,y) =

(22)
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According to the theory of integral equations, the set of all the eigenvalues of the Laplace
operator L has no finite accumulating points and each eigenvalue is of finite multiplicity. Each
function in My can be expanded into a reqular convergent Fourier series in terms of the eigen-
functions of the operator L.

Therefore, all the eigenvalues A2 ,, = p;

R~2 of the operator £ can be taken in the ascending

order 7

O<pr <ps <., py—o00, [ — o0 (23)
counting jy in accordance with its multiplicity (the number A2 is counted 2n + 1 times). The
associated eigenfunctions are denoted by Vi, V5, ..., so that each eigenvalue y; in series is
associated with the eigenfunction Vi(z),

Vi=mVi, 1=12., VieM;. (24)

We choose the eigenfunctions Vj(z) being real and orthonormalized,

Each function f(z) in M, is expanded into the Fourier series in terms of the orthonormal
system {V(x)},
fla) = (f; V) Vilw). (26)
I=1

This series converges in Lo(B), and by Hilbert-Schmidt theorem the series regularly converges
on B (see [3] §20.1). But the set M, is dense in Ly(B). It implies the completeness of the
system {V;(x)} in Ly(B). We note that {V;(z)} is the systen {v.(z)} with the aforementioned
ordering.

We shall write series (and other similar series) as

f(x) = Z Z Z (fs vnmoke) Vi (X) = Z(f7 V) Ve (X), (27)

n=0 m=1k=—n K

assuming that the summation of series is made w.r.t. n,m obeying 0 < p,,, < N where
N — oo.

2.4. Convergence of series in Sobolev space H*(B). According to Theorems 8 and 9 in
[5, Chapter 4], for a ball we have the following.

A function f is expanded into Fourier series in terms of the eigenfunctions of the
Dirichlet problem in a ball and this series converges in the Sobolev space H*(B) if and only if
f belongs to

HiL(B)={fe H(B): fls=0,...,A%f|ls =0}, where o=][(s—1)/2], s>1. (28)
If f € H}(B), the series
D (o) AT (20)

K

converges and there exists a positive constant C' > 0 independent of f such that

D (L v A2 < CUf I s)- (30)

K

If s > 2, each function f in H%(B) is expanded into Fourier series converging in the space
C*2(B).
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2.5. Solving of Problem 2. Since ¢,(0) = 1, as k = (0,m,0), the functions {v,} satisfies
the condition v, (0) = 0 of Problem 2 if and only if the corresponding coefficients ¢ (g m, 0y vanish.
It implies

Theorem 1. The eigenvalues fi,, ,, of Problem 2 equal )\%’m, where A,y = pnvafl, and the

numbers pp.m are zeroes of the functions ¥n(z), m, n € N. The eigenfunctions v, associated
with A2 read as follows,

(7,8, 9) = Cxthn(Anmr) Y, (0, 0), (31)
where myn € N and |k| < n, k = (n,m, k). The multiplicity of the eigenvalues i, . equals
2n + 1.

Thus, the spectrum of Problem 2 is discrete and has no finite accumulation points, and the
eigenfunctions v, of the problem are expressed in terms of cylindrical and spherical functions.

3. SOLVING OF SPECTRAL PROBLEM 1 IN BALL

3.1. Construction of solutions to Problem 1. In addition, we prove that its eigenvalues
£\, m are the square roots of the eigenvalues of Problem 2.

Lemma 2. In the ball B, as p > 0, to each solution (u,v) of Problem 2, there correspond
ezactly two solutions (\/jr,u") and (—\/p,u™) of Problem 1 such that x-u* =x-u~ = .

Proof. The proof is based on the representation of the system rotu = Au, divu = 0 of four
real equations written in the spherical coordinates as the system of two complex equations

(0, —iN)rw =r""Hv, Kw = v —ir"'0,(rv) (32)

w.r.t. to the complex-valued function w = u,+1iuy and the real function v = ru,. The operators
H and K read as follows,

Hv = (sin™'09, +id) v, Kw = sin~" 0(Jysin6 + id,)w. (33)

It is easy to make sure that —Av = \?v is the compatibility condition of equations .

Let (p,v) be a fixed solution to Problem 2. We find nonzero solutions to the problem as
follows. The function w, is defined as the fraction v/r. We let A = Vior A = —/u and
substitute A and v = v into equation . Now their right hand sides are defined and the
equations are compatible. We define the functions uy and u, by solving these systems. The
general solution to the first equation is

w=dr e 7! / e2r=DHy(t, 6, o)t Ldt, (34)
0

where d is a function of the variables ¢ and 6 being zero if we seek the solution in the Sobolev
space W3 (B) or in the class of bounded functions. It remains to check that the function w
satisfies the second equation in . We obtain

Kw = 7‘1/ 2K Hu(t, 0, o)t dt = rl/ ei2r=t) [sin™" 0(9p0,, — 0,0p)v + iAg, pv] tdt,
0 0

where Ay, is the Laplace-Beltrami operator. We write the Helmholtz equation in the spherical
coordinates,
1

7 Sin

{89 (sin00y) + ,1 (8¢)2] v=—Nrv— 1& (r*0,) v. (35)

Sin r
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The function v is its solutions as \> = A\* = p. Substituting the right hand side of this identity
into the integral instead of the expression 7 'Ay v for \? = M v =, r =t, we obtain

ro 1
Kw = —ir! / A=) (AQtQ—i— gat (tQGtQ)) dt.

Integrating by parts and taking into consideration the relation v(0) = 0, we obtain the right
hand side of the second identity in (32)). The proof is complete. O

3.2. Formulae for solutions. Substituting the expressions A = 4\, ,, and v, from (31))
into the fraction v/r and the integral (instead of A and v), as well as d = 0, we obtain the
explicit formulas for the eigenfunctions of the problem. The following theorem holds true.

Theorem 2. Nonzero eigenvalues )\im of Problem 1 are equal to =+£M\,,,, where
Anm = pn’mR_l, R is the radius of the ball, and the number p,,, are zeroes of the functions
¥n(2), m, n € N. The components u, and w = u, + iug of the eigenfunctions ur of Problem 1
in the spherical coordinates are calculated by the formulae,

()i = e Nm?) ™ (A1) Y, (0, ), (36)

K

(up +iug)E = & (AL ) T @, (AL, ) HY (6, ), (37)

where i is the imaginary unit, cE € R, mn € N, k| < n,k = (n,m, k),

r

@, (AE, 1) = / e“f»m“—%n(A,ﬂ;mt)t—ldt, (38)

0
HY," (0, ¢) = (sin ™00, + i) Y,\ (0, ). (39)

The functions u,, ug, u, are infinitely differentiable everywhere in B except the axis x5, on
which rsin® = 0, and they are bounded in B. In terms of the initial coordinates x1, T2, T2 the
components u; of the eigenfunctions of Problem 1 belong to C*(B).

Proof. In terms of the functions u, and w = u, + iug, they are expressed as follows,
uy = u, Y] +Re(wHYY), wy =, Y '+ Re(wHY ), usz=uY+Re(wHY), (40)
where in accordance with the textbook by Vladimirov [3]
w1 /r =Y, 0) =sinfcosp, z3/r=Y1(0,p)=sinfsing, x3/r=7Y(0)=-cosh, (41)

HY}! = —sing +icosfcosp, HY;'=cosp-+icosfsing, HY = —isinf. (42)

The smoothness of the vector functions u(z) in B follows from the general theory (see state-

ment b) in Subsection 1.4) and can be checked by straightforward calculations. The proof is
complete. [

We represent the vector functions uF as a sum of three real orthogonal vectors. Employing

the frame i,, ip, i, and splitting real and imaginary parts in (37)), (38), , we have

Uf = C:(Ai,mr)illbn(Af,mr)Ynk(gv SD) ir+
cE(NE ) T Re [0, (A, )] (Re HYF iy, + Im HY R i)+ (43)
CENE ) T Im [@, (N, )] (—Im HYF i, + Re HYF iy).

n

These formulae allow us to represent the motion of liquid vortical flow in the ball whose speed
is uF(r) asn = 1,2,.... The vorticity of these flows rot uF equalling A* ¥ is nonzero at each

K nmK

point of the ball.
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3.3. The property of functions ®,(A;,,r). The functions ¢, (A;,,r) , Y;¥(0,¢) and num-
bers A, = £ppm/R are real. According to (14), ¥y (X, ,,7) = (—=1)" ¥n(Apmr). This is why

D (A,,r) = [ ey (=N, )t d E =
. 0 (44)
= (=1)" [ e P =Dy, (N nt)t 2t = (= 1)" D, (A ).
0
Let us prove that the number @, (), ,,R) is real and thus
R
D, (pnm) = / 08 A (R — )b, (Nt )t~ dt. (45)

0
By the construction, the vector functions uf(x) satisfy equation as A = £\, ,, and the
complex functions
wE = (ug +iug)f = aX (\,r) 7 @u(\5, ) HYN(0,0),  af €R, (46)
satisfy system of equations as A = £\, m, v = v,(z) and vy|,—p = 0.
By the second equation in (32)) we see that as r — R,
Re Kwi|, ok = £ X Valr—r = 0. (47)
The composition KH of the operators K and H on the real functions Y,*(6, ) reads as
KHY,F = sin™" 0(0p sin 6 + i0,,) (sin~'00,, + idy) Y.} =
sin_l(ﬁgé{o - 8@89)3/75 + iA97¢Yf = m(n + 1)Ynk.
Hence,
Re Kwi|,—p = —n(n + D)af(pE,,)” Tm &, (o, ) Y,E(0,9) =0 (49)
for each 0 and ¢. Therefore, Im ®,(p,,.m) = 0 and the number ®,,(p,, ) is real.

4. SOLVING OF SPECTRAL PROBLEM 1 AS A =0

4.1. Reduction of Problem 1 as A = 0 to Neumann spectral problem. We shall seek
the vector eigenfunctions of the curl operator associated with the zero eigenvalue among the
solutions of the following spectral problem.

Problem 3. To find nonzero eigenvalues p and vector eigenfunctions u(x) in Ly(G) of the
gradient-divergence operator such that

—Vdivu=pu i G, n-ulp=0, (50)
where n - u is the projection of the vector u on the normal vector n.

As the domain Mgp of the operator gD in Problem 3, we take the vector functions u(x) in
C?(G)NCY(G) satistying the boundary condition n-u|r = 0 and the assumption Vdiv u € Ly(G).
The problem is related to the Neumann spectral problem for the scalar Laplace operator.

Problem 4. To find all the eigenvalues v and the eigenfunctions g(x) of the Laplace operator
—A such that
—Ag=vg inG, n-Vglr=0. (51)
As the domain M of the operator N in Problem 4, we take the functions g(x) in C*(G) N
C'(G) satisfying the conditions n-Vg|r =0, Ag € Ly(G).
It is easy to make sure that following lemma holds true.

Lemma 3. FEach solution (u,u) of Problem 3 in the domain G corresponds to the solution
(v,9) = (p,divu) of Problem 4. And vice versa, each solution (v,g) of Problem 4 corresponds
to the solution (u,u) = (v,Vg) of Problem 3.
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4.2. Solving of spectral problem 4 in ball. The solution to this problem is known. In
accordance with the book by V.S. Vladimirov [3],

the eigenvalues of the operator —A in a ball B subject to the Neumann condition are equal
to I/Z,m, where vy, y, = an7mR_1, n >0, m € N, and the numbers o, ,, > 0 are the zeroes of the

derivatives 1Y) (z) of the functions 1, (z), i.e., V¥, (anm) = 0. The eigenfunctions g,, associated

with vy, read as follows,

gu(r,0,0) = ann(an,mr/R)Ynk<97 ©), (52)

where k = (n,m, k) is a multi-index, ¢, are arbitrary real constants, Y,*(0,¢) are real spherical
functions, n >0, |k| <n, m € N.

The functions g.(x) belong to the class C*(B) and for different x, they are orthogonal in
Lo(B). The system of the functions {g,} is complete in Ly(B) [5]. Normalizing them, we obtain
a orthonormalized basis in Ls(B).

4.3. Solving of spectral problem 3 in ball. According to Lemma 3, the vector functions
ax(z) = Vgu(z) solve Problem 3 for finm,m = o, , R* in Ly(B). Their components (g, g, q,)
read as follows,
q?",l{(”’? 97 ()0) = CH(a’n,m/R)w’:’],<an,mr/R>Ynk(07 ()0)7 (53)
(dp + id0)x = Cu(1/1)¢n(nmr/ RYHYE (0, ).
As k = (0,m,0), we have Y (0, 9) = 1, HYY = 0. Hence,

qr,(O,m,Q) (’I") = €(0,m,0) (O‘O,m/R>¢6(aO,mr/R)7 (54)
(g0 + iq0) 0,m.0) = 0
By these formulae, one can easily write the normalizing constants ¢, guaranteeing ||q,| = 1.

4.4. Solving of spectral problem 1 as A = 0 in ball. The numbers p, , = o2, R~ are

n,m
positive for each n > 0, m € N. This is why the vector functions q, solve also Problem 1 as

A = 0. Moreover, q, and g, are orthogonal as k' # k.
Indeed, by Gauss-Ostrogradsky formula,

/Vg,_i/ -Vg.dr = — /gH/Agﬁdx + /gﬁf(n - V)g,dS. (55)
B B S

The functions g, (z) solve Problem 4, they satisfy Helmholtz equation (51)) as v = a;, ,,,/R* > 0
subject to the Neumann condition. Hence, the boundary integral disappears and

ap o,
/qK/ . qndx = R_é /gn’gndx' (56)
B B

But according to (52)), the functions ¢, (z) and g.s(x) are orthogonal in Ly(B) as k' # x. Hence,
the last integral in vanishes and the vector functions q, and q, are orthogonal in Ly(B).
Observe that ||q.(2)]| = (@nm/R) [|g:(2)]]-

5. SPACE Ly(B) AND EIGENFUNCTIONS FOR CURL OPERATOR

5.1. Subspace A =V H'(B). We denote by A the linear subspace in Ly(B) formed by an
orthonormalized system of the vector-functions {q,(z)}. In fact,

A={Vh: heHY(B) (57)

Indeed, for each element, q.(z) = V g, where g, € H'(B). On the other hand, a function h
in H'(B) can be expanded into the convergent series

h = Z(h7§n)§m Or = (O‘n,m/R)gm (:q\mgn’) = Opmr- (58)
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5.2. Subspace B = V°(B). We denote by qﬁ( ) the solutions to Problem 1 associated in
accordance with Theorem 2 with the eigenvalues A\ . n,m € N, and normalized in Ly(B), i.e.,
|la=(z)]| = 1. They belong to the subspace

n,m?

VY(B)={u€eLyB):divu=0, n-uls=0, |ullves = |ulL.m} (59)
where divu = 0, n - u|g = 0 are treated in the sense of the distributions theory,
VYB) = {u € LyB): /u -Vhdx =0, foreach hec H'(B)}). (60)
B

It is obvious that A and B = VO(B) are orthogonal subspaces in Ly(B). By B* we indicate the
subspaces in B formed by the systems of the vector functions {q(x)}. The following lemma
holds true.

Lemma 4. The vector functions qf (x) (respectively, q_ (x)) are orthogonal for different k.
The vector functions qf (x) and q (x) are orthogonal for all k.

Proof. We employ the Green formula for the curl operator,

/rotu-vdx—/u-rotvdx:/[u,v]-ndS. (61)

B B S

On the sphere S, the scalar triple product [u, v] - n coincides with the determinant

1 0 O
Uy Up Uy (62)
Ur Vg Uy

and equals upv, —u,vg or Im (W V) in the complex notations W = (u,+iug) and V = (v, — ivp).
Let us prove the orthogonality of the vector functions g, (z) and q;f (z) as k" # k. They
solve Problem 1 and are calculated by the formulae , , where A} = pum/R and ¢
are real constants.
We first consider the case (n,m’) # (n,m), and hence, A, . # i . Substituting these
functions into formula , we obtain the identity

T 2w
(At = Anm) /q:, -qf dr =Im //W,j, W, sindo de. (63)
B 0 0

The orthogonality will be proven if the latter integral I vanishes. In accordance with formulae

, it read as

I=AlIm / / HY¥ (6, o) HY*(6, ) sin 6 df de, (64)

where A = ¢ (pw ) e (prm) ! P (Pt )@ (P ) is a Teal constant according to Subsection
3.3.
We move the operator H in this integral by integration by parts. We have

T 27
Im [A f f Y ¥ (0, 0)[—sin™"00,(sin 00y) — sin *002] ;¥ (6, ) sin 0 df dip]+
T 2T
Im[iA [ [ Y¥(0,¢)[sin™'0(0,0s — 050,)] Y,F(0, ) sin 0 d6 dep).
00

The latter integral vanishes, since the spherical functions and all their derivatives w.r.t. ¢ and
0 are continuous. The operator in the brackets in the first integral is the Laplace-Beltrami
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operator, —Ay,. According to the property of the spherical functions, —Ag,Y,*(0, ) = n(n +
1)Y*(0, k). Substituting this expression into the integral, we get

T 27

(At = M) / ¢\ qfdr =Im[n(n+1)A / / YE YV sin 6 df dy). (65)
B 0 O

Since the spherical functions are orthogonal as (n’, k") # (n, k), this integral vanishes. Hence,
the vector functions q,(x) and qf (x) are orthogonal as (n',m') # (n,m) and (n', k') # (n, k).
If (n', k") = (n,k), m" # m, the integral in the right hand side of is a real number. The
numbers ¢, ®p,(pn.m), and A are real as well, and hence g, .(¢) and g, () are orthogonal.
In the case (n/,m') = (n,m) and k' # k, formula is not suitable, since both its sides
vanishes. According to formulae , , we have

R T 27
Ik q;’m’n . q:’m’n dx = c,§7m7nc;€57m7n)\;?n[f V2 N\pmr)dr [ [ YF(0,0)Y,E(0, @) sin 0 d dp+
B 0 00

T 27

R
+ [ @, AT P M) dr [ [ HY,F (6, 0)HYE(0, ) sin 6 d6].
0 00

n

(66)

Because of the orthogonality of the functions Y* and Y* in L,(S;) both integrals disappear
and the vectors qz,’m’n and q;mm are thus orthogonal.

The orthogonality of the vector functions q_(z) and q (z) as & # k can be proven in the

same way.
For all " and k, consider the eigenfunctions q,(z) and qj; (z) associated with the eigenvalues
An.m and —A, ,, of opposite signs. Reproducing the above calculations, we have
T 27
A + Aam) [af - qp do=Tm [ [ W} W, sinfdfdp =
B 00 (67)

=Im[n(n+1)B [ [YE(0, )Y, p)sinddddy),

n

O—x

where the constant B = (—=1)"V ¢t (p ) 72 (Pnm) ™ @ (purms ) Pr(prm) 1s real.

The right hand side in disappears for all " and k. Therefore, the vector functions q ()
and g (z) are orthogonal. The proof is complete. ]

5.3. H. Weil expansion. The completeness of the eigenfunctions for the Laplace operators
subject to the Dirichlet and Neumann condition in Lo(B) implies that the system of the vector
functions {q.(x)} is complete in the subspace A, the union of the systems {q} (z)} and {q (z)}
1s complete in the subspace B. There are no other solutions to Problem 1.

The subspaces A and B are orthogonal in La(B). In the case of a ball, their union coincides
with Lo(B) (see H. Weil [10]). Hence, we obtain an orthogonal decomposition of the space
Lo(B) in terms of the vector eigenfunctions of the curl operator

Ly(B)=A®B=AoBt®oB". (68)

Theorem 3. The union of the systems {q.(x)}, {q}(z)} and {q; ()} of the vector eigen-
functions for Problem 1 makes an orthonormalized basis in the space Lo(B). FEach vector
function in Lo(B) can be expanded into the Fourier series in terms of this basis.

The Weil expansion of a vector field f in Ly(B) into a curlfree field a and a solenoidal field
b reads as f(x) = a(x) + b(x), where

a= Z Z Z (fv CImch) qn,m,k(x)> (69)

n=0 m=1k=—n
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b= Z Z Z [(f, qjl_mk) q:L_,m,k:(X) + (£, q;,m,k) qr_L,m,k(X)] (70)

n=1 m=1k=—n

the summation of series , is in n, m satisfying 0 < ay,,,, < N and 0 < p,,,, < N, where
N — oo.
The Parseval-Steklov identity ||f]|* = ||a]|* + ||b]|* holds true and we write it as

I£]* = Z > Z (F, cnmi)” + (07 )+ (F )], (71)

=1 (n,m)ePy ke[—n

where the lattice is given by the formula Py = {(n,m) : 0 < ppm < N,0 < oy < N} and

+
0,m,0 = 0.

We note that the expansion of the vector field f(x) into a curlfree field VAi(x) and a solenoidal
field u(x) is related with the solution to the Neumann problem

Ah =divf in B, Il'Vh‘S:l’l-f‘S, (72)

in the classical or generalized formulation [2].
We obtain the solution to this problem as the series , . Let us note their properties.
If f = Vh, where h(x) is a compactly supported in B infinitely differentiable function, i.e.,
h € D(B), then Vdivf = VAh and for each integer s > 1, (V div)*f = VA®h € Ly(B).
Hence, integrating by parts, we have

ZZ Z Vd“j f qnmk qnmk ZZ Z Oénm/R 28 f qnmk)qnmk( ) (73)

n=0 m=1k=—n n=0 m=1k=—n

The series converges to (Vdiv )*f in Ly(B) and

Y>> (/B NE dum )P = (Vv ) £]1E - (74)

n=0m=1k=—n

If the vector function f is solenoidal and its components belong to the space D(B), then for
each integer s > 1, (rot)*f € V°(B). Hence, by analogy with above arguments,

DD > (ot Eaf ) di (%) + (108 F, ) e ()] = (75)

n=1 m=1k=—n

=D D> D (an/BIIE Al ) @l k() + (1) (F, ) G ()]

The series converge to (rot )* f in Ly(B) and

DD D P/ RZNE a0 )P+ ()] = [0t ) FIE, 5. (76)

n=1m=1k=—n

These series converge also in H'(B) as [ = 1,2, .... Indeed, denote by S; a partial sum of series
(75) and employ estimate . We obtain
1S; = Sillfr (s < C ([lrot(S; — Si)llzo) + IS5 = Sillfro(m); (77)

since div (S; —S;) =0 and n- (S; — S;)|s = 0. As i, j — 0o, the right hand side in tends
to zero in accordance with (76]). Hence, the series converges in H'(B) and so forth.
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6. SOLUTION OF STOKES SPECTRAL PROBLEM

6.1. Relation between solutions to spectral problems for Stokes and curl oper-
ators. We pass to the study of the spectral problem for the Stokes operator in a bounded
domain G with the viscosity parameter v > 0 .

Problem 5. To find all the vector eigenfunctions (v(x),p(x)) and the eigenvalues v for the
Stokes operator such that

—vAVv+Vp=pv, divv=0 in G, (78)

We note that as an eigenfunction for this operator, one usually regards only the vector
function v(x) since Vp can be determined via v and p. In the monograph [2] by O.A. La-
dyzhenskaya, it is shown that in a bounded domain G with a smooth boundary I' this problem
has a discrete spectrum {py}, where k = 1,2,... and each puy is of finite multiplicity. We shall

specify this result in the case of a ball.
There are useful relations between the solutions to Problems 1 and 5.

Theorem 4. Let u™, u~ satisfy equations rotu™ = £ u* in the domain G, X > 0, and
p(x) is a harmonic in G function. Then the pair (v,p), where

v=u"4+u +v'\?Vp, (80)

solves Stokes equation for u=wv\2.
If the functions ut, u™, and p(x) satisfy also the boundary conditions

n- ui|r = O, (u+ + 11_>|F = 0, (81)
(n- V)plr =0, (82)

the solution (v, p) to Problem 5 for = v\* reads as
v=ut+u, p=Const. (83)

Proof. The proof of the first statement is based on straightforward calculations taking into
consideration that the functions u™ and u~ solve equations @, . Indeed,

—VvAV+Vp=vX(u" +u) +Vp=v\’v.

If p satisfies homogeneous Neumann condition , then p = Const. Homogeneous Neumann
problem for the function p(x) harmonic in the bounded domain G with the smooth bound-
ary ' has the solution p = C'onst, since it follows from the Gauss-Ostrogradsky formula that

/ |Vp|*dz = 0. (84)
G

Hence, expansion for the vector v is simplified and casts into the form v = u™ +u~, while
the boundary condition v|r = 0 follows from the relation (u® +u™)|r = 0. O

On the other hand, the following theorem holds true.

Theorem 5. a) Suppose a vector function (v(x), p(x)) solves Stokes equation forpu >0,
v(x) # 0, p(x) is a harmonic in G function and A\ = \/uv=1. Then the vector function v can
be represented as the sum

v=w+pu 'Vp, (85)
where w satisfies the equation
(rot + A])(rot — A )w =0, divw =0. (86)
b) If p(x) satisfies boundary condition (82)), then Vp(x) =0 and v =w.
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In the case G = B, there exist vector functions u™ solving equations rotu* = £ u* and
satisfying boundary conditions such that the vector function v is represented as the sum

v=u"+u". (87)

Proof. The vector functions v(x) and Vp(x) satisfy equations (78). We write first three of
them as
(rot + AI)(rot — X I)v = —v'Vp. (88)

Fixing p, we consider relation as a matrix differential equation for the vector v. Since
rot Vp = 0 and p = vA% then p~'Vp is its particular solutions and the expression w =
v — 11~ 1Vp solves homogeneous equation, i.e., the first equation in . The second equation,
divw = 0, follows from the equation divv = 0.

Moreover, n-w|r =n-v|p — g 'n- Vplr = p~'n - Vp|r, since v|r = 0.

It is clear that in the case n - Vp|r # 0 there exists no w such that n - w|r = 0.

b) If p satisfies Neumann condition , then Vp =0 and w = v.

In the case G = B, v is an element of the space B, since divv = 0 and n - v|s = 0. We
represent v € B as the series

V= Z Z Z [(v, q:mk) q:’m’k(x) + (v, q;,m,k) qT_L,m,k(X)] (89)

n=1m=1k=—n
and substitute the series into the equation. We obtain the identity
(rot + AI)(rot — A I)v =
n

=D D Mo = A D (Va0 ) Gt (%) + (Vo ) G (X)] = . (90)

n=1 m=1 k=—n
If X2, — A2 # 0 for each n,m € N, then (v,q, ) = 0 for each n,m € N, k € [—n,n] due
to the orthogonality of the basis vectors qimyk. The completeness of the system {qffm .} in B
yields v(x) = 0. But it is impossible by the assumption. Hence, there exists a pair n’,m’ € N’
such that \> = A2, . Letting

n/

ui<x> = Z (V’ qi’,m’,k) q’rf’,m’,k(X%
k=—n'
we obtain expansion (87). The proof is complete. O

Thus, the solution of Problem 5 is reduced to finding the solutions (A, u™) and (—\,u™) to
Problem 1 as A # 0 satisfying the condition (u™ +u™)|s = 0.

6.2. Formulae for eigenfunctions of Stokes operator in ball. We let ¢ = cx®n (A R)
in formulae to obtain

(1 + 11)f = 6B (g RN ur) ™ BN HYA 6, ),

(U“P + ZU@); = Cﬁq)n()‘:,mR)(/\g,mr)_lq)’ﬂ(/\r_L,mT)HYnk(ev 90)
It follows that as r = R, the sum w; + w, vanishes for all angles 6 and ¢ and each complex

constant c.
The functions ¢, (Af,,7) , Y,F(0,¢) and the number Xf, = £p, /R are real. According to

[), Yn(My ) = (1) hn(Apmr). Hence, @y (A7) = (—=1)"®p(Aymr) (see Subsection 3.3,
where it was proven that the number ®,,(py, ) is real).
Hence, the radial component of the vector v, = u} + u disappears,

Cn(An,mr)il[(I)n()‘;,mR)@bn()‘:,mr) - ®n()\j’;mR)wn()\;,mT)]Ynk< )i, =
07

0,
= CH(_l)n(/\n,mT)il[an(pmm) - (I)n(pn,m)] 77bn()‘n,m7")ynk( )i, =0 (91)
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and its tangential projection is

Re {co(=1)"(Anm?) ™ () [P (AnmT) — 6N(_)‘n,mr)] HY0, P)igt+
HIm e (= 1) (Am) ™ o () [Pr(Anmr) — Pr(Anym] H Y, (0, 0)io}.

The expression in square brackets is a pure imaginary quantity. Taking the constant ¢, = i b,
pure imaginary as well, b, € R, we obtain the vector function v,, = uf 4+u_ which is represented
as the sum of two orthogonal vectors

Vi = bnq)n(pn,m) ()\n,mr)_llm [(I)'IZ()\TZ,mT)]
(Re HYF(0,0)i, +Im HYF(0,¢)ip).

(92)

(93)

Thus, v, = u + u, is a real vector eigenfunction for the Stokes operator associated with
the eigenvalue v)? . Normalizing vector functions uf in Ly(B), we obtain the vector eigen-

functions for the Stokes operator in the form v, = g + q;. Hence, we have proven

Theorem 6. The eigenvalues fi,, of Problem 5 in a ball B are equal to V/\?hm, where

Anm = pn,mR_l, R is the radius of the ball, and the numbers p,, ., are the zeroes of the functions
Yn(z), m, n € N.

At that, p, = const, and the associated vector eigenfunctions v, of the Stokes operator are
the sums g + q; of the vector eigenfunctions for the curl operator.

In the spherical coordinates they are represented as sum of two orthogonal vectors.

The vector functions v, = g +q, belong to the space J°(B) that is the closure of compactly
supported infinitely differentiable solenoidal vector functions J(B) in Ly(B) [2]. These vector
functions form an orthogonal system in Ly(B) since the systems {q}}, {q;} are orthonormal-
ized.

The system {v,} is complete in JY(B) C B and the expansion of a vector function g(x) €
JO(B) is as follows,

g = 1/2 Z Z Z (g7 Vn,m,k) Vn,m,k<x)7 (94)

n=1 m=1k=—n

where the summation of series is w.r.t. n,m obeying 0 < p,,,, < N and N — oc.

7. SOLVING OF BOUNDARY VALUE PROBLEM (Z2)),

By the Fourier method, one can easily solve the following boundary value problem.

Problem 6. Given a vector function f(x) € Mg, in H'(B), find a vector function u(x)
such that

rotu+Au=f in B, (95)
n-ulg =0, (96)
where n - u is the projection of the vector u on the outward normal n.
By E*(B) or by H3,, (B) one denotes [§] the following subspaces in Ly(B),
E*(B)={veH(B) :divve H*(B), |v|e = (|Vl|& + divv|%)"Y*},  (97)

where s > 0 are integer numbers. They are complete Hilbert spaces and

D(B) Cc E*(B), H*'(B) C E°(B) C H*(B). (98)

The quantity n - v|g is well-defined for a vector function v(x) € E°(B).
Let us give the solution to the problem in two cases.
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7.1. Solving of boundary value problem ({95, as \ # Sp(rot).

Theorem 7. If A\ # 0,£\,m, n,m € N, f € E°(B), and n - f|s = 0, then the unique
solution u to Problem 6 is given by the sum of the series uy + us, where

u =\t Z Z Z (f, Anmk) Drm i (X), (99)

n=0 m=1k=—n

wp = > IO M) T E ) Gt () A= Aan) TN E ) G ()] (100)

n=1m=1k=—n

The solution belongs to the Sobolev space H(B).
Iffe A={Vh:he H(B)}, the operator u = \~'f maps A onto A.
Iff € BLA in Ly(B), then u = uy maps B into H'(B).
Iff € C°(B), u is a classical solution to the problem belonging to C*(B).

Proof. Formulae can be obtained in various ways. For instance, assuming that u and f in
equation belong to the space D(B), we multiply both sides by q,, k(%) (respectively, by
qim’ (%)) and integrate by parts. The uniqueness of the solution follows from the completeness
of the eigenfunctions of the curl operator in Ly(B).

If f € D(B), in accordance with Subsection 5.3, series , converge in each of the
spaces H*(B), s = 1,2,... and give the classical solution to the problem.

If f € A C Ly(B), in accordance with Subsection 5.3, we have b = 0 and thus, uy = 0 and
u; = A~ f. In this case, solving of the problem is reduced to the multiplication of £ by A\~

If f € BLA in Ly(B), in accordance with Subsection 5.3, a = 0, b = f and the series u;
thus disappears and u, is determined by series (100). This series converges in Ly(B) since
the numbers |\ £+ ), ,,,| ™! tends to zero as A, — 0o. The space Ly(B) is embedded into the
distributions space D'(B), where series can be differentiated term by term. Applying the
operator rot term by term, we obtain the series

rotu, = Z Z Z [m(ﬂ U i) Doy (X) — m(f’ Ay pte) D (X)) (101)

n=1m=1k=—n

converging in Ly(B). Moreover, by the construction, the partial sums S;u of series
satisfy the relations divS;ju = 0 and n - S;u|s = 0. Therefore, divuy = 0 and n - us|s = 0 as
distributions. In accordance with Subsection 5.3, series converges in H'(B).

Applying the operator rot + AI to this series, we obtain the expansion of the vector function
f(x) € B. Hence, this series is a generalized solution to Problem 6.

In the general case, as f € E°(B) and n - f|g = 0, series also belongs to H'(B). Since
div Anmk = Agn,m,k = _(Oén,m/}%)2 In,m k and ||(an,m/R) gn,m,k” =1, we have

div u; = )\71 Z Z Z (f; Qn,m,k) A gn,m,k<x) = (102)

n=0 m=1k=—n

ASTST ST (divE, gnm) (i /B)? g () = A7 Ndiv

n=0 m=1k=—n

Therefore, the sum of series and (100) is the solution to Problem 6. The proof is complete.
]
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7.2. Solving of Problem 6 as \ = 0.

Theorem 8. If A\ =0, f € E°B) and n-f|s = 0, then Problem 6 is solvable in Ly(B)
if and only if divft = 0. The homogeneous problem has infinitely many linearly independent

solutions,
Uy = Z Z Z gn,m,k qn,m,k’(x)7 (103)

n=0 m=1k=—n
where &, 1 are arbitrary constants such that ug € Ly(B).
The general solution to the inhomogeneous problem reads as ug + G§ £ + Gy £, where

Gef=+) > > AL(fal,)ar,..(x), GifeH(B). (104)

n=1m=1k=—n
If &mr are such that ug € HY(B), the solution of the problem belongs to H'(B).

Proof. The necessity of the condition div f = 0 is obvious, while the sufficiency follows from the
identity divu; = A"'divf. The relations Gif € H'(B) were proven in Subsection 7.1. Next,
rotug = 0, if ug € H(B), and rot (G{f + G, f) = f. The proof is complete. O
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