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HARDY TYPE INEQUALITIES WITH LOGARITHMIC
AND POWER WEIGHTS FOR A SPECIAL FAMILY
OF NON-CONVEX DOMAINS

R.G. NASIBULLIN, A.M. TUKHVATULLINA

Abstract. In the present work we obtain variational Hardy type inequalities with power
and logarithmic weights which are generalizations of the corresponding inequalities given
earlier in the papers by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, and
J. Tidblom. We formulate and prove inequalities for arbitrary domains, and then we
substantially simplify them for the class of convex domains and a special family of non-
convex domains.
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1. Introduction. Variational inequalities is an important tool for solving problems of math-
ematical physics. In the present work we consider Hardy type variational inequalities. Hardy
inequalities are used in the theory of degenerating elliptic partial differential equations, spectral
theory, nonlinear analysis, and interpolation theory. For instance, in paper [1], Yu.A. Dubinski
showed that a correct formulation of Poisson problem is equivalent to the validity of an ap-
propriate Hardy inequality. Applications of Hardy type inequalities were also described in the
works of A. Laptev, T. Weidl, A. Balinski, A. Sobolev, M. Solomyak, E. Davies [2]-[6].

A lot of works are devoted to studying and proving Hardy type inequalities, in particular, re-
cent papers of F.G. Avkhadiev, K.-J. Wirths, E.B. Davies, M. Marcus, H. Brezis, M. Hoffmann-
Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, J. Tidblom, G. Barbatis, S. Filippas, A. Tertikas
[4]-[16].

The Hardy type inequality proven by J. Tidblom in paper [15] for an arbitrary domain
Q C R" (n > 2) and an arbitrary function u € W, () (p > 1) reads as follows,

v > VT (5 doyde (SN L @
/|VU( )| d F(p+1 /| pp( ) +(p 1)< n ) |Qz|% d )
) ) )

where Q, ={y e Q:x+1t(y —x) € QVt € [0,1]}, |Q,] is the measure of the domain (2,
pu(z) is the distance from a point € €2 to the boundary of the domain {2 measured in the
direction of a vector v € S"7!, |[S"7!| is the area of the unit sphere S*~! in space R", dS"~*(v)

Q
2

) ) . dS"(v) 1\P
is the element of surface measure on the unit sphere S, dw(v) = T cp = (%) :
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We note that inequality is a generalization for an arbitrary p > 1 of an appropriate
inequality proven by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev in paper [14]
for p = 2. In the present work we generalize inequality (1] for the functions in the space C§°((2)

as follows,
/|Vu Md (v)dx >
| @

w(v)da s\ 7 Ju)P
pa /’u /T+a(p:5)(p_1)< n > ) xi dl‘, (2)

Snf

where p > s > 1 and a(p, s) = (5;71) )

It is obvious that for s = p the latter inequality becomes inequality , while as s =p =2 it
casts into the inequality proven by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev
n [14].

In paper [15] it was also shown that in the case of a convex domain 2 C R" inequality
can be substantially simplified. Namely, can rewritten as

p u@)P - elp = DVET(5E) (877 1
Q/]Vu(x)\ dr > ch/ 50() dz + (0 T(2) (nlm ) /lu )|Pdzx. (3)

Our inequality can be also substantially simplified for convex domains,

s+1

|Vu(x)|P N a(p,s)r<7>r(%) Ju(z)[P T alp.s)(p— ( IS~ 1|> /]u VPdz.  (4)

5 () () | T ]

In the present work we also provide a special class of non-convex domains (see [5], [21], [22],
and [23]) for that analogues of inequality (4)) hold true.
In the concluding part of the paper we establish logarithmic inequalities being analogues of

those in [14] and [16]. The 1nequahty proven in [I4] for a convex domain 2 C R™ reads as
|U |2 1
d d
/ Vulnle = T maswor )
nn=2/ng 2/n | In?( a/2 )2
d 5
T I in(a)2)? ]QP/ /’“ o (5)

A feature of our logarithmic inequalities is the presence of iteration of logarithms and exponents.
The examples of employing logarithms can be found in works [11], [12], [14], [T7]-[19], and [20].
We observe that a generalization of inequality by help of embedded logarithms was obtained
earlier in [16]. But we obtain the inequality with another logarithmic weight for a class of regular
domains. Namely, we show that for an arbitrary domain 2 C R"™ with constant of regularity c
and and an arbitrary function u € C§°(2) inequality

/\Vu(:c)]Qdm ﬁg ‘“ ( +Z ( ) g (%5 ek>>dx+

Q

k 2
o le} nn=2)/ 2/n 2
1 - E ()00(57 ek) et (pi(§7ek)] 4 Sn—1 |Q|2/n / ’u dx
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holds true, where
eo=1, e =exper; Ingzr =2z, Ingy(z) = Inlng(z),
1
pile,en) = (e, —Inz)In(ey —Inz) - ... In;(e — Inx)’
The latter statement for k = 0 yields .

2. One-dimensional inequalities. Let us prove one-dimensional inequalities which will be
employed later in the proof of inequalities in the multi-dimensional case. We introduce required
definitions and notations.

Let f be defined and differentiable on (0, b] for b > 0. Following J. Tidblom (see [15]), we
shall say that f € ®4(0,b) if f is a real function and there exists a constant C' = C(f) such
that

1 < k.

sup (7 f ()] + 1 (1)) <O, s> 1. (6)
0<t<b
It is easy to see that condition (3) is equivalent to two conditions,
3C, = CL(f) 57 f(H)| < Cp, 0 <t < b, (7)
and
3Cy = Co(f) : t°|f'(¢)] < O, 0 <t < b. (8)
Lemma 1. Suppose u € C*0,0],b > 0,u(0) = 0 and f € ®,(0,b). Then asp > s > 1, the
mequality
b p
b [ POl Pt
1(+)|P
[l L ) ]
ts—p pP /b b s p—1
0 (170 - s o)
0
holds true.

Proof. By the hypothesis of the lemma, for the function u(t) we have
t
IM > 0: Jult)| < /|u’(m)|dw < Mt, Vit € (0,1).
0

Taking into consideration condition and inequality p > s, we obtain
L ONu@P < [FOIMPE < | @[EEMPP < CoMPH.
Thus,

/ F®)u(t)Pdt < +oo.

We also observe that
t p
FO)u(0)P = lim f(t)|u(t)]” = lim f(t) |u<,>’ <
t—0 t—0 ts—1
)P MP=1P= (¢
WOF _ o i u®)l _
ts—l t—0 ts—l

< Oy lim M2 fu(t)] < CLMP10* u(0)] = 0.
in

t—0

For an arbitrary constant ¢ we get
b

() =)l = [ FOlutora] =| [ (10) - c)u(ol)at| =

0
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b b

<o [ 150 - Pl =p [ 1760~ eisee] T | HOE 0 <
0 0
v v
(o)

dt

tsp

b
<p /Wﬂw—dfw?ﬂmwt
0 0

Substituting ¢ = f(b) and taking p-th power of both sides of the inequality, we obtain the
desired estimate. O

Remark. In order the integral in the first factor of the latter inequality to have no singu-
larities, one needs restrictions for s and p. As p > s > 1, this integral has no singularities due
to the inequality

S_
p+p20
p—1

since |u(t)| < Mt.
Let us give some corollaries of Lemma 1.

tl—s
T 1-s"

Corollary 1. Suppose u(t) satisfies the hypothesis of the previous lemma and f(t)
Then the inequality

b
' ()]
IO 4 o
0

p

b P
[ w0 g
0

t

b P s—p Pl
(11 == o)
0

holds true, where a(p,s) = (%)p.

Corollary 2. Let u € C'[0,b],b > 0,u(0) = 0. Then

b

[E w0 | [(2-0-ve——vyif) wopa ). ©

t ts
0

Proof. The equation follows from Corollary 1 and a simple inequality

AP

o1 2 PA-(p-1)B

b p
Ty
o U

if we let

and

b
B / 4175 i3 ()Pt
0
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Lemma 2. Suppose v € C3°(0,2b),b > 0. Then we have

2b

f @l p e st
O/Wdtm(p,s) O/(ps(t)—@—l)(p )

= <t>) u(t)dt |

where
p(t) = dist(t,R \ [0, 2b]) = min(¢,2b — ).
Proof. We apply inequality @ to a function u € C1[b, 2b] obeying u(2b) = 0. We have

2b

2b
[ =gtz o) | [ (gl = 0= 0@ -0 s @0 g
b b

Summing the obtained inequality with @D, we arrive at the statement of the lemma. O

Theorem 1. Let u € C§°(a,b). Then we have

[ o) ol st b
a/p(t)spdtza(P,s) a/ (0 dt — (bTa)sa/|U(t)| ar | (10)

Proof. Without loss of generality, we take the segment [0, 2b] as the interval of integration. The
right hand side of the inequality in Lemma 2 can be rewritten as

a(p, s) 7%dt+7)% 1— (1— (%t))sjppl |u(t)[Pdt

(s—1) s—p __
Bttt =0

Here we have employed the identity s —
We note that p(t) < b. Hence,

(e @)“)“” N CONE

It implies the statement of the theorem. O

3. Multi-dimensional Hardy type inequalities for arbitrary open domains. In this
section we provide a multi-dimensional analogue of the inequality in Theorem [I}

Let €2 be an open domain in R”. Following M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof,
A. Laptev [14], we denote by 7,(x) the distance between a point z € {2 and the nearest point
on the boundary 9 in the direction of the vector v € S*~1,

7,(x) = min{s > 0: z + sv € Q}.
We define p,(z) being the distance from the boundary of the domain measured in the direction
of v and D, (x) being the diameter of the domain in the direction of v as follows,
pu(z) = min{7_,(x),7,(x)}, D,(z) =1,(x) + 7_,(2).

Let
d(z) = inf 7,(r) =dist(z,009), Q. ={yeQ:x+t(y —x) € Q,Vt € [0,1]}.

vesn—1
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Theorem 2. For an arbitrary open domain 2 C R™ and an arbitrary function u € C§°(£2),
the following Hardy type inequality

/|Vu / ’COS Y V“ D oy >

a(p, s) /lu($)|p / icgg))der( (|Sn 1|> /

Sn—1 (9]

holds true.

Proof. Using E.B. Davies’ arguments (see [5]) and one-dimensional inequality (L0)), it is easy
to get the following estimate,

/lf)“ i > alp,s) /'“ L= alp )= 1) [ (o) o

Q

Employmg the definition of the gradlent, we have
O,u(z)] = [v - Vu(z)| = [Vu(z)||cos(v, Vu(z))|.

We integrate both sides of the inequality w.r.t. normal surface measure S"~1. We get

// |cosuVu )|pdw(y)|vu(x>|pdx2

-1 [ () @) | utopas

([ |

Q s§n—1 S§n—1
Due to [15], it is known that

J (Dv2<w>>sdw@> > ((Qﬁﬁh)‘f‘

Hence, the inequality

V4
[1vup [T g4,
) S po ()
dw(v) S™ N[ ()P
os) | [lutp [ s -1y (— da
) S, ) n) ) I
holds true. The proof is complete. O

4. Hardy type inequalities for convex domains. In Section 2 we have proven that for
an arbitrary domain Q C R” and a function u € C§°(2) the following Hardy type inequality

[vutap [T )0 >
Q gn—1

po " (x)

w(v)da s\ 7 Ju()
a(p, s /\U [TﬂLa(p,S)(P—l)(T) J de (11)

holds true. As it Wlll be shown in the next theorem, in the case of a convex domain (2 C R”
inequality can be substantially simplified.
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Theorem 3. Let Q C R"™ be an arbitrary convex domain, u € C§(2) is an arbitrary func-
tion. Then the inequality

s+1

V() Ce)0(s) 5] .
o 20 | e ren e (\m) /m JPa (12)

holds true.

Proof. For an arbitrary convex domain {2 C R™ we estimate from above the internal integral in
the left hand side of .

/ ]cosuVu ’COSI/VU;Z))‘ pp(a:)dw(y)<
| cos(v, Vu(l’)ﬂpp’i(l’) _ [ leoswe)Ppi(a)
<Sn/1 6% (z) dw(w) _Sn/l 6% (z) ) <
0P (x) B do(v) 1
fila%@“@”glas%w‘&par

where e =1y € S" ' : 7, (z) = §(x).

In the latter chain of relations we have employed the inequality | cos(v, e)|p,(z) < d(z)that
is valid for all points x € Q) due to obvious geometric arguments.

Thus, for the left hand side of inequality m we obtain the estimate

/|Vu / ]cos v, Vu ))lpdw(y)d:v < \Zug(ﬂ)p

Applying inequality | cos(v, e)] p,,(x) < 0(z) to the internal integral of the first term in the right
hand side of inequality , we obviously obtain

/ %(;; . / Icos(V(SSe(H)dw / | cos(v, €)|*dw(v).

S§n—1 S§n—

The latter integral can be easily calculated by the change of variables,
r(=)r(s)
a r(n+s) ‘

Hence, we have the lower estimate for the first term in the right hand side of inequality ,

/|cosye|dw()

o) r(5)r(s) 7 puer
s /h‘ tK‘_GT () | @

Employing the identity €2, = €2, which is obvious for convex domains, we obtain easily the
identity for the second term in the right hand side of inequality ,

/ |u(z)[Pdx.

Q

Sn-t " u(x
Mn@@—U(’ ’) )]
Q
The proof is complete. O

3w

_ fmzam@@—w<§gg
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Comparing inequalities (11)) and , we pose a question whether there exist non-convex
domains satisfying analogues of inequality proven in Theorem |3| for convex domains? We
give the positive answer for this question and provide a special class of non-convex domains for
which analogues of inequality exist.

5. Hardy type inequalities for non-convex regular domains. Following E.B. Davies
[5], we define a pseudo-distance m(x) from a point = to the boundary of the domain €2,

1 /dSnl
m2x' S”1|

We introduce the notion of a regular domain in space R™. We shall say that the domain 2 C R"
is regular if there exists a finite constant ¢ > 0 such that

d(x) < m(z) < co(z) Vo € Q.

We shall call ¢ a regularity constant for the domain 2.
As it will be shown in the next theorem, for regular domains it is possible to obtain an
inequality similar to inequality proven in Theorem (3| for convex domains.

Theorem 4. Suppose 2 C R"™ is an arbitrary reqular domains with the constant of reqularity
¢, u € C§°(Q) is an arbitrary function. Then the inequality

D T()T(3) 1 [vu@)p
var(ze) 0w

a(p,s)2°” [ |u(z)|” S \Pd
z— / 5 (x) dx + a(p,s)(p — (nlﬂl ) /Iu )["d

Q
holds true, where D,(§2) := sup pb(z), = € L.

vesSn—1

dx >

Proof. For an arbitrary regular domain {2 C R™ with the constant of regularity ¢ we estimate
from above the internal integral in the left hand side of inequality ,

/ | cos(, vu(x))lpdw(u) _ / | cos(v, VU(:U))V,Oﬁ(x)dw(V) <

o5 (z) Py ()
sn—1 s
< / |Cos(u,V(S?((;))Mppﬁ(z)dw(y): / |COS(V5’8€(L|§p5(:E)dw(V)<
sn-1 st

where e =1y € S 7, (z) =d(z), D)) := sup po(z), z € Q.
vesn—1

Thus, for the left hand side of inequality we obtain the estimate

[ eos(, Vu(@)l? DOT()(3) [ vug
Q/ |vu(x)|g7[1 s € ——— () Q/ |
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To estimate the integral integral of the first term in the right hand side of inequality , we
employ a result proven in [21] for regular domains,

dw(v) 25/2
Kpmazwmy

Sn—=

Taking into consideration the inequality

m(z) < cd(x)

being valid for all point = in the domain () regular with constant ¢, we arrive easily to the

inequality
/ dw(v) - 25/2
Sl T era
Thus,
9s/2 P
s /m /‘()Mzam? o),
»() ¢ 0°(x)
-1 Q

Employing the obvious mequahty |Qx| < |Q] being valid for any domain Q C R", we obtain
easily the estimate for the second term in the right hand side of inequality .

(TN e, SN e e,
a(p,s)(p 1)( - ) / iz (p,s)(p— ( IQI> /I )IPd

The proof is complete. O

6. Hardy type inequalities with logarithmic weights for regular domains and
functions in space H}. Let

1 1 1
t) = —— 0<t< D/2
1) t+t(e—1n%)+t(e—ln%)1n(e—ln%)’ /2
where D = diam Q2 and 0 < o < 2.
Then the following identity
2 2 2 2
2 ' v) — 2 v) — 5 —
(o ) R o 2 ] P 23 o 2
2 2
+ —ln @222 I 22v + 2 apy\2 apyy
(e - P Inle — %) | pi(e — In )2 In(c — In %)
1 1 1 .
Py pile =52 pi(e —In®f)2In(e — In °f)
2 2 2
+ oy T3 apy apy 2 apy\2 apyy
e—nT) T Rle— W) (e~ W) (e — I )in(e — nZ)
1 1 1

Py pple—Inf)? - p2(e —In %6)2In*(e — In °5*)
holds true. The estimate

2f(p)f(D.[2) — fA(D,/2) = : 1- : apy (e_mg&)lln(e_lnﬂ&)} x

1 1
X |1— - —
[ e—an‘D” (e—lnoé%)ln(e—lné%)]
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2
Al |
D? e—In2%  (e—In%)In(e —In %)

>
2D 2D
2
>( 4 4) X 1 1 -
“\pD, D7 e—Inle  (e—In2le)ln(e—InLey| =

4 4 1 1 ?
> B i -
~\p.D, D? e—In§g (e—In§)ln(e—Ing)

is valid as well. Here we have used the inequality

>e

that is obvious since 0 < p, <
For integer £ > 0 we denote
eo=1, e =exper; Ingzr==x, Ing(z)=Inlng(z).

Let

K
1
+Zz:ta—1n JIn(a —In%)- ... Inj(a —In %)’

wl»—t

fult 0<t<D/2

We note that function f(¢) = fo(¢,1) was employed in paper [14] in the proof of inequality ().
We introduce the notation
1

a—Inz)ln(a—Inz)- ... -Inj(a—Inz)

@i($’ CL) = (
Let us show that the function fy (¢, a) satisfies the identity

apy k:)

1 i (5
Qfé(plfaek) - fl?(pwek) = ? + Z pg
14 i=0 14

and the inequality

2f (0o ) F(Du/2,e8) — 12(Duf2,e1) > (p‘j) - Di) [1 - is@? (g,ek)] )

We prove the first identity by the induction. The case k = 0 was proven in [I4]. The proof of
the case k = 1 has been adduced above. Suppose the inequality is valid for all natural numbers
less than k. Let us show that the statement is valid for the natural number £ + 1.

We observe that

1
t = fr(t —
Jrar (b, 1) = filt, exsr) + Herrs —n 2 )ln(ek+1 Y ) (e —In %t)
1 ot
= fu(t, ex1) + gsﬁkﬂ (57 €k+1) .

Then
2f/,€+1(p1/7 Chi1) — f}?ﬂ(ﬂm Chy1) =

1 at ! 1 at 2
=2 (fk(t, Cry1) + 7 Ph1 <57€k+1)> — (sz(t, ept1) + 7 Ph1 <57€k+1>> =

1 at !
=2fp(t ex1) — fE(t, eppr) +2 (z@kﬂ (5’ €k+1)) —
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1 at 1, ot
_2ka(t7€k+1)90k+1 <57€k+1) ~ 2Pk <57€k+1) =
20141 (%, €xt1)

t2
ket

20i(%, ex1) k1 (5 k1) 2041 (5, €re1)
_'_Z t2 + t2 -

= 2fi(t, exr) = fR(t, erpr) —

2901 D ) €+l on—i-l( D> ek+1) ‘Piﬂ(%t’ €k+1) _
_ Z 3 — e —
= 2f1(t, exs1) — fr(t, €ppr) + ! )
R FTET 2 (e — In 222210 (e, — In 222 L Ind, (ep — In 222)
The latter identity leads us to the desired statement.
Inequality can be proven by analogy with the case £ = 1 and with employing inequality
aD,
2D’

€ —
which is obvious since 0 < p, < %.
In [I4] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev proved that for an arbitrary

open set 2 C R" and an arbitrary function u € H}(2) the inequality

t/Wde> [ [ @rew - re.w)-+

Q §n—1

+2f(pu () f(Dy(2)/2) + (Do () /2)) u(2) *dz (14)
holds true, where D € (0, 00| is the diameter and f € $5(0, D/2).
We note that f(t,ex) € ®2(0, D/2). Thus, inequality (14) as f = f(t,ey) gives us the relation

/|Vu| i > " // TR %%)d@@\@@ﬁdw

Q sn—1 :0

PEMZ—%]//(M b gy ) WP, (9

Q sn—1

In [14] the authors also showed that

4 4 Sp_1\2/m 1
Sn/l po(2)D,(x) DQ(a:)dw(V) > ( - > SR

Combining two latter inequalities, we obtain

/|Vu| dw>" // R wf(?g’ek))dw(y)\u(x)ﬁdwr

Q sn—1 =0

2
(n—2)/2 2
o n om [ |u(z)]
i=0 0 z

Suppose now that Q@ C R™ is a regular domain with the constant of regularity c¢. In [21]
A.M. Tukhvatullina showed that then

dw(v) 2
| e > e e

Sn—1
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We observe that

Hence,

(143 (D”)) o)

1=0

Thus, we arrive at the following result.

Theorem 5. Suppose 2 C R"™ is a regular domain with the constant of regularityc and

0 < a < 2. Then for an arbitrary function u € C§°(Q2) and k € N the inequality

/|Vu|d _2”—2 |“ <+Z < )-...-go?(%s,ek)>dx+

Q
k a a Zn(” 2/
_ = PN (s 2/
+ |1 ;%(2,%) %(2,%)] 1 n- 1|Q|2/ /|u )|*dx
holds true, where
1

i\ = ) <k
Pile, ex) (e —Inx)In(ey, —Inz) - ... In;(ep — Inx) !

We express our sincere gratitude to our supervisor, professor Farit Gabidinovich Avkhadiev,

for useful advices and valuable remarks.
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