ON A SPECTRAL PROPERTY OF IRREGULAR PENCILS

N.F. VALEEV

Abstract

The present paper introduces the notion of a quasi-regular eigenvalue and a quasi-regular pencil spectrum of finite dimensional operator pencils. It is demonstrated that quasi-regular eigenvalues of irregular pencils are continuous with respect to perturbations of the pencil. Properties of quasi-regular eigenvalues are studied and formulae for calculating a quasi-regular spectrum are obtained.

Keywords: spectral theory of linear operators, irregular pencils, inverse spectral problems, regular spectrum of the operator pencil.

Pacs: 05.45.-a Nonlinear dynamics and chaos

1. Introduction, problem formulation

In an n-dimension Euklidean space \mathbb{E}^{n} we consider the pencil of operators:

$$
\begin{equation*}
L(\mu, \varepsilon)=\left(A_{0}+\varepsilon A_{1}\right)-\mu\left(B_{0}+\varepsilon B_{1}\right): \mathbb{E}^{n} \rightarrow \mathbb{E}^{n} \tag{1}
\end{equation*}
$$

where $\mu \in \overline{\mathbb{C}}$ is a spectral parameter, $\varepsilon \in \mathbb{C}$ is a parameter of perturbations.
Everywhere in what follows we assume that the pencil of operators $L(\mu, \varepsilon)$ is regular in some neighbourhood of the point $\varepsilon=0$, and it is irregular in the point $\varepsilon=0$ itself. This assumption holds for the following conditions:

$$
\begin{gather*}
\max _{\mu, \varepsilon \in \mathbb{C}}\{\operatorname{rank} L(\mu, \varepsilon)\}=n, \tag{2}\\
\max _{\mu \in \overline{\mathbb{C}}}\{\operatorname{rank} L(\mu, 0)\}=m<n . \tag{3}
\end{gather*}
$$

According to the condition (2) the pencil $L(\mu, \varepsilon)$ has (due to order) n eigenvalues:

$$
\begin{equation*}
\mu_{1}(\varepsilon), \mu_{2}(\varepsilon), \ldots, \mu_{n}(\varepsilon) \in \overline{\mathbb{C}} \tag{4}
\end{equation*}
$$

which are zeroes of the characteristic polynomial

$$
\begin{equation*}
\operatorname{det} L(\mu, \varepsilon)=\sum_{k=0}^{n} l_{k}(\varepsilon) \mu^{k} . \tag{5}
\end{equation*}
$$

Remark. Let us consider that $\mu=\infty$ is an eigenvalue of some pencil $A-\mu B: E^{n} \rightarrow E^{n}$ if $\operatorname{det}(B)=0$.

Every eigenvalue $\mu_{k}(\varepsilon)$ is an algebraic function from $\varepsilon \in \mathbb{C}$, meanwhile these values can be considered as functionals from the matrices $A_{0}, B_{0}, A_{1}, B_{1}$, i.e.

$$
\mu_{k}(\varepsilon)=\mu_{k}\left(A_{0}, B_{0}, A_{1}, B_{1}, \varepsilon\right)
$$

[^0]It results from the general theory of finite dimensional linear operators (see, e.g., [2]) that the limiting values $\mu_{k}(\varepsilon)$ do not depend on A_{1}, B_{1} and are functionals of the matrices A_{0}, B_{0} :

$$
\lim _{\varepsilon \rightarrow 0} \mu_{k}(\varepsilon)=\mu_{k}\left(A_{0}, B_{0}\right)
$$

under the condition

$$
\max _{\mu \in \overline{\mathbb{C}}}\{\operatorname{rank} L(\mu, 0)\}=n
$$

In other words, the eigenvalues $\mu_{k}(\varepsilon)=\mu_{k}\left(A_{0}, B_{0}, A_{1}, B_{1}, \varepsilon\right)$ of a regular pencil are continuous functionals of the matrices A_{0}, B_{0}.

Let now the limiting pencil $L_{0}(\mu)=L(\mu, 0)$ be irregular, i.e. $\operatorname{det} L(\mu, 0) \equiv 0$. In this case the situation varies, in particular, we cannot already state that the limits of the eigenvalues $\mu_{k}(\varepsilon)=\mu_{k}\left(A_{0}, B_{0}, A_{1}, B_{1}, \varepsilon\right)$ depend only on A_{0} and B_{0} when $\varepsilon \rightarrow 0$. Namely, the limiting values $\mu_{k}(\varepsilon)=\mu_{k}\left(A_{0}, B_{0}, A_{1}, B_{1}, \varepsilon\right)$ can also depend on the direction of the pencil $L(\mu, \varepsilon)$ by which it approaches to the limiting pencil $L_{0}(\mu)$, i.e. from the pair of matrices $\left(A_{1}, B_{1}\right)$.

In connection with the above we accept the following definition.
Definition 1. Let $\mu_{k}\left(A_{0}, B_{0}, A_{1}, B_{1}, \varepsilon\right)$ be an eigenvalue of the pencil

$$
L(\mu, \varepsilon)=\left(A_{0}+\varepsilon A_{1}\right)-\mu\left(B_{0}+\varepsilon B_{1}\right): \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}
$$

satisfying (2)-(3).
If the limiting value of the functional

$$
\mu^{*}:=\lim _{\varepsilon \rightarrow 0} \mu_{k}\left(A_{0}, B_{0}, A_{1}, B_{1}, \varepsilon\right) \in \overline{\mathbb{C}}
$$

in this case does not depend on the operators A_{1} and B_{1}, then we call it a quasi-regular eigenvalue of the pencil $L_{0}(\mu)=A_{0}-\mu B_{0}$. The set of all the quasi-regular eigenvalues μ_{k}^{*} is called a quasi-spectre of the pencil.

Let us note that if μ^{*} is a quasi-regular eigenvalue of the pencil $L_{0}(\mu)$, then as opposed to a regular eigenvalue it may appear that $\operatorname{rank} L_{0}\left(\mu^{*}\right)=\max _{\mu \in C} \operatorname{rank} L_{0}(\mu)$.

The basic objective of the present paper is to investigate properties of a quasi-spectre of the singular pencil $L_{0}(\mu)$. Introducing the notion of a quasi-spectre of a pencil was naturally motivated in the theory of multi-parameter reverse spectral problems (MPRSP) by the problem of solving (MPRSP), which are perturbations-resistant. Let us note that similar problems, in particular, the notion of a regular spectre of pencils of operators were considered in ([4]-[7]).

Due to the objectives of the research (without loss of generality) we make the following two suppositions.

Firstly, we consider that

$$
\begin{equation*}
\operatorname{rank} B_{0}=\max _{\mu \in \overline{\mathbb{C}}} \operatorname{rank}\left(A_{0}-\mu B_{0}\right)=m \tag{6}
\end{equation*}
$$

If it turns out that the $\operatorname{rank} B_{0}<\max _{\mu \in \overline{\mathbb{C}}} \operatorname{rank}\left(A_{0}-\mu B_{0}\right)$, then we can move over the pencil satisfying the condition (6) with the help of a fractional-linear transformation of the spectral parameter μ.

Indeed, it results from (3) that there exists $\mu^{*} \in \mathbb{C}$ such that $\operatorname{rank}\left(A_{0}+\mu^{*} B_{0}\right)=m$. Then

$$
\left(A_{0}+\varepsilon A_{1}\right)-\mu\left(B_{0}+\varepsilon B_{1}\right)=\frac{\mu^{*}-\mu}{\mu^{*}}\left[A_{0}+\varepsilon A_{1}-\frac{\mu}{\mu-\mu^{*}}\left(A_{0}+\varepsilon A_{1}-\mu^{*}\left(B_{0}+\varepsilon B_{1}\right)\right)\right] .
$$

Now, assuming that

$$
s=\frac{\mu}{\mu-\mu^{*}}, \quad \hat{B}(\varepsilon)=A_{0}+\varepsilon A_{1}-\mu^{*}\left(B_{0}+\varepsilon B_{1}\right), \quad \hat{A}(\varepsilon)=A_{0}+\varepsilon A_{1},
$$

we proceed to research of the equivalent pencil $\hat{L}(s, \varepsilon)=\hat{A}(\varepsilon)-s \hat{B}(\varepsilon)$, where $\operatorname{rank} \hat{B}(0)=m$. The quasi-regular spectres of pencils $\hat{L}(s, \varepsilon)$ and $L(\mu, \varepsilon)$ are connected by the fractional-linear transformation $s=\frac{\mu}{\mu-\mu^{*}}$ in this transformation.

Secondly, we consider that $B=B^{*} \geq 0$. We can achieve this condition, if we proceed to the strictly equivalent pencil $\tilde{L}(\mu, \varepsilon)=U L(\mu, \varepsilon) V$, where $U, V: E^{n} \rightarrow E^{n}$ are unitary matrices, included into the singular expansion of the matrix B, i.e. $\tilde{B}=B U V$.

Now, in addition to the conditions (2), (3), we consider that

$$
\begin{equation*}
\operatorname{rank}\left(A_{0}-\mu B_{0}\right)=\operatorname{rank}\left(B_{0}\right)=m, \quad B_{0}^{*}=B_{0}>0 \tag{7}
\end{equation*}
$$

2. An unperturbed pencil

In this section we consider an irregular unperturbed pencil

$$
\begin{equation*}
L_{0}(\mu)=A-\mu B: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}, \tag{8}
\end{equation*}
$$

satisfying the conditions

$$
\begin{equation*}
\max _{\mu \in \mathbb{C}} \operatorname{rank}(A-\mu B)=\operatorname{rank}(B)=m<n, \quad B=B^{*} \geq 0 \tag{9}
\end{equation*}
$$

Let P be a selfconjugated projection on the subspace $V_{2}=\operatorname{Ker} B, V_{1}=V_{2}^{\perp}$. Then the pencil $L_{0}(\mu)$ in a suitable basis can be presented in the form

$$
L_{0}(\mu)=\left(\begin{array}{cc}
A_{11}-\mu B & A_{12} \tag{10}\\
A_{21} & A_{22}
\end{array}\right)
$$

where $A_{11}=(I-P) A(I-P): V_{1} \rightarrow V_{1}, A_{12}=(I-P) A P: V_{2} \rightarrow V_{1}$,
$A_{21}=P A(I-P): V_{1} \rightarrow V_{2}$ and $A_{22}=P A P: V_{2} \rightarrow V_{2}$.
Note that the pencil $L_{11}(\mu)=A_{11}-\mu B: V_{1} \rightarrow V_{1}$ is regular.
Theorem 1. Let the conditions (9) hold, then

$$
\begin{equation*}
A_{22}-A_{12}\left(A_{11}-\mu B\right)^{-1} A_{21} \equiv 0 \tag{11}
\end{equation*}
$$

in the representation (10) of the pencil $L_{0}(\mu)$ for any $\mu \in \mathbb{C}$.
Proof. The matrix

$$
F(\mu)=\left(\begin{array}{ll}
I & -\left(A_{11}-\mu B\right)^{-1} A_{12} \tag{12}\\
0 & I
\end{array}\right)
$$

by virtue of regularity of the pencil $A_{11}-\mu B: V_{1} \rightarrow V_{1}$, exists, is bounded and degenerated with all $\mu \in \mathbb{C}$ except for zeroes of the characteristic polynomial $\operatorname{det}\left(A_{11}-\mu B\right)$. Consequently, $\operatorname{rank} L_{0}(\mu)=\operatorname{rank}\left(L_{0}(\mu) F(\mu)\right)$. Hence

$$
L_{0}(\mu) F(\mu)=\left(\begin{array}{cl}
A_{11}-\mu B & 0 \\
A_{21} & A_{22}-A_{21}\left(A_{11}-\mu B\right)^{-1} A_{12}
\end{array}\right)
$$

Now, using a block-diagonal matrix $L_{0}(\mu) F(\mu)$ we obtain

$$
\operatorname{rank}\left(L_{0}(\mu) F(\mu)\right)=\operatorname{rank}\left(A_{11}-\mu B\right)+\operatorname{rank}\left[A_{22}-A_{21}\left(A_{11}-\mu B\right)^{-1} A_{12}\right] .
$$

It results from (9) and (10) that $\operatorname{rank}\left(A_{11}-\mu B\right)=m$, therefore $\operatorname{rank}\left(A_{22}-A_{21}\left(A_{11}-\right.\right.$ $\left.\mu B)^{-1} A_{12}\right) \equiv 0$ with all $\mu \in \mathbb{C}$ with the exception of zeros of the characteristic polynomial $\operatorname{det}\left(A_{11}-\mu B\right)$. The latest is possible only in the case when $\left.A_{22}-A_{21}\left(A_{11}-\mu B\right)^{-1} A_{12}\right) \equiv 0$, hence we prove the Theorem.

The proved Theorem denotes that further we can consider pencils of the form

$$
L_{0}(\mu)=\left(\begin{array}{cc}
A_{11}-\mu B & A_{12} \tag{13}\\
A_{21} & 0
\end{array}\right)
$$

which block matrices satisfy the identity $A_{22}-A_{12}\left(A_{11}-\mu B\right)^{-1} A_{21} \equiv 0$.
The following property of the considered pencil results from this identity.

Theorem 2. Let $\mu^{*} \in \mathbb{C}$ be an arbitrary simple eigenvalue of the pencil $L_{11}(\mu)=A_{11}-\mu B$: $V_{1} \rightarrow V_{1}$ and

$$
\begin{equation*}
A_{11} \vec{x}^{*}=\mu^{*} B \vec{x}^{*}, \quad A_{11}^{*} \vec{y}^{*}=\mu^{*} B \vec{y}^{*} \tag{14}
\end{equation*}
$$

Then either $A_{21}(\vec{x})^{*}=0$ or $A_{12}^{*}(\vec{y})^{*}=0$.
Proof. Let us consider two alternative cases:

- $\left\|\left(A_{11}-\mu B\right)^{-1} A_{12}\right\|$ is bounded when $\mu \rightarrow \mu^{*}$;
- $\left\|\left(A_{11}-\mu B\right)^{-1} A_{12}\right\|$ is not bounded when $\mu \rightarrow \mu^{*}$.

In the first case all the elements of the matrix $\left(A_{11}-\mu B\right)^{-1} A_{12}$ are rational functions and are bounded in the neighbourhood of the point $\mu=\mu^{*}$ and elements of the matrix $\left(A_{11}-\mu B\right)^{-1} A_{12}$ do not have specifications in the point $\mu=\mu^{*}$. Consequently, elements of the matrix $A_{12}^{*}\left(A_{11}^{*}-\right.$ $s B)^{-1}$ are also analytical functions in the neighbourhood of the point $s=\bar{\mu}^{*}$.

On the other hand, there is a vector \vec{e} such that the eigenvector \vec{y}^{*} of the pencil $A_{11}^{*}-\mu B$ can be presented in the form

$$
\vec{y}^{*}=\frac{1}{2 \pi i} \oint_{\left|S-\bar{\mu}^{*}\right|=\delta}\left(A_{11}^{*}-s B\right)^{-1} \vec{e} d s
$$

But then

$$
A_{12}^{*} \vec{y}^{*}=\frac{1}{2 \pi i} \oint_{\left|S-\bar{\mu}^{*}\right|=\delta} A_{12}^{*}\left(A_{11}^{*}-s B\right)^{-1} \vec{e} d s=0,
$$

by virtue of the fact that $A_{12}^{*}\left(A_{11}^{*}-s B\right)^{-1}$ is an analytical function in the point $S=\bar{\mu}^{*}$.
In the second case it results from the unboundedness of the operator $\left(A_{11}-s B\right)^{-1} A_{12}$ that any nontrivial vector

$$
\vec{x}_{*}=\frac{1}{2 \pi i} \oint_{\left|s-\mu^{*}\right|=\delta}\left(A_{11}-s B\right)^{-1} A_{12} \vec{\varphi} d s
$$

is an eigenvector of the pencil $A_{11}-s B$. Further, taking into account the Theorem 1, we obtain

$$
A_{21} \vec{x}_{*}=\frac{1}{2 \pi i} \oint_{\left|S-\mu^{*}\right|=\delta} A_{21}\left(A_{11}-s B\right)^{-1} A_{12} \vec{\varphi} d s=0
$$

for any $\vec{\varphi} \in \mathbb{E}^{n}$. The proof of the Theorem results from the considered cases.
We formulate the general statement of the present section for the pencils of the form

$$
C_{0}(\mu)=\left(\begin{array}{cc}
C_{11}-\mu I_{1} & C_{12} \tag{15}\\
C_{21} & 0
\end{array}\right): \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}
$$

where $\operatorname{rank} C_{0}(\mu)=\operatorname{rank}\left(C_{11}-\mu I_{1}\right)=m<n, V_{2}=\operatorname{Ker} I_{1}, V_{1}=V_{2}^{\perp}$.
The pencils $L_{0}(\mu)$ and $C_{0}(\mu)$ are equivalent due to

$$
C_{0}(\mu)=\left(\begin{array}{cc}
B^{-1} & 0 \tag{16}\\
0 & I_{2}
\end{array}\right)\left(\begin{array}{cc}
A_{11}-\mu B & A_{12} \\
A_{21} & 0
\end{array}\right)
$$

$C_{11}=B^{-1} A_{11}, C_{12}=B^{-1} A_{12}, C_{21}=A_{21}$, and I_{1} and I_{2} are unique operators in the subspaces V_{1} and V_{2}, respectively.

Theorem 3. Let the range of the pencil $C_{0}(\mu)$ of the form (15) be equal to $m<n$, and all the eigenvalues of the matrix C_{11} be simple. Then

$$
\begin{equation*}
q(\mu)=\operatorname{det}\left(C_{11}-\mu I\right) \tag{17}
\end{equation*}
$$

is a general divisor of all the minors of the m-th order of the pencil $\left(C_{0}(\mu)\right)^{2}$.

Proof. Let μ^{*} be an arbitrary simple eigenvalue of the matrix C_{11} and

$$
\begin{equation*}
C_{11} \vec{x}^{*}=\mu^{*} \vec{x}^{*}, \quad C_{11}^{*} \vec{y}^{*}=\bar{\mu}^{*} \vec{y}^{*} \tag{18}
\end{equation*}
$$

According to the statement of the Theorem 2 we have $\left\|C_{11} \vec{x}^{*}\right\| \cdot\left\|C_{11}^{*} \vec{y}^{*}\right\|=0$. Let us consider all the possible cases for the eigenvectors \vec{x}^{*} and \vec{y}^{*} resulting in the specified equality.

Let us assume that $C_{21} \vec{x}^{*}=0$ and $C_{12}^{*} \vec{y}^{*}=0$. Since μ^{*} is a simple eigenvalue of the matrix C_{11}, then for any $\vec{\varphi} \in \mathbb{E}^{m}$

$$
\vec{x}^{*}=\frac{1}{2 \pi i} \oint_{\left|\mu-\mu^{*}\right|=\delta}\left(C_{11}-\mu I\right)^{-1} \vec{\varphi} d \mu
$$

is an eigenvector of the matrix C_{11}. Therefore, due to the supposition $C_{21} \vec{x}^{*}=0$ we have

$$
C_{21} \vec{x}^{*}=\frac{1}{2 \pi i} \oint_{\left|\mu-\mu^{*}\right|=\delta} C_{21}\left(C_{11}-\mu I\right)^{-1} \vec{\varphi} d \mu=0
$$

for any $\vec{\varphi} \in \mathbb{E}^{m}$. And it denotes that $C_{21}\left(C_{11}-\mu I\right)^{-1}$ is bounded in the neighbourhood $\mu=\mu^{*}$ and the point $\mu=\mu^{*}$ is a singular point of an eliminable type. Hence, $\left(C_{11}^{*}-\mu I\right)^{-1} C_{21}^{*}$ is also analytical in the neighbourhood of the point $\mu=\bar{\mu}^{*}$. Let us now show that $\operatorname{Ker}\left(C_{0}\left(\mu^{*}\right)\right)^{*}$ contains not less than $n-m+1$ linear-independent vectors.

Let us consider the vectors

$$
\vec{\varphi}_{0}=\binom{\vec{y}^{*}}{0}, \quad \vec{\varphi}_{k}=\binom{-\left(C_{11}^{*}-\mu I\right)^{-1} C_{21}^{*} \vec{e}_{k}}{\vec{e}_{k}}, \quad k=\overline{1, n-m}
$$

where \vec{e}_{k} make a unique basis of the space V_{2}, and \vec{y}^{*}, by the condition, is an eigenvector of the matrix C_{11}^{*}, corresponding to the simple eigenvalue $\overline{\mu^{*}}$.

Taking into account that $C_{11} \vec{y}^{*}=\bar{\mu}^{*} \vec{y}^{*}, C_{12}^{*} \vec{y}^{*}=0, C_{12}^{*}\left(C_{11}^{*}-\mu I\right)^{-1} C_{21}^{*} \equiv 0$, it is easy to show that $\left(C_{0}\left(\mu_{*}\right)\right)^{*} \vec{\varphi}_{k}=0$ for all $k=\overline{0, n-m}$.

Since $\operatorname{dimKer}\left(C_{0}^{*}\left(\mu_{*}\right)\right) \geq n-m+1$, then $\operatorname{rank} C_{0}\left(\mu_{*}\right) \leqslant m-1$.
Therefore, $\operatorname{rank} C_{0}(\mu)=m$ when $\mu \neq \mu_{*}$ and $\operatorname{rank} C_{0}\left(\mu_{*}\right)=m$ is possible only under the condition that $\mu-\mu_{*}$ is a divisor of all the minors of m-th matrix $C_{0}(\mu)$.

Assume now that $C_{21} \vec{x}_{*} \neq 0$ and $C_{12}^{*} \vec{y}_{*}=0$. Let us first show that in this case $\left(C_{11}-\mu I\right)^{-1} C_{12}$ is bounded when $\mu \rightarrow \mu_{*}$.

Indeed, on the contrary, there is a vector $\vec{\varphi}$ such that

$$
\frac{1}{2 \pi i} \oint_{\left|\mu-\mu_{*}\right|=\delta}\left(C_{11}-\mu I\right)^{-1} C_{12} \vec{\varphi} d \mu=\vec{\psi} \neq 0 .
$$

Since $\vec{\psi}$ is an eigenvector corresponding to the eigenvalue μ_{*}, then we can consider that $\vec{x}^{*}=$ $\frac{1}{2 \pi i} \oint_{\left|\mu-\mu_{*}\right|=\delta}\left(C_{11}-\mu I\right)^{-1} C_{12} \vec{\varphi} d \mu$. It results from the Theorem 1 that

$$
C_{21} \vec{x}^{*}=\frac{1}{2 \pi i} \oint_{\left|\mu-\mu_{*}\right|=\delta} C_{21}\left(C_{11}-\mu I\right)^{-1} C_{12} \vec{\varphi} d \mu=0
$$

and it contradicts the condition $C_{21} \vec{x}^{*} \neq 0$. Consequently, $\left(C_{11}-\mu I_{1}\right)^{-1} C_{12}$ is bounded in the neighbourhood of the point $\mu=\mu^{*}$.

Let us introduce the matrix

$$
D(\mu)=\left(\begin{array}{ll}
I & -\left(C_{11}-\mu I\right)^{-1} C_{12} \tag{19}\\
0 & I
\end{array}\right)
$$

into consideration. Due to the boundedness of $\left(C_{11}-\mu I\right)^{-1} C_{12}$ the matrix $D(\mu)$ is determined and degenerated in the point $\mu=\mu^{*}$ and its neighbourhood.

Let us determine the matrix $G(\mu)=\left(C_{0}(\mu)\right)^{2} D(\mu)$. It is obvious that in the point $\mu=\mu^{*}$ and in some its neighbourhood $\operatorname{rank} G(\mu)=\operatorname{rank}\left(C_{0}(\mu)\right)^{2}$. According to the statement of the Theorem 11 with all μ, when $\operatorname{det}\left(C_{11}-\mu I\right) \neq 0$, the following identity holds: $C_{21}\left(C_{11}-\right.$ $\mu I)^{-1} C_{12} \equiv 0$. Taking this into account it is easy to obtain that

$$
G(\mu)=\left(\begin{array}{cc}
\left(C_{11}-\mu I\right)^{2}+C_{12} C_{21} & 0 \tag{20}\\
C_{21}\left(C_{11}-\mu I\right) & 0
\end{array}\right)
$$

Since $\left(C_{11}^{*}-\overline{\mu_{*}} I\right) \overrightarrow{y_{*}}=0, C_{12}^{*} \vec{y}=0$ then

$$
\left[\left(C_{11}-\mu^{*} I\right)^{2}+C_{12} C_{21}\right]^{*} \overrightarrow{y_{*}}=0
$$

consequently, $\operatorname{rank}\left(\left(C_{11}-\mu I\right)^{2}+C_{12} C_{21}\right) \leqslant m-1$.
The latest denotes that there is a vector $\vec{\varphi}^{*} \neq 0$ such that $\left(C_{11}-\mu I\right)^{2} \vec{\varphi}^{*}=-C_{12} C_{21} \vec{\varphi}^{*}$. Taking into account the boundedness of $\left(C_{11}-\mu I\right)^{-1} C_{12}$ in the point $\mu=\mu_{*}$, we have $\left(C_{11}-\mu^{*} I\right) \vec{\varphi}^{*}=-\left(C_{11}-\mu^{*} I\right)^{-1} C_{12} C_{21} \vec{\varphi}^{*}$. Hence we obtain

$$
C_{21}\left(C_{11}-\mu^{*} I\right) \vec{\varphi}^{*}=-C_{21}\left(C_{11}-\mu^{*} I\right)^{-1} C_{12} C_{21} \vec{\varphi}^{*}=0 .
$$

Therefore, the vectors

$$
\binom{\vec{\varphi}^{*}}{0}, \quad\binom{0}{\vec{e}_{k}}, \quad k=\overline{1, n-m},
$$

where $\vec{e}_{k}, k=\overline{1, n-m}$ are basis vectors of the space V_{2}, and are contained in $\operatorname{ker} G\left(\mu^{*}\right)$.
Consequently, $\operatorname{rank}\left[C_{0}(\mu)\right]^{2}=m$ when $\mu \neq \mu^{*}$ and $\operatorname{rank}\left[C_{0}(\mu)\right]^{2} \leqslant m-1$ when $\mu=\mu^{*}$. It follows that $\mu-\mu^{*}$ is a divisor of all the minors of the m-th order of the matrix $\left[C_{0}(\mu)\right]^{2}$.

The third possible case resulting from $\left\|C_{21} \vec{x}_{*}\right\| \cdot\left\|C_{12}^{*} \vec{y}_{*}\right\|=0$, namely $C_{12}^{*} \vec{y}_{*} \neq 0, C_{21} \vec{x}_{*}=0$, is investigated similarly to the case $C_{21} \vec{x}_{*} \neq 0$, and $C_{12}^{*} \vec{y}_{*}=0$.

Thus, we have shown that for the arbitrary eigenvalue μ_{*} of the matrix C_{11} all the minors of the m-th order of the pencil $\left(C_{0}(\mu)\right)^{2}$ are divided into $\mu-\mu_{*}$. Since all the eigenvalues C_{11} are simple and μ_{*} is an arbitrary eigenvalue, then $\operatorname{det}\left(C_{11}-\mu I_{1}\right)$ is a divisor of all the minors of the m-th order of the matrix $\left(C_{0}(\mu)\right)^{2}$. The Theorem has been proved.

Theorem 4. Let the conditions of the Theorem 3 hold. Then if $\mu-\mu_{0}$ is a general divisor of all the minors of the m-th order of the pencil $\left(C_{0}(\mu)\right)^{2}$, then $q\left(\mu_{0}\right)=\operatorname{det}\left(C_{11}-\mu_{0} I\right)=0$.

Proof. Assume that $q\left(\mu_{0}\right)=\operatorname{det}\left(C_{11}-\mu_{0} I\right) \neq 0$. Similarly to the proof of the Theorem (3) let us consider the matrix $D(\mu)$ set in (19) and the matrix $G(\mu)=\left(C_{0}(\mu)\right)^{2} D(\mu)$. According to (19) and (20) we have

$$
G(\mu)=\left(\begin{array}{cc}
\left(C_{11}-\mu I\right)^{2}+C_{12} C_{21} & 0 \\
C_{21}\left(C_{11}-\mu I\right) & 0
\end{array}\right)
$$

Since μ_{0} is zero of all the minors of the order m, there is $\vec{x}_{0} \neq 0$ such that $\left(\left(C_{11}-\mu_{0} I\right)^{2}+\right.$ $\left.C_{12} C_{21}\right) \vec{x}_{0}=0$.

It results from the supposition $q\left(\mu_{0}\right) \neq 0$ that $\vec{x}_{0}=-\left(C_{11}-\mu_{0} I\right)^{-2} C_{12} C_{21}$. Since it results from Theorem 1 that $C_{21}\left(C_{11}-\mu I\right)^{-2} C_{12} \equiv 0$, then $C_{21} \vec{x}_{0}=0$. It means that $\left(C_{11}-\mu_{0} I\right)^{2} \vec{x}_{0}=0$. That is μ_{0} is an eigenvalue of C_{11}. The resulting contradiction proves the Theorem.

Therefore, $\left(C_{0}(\mu)\right)^{2}$ has "real" eigenvalues in the following sense. Namely, if μ_{*} is an eigenvalue of the matrix C_{11} and $\mu \notin \sigma\left(C_{11}\right)$, then

$$
\operatorname{rank}\left(C_{0}(\mu)\right)=\operatorname{rank}\left(C_{0}(\mu)\right)^{2}=m
$$

and at the same time $\operatorname{rank}\left(C_{0}\left(\mu_{*}\right)\right)^{2} \leqslant m-1$. In other words, all the eigenvalues of the matrix C_{11} are regular eigenvalues for the pencil $\left[C_{0}(\mu)\right]^{2}$.

As an example we consider the pencil

$$
C_{0}(\mu)=\left(\begin{array}{ccccc}
\mu_{1}-\mu & 0 & 0 & 0 & 0 \\
0 & \mu_{2}-\mu & 0 & 1 & 0 \\
0 & 0 & \mu_{3}-\mu & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

It is easy to calculate with all $\mu \in \overline{\mathbb{C}}$ that $\operatorname{rank} C_{0}(\mu) \equiv 3$. Let us write the square of the pencil $C_{0}(\mu)$,

$$
C_{0}^{2}(\mu)=\left(\begin{array}{ccccc}
\left(\mu_{1}-\mu\right)^{2} & 0 & 0 & 0 & 0 \\
1 & \left(\mu_{2}-\mu\right)^{2} & 0 & \mu_{2}-\mu & 0 \\
0 & 0 & \left(\mu_{3}-\mu\right)^{2} & 0 & \mu_{3}-\mu \\
\mu_{1}-\mu & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Now $\operatorname{rank} C_{0}^{2}(\mu)=3$ with all $\mu \neq \mu_{k}$, but $\operatorname{rank} C_{0}^{2}\left(\mu_{k}\right)=2$ for $k=1,2,3$.
Let us note that the highest general divisor of all the minors of the m-th order of the matrix $C_{0}(\mu)$ is 1 , and the corresponding minors of the matrix $C_{0}^{2}(\mu)$ are divided into $\left(\mu_{1}-\mu\right)\left(\mu_{2}-\mu\right)\left(\mu_{3}-\mu\right)=\operatorname{det} C_{0}(\mu)$.

3. A perturbed irregular pencil.

Let us now proceed to consideration of the perturbed pencil

$$
L(\mu, \varepsilon)=A_{0}-\mu B_{0}+\varepsilon\left(A_{1}-\mu B_{1}\right): E^{n} \rightarrow E^{n}
$$

where

$$
\operatorname{rank} B_{0}=\max _{\mu \in \mathbb{C}} \operatorname{rank}\left(A_{0}-\mu B_{0}\right)=m<n
$$

and

$$
\max _{\mu \in \in \mathbb{C}} \operatorname{rank} L(\mu, \varepsilon)=n .
$$

Due to regularity of the pencil $L(\mu, \varepsilon)$ the eigenvalues of this pencil $\mu_{1}(\varepsilon), \ldots, \mu_{n}(\varepsilon)$ are zeros of the characteristic equation

$$
\begin{equation*}
\operatorname{det} L(\mu, \varepsilon)=0 \tag{21}
\end{equation*}
$$

when $\varepsilon \neq 0$. As it was shown above (16) there are degenerated matrices S_{1} and S_{2}, which do not depend on μ and ε such that

$$
\begin{gather*}
C(\mu, \varepsilon):=S_{1} L(\mu, \varepsilon) S_{2}=C_{0}(\mu)+\varepsilon C_{1}(\mu) \tag{22}\\
C_{1}(\mu)=S_{1} A_{1} S_{2}-\mu S_{1} B_{1} S_{2}=C_{1}^{(1)}-\mu C_{1}^{(2)} \tag{23}
\end{gather*}
$$

and $C_{0}(\mu)$, has the form:

$$
C_{0}(\mu)=\left(\begin{array}{cc}
C_{11}-\mu I_{1} & C_{12} \\
C_{21} & 0
\end{array}\right): \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}
$$

as it was above in (15) and (16). Since the pencils $C(\mu, \varepsilon)$ and $L(\mu, \varepsilon)$ have similar eigenvalues $\mu_{k}(\varepsilon)$, we proceed to research of eigenvalues of the pencil $C(\mu, \varepsilon)$.

Theorem 5. Let the spectre of the matrix C_{11} consist of simple eigenvalues $\mu_{1}^{*}, \ldots, \mu_{m}^{*}$. Then the pencil $C(\mu, \varepsilon)$ has exactly m eigenvalues $\mu_{j_{1}}(\varepsilon), \ldots, \mu_{j_{m}}(\varepsilon)$ (in case of the corresponding enumeration) such that for all $k=\overline{1, m}$

$$
\mu_{j_{k}}(0)=\mu_{k}^{*}
$$

Proof. Let $G_{1}(\mu), G_{2}(\mu)$ be degenerated (to be more exact, $\operatorname{det} G_{1}(\mu) \equiv 1, \operatorname{det} G_{2}(\mu) \equiv 1$) matrices reducing the pencil $\left(C_{0}(\mu)\right)^{2}$ to the normal Smith form (see [3]).

Since $\operatorname{rank}\left(C_{0}(\mu)\right)^{2}=m$, then the matrices $G_{1}(\mu)$ and $G_{2}(\mu)$ can be chosen so that

$$
G_{1}(\mu) C_{0}^{2}(\mu) G_{2}(\mu)=\left(\begin{array}{cc}
\Lambda(\mu) & 0 \tag{24}\\
0 & 0
\end{array}\right)
$$

where $\Lambda(\mu)$ is a diagonal matrix of the size $m \times m$. It results from the Theorems 3 and 4 that $\operatorname{det}[\Lambda(\mu)]=0$ if and only if $\operatorname{det}\left(C_{11}-\mu I\right)=0$.

Assume that

$$
\begin{equation*}
D(\mu, \varepsilon)=G_{1}(\mu) C_{0}^{2}(\mu, \varepsilon) G_{2}(\mu)=D_{0}(\mu)+\varepsilon D_{1}(\mu, \varepsilon) \tag{25}
\end{equation*}
$$

Then, taking into account the representation (24), we obtain

$$
D(\mu, \varepsilon)=\left(\begin{array}{cc}
\Lambda(\mu)+\varepsilon D_{11}(\mu, \varepsilon) & \varepsilon D_{12}(\mu, \varepsilon) \tag{26}\\
\varepsilon D_{21}(\mu, \varepsilon) & \varepsilon D_{22}(\mu, \varepsilon)
\end{array}\right) .
$$

Note that it results from (25) that

$$
\begin{equation*}
g(\mu, \varepsilon)=\operatorname{det} D(\mu, \varepsilon)=\left[\operatorname{det} C_{0}(\mu, \varepsilon)\right]^{2} . \tag{27}
\end{equation*}
$$

Since $\operatorname{det} D(\mu, 0) \equiv 0$, then $g(\mu, \varepsilon)$ being a polynomial from μ and ε can be presented in the form

$$
\begin{equation*}
g(\mu, \varepsilon)=\varepsilon^{\alpha} g_{0}(\mu, \varepsilon), \tag{28}
\end{equation*}
$$

where $\alpha \in \mathbb{N}, g_{0}(\mu, \varepsilon)$ is a polynomial from ε and μ, and $g_{0}(\mu, 0) \not \equiv 0$.
Let us now show that $g_{0}(\mu, \varepsilon)$ is divided into $\operatorname{det} \Lambda(\mu)$.
For this purpose we calculate the determinant of the matrix $D(\mu, \varepsilon)$ as a product of zeros $\sigma_{k}(\mu, \varepsilon)$ of the polynomial $\operatorname{det}(D(\mu, \varepsilon)-\sigma I)=0$.

Let us denote the diagonal elements of the matrix $\Lambda(\mu)+\varepsilon D_{11}(\mu, \varepsilon)$ via $\lambda_{1}(\mu, \varepsilon), \ldots, \lambda_{m}(\mu, \varepsilon)$, and the diagonal elements of the matrix $D_{22}(\mu, \varepsilon)$ via $d_{1}(\mu, \varepsilon), \ldots, d_{n-m}(\mu, \varepsilon)$. Expanding $\operatorname{det} D(\mu, \varepsilon)$ by lines we obtain

$$
\begin{aligned}
\operatorname{det}(D(\mu, \varepsilon)-\sigma I) & =\left(\lambda_{1}(\mu, \varepsilon)-\sigma\right) \cdots\left(\lambda_{m}(\mu, \varepsilon)-\sigma\right)\left(\varepsilon d_{1}(\mu, \varepsilon)-\sigma\right) \cdots \\
& \cdots\left(\varepsilon d_{n-m}(\mu, \varepsilon)-\sigma\right)+\varepsilon h(\mu, \varepsilon, \sigma),
\end{aligned}
$$

where $h(\mu, \varepsilon, \sigma)$ is some polynomial from σ, μ and ε.
If we apply the Rouche Theorem for zeros $\sigma_{k}(\mu, \varepsilon)$ of this polynomial $\operatorname{det}(D(\mu, \varepsilon)-\sigma I)$ to the variable σ, when $\varepsilon \rightarrow 0$ and $|\mu|<R_{0}<\infty$, we obtain $\sigma_{k}(\mu, \varepsilon)=\lambda_{k}(\mu, 0)+\varepsilon \alpha_{k}(\mu, \varepsilon)$ for all $k=\overline{1, m}$, where $\alpha_{k}(\mu, \varepsilon)$ are bounded functions and $\sigma_{k}(\mu, \varepsilon)=O(\varepsilon)$ for all $k=\overline{m+1, n}$.

Since the determinant of the matrix $g(\mu, \varepsilon)=D(\mu, \varepsilon)$ is equal to the product of all its eigenvalues $\sigma_{k}(\mu, \varepsilon)$, then we obtain

$$
g(\mu, \varepsilon)=\sigma_{1}(\mu, \varepsilon) \cdots \sigma_{m}(\mu, \varepsilon) \sigma_{m+1}(\mu, \varepsilon) \cdots \sigma_{n}(\mu, \varepsilon)
$$

It follows from the above that $\sigma_{1}(\mu, \varepsilon) \cdots \sigma_{m}(\mu, \varepsilon)=\operatorname{det}[\Lambda(\mu)]+O(\varepsilon)$ and $\sigma_{m+1}(\mu, \varepsilon) \cdots \sigma_{n}(\mu, \varepsilon)=\varepsilon^{\beta} d(\mu, \varepsilon)$, where $d(\mu, \varepsilon)$ is some algebraic function and $d(\mu, 0) \not \equiv 0$. Hence we obtain

$$
\begin{equation*}
g(\mu, \varepsilon)=\varepsilon^{\beta}(\operatorname{det} \Lambda(\mu)+O(\varepsilon)) d(\mu, \varepsilon) . \tag{29}
\end{equation*}
$$

Now comparing (28) with (29) we come to the conclusion that

$$
\begin{equation*}
g_{0}(\mu, 0)=\operatorname{det} \Lambda(\mu) d(\mu, 0), \tag{30}
\end{equation*}
$$

where $d(\mu, 0)$ is a polynomial from μ.
It follows from the representation of the polynomial $\operatorname{det}(D(\mu, \varepsilon))$ in the form (30) subject to (27) and (28) that every zero of the polynomial $\operatorname{det}\left[C_{11}-\mu I_{1}\right]$ is analytically (as an algebraic function) expanded on ε. This proves the theorem.

It follows from the latest statement that the pencil of the form

$$
C(\mu, \varepsilon)=\left(\begin{array}{cc}
C_{11}-\mu I_{1} & C_{12} \\
C_{21} & 0
\end{array}\right)+\varepsilon\left(C_{1}-\mu C_{2}\right): \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}
$$

is equal to m eigenvalues $\mu_{j_{1}}(\varepsilon), \ldots, \mu_{j_{m}}(\varepsilon)$ when $\varepsilon \rightarrow 0$ have limits equivalent to the eigenvalues μ_{1}, \ldots, μ_{m} of the matrix C_{11} independently of the matrices C_{1} and C_{2}. At the same time it is easy to show that the limits of other eigenvalues of the pencil $C(\mu, \varepsilon)$ depend on C_{1} and C_{2}.

Therefore, according to Definition 1, the quasi-spectre of the pencil $C_{0}(\mu)$ consists of the eigenvalues μ_{1}, \ldots, μ_{m} of the matrix C_{11}.

Now returning to an irregular pencil of the general form (1)-(3) we note the following. To calculate a quasi-regular spectre of the pencil $L_{0}(\mu)=A_{0}-\mu B_{0}$, we first reduce it to the form satisfying the condition (7).

Then with the help of this strict equivalent transformation (16) we obtain a pencil of the form $C(\mu, \varepsilon)$ and find the spectre of the matrix C_{11}.

BIBLIOGRAPHY

1. Gantmacher F.R. Theory of matrices. 5-th edition. M.: PHISMATLIT. 2004. 560 p.
2. Halmos P. Finite dimensional vector spaces. M.: Phismatgiz. 1963. 263 p.
3. Marcus M., Mink H. Review of matrix theory and matrix inequalities. M.: Nuka. 1972. 232 p.
4. M.E. Hochstenbach, A. Muhic, B. Plestenjak On linearizations of the quadratic two-parameter eigenvalue problems // Linear Algebra Appl. 436 (2012). P. 2725-2743.
5. A. Muhic, B. Plestenjak On the singular two-parameter eigenvalue problem // Electron. J. Linear Algebra 18 (2009). P. 420-437.
6. Kublanovskaya V.N. To solution of multi-parameter problems of algebra. 11. Calculation of a regular spectre of a polynomial matrix // Notes of a scientific seminar POMI. 2007. V. 346. P. 131-148.
7. Valeev N.F. Regular solutions of a multi-parameter reverse spectral problem // Math. notes. 2009. V. 85. Issue 6. P. 940-943.

Nurmukhamet Fuatovich Valeev,
Institute of mathematics with the computing centre RAS,
112, Chernyshevsky str.,
Ufa, Russia, 450008
E-mail: valeevnf@mail.ru

[^0]: (C) Valeev N.F. 2012 .

 The work was carried out with the support of the FTP grant "'Scientific and scientific-pedagogical personnel of innovative Russia" N 14.B37.21.0358 .

 Submitted on May 5, 2012.

