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ON A SPECTRAL PROPERTY OF IRREGULAR PENCILS
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Abstract. The present paper introduces the notion of a quasi-regular eigenvalue and a
quasi-regular pencil spectrum of finite dimensional operator pencils. It is demonstrated that
quasi-regular eigenvalues of irregular pencils are continuous with respect to perturbations of
the pencil. Properties of quasi-regular eigenvalues are studied and formulae for calculating
a quasi-regular spectrum are obtained.
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1. Introduction, problem formulation

In an 𝑛-dimension Euklidean space E𝑛 we consider the pencil of operators:

𝐿(𝜇, 𝜀) = (𝐴0 + 𝜀𝐴1) − 𝜇(𝐵0 + 𝜀𝐵1) : E𝑛 → E𝑛, (1)

where 𝜇 ∈ C is a spectral parameter, 𝜀 ∈ C is a parameter of perturbations.
Everywhere in what follows we assume that the pencil of operators 𝐿(𝜇, 𝜀) is regular in some

neighbourhood of the point 𝜀 = 0, and it is irregular in the point 𝜀 = 0 itself. This assumption
holds for the following conditions:

max
𝜇,𝜀∈C

{𝑟𝑎𝑛𝑘𝐿(𝜇, 𝜀)} = 𝑛, (2)

max
𝜇∈C

{𝑟𝑎𝑛𝑘𝐿(𝜇, 0)} = 𝑚 < 𝑛. (3)

According to the condition (2) the pencil 𝐿(𝜇, 𝜀) has (due to order) 𝑛 eigenvalues:

𝜇1(𝜀), 𝜇2(𝜀), . . . , 𝜇𝑛(𝜀) ∈ C, (4)

which are zeroes of the characteristic polynomial

det𝐿(𝜇, 𝜀) =
𝑛∑︁

𝑘=0

𝑙𝑘(𝜀)𝜇𝑘. (5)

Remark. Let us consider that 𝜇 = ∞ is an eigenvalue of some pencil 𝐴− 𝜇𝐵 : 𝐸𝑛 → 𝐸𝑛 if
det(𝐵) = 0.

Every eigenvalue 𝜇𝑘(𝜀) is an algebraic function from 𝜀 ∈ C, meanwhile these values can be
considered as functionals from the matrices 𝐴0, 𝐵0, 𝐴1, 𝐵1, i.e.

𝜇𝑘(𝜀) = 𝜇𝑘(𝐴0, 𝐵0, 𝐴1, 𝐵1, 𝜀).

.
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It results from the general theory of finite dimensional linear operators (see, e.g., [2]) that the
limiting values 𝜇𝑘(𝜀) do not depend on 𝐴1, 𝐵1 and are functionals of the matrices 𝐴0, 𝐵0:

lim
𝜀→0

𝜇𝑘(𝜀) = 𝜇𝑘(𝐴0, 𝐵0)

under the condition

max
𝜇∈C

{𝑟𝑎𝑛𝑘𝐿(𝜇, 0)} = 𝑛

In other words, the eigenvalues 𝜇𝑘(𝜀) = 𝜇𝑘(𝐴0, 𝐵0, 𝐴1, 𝐵1, 𝜀) of a regular pencil are continuous
functionals of the matrices 𝐴0, 𝐵0.

Let now the limiting pencil 𝐿0(𝜇) = 𝐿(𝜇, 0) be irregular, i.e. det𝐿(𝜇, 0) ≡ 0. In this case
the situation varies, in particular, we cannot already state that the limits of the eigenvalues
𝜇𝑘(𝜀) = 𝜇𝑘(𝐴0, 𝐵0, 𝐴1, 𝐵1, 𝜀) depend only on 𝐴0 and 𝐵0 when 𝜀 → 0. Namely, the limiting
values 𝜇𝑘(𝜀) = 𝜇𝑘(𝐴0, 𝐵0, 𝐴1, 𝐵1, 𝜀) can also depend on the direction of the pencil 𝐿(𝜇, 𝜀) by
which it approaches to the limiting pencil 𝐿0(𝜇), i.e. from the pair of matrices (𝐴1, 𝐵1).

In connection with the above we accept the following definition.

Definition 1. Let 𝜇𝑘(𝐴0, 𝐵0, 𝐴1, 𝐵1, 𝜀) be an eigenvalue of the pencil

𝐿(𝜇, 𝜀) = (𝐴0 + 𝜀𝐴1) − 𝜇(𝐵0 + 𝜀𝐵1) : E𝑛 → E𝑛,

satisfying (2)-(3).
If the limiting value of the functional

𝜇* := lim
𝜀→0

𝜇𝑘(𝐴0, 𝐵0, 𝐴1, 𝐵1, 𝜀) ∈ C

in this case does not depend on the operators 𝐴1 and 𝐵1, then we call it a quasi-regular
eigenvalue of the pencil 𝐿0(𝜇) = 𝐴0 − 𝜇𝐵0. The set of all the quasi-regular eigenvalues 𝜇*

𝑘 is
called a quasi-spectre of the pencil.

Let us note that if 𝜇* is a quasi-regular eigenvalue of the pencil 𝐿0(𝜇), then as opposed to a
regular eigenvalue it may appear that 𝑟𝑎𝑛𝑘𝐿0(𝜇

*) = max𝜇∈𝐶 𝑟𝑎𝑛𝑘𝐿0(𝜇).
The basic objective of the present paper is to investigate properties of a quasi-spectre of

the singular pencil 𝐿0(𝜇). Introducing the notion of a quasi-spectre of a pencil was naturally
motivated in the theory of multi-parameter reverse spectral problems (MPRSP) by the problem
of solving (MPRSP), which are perturbations-resistant. Let us note that similar problems, in
particular, the notion of a regular spectre of pencils of operators were considered in ([4]–[7]).

Due to the objectives of the research (without loss of generality) we make the following two
suppositions.

Firstly, we consider that

rank𝐵0 = max
𝜇∈C

rank(𝐴0 − 𝜇𝐵0) = 𝑚. (6)

If it turns out that the rank𝐵0 < max𝜇∈C rank(𝐴0 − 𝜇𝐵0), then we can move over the pencil
satisfying the condition (6)with the help of a fractional-linear transformation of the spectral
parameter 𝜇.

Indeed, it results from (3) that there exists 𝜇* ∈ C such that rank(𝐴0 + 𝜇*𝐵0) = 𝑚. Then

(𝐴0 + 𝜀𝐴1) − 𝜇(𝐵0 + 𝜀𝐵1) =
𝜇* − 𝜇

𝜇*

[︂
𝐴0 + 𝜀𝐴1 −

𝜇

𝜇− 𝜇* (𝐴0 + 𝜀𝐴1 − 𝜇*(𝐵0 + 𝜀𝐵1))

]︂
.

Now, assuming that

𝑠 =
𝜇

𝜇− 𝜇* , �̂�(𝜀) = 𝐴0 + 𝜀𝐴1 − 𝜇*(𝐵0 + 𝜀𝐵1), 𝐴(𝜀) = 𝐴0 + 𝜀𝐴1,
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we proceed to research of the equivalent pencil �̂�(𝑠, 𝜀) = 𝐴(𝜀) − 𝑠�̂�(𝜀), where rank�̂�(0) = 𝑚.

The quasi-regular spectres of pencils �̂�(𝑠, 𝜀) and 𝐿(𝜇, 𝜀) are connected by the fractional-linear
transformation 𝑠 = 𝜇

𝜇−𝜇* in this transformation.

Secondly, we consider that 𝐵 = 𝐵* ≥ 0. We can achieve this condition, if we proceed to
the strictly equivalent pencil �̃�(𝜇, 𝜀) = 𝑈𝐿(𝜇, 𝜀)𝑉 , where 𝑈, 𝑉 : 𝐸𝑛 → 𝐸𝑛 are unitary matrices,
included into the singular expansion of the matrix 𝐵, i.e. �̃� = 𝐵𝑈𝑉 .

Now, in addition to the conditions (2), (3), we consider that

rank(𝐴0 − 𝜇𝐵0) = rank(𝐵0) = 𝑚, 𝐵*
0 = 𝐵0 > 0. (7)

2. An unperturbed pencil

In this section we consider an irregular unperturbed pencil

𝐿0(𝜇) = 𝐴− 𝜇𝐵 : E𝑛 → E𝑛, (8)

satisfying the conditions

max
𝜇∈C

rank(𝐴− 𝜇𝐵) = rank(𝐵) = 𝑚 < 𝑛, 𝐵 = 𝐵* ≥ 0. (9)

Let 𝑃 be a selfconjugated projection on the subspace 𝑉2 = 𝐾𝑒𝑟𝐵, 𝑉1 = 𝑉 ⊥
2 . Then the pencil

𝐿0(𝜇) in a suitable basis can be presented in the form

𝐿0(𝜇) =

(︂
𝐴11 − 𝜇𝐵 𝐴12

𝐴21 𝐴22

)︂
(10)

where 𝐴11 = (𝐼 − 𝑃 )𝐴(𝐼 − 𝑃 ) : 𝑉1 → 𝑉1, 𝐴12 = (𝐼 − 𝑃 )𝐴𝑃 : 𝑉2 → 𝑉1,
𝐴21 = 𝑃𝐴(𝐼 − 𝑃 ) : 𝑉1 → 𝑉2 and 𝐴22 = 𝑃𝐴𝑃 : 𝑉2 → 𝑉2.
Note that the pencil 𝐿11(𝜇) = 𝐴11 − 𝜇𝐵 : 𝑉1 → 𝑉1 is regular.

Theorem 1. Let the conditions (9) hold, then

𝐴22 − 𝐴12(𝐴11 − 𝜇𝐵)−1𝐴21 ≡ 0 (11)

in the representation (10) of the pencil 𝐿0(𝜇) for any 𝜇 ∈ C.
Proof. The matrix

𝐹 (𝜇) =

(︂
𝐼 −(𝐴11 − 𝜇𝐵)−1𝐴12

0 𝐼

)︂
, (12)

by virtue of regularity of the pencil 𝐴11 − 𝜇𝐵 : 𝑉1 → 𝑉1, exists, is bounded and degenerated
with all 𝜇 ∈ C except for zeroes of the characteristic polynomial det(𝐴11 −𝜇𝐵). Consequently,
rank𝐿0(𝜇) = rank(𝐿0(𝜇)𝐹 (𝜇)). Hence

𝐿0(𝜇)𝐹 (𝜇) =

(︂
𝐴11 − 𝜇𝐵 0

𝐴21 𝐴22 − 𝐴21(𝐴11 − 𝜇𝐵)−1𝐴12

)︂
.

Now, using a block-diagonal matrix 𝐿0(𝜇)𝐹 (𝜇) we obtain

rank(𝐿0(𝜇)𝐹 (𝜇)) = rank(𝐴11 − 𝜇𝐵) + rank[𝐴22 − 𝐴21(𝐴11 − 𝜇𝐵)−1𝐴12].

It results from (9) and (10) that rank(𝐴11 − 𝜇𝐵) = 𝑚, therefore rank(𝐴22 − 𝐴21(𝐴11 −
𝜇𝐵)−1𝐴12) ≡ 0 with all 𝜇 ∈ C with the exception of zeros of the characteristic polynomial
det(𝐴11 − 𝜇𝐵). The latest is possible only in the case when 𝐴22 − 𝐴21(𝐴11 − 𝜇𝐵)−1𝐴12) ≡ 0,
hence we prove the Theorem.

The proved Theorem denotes that further we can consider pencils of the form

𝐿0(𝜇) =

(︂
𝐴11 − 𝜇𝐵 𝐴12

𝐴21 0

)︂
, (13)

which block matrices satisfy the identity 𝐴22 − 𝐴12(𝐴11 − 𝜇𝐵)−1𝐴21 ≡ 0.
The following property of the considered pencil results from this identity.
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Theorem 2. Let 𝜇* ∈ C be an arbitrary simple eigenvalue of the pencil 𝐿11(𝜇) = 𝐴11−𝜇𝐵 :
𝑉1 → 𝑉1 and

𝐴11�⃗�
* = 𝜇*𝐵�⃗�*, 𝐴*

11�⃗�
* = 𝜇*𝐵�⃗�*. (14)

Then either 𝐴21(�⃗�)* = 0 or 𝐴*
12(�⃗�)* = 0.

Proof. Let us consider two alternative cases:

∙ ‖(𝐴11 − 𝜇𝐵)−1𝐴12‖ is bounded when 𝜇→ 𝜇*;
∙ ‖(𝐴11 − 𝜇𝐵)−1𝐴12‖ is not bounded when 𝜇→ 𝜇*.

In the first case all the elements of the matrix (𝐴11 − 𝜇𝐵)−1𝐴12 are rational functions and are
bounded in the neighbourhood of the point 𝜇 = 𝜇* and elements of the matrix (𝐴11−𝜇𝐵)−1𝐴12

do not have specifications in the point 𝜇 = 𝜇*. Consequently, elements of the matrix 𝐴*
12(𝐴

*
11−

𝑠𝐵)−1 are also analytical functions in the neighbourhood of the point 𝑠 = �̄�*.
On the other hand, there is a vector �⃗� such that the eigenvector �⃗�* of the pencil 𝐴*

11 − 𝜇𝐵
can be presented in the form

�⃗�* =
1

2𝜋𝑖

∮︁
|𝑆−�̄�*|=𝛿

(𝐴*
11 − 𝑠𝐵)−1�⃗�𝑑𝑠.

But then

𝐴*
12�⃗�

* =
1

2𝜋𝑖

∮︁
|𝑆−�̄�*|=𝛿

𝐴*
12(𝐴

*
11 − 𝑠𝐵)−1�⃗�𝑑𝑠 = 0,

by virtue of the fact that 𝐴*
12(𝐴

*
11 − 𝑠𝐵)−1 is an analytical function in the point 𝑆 = �̄�*.

In the second case it results from the unboundedness of the operator (𝐴11 − 𝑠𝐵)−1𝐴12 that
any nontrivial vector

�⃗�* =
1

2𝜋𝑖

∮︁
|𝑠−𝜇*|=𝛿

(𝐴11 − 𝑠𝐵)−1𝐴12�⃗�𝑑𝑠

is an eigenvector of the pencil 𝐴11−𝑠𝐵. Further, taking into account the Theorem 1, we obtain

𝐴21�⃗�* =
1

2𝜋𝑖

∮︁
|𝑆−𝜇*|=𝛿

𝐴21(𝐴11 − 𝑠𝐵)−1𝐴12�⃗�𝑑𝑠 = 0

for any �⃗� ∈ E𝑛. The proof of the Theorem results from the considered cases.
We formulate the general statement of the present section for the pencils of the form

𝐶0(𝜇) =

(︂
𝐶11 − 𝜇𝐼1 𝐶12

𝐶21 0

)︂
: E𝑛 → E𝑛, (15)

where rank𝐶0(𝜇) = rank(𝐶11 − 𝜇𝐼1) = 𝑚 < 𝑛, 𝑉2 = 𝐾𝑒𝑟𝐼1, 𝑉1 = 𝑉 ⊥
2 .

The pencils 𝐿0(𝜇) and 𝐶0(𝜇) are equivalent due to

𝐶0(𝜇) =

(︂
𝐵−1 0

0 𝐼2

)︂(︂
𝐴11 − 𝜇𝐵 𝐴12

𝐴21 0

)︂
, (16)

𝐶11 = 𝐵−1𝐴11, 𝐶12 = 𝐵−1𝐴12, 𝐶21 = 𝐴21, and 𝐼1 and 𝐼2 are unique operators in the subspaces
𝑉1 and 𝑉2, respectively.

Theorem 3. Let the range of the pencil 𝐶0(𝜇) of the form (15) be equal to 𝑚 < 𝑛, and all
the eigenvalues of the matrix 𝐶11 be simple. Then

𝑞(𝜇) = 𝑑𝑒𝑡(𝐶11 − 𝜇𝐼) (17)

is a general divisor of all the minors of the 𝑚-th order of the pencil (𝐶0(𝜇))2.
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Proof. Let 𝜇* be an arbitrary simple eigenvalue of the matrix 𝐶11 and

𝐶11�⃗�
* = 𝜇*�⃗�*, 𝐶*

11�⃗�
* = 𝜇*�⃗�* (18)

According to the statement of the Theorem 2 we have ‖𝐶11�⃗�
*‖ · ‖𝐶*

11�⃗�
*‖ = 0. Let us consider

all the possible cases for the eigenvectors �⃗�* and �⃗�* resulting in the specified equality.
Let us assume that 𝐶21�⃗�

* = 0 and 𝐶*
12�⃗�

* = 0. Since 𝜇* is a simple eigenvalue of the matrix
𝐶11, then for any �⃗� ∈ E𝑚

�⃗�* =
1

2𝜋𝑖

∮︁
|𝜇−𝜇*|=𝛿

(𝐶11 − 𝜇𝐼)−1�⃗�𝑑𝜇

is an eigenvector of the matrix 𝐶11. Therefore, due to the supposition 𝐶21�⃗�
* = 0 we have

𝐶21�⃗�
* =

1

2𝜋𝑖

∮︁
|𝜇−𝜇*|=𝛿

𝐶21(𝐶11 − 𝜇𝐼)−1�⃗�𝑑𝜇 = 0

for any �⃗� ∈ E𝑚. And it denotes that 𝐶21(𝐶11 −𝜇𝐼)−1 is bounded in the neighbourhood 𝜇 = 𝜇*

and the point 𝜇 = 𝜇* is a singular point of an eliminable type. Hence, (𝐶*
11 − 𝜇𝐼)−1𝐶*

21 is
also analytical in the neighbourhood of the point 𝜇 = 𝜇*. Let us now show that 𝐾𝑒𝑟(𝐶0(𝜇

*))*

contains not less than 𝑛−𝑚+ 1 linear-independent vectors.
Let us consider the vectors

�⃗�0 =

(︂
�⃗�*

0

)︂
, �⃗�𝑘 =

(︂
−(𝐶*

11 − 𝜇𝐼)−1𝐶*
21�⃗�𝑘

�⃗�𝑘

)︂
, 𝑘 = 1, 𝑛−𝑚,

where �⃗�𝑘 make a unique basis of the space 𝑉2, and �⃗�*, by the condition, is an eigenvector of the
matrix 𝐶*

11, corresponding to the simple eigenvalue 𝜇*.
Taking into account that 𝐶11�⃗�

* = 𝜇*�⃗�*, 𝐶*
12�⃗�

* = 0, 𝐶*
12(𝐶

*
11 − 𝜇𝐼)−1𝐶*

21 ≡ 0, it is easy to
show that (𝐶0(𝜇*))

*�⃗�𝑘 = 0 for all 𝑘 = 0, 𝑛−𝑚.
Since 𝑑𝑖𝑚𝐾𝑒𝑟(𝐶*

0(𝜇*)) ≥ 𝑛−𝑚+ 1, then 𝑟𝑎𝑛𝑘𝐶0(𝜇*) 6 𝑚− 1.
Therefore, 𝑟𝑎𝑛𝑘𝐶0(𝜇) = 𝑚 when 𝜇 ̸= 𝜇* and 𝑟𝑎𝑛𝑘𝐶0(𝜇*) = 𝑚 is possible only under the

condition that 𝜇− 𝜇* is a divisor of all the minors of 𝑚-th matrix 𝐶0(𝜇).
Assume now that 𝐶21�⃗�* ̸= 0 and 𝐶*

12�⃗�* = 0. Let us first show that in this case (𝐶11−𝜇𝐼)−1𝐶12

is bounded when 𝜇→ 𝜇*.
Indeed, on the contrary, there is a vector �⃗� such that

1

2𝜋𝑖

∮︁
|𝜇−𝜇*|=𝛿

(𝐶11 − 𝜇𝐼)−1𝐶12�⃗�𝑑𝜇 = �⃗� ̸= 0.

Since �⃗� is an eigenvector corresponding to the eigenvalue 𝜇*, then we can consider that �⃗�* =
1

2𝜋𝑖

∮︀
|𝜇−𝜇*|=𝛿

(𝐶11 − 𝜇𝐼)−1𝐶12�⃗�𝑑𝜇. It results from the Theorem 1 that

𝐶21�⃗�
* =

1

2𝜋𝑖

∮︁
|𝜇−𝜇*|=𝛿

𝐶21(𝐶11 − 𝜇𝐼)−1𝐶12�⃗�𝑑𝜇 = 0,

and it contradicts the condition 𝐶21�⃗�
* ̸= 0. Consequently, (𝐶11 − 𝜇𝐼1)

−1𝐶12 is bounded in the
neighbourhood of the point 𝜇 = 𝜇*.

Let us introduce the matrix

𝐷(𝜇) =

(︂
𝐼 −(𝐶11 − 𝜇𝐼)−1𝐶12

0 𝐼

)︂
, (19)

into consideration. Due to the boundedness of (𝐶11 − 𝜇𝐼)−1𝐶12 the matrix 𝐷(𝜇) is determined
and degenerated in the point 𝜇 = 𝜇* and its neighbourhood.
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Let us determine the matrix 𝐺(𝜇) = (𝐶0(𝜇))2𝐷(𝜇). It is obvious that in the point 𝜇 = 𝜇*

and in some its neighbourhood 𝑟𝑎𝑛𝑘𝐺(𝜇) = 𝑟𝑎𝑛𝑘(𝐶0(𝜇))2. According to the statement of
the Theorem 1 with all 𝜇, when 𝑑𝑒𝑡(𝐶11 − 𝜇𝐼) ̸= 0, the following identity holds: 𝐶21(𝐶11 −
𝜇𝐼)−1𝐶12 ≡ 0. Taking this into account it is easy to obtain that

𝐺(𝜇) =

(︂
(𝐶11 − 𝜇𝐼)2 + 𝐶12𝐶21 0

𝐶21(𝐶11 − 𝜇𝐼) 0

)︂
. (20)

Since (𝐶*
11 − 𝜇*𝐼)𝑦* = 0, 𝐶*

12�⃗� = 0 then

[(𝐶11 − 𝜇*𝐼)2 + 𝐶12𝐶21]
*𝑦* = 0,

consequently, 𝑟𝑎𝑛𝑘((𝐶11 − 𝜇𝐼)2 + 𝐶12𝐶21) 6 𝑚− 1.
The latest denotes that there is a vector �⃗�* ̸= 0 such that (𝐶11 − 𝜇𝐼)2�⃗�* = −𝐶12𝐶21�⃗�

*.
Taking into account the boundedness of (𝐶11 − 𝜇𝐼)−1𝐶12 in the point 𝜇 = 𝜇*, we have
(𝐶11 − 𝜇*𝐼)�⃗�* = −(𝐶11 − 𝜇*𝐼)−1𝐶12𝐶21�⃗�

*. Hence we obtain

𝐶21(𝐶11 − 𝜇*𝐼)�⃗�* = −𝐶21(𝐶11 − 𝜇*𝐼)−1𝐶12𝐶21�⃗�
* = 0.

Therefore, the vectors (︂
�⃗�*

0

)︂
,

(︂
0
�⃗�𝑘

)︂
, 𝑘 = 1, 𝑛−𝑚,

where �⃗�𝑘, 𝑘 = 1, 𝑛−𝑚 are basis vectors of the space 𝑉2, and are contained in 𝑘𝑒𝑟𝐺(𝜇*).
Consequently, 𝑟𝑎𝑛𝑘[𝐶0(𝜇)]2 = 𝑚 when 𝜇 ̸= 𝜇* and 𝑟𝑎𝑛𝑘[𝐶0(𝜇)]2 6 𝑚 − 1 when 𝜇 = 𝜇*. It

follows that 𝜇− 𝜇* is a divisor of all the minors of the 𝑚-th order of the matrix [𝐶0(𝜇)]2.
The third possible case resulting from ‖𝐶21�⃗�*‖ · ‖𝐶*

12�⃗�*‖ = 0, namely 𝐶*
12�⃗�* ̸= 0, 𝐶21�⃗�* = 0,

is investigated similarly to the case 𝐶21�⃗�* ̸= 0, and 𝐶*
12�⃗�* = 0.

Thus, we have shown that for the arbitrary eigenvalue 𝜇* of the matrix 𝐶11 all the minors of
the 𝑚-th order of the pencil (𝐶0(𝜇))2 are divided into 𝜇− 𝜇*. Since all the eigenvalues 𝐶11 are
simple and 𝜇* is an arbitrary eigenvalue, then 𝑑𝑒𝑡(𝐶11 − 𝜇𝐼1) is a divisor of all the minors of
the 𝑚-th order of the matrix (𝐶0(𝜇))2. The Theorem has been proved.

Theorem 4. Let the conditions of the Theorem 3 hold. Then if 𝜇− 𝜇0 is a general divisor
of all the minors of the 𝑚-th order of the pencil (𝐶0(𝜇))2, then 𝑞(𝜇0) = 𝑑𝑒𝑡(𝐶11 − 𝜇0𝐼) = 0.

Proof. Assume that 𝑞(𝜇0) = 𝑑𝑒𝑡(𝐶11 −𝜇0𝐼) ̸= 0. Similarly to the proof of the Theorem (3)
let us consider the matrix 𝐷(𝜇) set in (19) and the matrix 𝐺(𝜇) = (𝐶0(𝜇))2𝐷(𝜇). According
to (19) and (20) we have

𝐺(𝜇) =

(︂
(𝐶11 − 𝜇𝐼)2 + 𝐶12𝐶21 0

𝐶21(𝐶11 − 𝜇𝐼) 0

)︂
.

Since 𝜇0 is zero of all the minors of the order 𝑚, there is �⃗�0 ̸= 0 such that ((𝐶11 − 𝜇0𝐼)2 +
𝐶12𝐶21)�⃗�0 = 0.

It results from the supposition 𝑞(𝜇0) ̸= 0 that �⃗�0 = −(𝐶11 − 𝜇0𝐼)−2𝐶12𝐶21. Since it
results from Theorem 1 that 𝐶21(𝐶11 − 𝜇𝐼)−2𝐶12 ≡ 0, then 𝐶21�⃗�0 = 0. It means that
(𝐶11 − 𝜇0𝐼)2�⃗�0 = 0. That is 𝜇0 is an eigenvalue of 𝐶11. The resulting contradiction proves
the Theorem.

Therefore, (𝐶0(𝜇))2 has ”real” eigenvalues in the following sense. Namely, if 𝜇* is an eigen-
value of the matrix 𝐶11 and 𝜇 /∈ 𝜎(𝐶11), then

𝑟𝑎𝑛𝑘(𝐶0(𝜇)) = 𝑟𝑎𝑛𝑘(𝐶0(𝜇))2 = 𝑚,

and at the same time 𝑟𝑎𝑛𝑘(𝐶0(𝜇*))
2 6 𝑚− 1. In other words, all the eigenvalues of the matrix

𝐶11 are regular eigenvalues for the pencil [𝐶0(𝜇)]2.
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As an example we consider the pencil

𝐶0(𝜇) =

⎛⎜⎜⎜⎜⎝
𝜇1 − 𝜇 0 0 0 0

0 𝜇2 − 𝜇 0 1 0
0 0 𝜇3 − 𝜇 0 1
1 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

It is easy to calculate with all 𝜇 ∈ C̄ that 𝑟𝑎𝑛𝑘𝐶0(𝜇) ≡ 3. Let us write the square of the pencil
𝐶0(𝜇),

𝐶2
0(𝜇) =

⎛⎜⎜⎜⎜⎝
(𝜇1 − 𝜇)2 0 0 0 0

1 (𝜇2 − 𝜇)2 0 𝜇2 − 𝜇 0
0 0 (𝜇3 − 𝜇)2 0 𝜇3 − 𝜇

𝜇1 − 𝜇 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

Now 𝑟𝑎𝑛𝑘𝐶2
0(𝜇) = 3 with all 𝜇 ̸= 𝜇𝑘, but 𝑟𝑎𝑛𝑘𝐶2

0(𝜇𝑘) = 2 for 𝑘 = 1, 2, 3.
Let us note that the highest general divisor of all the minors of the 𝑚-th order of the

matrix 𝐶0(𝜇) is 1, and the corresponding minors of the matrix 𝐶2
0(𝜇) are divided into

(𝜇1 − 𝜇)(𝜇2 − 𝜇)(𝜇3 − 𝜇) = 𝑑𝑒𝑡𝐶0(𝜇).

3. A perturbed irregular pencil.

Let us now proceed to consideration of the perturbed pencil

𝐿(𝜇, 𝜀) = 𝐴0 − 𝜇𝐵0 + 𝜀(𝐴1 − 𝜇𝐵1) : 𝐸𝑛 → 𝐸𝑛,

where

𝑟𝑎𝑛𝑘𝐵0 = max
𝜇∈C

𝑟𝑎𝑛𝑘(𝐴0 − 𝜇𝐵0) = 𝑚 < 𝑛

and

max
𝜇𝜀∈C

𝑟𝑎𝑛𝑘𝐿(𝜇, 𝜀) = 𝑛.

Due to regularity of the pencil 𝐿(𝜇, 𝜀) the eigenvalues of this pencil 𝜇1(𝜀), . . . , 𝜇𝑛(𝜀) are zeros
of the characteristic equation

𝑑𝑒𝑡𝐿(𝜇, 𝜀) = 0 (21)

when 𝜀 ̸= 0. As it was shown above (16) there are degenerated matrices 𝑆1 and 𝑆2, which do
not depend on 𝜇 and 𝜀 such that

𝐶(𝜇, 𝜀) := 𝑆1𝐿(𝜇, 𝜀)𝑆2 = 𝐶0(𝜇) + 𝜀𝐶1(𝜇) (22)

𝐶1(𝜇) = 𝑆1𝐴1𝑆2 − 𝜇𝑆1𝐵1𝑆2 = 𝐶
(1)
1 − 𝜇𝐶

(2)
1 , (23)

and 𝐶0(𝜇), has the form:

𝐶0(𝜇) =

(︂
𝐶11 − 𝜇𝐼1 𝐶12

𝐶21 0

)︂
: E𝑛 → E𝑛

as it was above in (15) and (16). Since the pencils 𝐶(𝜇, 𝜀) and 𝐿(𝜇, 𝜀) have similar eigenvalues
𝜇𝑘(𝜀),we proceed to research of eigenvalues of the pencil 𝐶(𝜇, 𝜀).

Theorem 5. Let the spectre of the matrix 𝐶11 consist of simple eigenvalues 𝜇*
1, . . . , 𝜇

*
𝑚. Then

the pencil 𝐶(𝜇, 𝜀) has exactly 𝑚 eigenvalues 𝜇𝑗1(𝜀), . . . , 𝜇𝑗𝑚(𝜀) (in case of the corresponding
enumeration) such that for all 𝑘 = 1,𝑚

𝜇𝑗𝑘(0) = 𝜇*
𝑘.
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Proof. Let 𝐺1(𝜇), 𝐺2(𝜇) be degenerated (to be more exact, 𝑑𝑒𝑡𝐺1(𝜇) ≡ 1, 𝑑𝑒𝑡𝐺2(𝜇) ≡ 1)
matrices reducing the pencil (𝐶0(𝜇))2 to the normal Smith form (see [3]).

Since 𝑟𝑎𝑛𝑘(𝐶0(𝜇))2 = 𝑚, then the matrices 𝐺1(𝜇) and 𝐺2(𝜇) can be chosen so that

𝐺1(𝜇)𝐶2
0(𝜇)𝐺2(𝜇) =

(︂
Λ(𝜇) 0

0 0

)︂
, (24)

where Λ(𝜇) is a diagonal matrix of the size 𝑚×𝑚. It results from the Theorems 3 and 4 that
𝑑𝑒𝑡[Λ(𝜇)] = 0 if and only if 𝑑𝑒𝑡(𝐶11 − 𝜇𝐼) = 0.

Assume that

𝐷(𝜇, 𝜀) = 𝐺1(𝜇)𝐶2
0(𝜇, 𝜀)𝐺2(𝜇) = 𝐷0(𝜇) + 𝜀𝐷1(𝜇, 𝜀). (25)

Then, taking into account the representation (24), we obtain

𝐷(𝜇, 𝜀) =

(︂
Λ(𝜇) + 𝜀𝐷11(𝜇, 𝜀) 𝜀𝐷12(𝜇, 𝜀)

𝜀𝐷21(𝜇, 𝜀) 𝜀𝐷22(𝜇, 𝜀)

)︂
. (26)

Note that it results from (25) that

𝑔(𝜇, 𝜀) = 𝑑𝑒𝑡𝐷(𝜇, 𝜀) = [𝑑𝑒𝑡𝐶0(𝜇, 𝜀)]
2 . (27)

Since 𝑑𝑒𝑡𝐷(𝜇, 0) ≡ 0, then 𝑔(𝜇, 𝜀) being a polynomial from 𝜇 and 𝜀 can be presented in the
form

𝑔(𝜇, 𝜀) = 𝜀𝛼𝑔0(𝜇, 𝜀), (28)

where 𝛼 ∈ N, 𝑔0(𝜇, 𝜀) is a polynomial from 𝜀 and 𝜇, and 𝑔0(𝜇, 0) ̸≡ 0.
Let us now show that 𝑔0(𝜇, 𝜀) is divided into 𝑑𝑒𝑡Λ(𝜇).
For this purpose we calculate the determinant of the matrix 𝐷(𝜇, 𝜀) as a product of zeros

𝜎𝑘(𝜇, 𝜀) of the polynomial 𝑑𝑒𝑡(𝐷(𝜇, 𝜀) − 𝜎𝐼) = 0.
Let us denote the diagonal elements of the matrix Λ(𝜇)+𝜀𝐷11(𝜇, 𝜀) via 𝜆1(𝜇, 𝜀), . . . , 𝜆𝑚(𝜇, 𝜀),

and the diagonal elements of the matrix 𝐷22(𝜇, 𝜀) via 𝑑1(𝜇, 𝜀), . . . , 𝑑𝑛−𝑚(𝜇, 𝜀). Expanding
𝑑𝑒𝑡𝐷(𝜇, 𝜀) by lines we obtain

𝑑𝑒𝑡(𝐷(𝜇, 𝜀) − 𝜎𝐼) = (𝜆1(𝜇, 𝜀) − 𝜎) · · · (𝜆𝑚(𝜇, 𝜀) − 𝜎)(𝜀𝑑1(𝜇, 𝜀) − 𝜎) · · ·

· · · (𝜀𝑑𝑛−𝑚(𝜇, 𝜀) − 𝜎) + 𝜀ℎ(𝜇, 𝜀, 𝜎),

where ℎ(𝜇, 𝜀, 𝜎) is some polynomial from 𝜎, 𝜇 and 𝜀.
If we apply the Rouche Theorem for zeros 𝜎𝑘(𝜇, 𝜀) of this polynomial 𝑑𝑒𝑡(𝐷(𝜇, 𝜀) − 𝜎𝐼) to

the variable 𝜎, when 𝜀→ 0 and |𝜇| < 𝑅0 <∞, we obtain 𝜎𝑘(𝜇, 𝜀) = 𝜆𝑘(𝜇, 0) + 𝜀𝛼𝑘(𝜇, 𝜀) for all
𝑘 = 1,𝑚, where 𝛼𝑘(𝜇, 𝜀) are bounded functions and 𝜎𝑘(𝜇, 𝜀) = 𝑂(𝜀) for all 𝑘 = 𝑚+ 1, 𝑛.

Since the determinant of the matrix 𝑔(𝜇, 𝜀) = 𝐷(𝜇, 𝜀) is equal to the product of all its
eigenvalues 𝜎𝑘(𝜇, 𝜀), then we obtain

𝑔(𝜇, 𝜀) = 𝜎1(𝜇, 𝜀) · · ·𝜎𝑚(𝜇, 𝜀)𝜎𝑚+1(𝜇, 𝜀) · · ·𝜎𝑛(𝜇, 𝜀).

It follows from the above that 𝜎1(𝜇, 𝜀) · · ·𝜎𝑚(𝜇, 𝜀) = 𝑑𝑒𝑡[Λ(𝜇)] + 𝑂(𝜀) and
𝜎𝑚+1(𝜇, 𝜀) · · ·𝜎𝑛(𝜇, 𝜀) = 𝜀𝛽𝑑(𝜇, 𝜀), where 𝑑(𝜇, 𝜀) is some algebraic function and 𝑑(𝜇, 0) ̸≡ 0.
Hence we obtain

𝑔(𝜇, 𝜀) = 𝜀𝛽(𝑑𝑒𝑡Λ(𝜇) +𝑂(𝜀))𝑑(𝜇, 𝜀). (29)

Now comparing (28) with (29) we come to the conclusion that

𝑔0(𝜇, 0) = 𝑑𝑒𝑡Λ(𝜇)𝑑(𝜇, 0), (30)

where 𝑑(𝜇, 0) is a polynomial from 𝜇.
It follows from the representation of the polynomial 𝑑𝑒𝑡(𝐷(𝜇, 𝜀)) in the form (30) subject to

(27) and (28) that every zero of the polynomial 𝑑𝑒𝑡[𝐶11 − 𝜇𝐼1] is analytically (as an algebraic
function) expanded on 𝜀. This proves the theorem.
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It follows from the latest statement that the pencil of the form

𝐶(𝜇, 𝜀) =

(︂
𝐶11 − 𝜇𝐼1 𝐶12

𝐶21 0

)︂
+ 𝜀(𝐶1 − 𝜇𝐶2) : E𝑛 → E𝑛

is equal to 𝑚 eigenvalues 𝜇𝑗1(𝜀), . . . , 𝜇𝑗𝑚(𝜀) when 𝜀→ 0 have limits equivalent to the eigenvalues
𝜇1, . . . , 𝜇𝑚 of the matrix 𝐶11 independently of the matrices 𝐶1 and 𝐶2. At the same time it is
easy to show that the limits of other eigenvalues of the pencil 𝐶(𝜇, 𝜀) depend on 𝐶1 and 𝐶2.

Therefore, according to Definition 1, the quasi-spectre of the pencil 𝐶0(𝜇) consists of the
eigenvalues 𝜇1, . . . , 𝜇𝑚 of the matrix 𝐶11.

Now returning to an irregular pencil of the general form (1)–(3) we note the following. To
calculate a quasi-regular spectre of the pencil 𝐿0(𝜇) = 𝐴0 − 𝜇𝐵0, we first reduce it to the form
satisfying the condition (7).

Then with the help of this strict equivalent transformation (16) we obtain a pencil of the
form 𝐶(𝜇, 𝜀) and find the spectre of the matrix 𝐶11.
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