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ON UNIFORM APPROXIMABILITY BY SOLUTIONS OF

ELLIPTIC EQUATIONS OF ORDER HIGHER THAN TWO

M.YA. MAZALOV

Abstract. We consider uniform approximation problems on compact subsets of R𝑑, 𝑑 > 2
by solutions of homogeneous constant coefficients elliptic equations of order 𝑛 > 2. We
construct an example showing that in the general case for compact sets with nonempty in-
terior there is no uniform approximability criteria analogous to the well-known Vitushkin’s
criterion for analytic functions in C. On the contrary, for nowhere dense compact sets the
situation is the same as for analytic and harmonic functions including instability of the
corresponding capacities.

Keywords: elliptic equations, capacities, instability of capacities, uniform approximation,
Vitushkin’s scheme.

1. Introduction

Let us assume that 𝐿(𝑥) is a homogeneous elliptic polynomial with complex coefficients
(where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) ∈ R𝑑, 𝑑 > 2, 𝐿(𝑥) = 0 ⇔ 𝑥 = 0), 𝐿 = 𝐿(∇) is the corresponding
differential operator; further we consider only such operators 𝐿. Let us denote the order of the
operator 𝐿 by 𝑛. Recall [1, Theorem 7.1.20] that 𝐿 has a fundamental solution of the form

𝐸(𝑥) = 𝐸0(𝑥)− 𝐸1(𝑥) log |𝑥|, (1.1)

where 𝐸0 is a real-analytical function in R𝑑∖{0}, which is homogeneous and has the degree 𝑛−𝑑,
𝐸1 is a homogeneous polynomial of degree 𝑛− 𝑑 (if 𝑛 < 𝑑, then 𝐸1 ≡ 0).

Let 𝑋 ⊂ R𝑑 be a compact, 𝑋𝑜 be the set of all inner points of 𝑋,

ℎ(𝑋,𝐿) = 𝐶(𝑋) ∩ {𝐿𝑓 = 0 in 𝑋𝑜},

𝐻(𝑋,𝐿) be the closure in 𝐶(𝑋) of the set of functions

{𝑓 |𝑋 : 𝐿𝑓 = 0 in a certain neighbourhood 𝑋}

(the neighbourhood depends on the function 𝑓).
Since 𝐿 is an elliptic operator, then 𝐻(𝑋,𝐿) ⊂ ℎ(𝑋,𝐿). Criteria of identity of the classes

𝐻(𝑋,𝐿) = ℎ(𝑋,𝐿) were obtained in the case of analytic functions (𝑑 = 2, 𝐿 is the Cauchy-
Riemann operator) by A.G. Vitushkin [2], and in the case of harmonic functions (𝑑 > 2, 𝐿 is
the Laplace operator) by J.Deny [3] and M.V. Keldysh [4] independently. There is the following
statement (we simplify formulation to some extent):

𝐻(𝑋,𝐿) = ℎ(𝑋,𝐿) ⇐⇒ Cap𝐿(𝐵 ∖𝑋𝑜) 6 𝐴Cap𝐿(𝑘𝐵 ∖𝑋), (1.2)

where Cap𝐿(·) is considerable analytic or harmonic capacity, respectively, 𝐵 is an arbitrary
open ball (disk with 𝑑 = 2), 𝐴 > 0 and 𝑘 > 1 are fixed constants.
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While studying removable singularities of continuous solutions of the equation 𝐿𝑓 = 0 R.
Harvey and G. Polking introduced capacities [5], which naturally generalize analytic and har-
monic capacities. In the present paper we consider only the case 𝑛 < 𝑑. Following [5, definition
1.1], we term

sup
𝑔
{|⟨𝐿𝑔|1⟩| : ‖𝑔‖L∞ 6 1, 𝑔 ∈ 𝐶(R𝑑), lim

𝑥→∞
𝑔(𝑥) = 0, Spt(𝐿𝑔) ⊂ 𝑈} (1.3)

as the capacity of the bounded set 𝑈 and denote it by CapL(𝑈) (here and in what follows
‖ · ‖L∞ = ‖ · ‖L∞(R𝑑)). In the formula (1.3), the brackets indicate the action of a distribution
with a compact support to an infinitely smooth function, Spt(·) is the closure of the distribution
support. Namely,

⟨𝐿𝑔|1⟩ = (−1)𝑛
∫︁
𝑔(𝑥)𝐿𝜙(𝑥)𝑑𝑚𝑥, (1.4)

where 𝜙 is an arbitrary function from 𝐶∞
0 (R𝑑) such that 𝜙(𝑥) ≡ 1 in some neighbourhood of

Spt(𝐿𝑔), integration is carried out by the Lebesgue measure in R𝑑. The function 𝑔 ∈ 𝐶(R𝑑)
such that Spt(𝐿𝑔) ⊂ 𝑈 and lim𝑥→∞ 𝑔(𝑥) = 0 is said to be an admitted for 𝑈 .
Since the capacity Cap𝐿(·) characterises ”solidity” of sets of unremovable singularities of

continuous solutions of the equation 𝐿𝑓 = 0 [5, Theorem 1.4], the inequality in the right-hand
side (1.2) has the following natural meaning: supplement to the compact is not ”less massive”,
then its boundary locally.

We have stated the following in the present paper.
1. We have shown that when 𝑑 > 2 and 𝑛 < 𝑑 for every corresponding 𝐿 the inequality in

the right-hand side (1.2) is necessary for the equality 𝐻(𝑋,𝐿) = ℎ(𝑋,𝐿) (see corollary 1 of
Lemma 4), but it is not sufficient (see example 1 in S4).
Note that in the case of approximation in the Lipschitz spaces of the nonintegral order and

BMO spaces (namely when we apply the capacity which is unlike (1.3), comparable with the
corresponding Hausdorff content) the similar examples are constructed in [6, S4]; the construc-
tion of the example 1 in the present paper is significantly more simple than that one in [6].

For the uniform approximations it is necessary to note a special role of the dimension 𝑑 = 2:
in [7, Theorem 1] it has been proved that the equality 𝐻(𝑋,𝐿) = ℎ(𝑋,𝐿) holds for any compact
𝑋 and the operator 𝐿 when 𝑑 = 2 in case of local boundedness of 𝐸 from (1.1); in addition,
when 𝑑 > 2 for any of the considered operators 𝐿 (including the locally bounded fundamental
solution) there is a compact 𝑋 such that 𝐻(𝑋,𝐿) ̸= ℎ(𝑋,𝐿) (for example [8, Theorem 8.2]).

2. When 𝑋𝑜 = ∅ (and respectively, ℎ(𝑋,𝐿) = 𝐶(𝑋)) the situation is significantly more
simple than in the general case: there hold not only (1.2), but also an instability of the capacity
Cap𝐿(·), similar to the instability of the analytic and harmonic capacities (see Theorem 1 from
[2, Ch. 6, S2], Theorem B from [9] and Theorem B from [10]). Namely, the following statement
holds.

Theorem 1. Assume that 𝑋𝑜 = ∅.
(1) If the equality 𝐶(𝑋) = 𝐻(𝑋,𝐿) holds, then for any open ball 𝐵(𝑥, 𝑟) (with the centre 𝑥

of the radius 𝑟) the estimate

Cap𝐿(𝐵(𝑥, 𝑟) ∖𝑋) > 𝐴𝑟𝑑−𝑛, (1.5)

where 𝐴 = 𝐴(𝐿) > 0, exists.
(2) Let the following estimate hold for almost all 𝑥 ∈ 𝑋 (by the Lebesgue measure of the

space R𝑑)

lim sup
𝑟→0

Cap𝐿(𝐵(𝑥, 𝑟) ∖𝑋)

𝑟𝑑
> 0, (1.6)

then 𝐶(𝑋) = 𝐻(𝑋,𝐿).
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Statement (1) of Theorem 1 results from the definition of the capacity (see corollary 2 of
Lemma 4). The proof of statement (2) consists of two parts.

1. The proof (1.5)⇒ 𝐶(𝑋) = 𝐻(𝑋,𝐿) is given with the help of the improved Vitushkin’s
scheme [2] of separation of singularities and approximation of the function by parts and it
results from the Lemmas 5 and 8.

2. In the proof (1.6)⇒(1.5) (see Lemma 9) there are arguments different from the ones used in
the papers [2] by A.G. Vitushkin, [9] A.A. Gonchar and [10] Yu.A. Lysenko and B.M. Pisarevsky.

The problem of the (natural) criterion of the equality 𝐻(𝑋,𝐿) = ℎ(𝑋,𝐿) in the case 𝑑 > 2,
𝑛 > 2 and compacts 𝑋 with not empty interior remains open. Let us recall, that N.N. Tarhanov
in [11] proved the analogue of the A.G. Vitushkin theorem for solutions of elliptic systems. In
a particular case of uniform approximations, the result is formulated in terms of the capacity
corresponding to (1.3), and several capacities, generalizing (1.3), which appear ”redundant”
for the classes of analytic and harmonic functions Let us note in this connection that applying
Theorem 2 from [7], in condition 3) of Lemma 3.8 from [11] (on approximation of functions by
parts) we can substitute |𝑥|𝑛 by |𝑥|𝑛−1 to decrease the number of capacity applied for all the
operators 𝐿.

2. Preparatory results.

Let us apply elementary properties of the capacities Cap𝐿(·), resulting from (1.3).
(1) Cap𝐿(𝑈) 6 Cap𝐿(𝑈

′) when 𝑈 ⊂ 𝑈 ′.
(2) Cap𝐿(𝐵(𝑎, 𝑟)) = 𝐴𝑟𝑑−𝑛, where 𝐴 = 𝐴(𝐿) > 0.
(Let us remind that 𝑛 is order of the operator 𝐿, 𝑑 is dimension of the space).
Let us consider that every function from ℎ(𝑋,𝐿) can be extended from 𝑋 to the entire space

R𝑑 as continuous and compactly supported (it can be carried out, e.g., by the Whitney Theorem
[12, Ch. 6, s. 2.2]).

Let us fix a fundamental solution 𝐸 from (1.1). Let the function 𝑓 be continuous in R𝑑,
Spt(𝐿𝑓) be compact and lim𝑥→∞ 𝑓(𝑥) = 0. Then (for example, [7, Lemma 1.3]) the following
equality holds

𝑓 = 𝐸 * (𝐿𝑓), (2.1)

considered in the sense of distributions.
Let {𝜙𝑗} be the finite family of non-negative functions 𝜙𝑗 ∈ 𝐶∞

0 (R𝑑) such that
∑︀

𝑗 𝜙𝑗(𝑥) ≡ 1

in some neighbourhood of Spt(𝐿𝑓). Let {𝜙𝑗} be a partition of unit on Spt(𝐿𝑓). The function
𝑓 is presented in the form of the sum of localizations:

𝑓 =
∑︁
𝑗

𝑓𝑗, where 𝑓𝑗 = 𝐸 * (𝜙𝑗𝐿𝑓), (2.2)

and the corresponding operator 𝑉𝜙:

𝑉𝜙Ψ = 𝐸 * (𝜙𝐿Ψ), (2.3)

where 𝜙 ∈ 𝐶0(R𝑑), Ψ ∈ (𝐶∞
0 (R𝑑))′ is called an operator of localization.

Further 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑑) is a multi-index,

|𝛼| =
𝑑∑︁

𝑘=1

𝛼𝑘, 𝜕𝛼 =
𝜕|𝛼|

𝜕𝑥𝛼1
1 𝜕𝑥

𝛼2
2 . . . 𝜕𝑥𝛼𝑑

𝑑

,

𝛼! = 𝛼1!𝛼2! . . . 𝛼𝑑!, 𝑥𝛼 = 𝑥𝛼1
1 𝑥

𝛼2
2 . . . 𝑥𝛼𝑑

𝑑 .

Everywhere in the paper we denote closed cubes with edges parallel to the coordinates axes
by cubes. For the cube 𝑄 = 𝑄(𝑎, 𝑠) with the centre 𝑎 ∈ R𝑑 and the edge 𝑠 we denote a cube
with the same centre and edge 𝜆𝑠 via 𝜆𝑄. We term cubes of the form

𝑄 = 𝑄𝑚1,...,𝑚𝑑

𝑘 = [𝑚12
−𝑘, (𝑚1 + 1)2−𝑘]× · · · × [𝑚𝑑2

−𝑘, (𝑚𝑑 + 1)2−𝑘], (2.4)
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where 𝑘, 𝑚1, 𝑚2,. . . , 𝑚𝑑 ∈ Z as binary cubes.
Considering covers of compacts sets by finite families of binary cubes, we always assume that

the cubes are disjoint (do not have common inner points).
Positive constants, which can depend only on 𝐿 (in particular, on 𝑛 or 𝑑) are denoted by 𝐴,

𝐴0, 𝐴1, . . . . Values of each of these constants in various relationships can be different. We will
use partitions of unity by R. Harvey and G. Polking (see [13, Lemma 3.1], [7, Lemma 1.1]).

Lemma 1. Let {𝑄𝑗} be a finite family of disjoint binary cubes. Then there exists {𝜙𝑗} a
partition of unity on

⋃︀
𝑗 𝑄𝑗 such that

(1) Spt𝜙𝑗 ⊂ (3/2)𝑄𝑗;
(2) ‖𝜕𝛼𝜙𝑗‖L∞ 6 𝐴𝑠(𝑄𝑗)

−|𝛼| when |𝛼| 6 𝑛.

Further we consider the localizations (2.3) only with respect to the functions 𝜙, satisfying
conditions of Lemma 1. The following Lemma in proved in a standard way (for example, [7,
Lemma 1.2], [14, Lemma 14.10]).

Lemma 2. Let 𝑓 ∈ ℎ(𝑋,𝐿), 𝜔𝑓 (𝑠) be the module of continuity 𝑓 in R𝑑, 𝑄 = 𝑄(𝑎, 𝑠) be
the cube (not necessarily binary), the function 𝜙 ∈ 𝐶∞

0 (R𝑑) satisfy the conditions (1)–(2) of
Lemma 1 with respect to the cube 𝑄, 𝑉𝜙𝑓 from (2.3). Then:
(1) 𝑉𝜙𝑓 ∈ 𝐶(R𝑑) and lim𝑥→∞ 𝑉𝜙𝑓(𝑥) = 0;
(2) Spt(𝐿(𝑉𝜙𝑓)) ⊂ (Spt𝜙

⋂︀
Spt𝐿𝑓);

(3) ‖𝑉𝜙𝑓‖L∞ 6 𝐴𝜔𝑓 (𝑠).

Meanwhile everywhere outside the cube 𝐴1𝑄 the function 𝑉𝜙𝑓 is expanded into the Laurent
series converging in 𝐶∞ (for example, [7, S1] [14, S7, s. 2𝑜], [15, p. 163]):

𝑉𝜙𝑓 =
∑︁
|𝛼|>0

𝑐𝛼𝜕
𝛼𝐸(𝑥− 𝑎), (2.5)

where

𝑐𝛼 = 𝑐𝛼(𝑉𝜙𝑓, 𝑎) =
(−1)|𝛼|

𝛼!
⟨𝜙(𝑦)𝐿𝑓(𝑦)|(𝑦 − 𝑎)𝛼⟩ (2.6)

are Laurent coefficients. In particular,

𝑐0(𝑉𝜙𝑓) = ⟨𝜙𝐿𝑓 |1⟩. (2.7)

Estimates of the Laurent coefficients of the localizations result from Lemma 2 and (1.3)-(1.4).
Since the function 𝑉𝜙𝑓 is admissible for (3/2)𝑄 ∖𝑋𝑜, we have:

|𝑐0(𝑉𝜙𝑓)| 6 𝐴𝜔𝑓 (𝑠)Cap𝐿((3/2)𝑄 ∖𝑋𝑜) (2.8)

due to the definition of the capacity (1.3)
To estimate the Laurent coefficients 𝑐𝛼, |𝛼| > 0, we use the same line of reasoning as in the

proof of Lemma 3.3 from [16]: it is evident that condition (2) of Lemma 1 holds with sufficiently
small 𝐴1 = 𝐴1(𝑛) > 0 for the function 𝜓(𝑦) = 𝐴1(2𝑠)

−|𝛼|(𝑦 − 𝑎)𝛼𝜙(𝑦); applying Lemma 2 to
the localization 𝑉𝜓𝑓 and taking into account

𝑐0(𝑉𝜓𝑓) = ⟨𝜓𝐿𝑓 |1⟩ =

= 𝐴1(2𝑠)
−|𝛼|⟨𝜙(𝑦)𝐿𝑓(𝑦)|(𝑦 − 𝑎)𝛼⟩ = 𝐴1(2𝑠)

−|𝛼|𝛼!(−1)−|𝛼|𝑐𝛼(𝑉𝜙𝑓, 𝑎),

we obtain

|𝑐𝛼(𝑉𝜙𝑓, 𝑎)| 6
𝐴2

𝛼!
𝜔𝑓 (𝑠)(2𝑠)

|𝛼|Cap𝐿((3/2)𝑄 ∖𝑋𝑜). (2.9)

In view of the inequalities

|𝜕𝛼𝐸(𝑥)| 6 𝛼!𝐴
|𝛼|
3

|𝑥|𝑑−𝑛+|𝛼|
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(for example, [14, S7, Lemma 7.3]), carrying out the summation of the geometric progression,
we obtain from (2.9) that outside the sufficiently big cube 𝐴4𝑄 the following estimate holds:

|𝑉𝜙𝑓(𝑥)| 6 𝐴𝜔𝑓 (𝑠)
Cap𝐿((3/2)𝑄 ∖𝑋𝑜)

|𝑥− 𝑎|𝑑−𝑛
. (2.10)

Remark 2.1. Applying supplementary partition of unity on (3/2)𝑄, one can easily demon-
strate (see, for example, [17, Lemma 1.5]) that the estimate (2.10) holds for any 𝜆 > 0 ev-
erywhere outside the cube (3/2 + 𝜆)𝑄 with (an increased) constant 𝐴 = 𝐴(𝜆). Likewise, let
𝐵 = 𝐵(𝑎, 𝑟) be a ball, Spt𝜙 ⊂ 𝐵 and ‖𝜕𝛼𝜙‖L∞ 6 𝑟−|𝛼| when |𝛼| 6 𝑛, 𝑉𝜙𝑓 be a localization.
Then, if 𝜆 > 1, everywhere outside the ball 𝜆𝐵 the following estimate holds:

|𝑉𝜙𝑓(𝑥)| 6 𝐴(𝜆)𝜔𝑓 (𝑟)
Cap𝐿(𝐵 ∖𝑋𝑜)

|𝑥− 𝑎|𝑑−𝑛
. (2.11)

Due to Lemma 2, the equalities Cap𝐿(𝐵(𝑎, 𝑟)) = 𝐴(𝐿)𝑟𝑑−𝑛 and the monotony of the capacity,
we obtain the following statement, which is a simple corollary (2.9).

Lemma 3. The following estimates hold:

|𝑐𝛼(𝑉𝜙𝑓, 𝑎)| 6
𝐴

𝛼!
𝜔𝑓 (𝑠)(2𝑠)

𝑑−𝑛+|𝛼|. (2.12)

Assume that 𝑚 ∈ Z+, 𝑚 6 𝑛+ 1; if 𝑐𝛼(𝑉𝜙𝑓, 𝑎) = 0 for |𝛼| < 𝑚, then

|𝑉𝜙𝑓(𝑥)| 6 𝐴𝜔𝑓 (𝑠)min

(︂
1,

𝑠𝑑−𝑛+𝑚

|𝑥− 𝑎|𝑑−𝑛+𝑚

)︂
. (2.13)

The fact that the estimate Cap𝐿(𝐵 ∖ 𝑋𝑜) 6 𝐴Cap𝐿(𝑘𝐵 ∖ 𝑋) is necessary for the equality
ℎ(𝑋,𝐿) = 𝐻(𝑋,𝐿) results from the following statement.

Lemma 4. Assume that 𝑓 ∈ 𝐻(𝑋,𝐿). Then for any localization 𝑉𝜙𝑓 satisfying conditions
of Lemma 2 the following estimate holds:

|𝑐0(𝑉𝜙𝑓)| 6 𝐴𝜔𝑓 (𝑠)Cap𝐿((3/2)𝑄 ∖𝑋). (2.14)

Proof. Assume that 𝑓 ∈ 𝐻(𝑋,𝐿). Then for any 𝜀 > 0 there is a function 𝐹 ∈ 𝐶(R𝑑) such
that in some neighbourhood 𝑋 the conditions 𝐿𝐹 = 0 and |𝑓(𝑥)− 𝐹 (𝑥)| < 𝜀 6 𝜔𝑓 (𝑠) hold (if
we extend the difference 𝑓 − 𝐹 by the Whitney theorem [12, Ch. 6, s. 2.2], we consider that
this inequality holds everywhere in R𝑑).

Due to (1.4), (2.7), |𝑓(𝑥)− 𝐹 (𝑥)| < 𝜀 and the arbitrariness of 𝜀, for the proof of (2.14) it is
sufficient to state that

|𝑐0(𝑉𝜙𝐹 )| 6 𝐴𝜔𝑓 (𝑠)Cap𝐿((3/2)𝑄 ∖𝑋).

But the last inequality results from the definition of the capacity. Actually, having estimated
localizations 𝑉𝜙𝑓 = 𝐸 * (𝜙𝐿𝑓) and 𝑉𝜙(𝑓 −𝐹 ) = 𝐸 * (𝜙𝐿(𝑓 −𝐹 )) with the help of Lemma 2, we
obtain that ‖𝑉𝜙𝐹‖L∞ 6 𝐴𝜔𝑓 (𝑠), and 𝑉𝜙𝐹 is admitted for (3/2)𝑄 ∖ 𝑋. The Lemma has been
proved.

Let us consider a corollary of Lemma 4.
Corollary 1. Let the equality 𝐻(𝑋,𝐿) = ℎ(𝑋,𝐿) hold. Then for an arbitrary cube 𝑄 there

is an estimate Cap𝐿(𝑄 ∖𝑋𝑜) 6 𝐴Cap𝐿((3/2)𝑄 ∖𝑋), which is equivalent to the right-hand side
(1.2).
Proof. Obviously, we may consider that Cap𝐿(𝑄 ∖ 𝑋𝑜) > 0. Due to the definition of

the capacity there is a function 𝑔, admitted for 𝑄 ∖ 𝑋𝑜 (and, consequently, by the condition
𝑔 ∈ 𝐻(𝑋,𝐿)) such that ‖𝑔‖L∞ 6 2 and ⟨𝐿𝑔|1⟩ = Cap𝐿(𝑄 ∖ 𝑋𝑜). Due to (2.1) and Lemma 1
there is the equality 𝑔 = 𝑉𝜙𝑔, where 𝜙 satisfies the conditions (1)-(2) of Lemma 1, and 𝜙 ≡ 1 in
some neighbourhood of 𝑄. Since ⟨𝐿𝑔|1⟩ = 𝑐0(𝑉𝜙𝑔) = Cap𝐿(𝑄 ∖𝑋𝑜), it remains to apply (2.14).
The corollary has been proved.
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Corollary 2. Assume that 𝑋𝑜 = ∅ and the equality 𝐶(𝑋) = 𝐻(𝑋,𝐿) holds. Then for an
arbitrary cube 𝑄 there is the estimate Cap𝐿(𝑄 ∖𝑋) > 𝐴1𝑠

𝑑−𝑛 which is equivalent to (1.5).
The proof follows from Corollary 1 and the equality Cap𝐿(𝑄) = 𝐴2𝑠

𝑑−𝑛.
Let us now consider the problem of the necessary precision of approximation of localization.

The following statement holds (see [7, Theorem 2]).

Lemma 5. Let us assume that for any binary cube 𝑄 = 𝑄(𝑎, 𝑠) and the corresponding
localization 𝑉𝜙𝑓 , satisfying conditions of the Lemma 2, there is a function 𝐹𝑄 such that:

(1) Spt(𝐿𝐹𝑄) ⊂ (10𝑄 ∖𝑋);
(2) the estimate

|𝑉𝜙𝑓(𝑥)− 𝐹𝑄(𝑥)| 6 𝐴𝜔𝑓 (𝑠)min

(︂
1,

𝑠𝑑

|𝑥− 𝑎|𝑑

)︂
(2.15)

holds. Then 𝑓 ∈ 𝐻(𝑋,𝐿).

Due to (2.13) all the coefficients of the Laurent expansions of the functions 𝑉𝜙𝑓 and 𝐹𝑄
should coincide when |𝛼| 6 𝑛−1 for the estimate (2.15) to hold. Note that repeating reasoning
of Lemma 1 from [2, Ch. 2, S4] would require satisfying a stricter condition, i.e. substitution
of the degree 𝑑 by 𝑑+ 1 in (2.15).

3. Proof of Theorem 1

Recall that statement (1) of Theorem 1 is established due to corollary 2 of Lemma 4. Let us
prove the following statement.

Lemma 6. Let the estimate (1.5) hold for the compact set 𝑋 with 𝑋𝑜 = ∅; then the following
equality 𝐶(𝑋) = 𝐻(𝑋,𝐿) holds.

Proof. Let us demonstrate that if (1.5) is satisfied, we can not only obtain the estimate
(2.15), whence Lemma 6 follows, but also obtain the estimate (3.2) with any given in advance
𝑚 ∈ N. The following statement is elementary.

Lemma 7. Assume that Q = [0, 1]𝑑. Then for any multi-index 𝛼, |𝛼| > 0 there exists a
function

𝐹𝛼 =
∑︁
𝑗

𝜆𝑗𝐸(𝑥− 𝑎𝑗), (3.1)

where the sum is finite, the number of indices 𝑗 does not exceed 𝐴(𝛼), 𝑎𝑗 ∈ Q, |𝜆𝑗| 6 𝐴(𝛼),
min𝑗,𝑗′ |𝑎𝑗 − 𝑎𝑗′| > 𝐴1(𝛼) > 0, and there exists the asymptotics

𝐹𝛼(𝑥) = 𝜕𝛼𝐸(𝑥) + 𝑜(|𝑥|𝑛−𝑑−|𝛼|).

To prove Lemma 7 it is sufficient to note that the functions 𝐹𝛼 are obtained from the standard
formulae of numerical differentiation and they are easily constructed by induction: if the vector
𝑎 is directed along the axis 𝑥𝑘, then

𝐹𝛼(𝑥− 𝑎)− 𝐹𝛼(𝑥) = |𝑎| 𝜕
𝜕𝑥𝑘

(𝜕𝛼𝐸(𝑥)) + 𝑜(|𝑥|𝑛−𝑑−|𝛼|−1).

Corollary of Lemma 7. Let 𝑄 = 𝑄(𝑎, 𝑠) be a cube, 𝑚 ∈ Z+, and with |𝛼| 6 𝑚 arbitrary
numbers 𝑏𝛼 ∈ C, |𝑏𝛼| 6 𝑠𝑑−𝑛+|𝛼| are given. Then there exists a function 𝐹𝑚 such that:

(1) 𝐹𝑚 =
∑︀

𝑗 𝜆
′
𝑗𝐸(𝑥− 𝑎𝑗), where 𝑎𝑗 ∈ 𝑄, |𝜆′𝑗| 6 𝐴(𝑚)𝑠𝑑−𝑛, the number of indices 𝑗 does not

exceed 𝐴(𝑚), min𝑗,𝑗′ |𝑎𝑗 − 𝑎𝑗′| > 𝐴1(𝑚)𝑠, where 𝐴1(𝑚) > 0;
(2) when |𝛼| 6 𝑚 the equality 𝑐𝛼(𝐹𝑚, 𝑎) = 𝑏𝛼 holds.
(The corollary is obvious: for 𝑄 = [0, 1]𝑑 the function 𝐹𝑚 is a consistent linear combination

of functions 𝐹𝛼 from Lemma 7, and its coefficients are obtained from the system of linear
equations with a triangle matrix; the general case is obtained by variation of the scale).
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Let us return to the proof of Lemma 6. Considering that (1.5) holds, we modify a little
functions 𝐹𝛼 from (3.1).

Let for the fixed 𝑐 > 0 and some set 𝐾 we have Cap𝐿(𝐵(𝑥, 𝑟)∩𝐾) > 𝑐𝑟𝑑−𝑛 uniformly on all
𝑥 ∈ Q and 𝑟 6 1. For 𝑟 ∈ (0, 1] in the sum in the right-hand side (3.1) we substitute every
function 𝐸(𝑥−𝑎𝑗) by 𝑟𝑛−𝑑𝑔𝑗, where ‖𝑔𝑗‖𝐿∞ 6 2𝑐−1, Spt(𝐿𝑔𝑗) ⊂ (𝐵(𝑎𝑗, 𝑟)∩𝐾), lim𝑥→∞ 𝑔𝑗(𝑥) = 0
and 𝑐0(𝑔𝑗) = 𝑟𝑑−𝑛. Due to (2.12) we obtain (independently of 𝐾) |𝑐𝛼(𝑟𝑛−𝑑𝑔𝑗, 𝑎𝑗)| 6 𝐴𝑐−1𝑟|𝛼|

when |𝛼| > 0, at that 𝑐0(𝑟
𝑛−𝑑𝑔𝑗) = 𝑐0(𝐸(𝑥− 𝑎𝑗)) = 1.

Whence and from (2.6) it follows that for any 𝑚 ∈ Z+ and all 𝛽, |𝛽| 6 𝑚 the following
estimate holds |𝑐𝛽(𝐸(𝑥− 𝑎𝑗), 0)− 𝑐𝛽(𝑟

𝑛−𝑑𝑔𝑗, 0)| 6 𝐴(𝑚,𝐿)𝑟. Consequently, for any 𝜖 > 0 and
𝑚 ∈ Z+ there exists 𝑟0 = 𝑟0(𝜖,𝑚, 𝐿) such that the inequality∑︁

{𝛽:|𝛽|6𝑚}

|𝑐𝛽( ̃︀𝐹𝛼, 0)− 𝑐𝛽(𝐹𝛼, 0)| < 𝜖

holds for all 𝑟 6 𝑟0 where ̃︀𝐹𝛼 indicates the sum obtained from (3.1) by the substitution of
𝐸(𝑥− 𝑎𝑗) for 𝑟

𝑛−𝑑𝑔𝑗.

Similarly to the corollary in Lemma 7, due to (2.12) there exists the function ̃︀𝐹𝑚 which

is a consistent linear combination of the functions ̃︀𝐹𝛼 such that there holds the following
statement (the matrix of the system of linear equations from which we obtain the coefficients,

corresponding to ̃︀𝐹𝛼, under small 𝑟/𝑠 is close to be triangular).

Lemma 8. Let 𝑄 = 𝑄(𝑎, 𝑠) be a cube, 𝑓 ∈ ℎ(𝑋,𝐿), 𝑉𝜙𝑓 be a localization from Lemma 2. Let
𝑐 > 0 be such that for all 𝑟 6 𝑠/10 and 𝑥 ∈ 𝑄′, where 𝑄′ is a cube, 𝑄′ ⊂ 10𝑄, 𝑠(𝑄′) > (1/10)𝑠,

the inequality Cap𝐿(𝐵(𝑥, 𝑟) ∖ 𝑋) > 𝑐𝑟𝑑−𝑛 holds. Then for any 𝑚 > 0 there is a function ̃︀𝐹𝑚
such that Spt(𝐿 ̃︀𝐹𝑚) ⊂ (10𝑄 ∖𝑋), and there exists the estimate

|𝑉𝜙𝑓(𝑥)− ̃︀𝐹𝑚(𝑥)| 6 𝐴(𝑐,𝑚)𝜔𝑓 (𝑠)min

(︂
1,

𝑠𝑑−𝑛+𝑚

|𝑥− 𝑎|𝑑−𝑛+𝑚

)︂
. (3.2)

Due to Lemmas 5 and 8 Lemma 6 has been proved.
To conclude the proof of Theorem 1 it remains to prove the following statement of instability

of the capacity.

Lemma 9. Let 𝑋 be a compact set with 𝑋𝑜 = ∅. If the estimate (1.6) holds for almost all
𝑥 ∈ 𝑋, then for any ball 𝐵(𝑥, 𝑟) with the centre 𝑥 ∈ R𝑑 the estimate (1.5) holds.

Proof. Lemma 9 results from the following three Lemmas.

Lemma 10. Let us assume that 𝐾 is a subset of the ball 𝐵 = 𝐵(𝑎, 𝑟), 𝑎0 ∈ 𝐵, and the
estimate Cap𝐿(𝐵(𝑎0, 𝛿)∩𝐾) 6 𝑐𝛿𝑑 holds for some 𝑐 > 0 and any ball 𝐵(𝑎0, 𝛿) with 𝛿 6 2𝑟. Let
𝑔 ∈ 𝐶(R𝑑) be a function such that Spt(𝐿𝑔) ⊂ 𝐾, ‖𝑔‖L∞ 6 1 and lim𝑥→∞ 𝑔(𝑥) = 0. Then the
estimate |𝑔(𝑎0)| 6 𝐴𝑐𝑟𝑛 holds.

Proof of Lemma 10. Due to (2.1) we have 𝑔 = 𝐸*(𝐿𝑔). Assume that 𝐵0 = 𝐵(𝑎0, 2𝑟), and
for 𝑚 ∈ N we suppose 𝐵𝑚 = 𝐵(𝑎0, 2𝑟/2

𝑚); it is clear that the rings 𝐷𝑚 = (3/2)𝐵𝑚 ∖ (1/4)𝐵𝑚

cover 𝐵0. Having expanded the space R𝑑 into binary cubes whose edges lengths are almost
”equivalent” to the distances to 𝑎0, and having applied Lemma 1 for the arbitrary 𝑚0 ∈ N we
represent 𝑔 in the form of a sum of localizations:

𝑔 =

𝑚0∑︁
𝑚=0

𝐸 * (𝜙𝑚𝐿𝑔) + 𝐸 * (𝜓𝐿𝑔),

where 𝜙𝑚 =
∑︀𝑝𝑚

𝑗=1 𝜙𝑚,𝑗, and Spt𝜙𝑚,𝑗 ⊂ 𝐷𝑚, 𝜙𝑚,𝑗 satisfies the conditions of Lemma 1 for the

corresponding cubes, contained in 𝐷𝑚, 𝑝𝑚 6 𝐴(𝑑), Spt𝜓 ⊂ (3/2)𝐵𝑚0 , and 𝜓 satisfies conditions
of Lemma 1 for the cube comparable with 𝐵𝑚0 .
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Having applied Lemma 2 and (2.11), we obtain:

|𝑔(𝑎0)| 6 𝐴

(︃
𝑚0∑︁
𝑚=0

Cap𝐿((3/2)𝐵𝑚 ∩𝐾)

(𝑟(𝐵𝑚))𝑑−𝑛
+ 𝜔𝑔(𝑟(𝐵𝑚0))

)︃
.

If by condition we apply the estimate Cap𝐿((3/2)𝐵𝑚 ∩𝐾) 6 𝐴1𝑐(𝑟(𝐵𝑚))
𝑑 and tending 𝑚0

to infinity, we obtain the estimate |𝑔(𝑎0)| 6 𝐴𝑐𝑟𝑛. Lemma 10 has been proved.

Lemma 11. Let 𝑡1 > 0, 𝑡2 > 𝑡1, 𝐾0 = 𝐾0(𝑡1, 𝑡2) be a set of points 𝑥 such that

lim sup
𝑟→0

Cap𝐿(𝐵(𝑥, 𝑟) ∩𝐾0)

𝑟𝑑
> 𝑡1 and Cap𝐿(𝐵(𝑥, 𝑟) ∩ 𝐾0) 6 𝑡2𝑟

𝑑 for all 𝑟, 𝑟 6 𝑟0. Then

𝑚𝑒𝑠(𝐾0) = 0,where 𝑚𝑒𝑠(·) is the Lebesgue measure in R𝑑.

Proof of Lemma 11. Lemma 11 is proved similarly to Lemma 1.7 from [10]. Reasoning
by contradiction, we assume that 𝑚𝑒𝑠(𝐾0) > 0; let 𝑥0 be a density point of 𝐾0, then there is
𝑟1 < 𝑟0 such that the inequality 𝑚𝑒𝑠(𝐵(𝑥0, 𝑟) ∩𝐾0) > (1/2)𝑚𝑒𝑠(𝐵(𝑥0, 𝑟)) holds in case of all
𝑟 6 𝑟1. Let us prove that it results in

lim inf
𝑟→0

Cap𝐿(𝐵(𝑥0, 𝑟) ∩𝐾0)

𝑟𝑑−𝑛
> 0, (3.3)

consequently, due to the definition 𝐾0, we have 𝑥0 ̸∈ 𝐾0 and the obtained contradiction proves
the lemma.

Let us prove estimate (3.3). Let us fix the ball 𝐵 = 𝐵(𝑥0, 𝑟), 𝑟 6 𝑟1. Due to the covering
Lemma [9, S3], [12, Ch. 1, S1.6] there exists a finite family of balls 𝐵𝑗 = 𝐵(𝑎𝑗, 𝛿𝑗) contained in
𝐵 with 𝑎𝑗 ∈ 𝐾0 such that the following conditions hold (1)–(3):

(1) Cap𝐿(𝐵(𝑎𝑗, 𝛿𝑗) ∩𝐾0) > (1/2)𝑡1(𝛿𝑗)
𝑑;

(2)
∑︀

𝑗(𝛿𝑗)
𝑑 > 𝐴𝑟𝑑;

(3) balls 2𝐵𝑗 do not intersect pairwise.
Due to condition (1) we take for each ball 𝐵𝑗 the function 𝑔𝑗, admitted for 𝐵(𝑎𝑗, 𝛿𝑗) ∩𝐾0,

such that ‖𝑔𝑗‖L∞ 6 1 and 𝑐0(𝑔𝑗) = (1/4)𝑡1(𝛿𝑗)
𝑑. Assume that 𝑔 =

∑︀
𝑗 𝑔𝑗; it is clear, that

Spt(𝐿𝑔) ⊂ (𝐵(𝑥0, 𝑟) ∩𝐾0), and due to condition (2) we have 𝑐0(𝑔) > 𝐴𝑡1𝑟
𝑑.

It is easy to see that it results from the estimate Cap𝐿(𝐵(𝑥, 𝑟)∩𝐾0) 6 𝑡2𝑟
𝑑 for 𝑥 ∈ 𝐾0, that

Cap𝐿(𝐵(𝑥, 𝑟/2)∩𝐾0) 6 𝑡2𝑟
𝑑 for 𝑥 ∈ R𝑑. Due to Lemma 10, conditions (3) for {𝐵𝑗} and (2.11),

we obtain

|𝑔(𝑥)| 6 𝐴𝑡2

(︂
𝑟𝑛 +

∫︁
𝐵

𝑑𝑚𝑦

|𝑥− 𝑦|𝑑−𝑛

)︂
6 𝐴1𝑡2𝑟

𝑛

for 𝑥 ∈ R𝑑.
We have obtained from the definition of capacity that Cap𝐿(𝐵(𝑥0, 𝑟) ∩𝐾0) > 𝐴(𝑡1/𝑡2)𝑟

𝑑−𝑛,
and, consequently, we have obtained (3.3). Lemma 11 has been proved.

The following statement is obvious.
Corollary of Lemma 11. Let the estimate (1.6) hold for almost all 𝑥 ∈ 𝑋. Then for

almost all 𝑥 ∈ 𝑋:

lim sup
𝑟→0

Cap𝐿(𝐵(𝑥, 𝑟) ∖𝑋)

𝑟𝑑
= ∞. (3.4)

To complete proof of Lemma 9 and Theorem 1 it is remains to establish the following state-
ment.

Lemma 12. Let the estimate (3.4) hold for almost all 𝑥 ∈ 𝑋, then for any ball 𝐵(𝑥, 𝑟) with
the centre 𝑥 ∈ R𝑑 the estimate (1.5) holds.

Proof of Lemma 12. Lemma 12 is proved by analogy with Lemma 11 and Theorem 1
from [9]. Let us note that the estimate (3.4) obviously holds for all 𝑥 ̸∈ 𝑋. Let us fix an
arbitrary ball 𝐵(𝑥0, 𝑟). According to the Vitali Covering Lemma (see [9, S3]) there exists a
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finite number of balls 𝐵𝑗 = 𝐵(𝑎𝑗, 𝛿𝑗) contained in 𝐵 such that the following conditions hold
(1)-(3):

(1) Cap𝐿(𝐵(𝑎𝑗, 𝛿𝑗) ∖𝑋) > (𝛿𝑗)
𝑑/𝑟𝑛;

(2)
∑︀

𝑗(𝛿𝑗)
𝑑 > 𝐴𝑟𝑑;

(3) balls 2𝐵𝑗 do not cross pairwise.
Due to condition (1) we take the functions 𝑔𝑗 admitted for 𝐵(𝑎𝑗, 𝛿𝑗) ∖𝑋, such that ‖𝑔𝑗‖L∞ 6

(𝛿𝑗)
𝑑

𝑟𝑛Cap𝐿(𝐵(𝑎𝑗, 𝛿𝑗) ∖𝑋)
6 1 and 𝑐0(𝑔𝑗) = (1/2)(𝛿𝑗)

𝑑/𝑟𝑛. Assume that 𝑔 =
∑︀

𝑗 𝑔𝑗, then due to

the condition (2) we have 𝑐0(𝑔) > 𝐴𝑟𝑑−𝑛. Due to Lemma 2, condition (3) and (2.11) we obtain
for 𝑥 ∈ R𝑑:

|𝑔(𝑥)| 6 𝐴+ 𝑟−𝑛
∫︁
𝐵

𝑑𝑚𝑦

|𝑥− 𝑦|𝑑−𝑛
6 𝐴1.

Therefore 𝑐0(𝑔)/‖𝑔‖L∞ > 𝐴2𝑟
𝑑−𝑛. According to the definition of capacity we have obtained

that Cap𝐿(𝐵(𝑥0, 𝑟) ∖𝑋) > 𝐴2𝑟
𝑑−𝑛. Lemma 12 has been proved. The proof of Theorem 1 has

been completed.

4. Construction of Example 1

Example 1. Assume that 𝑑 > 2 and 2 < 𝑛 < 𝑑 (where 𝑑 is dimension of the space, 𝑛 is
order of the operator 𝐿). Then there is a compact set 𝑋, such that for any cube 𝑄 the estimate
Cap𝐿(𝑄 ∖𝑋𝑜) 6 𝐴Cap𝐿(2𝑄 ∖𝑋) holds and the function 𝑓 ∈ ℎ(𝑋,𝐿) is such that 𝑓 ̸∈ 𝐻(𝑋,𝐿).

Construction of the Example. Let us start with an auxiliary construction. For 𝑁 ∈ N
we consider a 𝑑−1-dimensional cube 𝐷𝑁 : 𝐷𝑁 = [0, 1]𝑑∩{𝑥𝑑 = 10−𝑁} and the set of open balls
𝐵𝑗 with centres 𝑎𝑗 ∈ 𝐷𝑁 , though the coordinates 𝑥𝑚 of the points 𝑎𝑗 have the form 𝑘10−𝑁

when 𝑚 = 1, . . . , 𝑑− 1, where 𝑘 = 0, 1, . . . , 10𝑁 and 𝑟(𝐵𝑗) = 10−𝑁(𝑑−1)/(𝑑−𝑛).
It is clear that the balls 2𝐵𝑗 do not intersect pairwise; let us take the functions 𝑔𝑗 such that

𝑔𝑗 is admitted for 𝐵𝑗, ‖𝑔𝑗‖L∞ 6 2 and 𝑐0(𝑔𝑗) = Cap𝐿(𝐵𝑗) = 𝐴10−𝑁(𝑑−1). Let 𝑄 = 𝑄(𝑎, 𝑠) be
an arbitrary cube such that 𝑎 ∈ 𝐷𝑁 and 10−𝑁+1 6 𝑠 6 1. Then, as it is easy to see, due to
”uniformity” of location of the points 𝑎𝑗 on 𝐷𝑁 the following properties of the functions 𝑔𝑗
occur.

(1) In summing the cubes 𝐵𝑗 ⊂ 𝑄 by all the indexes 𝑗, the sum 𝑐0(𝑔𝑗) is not less then 𝐴1𝑠
𝑑−1,

where 𝐴1 > 0.
(2) For the arbitrary 𝑥 ∈ R𝑑 the sum |𝑔𝑗(𝑥)| over all indices 𝑗 such that 𝐵𝑗 ⊂ 𝑄 and

|𝑎𝑗 − 𝑥| > 10−𝑁 does not exceed 𝐴2

∫︁
𝑄∩𝐷𝑁

𝑑𝑥1 . . . 𝑑𝑥𝑑−1

|𝑥− 𝑦|𝑑−𝑛
6 𝐴3𝑠

𝑛−1.

Lemma 13. Let B be the union of balls 𝐵𝑗, constructed for all 𝐷𝑁 , where 𝑁 = 1, 2, . . .;
𝑄0 = 𝑄0(𝑎, 𝑠) is a cube with the centre 𝑎 ∈ 𝐷0, where 𝐷0 = [0, 1]𝑑 ∩ {𝑥𝑑 = 0} and 𝑠 6 1 (let us
recall that we consider cubes with edges parallel to the axes of coordinates). Then the estimate
Cap(𝑄0 ∩B) > 𝐴𝑠𝑑−𝑛 occurs.

Proof. The cube 𝑄0 intersects all 𝐷𝑁 , starting with some 𝐷𝑁0 . Let 𝑔
𝑁 be a sum of functions

𝑔𝑗 such that 𝐵𝑗 is contained in 𝑄0, and the centres 𝐵𝑗 belong to 𝐷𝑁 . Due to properties (1)
and (2) of the functions 𝑔𝑗, for all sufficiently large 𝑚 the function

𝑔 =
1

𝑚

𝑁0+𝑚−1∑︁
𝑁=𝑁0

𝑔𝑁

has the following two properties:
(1) 𝑐0(𝑔) > 𝐴1𝑠

𝑑−1; (2) ‖𝑔‖L∞ 6 𝐴3𝑠
𝑛−1. By definition of capacity this entails the statement

of the lemma. The lemma has been proved.
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Let us return to the construction of the Example 1. Let us take 𝑋 = 𝑄(0, 10) ∖B. It is clear
that the inner boundary of 𝑋 coincides with 𝐷0.

Let the cube 𝑄 not intersect 𝐷0, then the estimate Cap𝐿(𝑄 ∖𝑋𝑜) 6 𝐴Cap𝐿(2𝑄 ∖𝑋) results
from the possibility of uniform approximation with any degree of precision of the function ℎ
admitted for 𝑄 ∖ 𝑋𝑜 by admitted functions for 2𝑄 ∖ 𝑋 (this fact is standard as 𝑄 intersects
only a finite number of balls 𝐵𝑗: ℎ is presented in the form of the sum of localizations of A.G.
Vitushkin [2, Ch. 2, S1] within the scale min 𝑟(𝐵𝑗), and Lemmas 5 and 8) are applied.
Let 𝑄 intersect 𝐷0; if 𝑄 intersects the boundary 𝑄(0, 10) as well, then, it is obvious that

Cap𝐿(2𝑄 ∖𝑋) > 𝐴1(𝑠(𝑄))
𝑑−𝑛 and, consequently, Cap𝐿(𝑄 ∖𝑋𝑜) 6 𝐴Cap𝐿(2𝑄 ∖𝑋).

Finally, when 𝑄 intersects 𝐷0 and is contained inside 𝑄(0, 10), the estimate Cap𝐿(2𝑄∖𝑋) >
𝐴1(𝑠(𝑄))

𝑑−𝑛 easily results from Lemma 13.
Therefore in the general case we obtain Cap𝐿(𝑄 ∖𝑋𝑜) 6 𝐴Cap𝐿(2𝑄 ∖𝑋).

Let us take 𝑓 =
𝜕𝐸

𝜕𝑥𝑑
* 𝜒𝐷0 for 𝐸 from (1.1). Here 𝜒(·) is a characteristic function. Since 𝑛

(order of the operator 𝐿) is higher than two, then 𝑓 ∈ 𝐶(R𝑑); it is clear that 𝑓 ∈ ℎ(𝑋,𝐿).
It remains to show that 𝑓 ̸∈ 𝐻(𝑋,𝐿). Let us take a function 𝜙 ∈ 𝐶∞

0 (R𝑑) such that
Spt𝜙 ⊂ 𝑄(0, 5), 𝜙 ≡ 1 on 𝑄(0, 2) and ‖𝜕𝛼𝜙‖L∞ 6 𝐴 when |𝛼| 6 𝑛. Similarly, we take a function
𝜙𝑗 ∈ 𝐶∞

0 (R𝑑), Spt𝜙𝑗 ⊂ 2𝐵𝑗, 𝜙 ≡ 1 for every ball 𝐵𝑗 on (3/2)𝐵𝑗 and ‖𝜕𝛼𝜙‖L∞ 6 𝐴(𝑟(𝐵𝑗))
−|𝛼|

when |𝛼| 6 𝑛.
Let us consider the function 𝜇 = 𝐿(𝑥𝑑𝜙)−

∑︀
{𝑗:𝐵𝑗⊂B} 𝐿(𝑥𝑑𝜙𝑗). It is clear that∫︁

𝑄(0,5)

|𝜇(𝑥)|𝑑𝑚𝑥 6 𝐴1 + 𝐴2

∞∑︁
𝑁=1

10−𝑁
∑︁

{𝑗:𝑎𝑗∈𝐷𝑁}

(𝑟(𝐵𝑗))
𝑑−𝑛 6 𝐴1 + 𝐴3

∞∑︁
𝑁=1

10−𝑁 <∞.

Due to the construction we obtain the equality 𝜇 ≡ 0 on the union of (3/2)𝐵𝑗 and everywhere

outside 𝑄(0, 5). Therefore, for any function 𝐹 ∈ 𝐻(𝑋,𝐿) the equality

∫︁
𝑄(0,5)

𝐹 (𝑥)𝜇(𝑥)𝑑𝑚𝑥 = 0

holds. To make sure that 𝑓 ̸∈ 𝐻(𝑋,𝐿), it is left to show that

∫︁
𝑄(0,5)

𝑓(𝑥)𝜇(𝑥)𝑑𝑚𝑥 ̸= 0.

Since 𝑓 =
𝜕𝐸

𝜕𝑥𝑑
* 𝜒𝐷0 , then for all 𝑗 we have:∫︁

𝑄(0,5)

𝑓(𝑥)𝐿(𝑥𝑑𝜙𝑗(𝑥))𝑑𝑚𝑥 = (−1)𝑛⟨𝐿𝑓 |𝑥𝑑𝜙𝑗⟩ = 0,

consequently,

∫︁
𝑄(0,5)

𝑓(𝑥)𝜇(𝑥)𝑑𝑚𝑥 = (−1)𝑛⟨𝐿𝑓 |𝑥𝑑𝜙⟩. Since 𝜙 ≡ 1 on 𝑄(0, 2), due to (2.5) and

(2.6) we have: −⟨𝐿𝑓 |𝑥𝑑𝜙⟩ =
∫︁
𝐷0

𝜒𝐷0(𝑥)𝑑𝑥1 . . . 𝑑𝑥𝑑−1 = 1.

Therefore

⃒⃒⃒⃒∫︁
𝑄(0,5)

𝑓(𝑥)𝜇(𝑥)𝑑𝑚𝑥

⃒⃒⃒⃒
= 1. Construction of Example 1 has been completed.
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