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EXTENSION OF THE CONIC FLOWS

S.V. KHABIROV

Abstract. All partial invariant solutions of gas dynamic equations, that are constructed
on the conic subalgebra admitted by the model are found. The conic subalgebra consists of
operators of rotation, translation by time and expansion. A submodel comprises a system
of ordinary differential equations. Solutions form a series of submodels. In the basis of
these submodels lies conic submodel with respect to the invariant variable depending on
independent variables and constants of the submodels depending on an invariant function.
To determine this dependence, various additional overdetermined equations are obtained.
Moreover, two submodels, expanding the conic submodel, are derived from the system of
partial differential equations. All formulas mapping the solutions to physical space are
defined for these two submodels.
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Introduction

Canonic flows are invariant solutions constructed on the three-dimensional subalgebra with
basis operators of rotation, translation by time and expansion (conic subalgebra). The submodel
of conic flows is composed by a quasilinear non-autonomous system of ordinary differential
equations. This submodel without rotation is the topic of the books [1, 2, 3]. Exact solutions
with rotation were obtained in [3, 4]. The extension of conical flows can be obtained by two
methods. The first extension presents partial invariant solutions of the conic algebra. In this
paper we consider an irregular partial invariant submodel of rank 2 defect 1. The second
extension consists in consideration of group solutions of the overalgebra of the conic algebra.
In further papers we plan to consider a differential-invariant submodel of the rank 1 + 3 of the
five-dimensional subalgebra [3], where we add two operators of translation noncommuting with
rotation to the operators of conic algebra. This submodel coincides with the partial invariant
submodel of rank 1 defect 2 [5]. In both cases we have obtained partial solutions of equation of
gas dynamics different from solutions of a conic submodel. Almost all the considered solutions
are reduced to conic flows. It suggests some partial stability of conic flows with respect to
perturbations from the considered partial invariant submodels.

1. The irregular partially invariant submodel of rank 2 defect 1 of the
conic algebra

The basis of the conic subalgebra is set by basis operators in the cylindrical system of
coordinates: 𝜕𝑡 is the translation by time, 𝜕𝜃 is the rotation, 𝑡𝜕𝑡+𝑥𝜕𝑥+𝑟𝜕𝑟 is the extension.The
invariants of the subalgebra are: the quantity 𝑠 = 𝑥𝑟−1, the coordinates of the velocity 𝑈 , 𝑉 ,
𝑊 , the density 𝜌 and the entropy 𝑆. The pressure is determined by the equation of state
𝑝 = 𝑓(𝜌, 𝑆). The representation of the partial invariant solution of rank 2 defect 1 of the
equation of continuum mechanics consists in the fact that all the required functions depend on
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𝑠 and 𝛼 = 𝛼(𝑡, 𝑥, 𝑟, 𝜃) [5]. The function 𝛼 of the general form can be any invariant. In the case
of equations of gas dynamics substitution of the representation provides the equalities

𝑟−1(𝑈 − 𝑠𝑉 )𝑆𝑠 + 𝑆𝛼(𝛼𝑡 + 𝑢⃗ · ∇𝛼) = 0,

𝑟−1 [(𝑈 − 𝑠𝑉 )𝜌𝑠 + 𝜌(𝑈𝑠 − 𝑠𝑉𝑠 + 𝑉 )] + 𝜌𝛼(𝛼𝑡 + 𝑢⃗ · ∇𝛼) + 𝜌𝑢⃗𝛼 · ∇𝛼 = 0,

𝑟−1 [(𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝜌−1𝑝𝑠] + 𝑈𝛼(𝛼𝑡 + 𝑢⃗ · ∇𝛼) + 𝜌−1𝑝𝛼𝛼𝑥 = 0,

𝑟−1 [(𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝𝑠 −𝑊 2] + 𝑉𝛼(𝛼𝑡 + 𝑢⃗ · ∇𝛼) + 𝜌−1𝑝𝛼𝛼𝑟 = 0,

𝑟−1 [(𝑈 − 𝑠𝑉 )𝑊𝑠 + 𝑉𝑊 ] + 𝑊𝛼(𝛼𝑡 + 𝑢⃗ · ∇𝛼) + 𝜌−1𝜌−1𝑝𝛼𝛼𝜃 = 0,

(1.1)

where 𝑢⃗ is a vector with the coordinates 𝑈 , 𝑉 , 𝑊 ; ∇ is a vector gradient with the coordinates
𝜕𝑥, 𝜕𝑟, 𝑟

−1𝜕𝜃. If gas dynamic functions do not depend on 𝛼, then we obtain the conic submodel
[3].

In the equations (1.1) all gas dynamic functions depend on 𝑠 and 𝛼. Therefore it is convenient
to use the variables 𝑠, 𝛼, 𝑡, 𝜃 as new independent variables. The substitution is set by the
equations 𝑥 = 𝑠𝑟, 𝑟 = 𝑟(𝑡, 𝜃, 𝛼, 𝑠), 𝑟𝛼 ̸= 0. The identity 𝛼 ≡ 𝛼 (𝑡, 𝑠𝑟, 𝑟(𝑡, 𝜃, 𝛼, 𝑠), 𝜃) holds. The
derivatives of the functions 𝑟 and 𝛼 are connected by the equations

𝛼𝑡 = − 𝑟𝑡
𝑟𝛼

, 𝛼𝜃 = − 𝑟𝜃
𝑟𝛼

, 𝛼𝑥 = − 𝑟𝑠
𝑟𝑟𝛼

, 𝛼𝑟 = − 1

𝑟𝛼

(︁
1 +

𝑠𝑟𝑠
𝑟

)︁
.

The equations (1.1) are reduced to the form

𝑆𝛼 (𝑟𝑡 + (𝑈 − 𝑠𝑉 )𝑟−1𝑟𝑠 + 𝑊𝑟−1𝑟𝜃) − (𝑈 − 𝑠𝑉 )𝑆𝑠𝑟
−1𝑟𝛼 = 𝑆𝛼𝑉,

𝜌𝛼𝑟𝑡 + (𝜌(𝑈 − 𝑠𝑉 ))𝛼 𝑟
−1𝑟𝑠 + (𝜌𝑊 )𝛼𝑟

−1𝑟𝜃−

−
(︀(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝑠

+ 2𝜌𝑉
)︀
𝑟−1𝑟𝛼 = (𝜌𝑉 )𝛼,

𝑈𝛼𝑟𝑡 + ((𝑈 − 𝑠𝑉 )𝑈𝛼 + 𝜌−1𝑝𝛼) 𝑟−1𝑟𝑠 + 𝑊𝑈𝛼𝑟
−1𝑟𝜃−

− ((𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝜌−1𝑝𝑠) 𝑟
−1𝑟𝛼 = 𝑉 𝑈𝛼,

𝑉𝛼𝑟𝑡 + ((𝑈 − 𝑠𝑉 )𝑉𝛼 − 𝑠𝜌−1𝑝𝛼) 𝑟−1𝑟𝑠 + 𝑊𝑉𝛼𝑟
−1𝑟𝜃−

− ((𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝𝑠 −𝑊 2) 𝑟−1𝑟𝛼 = 𝑉 𝑉𝛼 + 𝜌−1𝑝𝛼,

(1.2)

𝑊𝛼𝑟𝑡 + (𝑈 − 𝑠𝑉 )𝑊𝛼𝑟
−1𝑟𝑠 + (𝑊𝑊𝛼 + 𝜌−1𝑝𝛼)𝑟−1𝑟𝜃−

−
(︀
(𝑈 − 𝑠𝑉 )𝑊𝑠 + 𝑉𝑊

)︀
𝑟−1𝑟𝛼 = 𝑉𝑊𝛼.

We have obtained five linear equations for the quantities 𝑟𝑡, 𝑟
−1𝑟𝑠, 𝑟

−1𝑟𝜃, 𝑟
−1𝑟𝛼.

Lemma 1. If all the derivatives of the function 𝑟 are determined by (1.2) as the functions
𝑠, 𝛼, then they are reduced to the invariant solution of the two-dimensional subalgebra [5].

Proof.
Let us assume that 𝑟𝑡 = 𝐴(𝛼, 𝑠), 𝑟−1𝑟𝑠 = 𝐵(𝛼, 𝑠), 𝑟−1𝑟𝜃 = 𝐶(𝛼, 𝑠), 𝑟−1𝑟𝛼 = 𝒟(𝛼, 𝑠). The

conditions of compatibility provide 𝐶𝑠 = 𝐶𝛼 = 0 ⇒ 𝐶 = 𝐶0 is a constant; 𝐴𝑠 = 𝐵𝐴, 𝐴𝛼 = 𝒟𝐴,
𝐴𝐶0 = 0, 𝐵𝛼 = 𝒟𝑠 ⇒ 𝐵 = 𝐸𝑠, 𝒟 = 𝐸𝛼, 𝐴 = 𝐾𝑒𝐸, 𝐾 is a constant, 𝐾𝐶0 = 0.

If 𝐶0 = 0, then 𝑟 = 𝑡 exp(𝐸) ⇒ 𝛼 = 𝛼(𝑠, 𝑡−1𝑟) is an invariant of the subalgebra {𝜕𝜃, 𝑡𝜕𝑡+𝑥𝜕𝑥+
+𝑟𝜕𝑟}.

If 𝐶0 ̸= 0, then 𝐾 = 0, 𝑟 = exp(𝐸 + 𝐶0𝜃) ⇒ 𝛼 = 𝛼(𝑠, ln 𝑟 − 𝐶0𝜃) is an invariant of the
subalgebra {𝜕𝜃, 𝑡𝜕𝑡 + 𝑥𝜕𝑥 + 𝑟𝜕𝑟 + 𝐶−1

0 𝜕𝜃}. This completes the proof.
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All the derivatives 𝑆𝛼, 𝜌𝛼, 𝑈𝛼, 𝑉𝛼, 𝑊𝛼 are not equal to zero, otherwise reducing to the conic
invariant submodel [3] may occur. It follows that 𝑟𝑡 = 𝑅(𝛼, 𝑠) ⇒ 𝑟 = 𝑡𝑅(𝛼, 𝑠) + 𝑟1(𝛼, 𝑠𝜃),
𝑟1 ̸= 0. Substitution of the expression for 𝑟 into (1.2) and equating the coefficients with the
free variable 𝑡 to zero provides two systems. The first one is for 𝑟1

𝑆𝛼(𝑈 − 𝑠𝑉 )𝑟1𝑠 + 𝑆𝛼𝑊𝑟1𝜃 − 𝑆𝑠(𝑈 − 𝑠𝑉 )𝑟1𝛼 = 𝑆𝛼(𝑉 −𝑅)𝑟1,

(𝜌(𝑈 − 𝑠𝑉 ))𝛼 𝑟1𝑠 + (𝜌𝑊 )𝛼𝑟1𝜃−

−
(︀
2𝜌𝑉 +

(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝑠

)︀
𝑟1𝛼 =

(︀
(𝜌𝑉 )𝛼 − 𝜌𝛼𝑅

)︀
𝑟1,

((𝑈 − 𝑠𝑉 )𝑈𝛼 + 𝜌−1𝑝𝛼) 𝑟1𝑠 + 𝑊𝑈𝛼𝑟1𝜃−

− ((𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝜌−1𝑝𝑠) 𝑟1𝛼 = 𝑈𝛼(𝑉 −𝑅)𝑟1,

((𝑈 − 𝑠𝑉 )𝑉𝛼 − 𝑠𝜌−1𝑝𝛼) 𝑟1𝑠 + 𝑊𝑉𝛼𝑟1𝜃−

− ((𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝𝑠 −𝑊 2) 𝑟1𝛼 = (𝑉𝛼(𝑉 −𝑅) + 𝜌−1𝑝𝛼) 𝑟1,

(𝑈 − 𝑠𝑉 )𝑊𝛼𝑟1𝑠 + (𝑊𝑊𝛼 + 𝜌−1𝑝𝛼) 𝑟1𝜃 − ((𝑈 − 𝑠𝑉 )𝑊𝑠 + 𝑉𝑊 ) 𝑟1𝛼 =

= 𝑊𝛼(𝑉 −𝑅)𝑟1;

(1.3)

The second system is obtained from (1.3) by means of substitution of 𝑟1 for 𝑅. If all the
derivatives of the function 𝑟1 are determined by (1.3), then the derivatives of the function 𝑅
are determined the same way. Reducing to the invariant solution under the two-dimensional
algebra occurs.

2. The case when the derivative 𝑟1𝜃 is not determined by (1.3)

Let 𝑟1𝜃 not be determined by (1.3):

𝑊𝑆𝛼 = 0, (𝜌𝑊 )𝛼 = 0, 𝑊𝑈𝛼 = 0, 𝑊𝑉𝛼 = 0, 𝑊𝑊𝛼 + 𝜌−1𝑝𝛼 = 0. (2.1)

Let 𝑊 ̸= 0. It results from (2.1) that 𝑆(𝑠), 𝑈(𝑠), 𝑉 (𝑠), 𝜌𝑊 = 𝐶(𝑠), 𝐶(𝑠)𝑊 + 𝑝 = 𝐾(𝑠).
Substitution into the equation of state results in the equality

𝐾(𝑠) − 𝐶2(𝑠)𝑠−1 = 𝑓 (𝜌, 𝑆(𝑠)) ,

which holds only for the Chaplygin gas

𝑝 = 𝑓(𝜌, 𝑆) = 𝑁(𝑆) − 𝜌−1𝒟2(𝑆), 𝐾(𝑠) = 𝑁 (𝑆(𝑠)) , 𝐶(𝑠) = 𝒟 (𝑆(𝑠)) .

The following equations follow from (1.3)

(𝑈 − 𝑠𝑉 )𝑆 ′𝑟1𝛼 = 0,

𝒟𝑊−2𝑊𝛼(𝑈 − 𝑠𝑉 )𝑟1𝑠 + [2𝒟𝑉𝑊−1 + (𝒟𝑊−1(𝑈 − 𝑠𝑉 ))𝑠] 𝑟1𝛼 =

= 𝒟𝑊−2𝑊𝛼(𝑉 −𝑅)𝑟1,

𝑊𝑊𝛼𝑟1𝑠 + [(𝑈 − 𝑠𝑉 )𝑈 ′ + 𝜌−1𝑝𝑠] 𝑟1𝛼 = 0,

𝑠𝑊𝑊𝛼𝑟1𝑠 − [(𝑈 − 𝑠𝑉 )𝑉 ′ − 𝑠𝜌−1𝑝𝑠 −𝑊 2] 𝑟1𝛼 = −𝑊𝑊𝛼𝑟1,

(𝑈 − 𝑠𝑉 )𝑊𝛼𝑟1𝑠 − [(𝑈 − 𝑠𝑉 )𝑊𝑠 + 𝑉𝑊 ] 𝑟1𝛼 = 𝑊𝛼(𝑉 −𝑅)𝑟1.

(2.2)



146 S.V. KHABIROV

Similar equations hold if we replace 𝑟1 by 𝑅. If (𝑈 − 𝑠𝑉 )𝑆 ′ ̸= 0, then 𝑟1𝛼 = 0 = 𝑅𝛼, 𝑟𝛼 =
0 which is a contradiction. Therefore (𝑈 − 𝑠𝑉 )𝑆 ′ = 0 and the following alternative equation
occurs: 𝑈 − 𝑠𝑉 = 0 or 𝑈 − 𝑠𝑉 ̸= 0.

In the first case 𝑈 = 𝑠𝑉 it results from (2.1) that 𝑉 = 𝑈 = 𝑅 = 0, 𝑁 = 𝑁0 is a constant,
𝑝 = 𝑁0 − 𝒟2(𝑆)𝜌−1 is the equation of state, 𝑊 = 𝑚(𝜃)𝑟−1 [𝒟 (𝑆(𝑠))]−1, 𝑚(𝜃) is an arbitrary
function. This solution describes arbitrary circular motion of particles.

In the second case the motion is isentropic 𝑆 = 𝑆0, 𝜌 = 𝒟0𝑊
−1, 𝑝 = 𝑁0 −𝒟0𝑊 . The

following equations result from (2.1)

𝑅 = 0, 𝑈2 + 𝑉 2 = 𝐶2
0 , 𝑟 = 𝑚(𝜃)

⃒⃒
2𝑉 (𝑈 − 𝑠𝑉 )2(𝑉 + 𝑠𝑈)−1 −𝑊 2

⃒⃒−1/2
,

where 𝐶0 is a constant. Furthermore the following equations hold:

𝑑𝑠

𝑑𝑉
=

𝑠

2𝑉
+

1

2
√︀

𝐶2
0 − 𝑉 2

,

𝑉 [−4𝑉 (𝑉 + 𝑠𝑈)2 + 𝑈(𝑈 − 𝑠𝑉 )(𝑉 + 𝑠𝑈) − 2𝑉 (𝑈 − 𝑠𝑉 )2] = 0.

(2.3)

If 𝑉 ̸= 0, then it results from the last equation that 𝑠 is irrationally expressed via 𝑉 , and
it results from (2.3) that 𝑠 is a transcendental function 𝑉 . Therefore, 𝑉 = 0, 𝑈 = 𝐶0,
𝑊 = 𝑚(𝜃)/𝑟. We obtain an arbitrary spiral motion of particles by cylinders, which is set
by the invariant solution of the equations of gas dynamics for the two-dimensional subalgebra
{𝜕𝑡, 𝜕𝑥}.

The case 𝑊 = 0 ⇒ 𝑝(𝑠), 𝑟1𝜃 is arbitrary. The following equations result from: (1.3)

(𝑈 − 𝑠𝑉 )(𝑆𝛼𝑟1𝑠 − 𝑆𝑠𝑟1𝛼) = 𝑆𝛼(𝑉 −𝑅)𝑟1,(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝛼
𝑟1𝑠 −

(︀
2𝜌𝑉 +

(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝑠

)︀
𝑟1𝛼 =

(︀
𝜌𝛼(𝑉 −𝑅) + 𝜌𝑉𝛼

)︀
𝑟1,

(𝑈 − 𝑠𝑉 )𝑈𝛼𝑟1𝑠 − ((𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝜌−1𝑝′) 𝑟1𝛼 = 𝑈𝛼(𝑉 −𝑅)𝑟1,

(𝑈 − 𝑠𝑉 )𝑉𝛼𝑟1𝑠 − ((𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝′) 𝑟1𝛼 = 𝑉𝛼(𝑉 −𝑅)𝑟1,

(2.4)

and also equations where 𝑅 stands for 𝑟1.
Let all the coefficients in 𝑟1𝑠 in (2.4) be equal to zero (𝑟1𝑠 is not determined). Then 𝑈 = 𝑠𝑉

(otherwise reducing to a conic model occurs), and (2.4) gives the constant solution 𝑈 = 𝑉 =
𝑊 = 0, 𝑝 = 𝑝0.

Let 𝑟−1
1 𝑟1𝑠 = 𝑅−1𝑅𝛼 and 𝑅 ̸= 0 ⇒ 𝑟1 = 𝑅𝑘(𝛼, 𝜃) ̸= 0 be determined from (2.4). Then the

following equations result from (2.4)

𝑆𝑠(𝑈 − 𝑠𝑉 )𝑘𝛼 = 0, [2𝜌𝑉 + (𝜌(𝑈 − 𝑠𝑉 ))𝑠] 𝑘𝛼 = 0,[︀
(𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝜌−1𝑝′

]︀
𝑘𝛼 = 0,

[︀
(𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝′

]︀
𝑘𝛼 = 0.

If 𝑘𝛼 ̸= 0, then 𝑈 = 𝑠𝑉 results in rest: 𝑈 = 𝑉 = 𝑊 = 0, 𝑝 = 𝑝0; and 𝑈 ̸= 𝑠𝑉 results in the
equation of a conic model without rotation

𝑉𝑠 + 𝑠𝑈𝑠 = 0, 𝜌(𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝑝′ = 0,

(𝑈 − 𝑠𝑉 )𝜌𝑠 + 𝜌
(︀
𝑉 + (1 + 𝑠2)𝑈𝑠

)︀
= 0,

𝑝(𝑠) = 𝑓
(︀
𝜌(𝛼, 𝑠), 𝑆(𝛼)

)︀
.

The equations (2.4) for 𝑟1 = 𝑅 take the form

(𝑈 − 𝑠𝑉 )𝑅𝑠𝑅
−1 = 𝑉 −𝑅, 𝑅(𝑈𝛼 − 𝑠𝑉𝛼) = 𝑉 𝑈𝛼 − 𝑈𝑉𝛼.

Hence it follows that the integral 𝑈𝑠 = (𝑈 − 𝑠𝑉 )𝑑(𝑠). The equations of the conic model result
in 𝑉 = 𝑛(𝛼)𝑉1(𝑠), 𝑈 = 𝑛(𝛼)𝑈1(𝑠) ⇒ 𝑅 = 0 which is a contradiction.
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Therefore, 𝑘𝛼 = 0 ⇒ 𝑟 = 𝑅(𝑠, 𝛼)
(︀
𝑡 − 𝑘(𝜃)

)︀
⇒ 𝛼 = 𝐴

(︁
𝑠, 𝑟

(︀
𝑡− 𝑘(𝜃)

)︀−1
)︁

. Since all the gas

dynamic functions depend on 𝑠 and 𝛼, then we can let 𝐴𝑠 = 0 or 𝑅𝑠 = 0, 𝑅 = 𝛼. In this case
the system (2.4) for 𝑅 takes the form

𝑆𝑠(𝑈 − 𝑠𝑉 ) + 𝑆𝛼𝛼(𝑉 − 𝛼) = 0,

2𝜌𝑉 +
(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝑠

+ 𝛼 [𝜌𝛼(𝑉 − 𝛼) + 𝜌𝑉𝛼] = 0,

(𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝜌−1𝑝′ + 𝑈𝛼𝛼(𝑉 − 𝛼) = 0,

(𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝′ + 𝑉𝛼𝛼(𝑉 − 𝛼) = 0.

(2.5)

The equation of state can be written in the form 𝑆 = 𝐺
(︀
𝑝(𝑠), 𝜌

)︀
. If the function 𝐺 is given,

then the system (2.5) consists of four equations for four functions 𝑈 , 𝑉 , 𝜌, 𝑝, but the pressure
𝑝 depends only on 𝑠. The system (2.5) is overdetermined. If 𝑝(𝑠) is given then we find the
function 𝑆 and the equation of state from (2.5).

For example, let 𝑝 = 𝑝0 be a constant. Then 𝑈(𝑠), 𝑉 (𝜌), 𝛼(𝑈 − 𝑠𝑉 ) = 𝐹 (𝜌)(𝑉 − 𝛼) is an
integral, (𝑈 ′ − 𝑠𝑉 ′)𝜌𝑠 + 𝛼𝑉 ′𝜌𝛼 + 𝑉 = 0. The compatibility of the equations for 𝜌 provides

𝑉 [2𝛼(𝑈 ′ − 𝑠𝑉 ′) − 2𝐹𝑉 ′ − (𝑉 − 𝛼)𝐹 ′] = 0.

Only the following solution is possible: 𝑉 = 0; 𝑈(𝛼), 𝜌(𝛼) are arbitrary functions

𝛼 = 𝑟
(︀
𝑡− 𝑘(𝜃)

)︀−1
.

In the case 𝑊 = 0 there is one more opportunity: 𝑟1𝑠 is determined by (2.4) but 𝑅 = 0.
Then we can assume that 𝑟 = 𝑟1(𝛼, 𝜃) and the system (2.4) takes the form

𝑆𝑠(𝑈 − 𝑠𝑉 )𝑟𝛼 + 𝑆𝛼𝑉 𝑟 = 0,[︀
2𝜌𝑉 +

(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝑠

]︀
𝑟𝛼 + (𝑉 𝜌)𝛼𝑟 = 0,

[(𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝜌−1𝑝′] 𝑟𝛼 + 𝑉 𝑈𝛼𝑟 = 0,

[(𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝′] 𝑟𝛼 + 𝑉 𝑉𝛼𝑟 = 0.

(2.6)

If all the coefficients are equal to zero when 𝑟𝛼, then the solution is reduced to the invariant
model of rank 2 or 1. Otherwise we can consider that 𝑟 = 𝛼𝑘(𝜃) and the system (2.6) is
simplified

𝑆𝑠(𝑈 − 𝑠𝑉 ) + 𝛼𝑉 𝑆𝛼 = 0,

2𝜌𝑉 +
(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝑠

+ 𝛼(𝑉 𝜌)𝛼 = 0,

(𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝜌−1𝑝′ + 𝛼𝑉 𝑈𝛼 = 0,

(𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝′ + 𝛼𝑉 𝑉𝛼 = 0.

(2.7)

One and the same remarks hold both for the system (2.7) and the system (2.5). Isobaric
motions are reduced to flat steady flows.

3. The case when the derivative 𝑟1𝜃 is determined

Let us assume that 𝑟−1
1 𝑟1𝜃 = 𝐸(𝛼, 𝑠) ⇒ 𝑟1 = 𝑟2(𝑠, 𝛼) exp

(︀
𝜃𝐸(𝑠, 𝛼)

)︀
. The system (1.3) after

substitution of 𝑟1 and splitting by 𝜃 is reduced to two systems. The first homogeneous system
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for 𝐸 is:
(𝑈 − 𝑠𝑉 )(𝐸𝑠𝑆𝛼 − 𝐸𝛼𝑆𝑠) = 0,(︀

𝜌(𝑈 − 𝑠𝑉 )
)︀
𝛼
𝐸𝑠 −

[︀
2𝜌𝑉 +

(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝑠

]︀
𝐸𝛼 = 0,

[(𝑈 − 𝑠𝑉 )𝑈𝛼 + 𝜌−1𝑝𝛼]𝐸𝑠 − [(𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝𝑠 −𝑊 2]𝐸𝛼 = 0,

[(𝑈 − 𝑠𝑉 )𝑉𝛼 − 𝑠𝜌−1𝑝𝛼]𝐸𝑠 − [(𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝𝑠 −𝑊 2]𝐸𝛼 = 0,

(𝑈 − 𝑠𝑉 )𝑊𝛼𝐸𝑠 − [(𝑈 − 𝑠𝑉 )𝑊𝑠 + 𝑉𝑊 ]𝐸𝛼 = 0.

(3.1)

The second system for 𝑟2 is:

(𝑈 − 𝑠𝑉 ) [𝑆𝛼(ln 𝑟2)𝑠 − 𝑆𝑠(ln 𝑟2)𝛼] = 𝑆𝛼(𝑉 −𝑅−𝑊𝐸),(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝛼
(ln 𝑟2)𝑠 −

[︀
2𝜌𝑉 +

(︀
𝜌(𝑈 − 𝑠𝑉 )

)︀
𝑠

]︀
(ln 𝑟2)𝛼 =

= 𝜌𝛼(𝑉 −𝑅) + 𝜌𝑉𝛼 − (𝜌𝑊 )𝛼𝐸,

[(𝑈 − 𝑠𝑉 )𝑈𝛼 + 𝜌−1𝑝𝛼] (ln 𝑟2)𝑠 − [(𝑈 − 𝑠𝑉 )𝑈𝑠 + 𝜌−1𝑝𝑠] (ln 𝑟2)𝛼 =

= 𝑈𝛼(𝑉 −𝑅−𝑊𝐸),

[(𝑈 − 𝑠𝑉 )𝑉𝛼 + 𝜌−1𝑝𝛼] (ln 𝑟2)𝑠 − [(𝑈 − 𝑠𝑉 )𝑉𝑠 − 𝑠𝜌−1𝑝𝑠 −𝑊 2] (ln 𝑟2)𝛼 =

= 𝑉𝛼(𝑉 −𝑅−𝑊𝐸) + 𝜌−1𝑝𝛼,

(𝑈 − 𝑠𝑉 )𝑊𝛼(ln 𝑟2)𝑠 − [(𝑈 − 𝑠𝑉 )𝑊𝑠 + 𝑉𝑊 ] (ln 𝑟2)𝛼 =

= 𝑊𝛼(𝑉 −𝑅−𝑊𝐸) − 𝜌−1𝑝𝛼𝐸.

(3.2)

Apart from these systems there is one more system (1.3) for 𝑅. If we assume that 𝐸 = 0,
then the system (3.2) coincides with (1.3) for 𝑅. We can show that in the case 𝑈 = 𝑠𝑉 there
are no new solutions. Further we assume that 𝑈 ̸= 𝑠𝑉 . Due to Lemma 1 either a) (ln 𝑟2)𝑠 or
b) (ln 𝑟2)𝛼 is not determined by the system (3.2).

The case a). The coefficients of (ln 𝑟2)𝑠 in the system (3.2) are equal to zero. In this case

𝑆 = 𝑆(𝑠), 𝑊 = 𝑊 (𝑠), 𝑉 + 𝑠𝑈 = 𝑐(𝑠), 𝜌(𝑈 − 𝑠𝑉 ) = 𝑏(𝑠), 𝑝 = 𝑙(𝑠) − 𝑏(𝑠)𝑈.

There is only one function 𝑈(𝑠, 𝛼), which significantly depends on 𝛼. All the other 𝑉 , 𝜌, 𝑝 are
determined by it. The equation of compatibility redefines the solution. The solution holds only
for the Chaplygin gas. It results from the system (3.1) that 𝐸 = 𝐸(𝑠), and from the system
(1.3) for 𝑅 that 𝑅 = 0. The contradiction 𝑈𝛼 = 0 results from the system (3.2).

The case b). The coefficients of (ln 𝑟2)𝛼 in the system (3.2) are equal to zero. It results in the
equation of the conic submodel [4], in which all the constants of the integrals and the general
solution depend on the parameter 𝛼:

𝑆 = 𝑆(𝛼), 𝑊 2 = 𝜌(𝑈 − 𝑠𝑉 )𝒟(𝛼),

𝑈2 + 𝑉 2 + 𝑊 2 + 2
∫︀
𝜌−1𝑑𝑝 = 𝐵2(𝛼),

𝑉𝑠 + 𝑠𝑈𝑠 = 𝜌𝒟(𝛼), 𝑈𝑠 ((𝑈 − 𝑠𝑉 )2 − 𝑓𝜌) + 𝑠𝑉𝑠 = 𝑉,

(3.3)

where 𝑝 = 𝑓(𝜌, 𝑆) is the equation of state.
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Equations (3.1) yield that 𝐸𝑠 = 0 (otherwise the reduction occurs) and the system (3.1) is
satisfied identically. The equations (1.3) for 𝑅 take the form

𝑄𝑆𝛼 = 0, 𝑄𝑊𝛼 = 0, 𝑄𝑉𝛼 = 𝜌−1𝑝𝛼(𝑅 + 𝑠𝑅𝑠),

𝑄𝑈𝛼 = −𝜌−1𝑝𝛼𝑅𝑠, 𝑄(ln 𝜌)𝛼 = 𝑅𝑉𝛼 − (𝑈𝛼 − 𝑠𝑉𝛼)𝑅𝑠,
(3.4)

where 𝑄 = (𝑈 − 𝑠𝑉 )𝑅𝑠 −𝑅(𝑉 −𝑅).
If 𝑄 ̸= 0, then 𝑆 = 𝑆0 is a constant, 𝑊 = 𝑊 (𝑠), and it results from (3.2) that 𝐸 = 0,

𝑟2 = 𝑅𝐾(𝛼). The compatibility of (3.4) and (3.3) show that 𝑊 = 0, 𝑅 = 𝐵𝐵′(𝑉𝛼 + 𝑠𝑉𝛼)−1.
The conditions of the overdetermined submodel have the form:

𝑓𝜌(ln 𝜌)2𝛼 = 𝑈2
𝛼 + 𝑉 2

𝛼 , 𝑈2 + 𝑉 2 + 2
∫︀
𝑓𝜌𝑑 ln 𝜌 = 𝐵2,

𝑉𝑠 + 𝑠𝑈𝑠 = 0, 𝑈𝑠 [(𝑈 − 𝑠𝑉 )2 − 𝑠2 − 𝑓𝜌] = 𝑉.
(3.5)

Let us assume that 𝑄 = 0. The equations (3.4) give

𝑅𝑝𝛼 = 0, 𝑅𝑉𝛼 = 𝑅𝑠(𝑈𝛼 − 𝑠𝑉𝛼), (𝑈 − 𝑠𝑉 )𝑅𝑠 = 𝑅(𝑉 −𝑅). (3.6)

If 𝑝𝛼 ̸= 0, then 𝑅 = 0, and the equations (3.6) hold. We obtain from the equations (3.2) that
(ln 𝑟2)𝑠 = −𝑈𝛼(𝑉𝛼 + 𝑠𝑈𝛼)−1, 𝐸 = −𝑊𝛼(𝑉𝛼 + 𝑠𝑈𝛼)−1, where 𝐵, 𝑆 are constants,

𝑓𝜌(ln 𝜌)2𝛼 = 𝑈2
𝛼 + 𝑉 2

𝛼 + 𝑊 2
𝛼. (3.7)

The equations (3.4), (3.7) set a overdetermined submodel which extends the conic submodel.
If 𝑝𝛼 = 0, then two equations

𝑅𝑠(𝑈𝛼 − 𝑠𝑉𝛼) = 𝑅𝑉𝛼, (𝑈 − 𝑠𝑉 )𝑅𝑠 = 𝑅(𝑉 −𝑅) (3.8)

remained from (3.4). The system (3.2) for irreducible solutions is reduced to two eqialities

(𝑈 − 𝑠𝑉 )(ln 𝑟2)𝑠 = 𝑉 −𝑅−𝑊𝐸(𝛼), (𝑈𝛼 − 𝑠𝑉𝛼)(ln 𝑟2)𝑠 = 𝑉𝛼 − 𝐸𝑊𝛼. (3.9)

Hence when 𝑅 ̸= 0 we have

𝐸
(︀
𝑊𝛼(𝑈 − 𝑠𝑉 ) −𝑊 (𝑈𝛼 − 𝑠𝑉𝛼)

)︀
= 0, 𝑅 =

𝑉 𝑈𝛼 − 𝑈𝑉𝛼

𝑈𝛼 − 𝑠𝑉𝛼

. (3.10)

If 𝐸 ̸= 0, then the integral 𝑊 = 𝑛(𝑠)(𝑈 − 𝑠𝑉 ) holds and 𝑟2 = 𝑅 exp (−𝐸(𝛼)𝑛(𝑠)). It follows
from (3.8) that

(𝑉𝛼 + 𝑠𝑈𝛼) [𝑈𝑠𝛼(𝑈 − 𝑠𝑉 ) − 𝑈𝑠(𝑈𝛼 − 𝑠𝑉𝛼)] = 0.

If the first factor is equal to zero, then the equations (3.3) show that all the functions do not
depend on 𝛼 (reduction to a conic submodel). Equating the second factor to zero provides
the integral 𝑈(𝑠) = 𝑚(𝑠)(𝑈 − 𝑠𝑉 ). Studying the compatibility with the system (3.3) provides
𝑅 = 0 which is a contradiction.

Let us assume that 𝐸 = 0, 𝑅 ̸= 0. Then 𝑟2 = 𝑅𝐾(𝛼), the function 𝑅 is determined by the
formula (3.10). We obtain the additional equation for the system (3.3) from (3.8):

𝑈𝛼 − 𝑠𝑉𝛼

𝑈 − 𝑠𝑉
=

𝑈𝛼𝑉𝛼𝑠 − 𝑉𝛼𝑈𝛼𝑠

𝑈𝛼𝑉𝑠 − 𝑉𝛼𝑈𝑠

. (3.11)

The overdetermined system (3.3), (3.11) gives a model extending the conic submodel.
The last case 𝑅 = 0, 𝐸 ̸= 0 gives the submodel consisting of the system (3.3) and the

equation
𝑈𝛼 − 𝑠𝑉𝛼

𝑈 − 𝑠𝑉
=

𝑉𝛼 − 𝐸𝑊𝛼

𝑉 − 𝐸𝑊
with an arbitrary function 𝐸(𝛼).

Thus, all the possible solutions of the overdetermined system (1.3) have been considered.
They are reduced to the solution of a conic submodel with respect to the variable 𝑠 with
constants depending on 𝛼. To determine the dependence on 𝛼 there are different additional
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redefining equations. Moreover, there are also two submodels (2.5) and (2.7), composed by the
overdetermined systems of partial differential equations, which extend the conic submodel.
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