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FRACTIONAL DIFFERENTIAL EQUATIONS: CHANGE OF

VARIABLES AND NONLOCAL SYMMETRIES

R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK

Abstract. In this paper point transformations of variables in fractional integrals and
derivatives of different types are considered. In the general case, fractional integro-
differentiation of a function with respect to another function arises after such substitution.
The problem of applying a point transformations group to this type of operators is con-
sidered, the corresponding prolongation formulae for infinitesimal operator of the group
are constructed. Usage of prolongation formulae for finding nonlocal symmetries of equa-
tions and checking their admittance is demonstrated on a simple example of an ordinary
fractional differential equation.
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Introduction

Differential equations with fractional derivatives have a wide range of applications as math-
ematical models of various processes with anomalous kinetics [1, 2]. Investigation of sym-
metry properties of such equations is an important problem. Meanwhile, unlike the classical
integer-order derivatives, there exists a number of differerent definitions of fractional derivatives
[3, 4, 5, 6, 7]. These definition differences leads to the fractional differential equations (FDEs)
having similar form but significantly different properties.

The Riemann-Liouville left-hand side fractional derivative [3] defined as

(𝑐𝐷
𝛼
𝑥𝑦) (𝑥) =

1

Γ(𝑛− 𝛼)

𝑑𝑛

𝑑𝑥𝑛

∫︁ 𝑥

𝑐

𝑦(𝑡)

(𝑥− 𝑡)𝛼−𝑛+1
𝑑𝑡 (1)

and the Caputo left-hand side fractional derivative [4] defined as(︀
𝐶
𝑐 𝐷

𝛼
𝑥𝑦

)︀
(𝑥) =

1

Γ(𝑛− 𝛼)

∫︁ 𝑥

𝑐

𝑦(𝑛)(𝑡)

(𝑥− 𝑡)𝛼−𝑛+1
𝑑𝑡 (2)

are used most often in practice (here 𝑛 = [𝛼] + 1, Γ(𝑥) is the gamma-function).
In general case, a solution of a differential equation with the derivative (1) may contain an

integrable singularity (of the order not higher than 1−𝛼) at the point 𝑥 = 𝑐, while the existence
of the derivative (2) implies that the solution is bounded at this point. It is known (see, for
example, [4]) that if a finite limit lim𝑥→𝑐+ 𝑦(𝑥) = 𝑦(𝑐) exists, then the derivatives (1) and (2)
are connected by the relationship

(𝑐𝐷
𝛼
𝑥𝑦) (𝑥) =

(︀
𝐶
𝑐 𝐷

𝛼
𝑥𝑦

)︀
(𝑥) +

1

Γ(1 − 𝛼)

𝑦(𝑐)

(𝑥− 𝑐)𝛼
. (3)

Methods of constructing the point transformation groups admitted by differential equations
were developed in the papers [8, 9, 10, 11] for equations with fractional derivatives of the form
(1) and (2). Prolongation of the group infinitesimal operator to the fractional integrals and
derivatives was constructed. Algorithms of finding the admitted group for equations containing
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these derivatives were developed, and some problems of group classification of ordinary dif-
ferential equations and fractional-order partial differential equations were solved. However, it
was found that the class of variables substitutions preserving the form of fractional derivatives
is very narrow. The general form of such a point substitution for the Riemann-Liouville-type
derivatives (1) is defined by the expression

𝑥̄ =
𝑐𝑐1 + (𝑥− 𝑐)

𝑐1 + 𝑐2(𝑥− 𝑐)
, 𝑦 = 𝜓0(𝑥) + 𝑦𝜓1(𝑥),

where 𝑐, 𝑐1, 𝑐2 are constants, 𝜓0(𝑥), 𝜓1(𝑥) are some functions with specific form being deter-
mined by the equation under consideration.

Nevertheless, the derivatives (1) and (2) are only the particular forms of fractional derivatives,
though they are used most frequently. More general definition is a fractional derivative of a
function with respect to another function. This type of derivative arise when general point
transformation of variables is applied to any fractional derivative of a definite type. FDEs
with a fractional derivative of a function with respect to another function are considered, in
particular, in the process of constructing invariant solutions of fractional partial differential
equations. For example, when constructing scale-invariant solution of anomalous transport
equations, one obtains the ordinary differential equations with the Erdélyi-Kober fractional
derivatives [8, 12]. The existing methods of sovling such equations are very complicated and
work only for a limited class of equations.

Using fractional derivatives of a function with respect to another function makes it possible
to expand the class of allowed variables substitutions. These variable changes can be considered
as a new type of equivalence transformations (brief discussion of this problem can be found in
[13]). This approach provides new possibilities for reduction of the variables number, and, in
particular, for constructing invariant solutions.

In this paper, application of the Lie group analysis methods to the class of FDEs containing
fractional derivatives of a function with respect to another function is considered. The first
necessary step is the construction of prolongation formulae to extend an infinitesimal operator
of the group to the fractional integrals and derivatives of a function with respect to another
function. Section 1 of this paper is devoted to this construction.

Since fractional derivatives are represented by integro-differential operators (i.e. they are
nonlocal), it seems natural that the equations with such derivatives should have nonlocal sym-
metries. One of the ways to construct such symmetries is to use non-point transformation of
variables (containing fractional derivatives and integrals). Then one can determine the form of
infinitesimal operators in the space extended to the corresponding nonlocal variables.

Using the prolongation formulae for construction and verification of nonlocal symmetries is
illustrated by a simple example. Working with fractional derivatives, verification of an operator
admittance is often a non-trivial problem as demonstrated in the section 2 of the present paper.

1. A fractional derivative of a function with respect to another function.
The prolongation formula

In the general case, an arbitrary change of variables 𝑥̄ = 𝜙(𝑥, 𝑦), 𝑦 = 𝜓(𝑥, 𝑦) does not preserve
the form of the fractional differential operator. In particular, this substitution transforms the
Riemann-Liouville fractional derivative (1) of the order 𝛼 ∈ (0, 1) to the left-hand side derivative
of the function 𝜓(𝑥, 𝑦) with respect to the function 𝜙(𝑥, 𝑦):(︀

𝑐𝐷
𝛼
𝜙[𝑥]𝜓

)︀
[𝑥] =

1

Γ(1 − 𝛼)

1

𝐷𝑥𝜙[𝑥]

𝑑

𝑑𝑥

∫︁ 𝑥

𝑐

𝜓[𝑡]𝐷𝑡𝜙[𝑡]

(𝜙[𝑥] − 𝜙[𝑡])𝛼
𝑑𝑡, where 𝑐 : 𝜙(𝑥, 𝑦(𝑥))|𝑥=𝑐 = 𝑐.

For the sake of brevity the notation 𝑓 [𝑥] ≡ 𝑓(𝑥, 𝑦(𝑥)) is introduced here. The definition and
general properties of derivatives of a function with respect to another function are presented,
for example, in [3].

Let us give some examples of transforming the Riemann-Liouville operator into other known
forms of fractional differentiation operators by the change of variables.
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1) Translation with respect to 𝑥

𝑥̄ = 𝑥+ 𝑎, 𝑦 = 𝑦

conserves the type of the operator but changes the lower limit of integration:

(𝑐𝐷
𝛼
𝑥𝑦) (𝑥) = (𝑐𝐷

𝛼
𝑥̄𝑦) (𝑥̄), 𝑐 = 𝑐+ 𝑎.

2) After substitution of variables
𝑥̄ = 𝑥𝑎, 𝑦 = 𝑦,

the Riemann-Liouville operator is replaced by the Erdélyi-Kober operator [3]:

(𝑐𝐷
𝛼
𝑥𝑦) (𝑥) =

1

Γ(1 − 𝛼)

1

𝑥̄𝑏−1

𝑑

𝑑𝑥̄

∫︁ 𝑥̄

𝑐

𝑦(𝑡)𝑡𝑏−1

(𝑥̄𝑏 − 𝑡𝑏)𝛼
𝑑𝑡, 𝑏 = 1/𝑎, 𝑐 = 𝑐𝑎.

Such change of variables is often performed to find invariant solutions of the anomalous trans-
port equations with respect to the group of scaling transformations [8].

3) Change of variables
𝑥̄ = 𝑒𝑥, 𝑦 = 𝑦

results in the transforming the Riemann-Liouville operator to the fractional derivative operator
[3] of the Hadamard type:

(𝑐𝐷
𝛼
𝑥𝑦) (𝑥) =

𝑥̄

Γ(1 − 𝛼)

𝑑

𝑑𝑥̄

∫︁ 𝑥̄

𝑒𝑐

𝑦(𝑡)(︀
ln 𝑥̄

𝑡

)︀𝛼 𝑑𝑡
𝑡
.

Together with the fractional derivative of a function with respect to another function, the
definition of the fractional integral of order 𝛽 > 0 of a function with respect to another function
[3] is also used: (︁

𝑐𝐼
𝛽
𝑔(𝑥)𝑦

)︁
(𝑥) =

1

Γ(𝛽)

∫︁ 𝑥

𝑐

𝑦(𝑡)𝑔′(𝑡)

(𝑔(𝑥) − 𝑔(𝑡))1−𝛽
𝑑𝑡. (4)

Here it is assumed [3] that 𝑔(𝑥) > 0 within the interval (𝑐, 𝑑) and the function 𝑔(𝑥) has a
continuous derivative 𝑔′(𝑥) which is strictly positive or negative (𝑔′(𝑥) > 0 or 𝑔′(𝑥) < 0 for all
𝑥). The function 𝑦(𝑥) is considered to be Lebesgue integrable within the interval (𝑐, 𝑑), i.e.
𝑦 ∈ 𝐿1(𝑐, 𝑑).

In what follows, for the sake of simplicity, we consider the left-hand side fractional derivative
of the order 𝛼 ∈ (0, 1) of the function 𝑦(𝑥) with respect to the function 𝑔(𝑥):(︀

𝑐𝐷
𝛼
𝑔(𝑥)𝑦

)︀
(𝑥) ≡ 1

𝑔′(𝑥)

𝑑

𝑑𝑥

(︀
𝑐𝐼

𝛼
𝑔(𝑥)𝑦

)︀
(𝑥) =

1

Γ(1 − 𝛼)

1

𝑔′(𝑥)

𝑑

𝑑𝑥

∫︁ 𝑥

𝑐

𝑦(𝑡)𝑔′(𝑡)

(𝑔(𝑥) − 𝑔(𝑡))𝛼
𝑑𝑡. (5)

The fractional derivative (1) for 𝛼 ∈ (0, 1) is a particular case of (5) when 𝑔(𝑥) = 𝑥.
The fractional derivative (5) has two properties which are used below to deduce the prolon-

gation formula.

Property 1. The following relationship holds:

𝑐𝐷
𝛼
𝑔(𝑥) (𝑔(𝑥)𝑦(𝑥)) = 𝑔(𝑥)𝑐𝐷

𝛼
𝑔(𝑥)𝑦(𝑥) + 𝛼𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦(𝑥). (6)

Proof.

𝑐𝐷
𝛼
𝑔(𝑥) (𝑔(𝑥)𝑦(𝑥)) ≡ 1

Γ(1 − 𝛼)

1

𝑔′(𝑥)

𝑑

𝑑𝑥

∫︁ 𝑥

𝑐

𝑔(𝑡)𝑦(𝑡)𝑔′(𝑡)

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑑𝑡 =

=
1

Γ(1 − 𝛼)

1

𝑔′(𝑥)

𝑑

𝑑𝑥

[︂∫︁ 𝑥

𝑐

𝑔(𝑥)𝑦(𝑡)𝑔′(𝑡)

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑑𝑡−

∫︁ 𝑥

𝑐

[𝑔(𝑥) − 𝑔(𝑡)]1−𝛼𝑦(𝑡)𝑔′(𝑡)𝑑𝑡

]︂
=

=
1

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

𝑦(𝑡)𝑔′(𝑡)

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑑𝑡+

1

Γ(1 − 𝛼)

𝑔(𝑥)

𝑔′(𝑥)

𝑑

𝑑𝑥

∫︁ 𝑥

𝑐

𝑦(𝑡)𝑔′(𝑡)

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑑𝑡−

− 1 − 𝛼

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

𝑦(𝑡)𝑔′(𝑡)

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑑𝑡 ≡ 𝛼𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦(𝑥) + 𝑔(𝑥)𝑐𝐷

𝛼
𝑔(𝑥)𝑦(𝑥).
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Property 2. If lim
𝑡→𝑐+

𝑦(𝑡) (𝑔(𝑡) − 𝑔(𝑐)) = 0, then the following equality holds:

𝑐𝐷
𝛼
𝑔(𝑥) (𝑦(𝑥)(𝑔(𝑥) − 𝑔(𝑐))) =

1

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

𝐷𝑡 [𝑦(𝑡)(𝑔(𝑡) − 𝑔(𝑐))]

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑑𝑡. (7)

Proof. The proof consists of integration by parts and differentiation of the resulting integral
with a variable upper limit:

𝑐𝐷
𝛼
𝑔(𝑥)[𝑦(𝑥)(𝑔(𝑥) − 𝑔(𝑐))] =

1

Γ(1 − 𝛼)

1

𝑔′(𝑥)

𝑑

𝑑𝑥

∫︁ 𝑥

𝑐

𝑦(𝑡)(𝑔(𝑡) − 𝑔(𝑐))

(𝑔(𝑥) − 𝑔(𝑡))−𝛼
𝑔′(𝑡)𝑑𝑡 =

=
1

Γ(1 − 𝛼)

1

𝑔′(𝑥)

𝑑

𝑑𝑥

[︂
− 𝑦(𝑡)[𝑔(𝑡) − 𝑔(𝑐)]

(𝑔(𝑥) − 𝑔(𝑡))1−𝛼

1 − 𝛼

⃒⃒⃒⃒𝑥
𝑐

+

+

∫︁ 𝑥

𝑐

𝐷𝑡[𝑦(𝑡)(𝑔(𝑡) − 𝑔(𝑐))]
(𝑔(𝑥) − 𝑔(𝑡))1−𝛼

1 − 𝛼
𝑑𝑡

]︂
=

=
1

(1 − 𝛼)Γ(1 − 𝛼)

1

𝑔′(𝑥)

∫︁ 𝑥

𝑐

𝐷𝑡[𝑦(𝑡)(𝑔(𝑡) − 𝑔(𝑐))]
𝑑

𝑑𝑥
(𝑔(𝑥) − 𝑔(𝑡))1−𝛼𝑑𝑡 =

=
1

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

𝐷𝑡 [𝑦(𝑡)(𝑔(𝑡) − 𝑔(𝑐))]

[𝑔(𝑥) − 𝑔(𝑡)]𝛼
𝑑𝑡.

Proposition 1. Let us consider a one-parameter group of point transformations in the in-
finitesimal form:

𝑥̄ = 𝑥+ 𝑎𝜉[𝑥] + 𝑜(𝑎), 𝑦(𝑥̄) = 𝑦(𝑥) + 𝑎𝜂[𝑥] + 𝑜(𝑎).

Assume that the function 𝑦(𝑥) ∈ 𝐿1(𝑐, 𝑑) has a continuous derivative 𝑦′(𝑥) for 𝑥 ∈ (𝑐, 𝑑), the
functions 𝜉[𝑥] = 𝜉(𝑥, 𝑦(𝑥)) and 𝜂[𝑥] = 𝜂(𝑥, 𝑦(𝑥)) are sufficiently smooth at every point 𝑥 ∈ (𝑐, 𝑑),
𝑔(𝑥) is a monotonous positive twice differentiable function.

Then the infinitesimal transformation of the fractional integral (4) for 𝛽 = 1 − 𝛼 can be
presented in the form (︁

𝑐𝐼
1−𝛼
𝑔(𝑥̄) 𝑦

)︁
(𝑥) =

(︁
𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦

)︁
(𝑥) + 𝑎𝜁𝛼−1[𝑥] + 𝑜(𝑎),

where 𝜁𝛼−1 is determined by the prolongation formula

𝜁𝛼−1[𝑥] = 𝑐𝐼
1−𝛼
𝑔(𝑥) (𝜂 − 𝜉𝑦′)(𝑥) + 𝜉[𝑥]𝑔′(𝑥)

(︀
𝑐𝐷

𝛼
𝑔(𝑥)𝑦

)︀
(𝑥). (8)

Proof. Let us write the fractional integration operator in the new variables 𝑥̄, 𝑦:(︁
𝑐𝐼

1−𝛼
𝑔(𝑥̄) 𝑦

)︁
(𝑥̄) ≡ 1

Γ(1 − 𝛼)

∫︁ 𝑥̄

𝑐

𝑦(𝜏)𝑔′(𝜏)𝑑𝜏

[𝑔(𝑥̄) − 𝑔(𝜏)]𝛼
=

1

Γ(1 − 𝛼)

∫︁ 𝑥+𝑎𝜉[𝑥]

𝑐

𝑦(𝜏)𝑔′(𝜏)𝑑𝜏

[𝑔(𝑥+ 𝑎𝜉[𝑥]) − 𝑔(𝜏)]𝛼
+ 𝑜(𝑎).

(9)

To make the substitution of the function 𝑦(𝜏), a certain substitution of the integration
variable 𝜏 is necessary. The most natural type of the substitution 𝜏 = 𝜏 + 𝑎𝜉[𝜏 ] allows one to
turn easily from 𝑦(𝜏) to 𝑦(𝜏) (𝑦(𝜏) = 𝑦(𝜏) + 𝑎𝜂[𝜏 ] + 𝑜(𝑎)). However, after this substitution
the lower limit of integration becomes a function of the parameter 𝑎, which complicates further
transformations significantly and requires imposing additional restrictions on the type of the
function 𝜉[𝑥] [9].

The substitution of variables
𝜏 = 𝑡+ 𝑎ℎ(𝑥, 𝑡),

where

ℎ(𝑥, 𝑡) = 𝜉[𝑥]
𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)
· 𝑔(𝑡) − 𝑔(𝑐)

𝑔′(𝑡)
(10)
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is more optimal. Here 𝑡 is a new variable of integration. Such a substitution preserves the
integration limits because 𝑡 = 𝑐 transforms to 𝜏 = 𝑐, and 𝑡 = 𝑥 transforms to 𝜏 = 𝑥+ 𝑎𝜉[𝑥].

Carrying out this substitution in (9) we obtain(︁
𝑐𝐼

1−𝛼
𝑔(𝑥̄) 𝑦

)︁
(𝑥) =

1

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

(︂
𝑦(𝜏) · [𝑔(𝑥+ 𝑎𝜉[𝑥]) − 𝑔(𝜏)]−𝛼 · 𝑔′(𝜏)

𝑑𝜏

𝑑𝑡

)︂⃒⃒⃒⃒
𝜏=𝑡+𝑎ℎ(𝑥,𝑡)

𝑑𝑡+ 𝑜(𝑎).

(11)

Let us consider transformation of every subintegral factor in detail.
To express 𝑦(𝜏) via 𝑡 it is necessary to substitute in 𝑦(𝜏)+𝑎𝜂[𝜏 ]+𝑜(𝑎) the argument 𝜏 , which

is transformed exactly into 𝜏 during the substitution. It is known that the inverse infinitesimal
substitution has the form 𝜏 = 𝜏 −𝑎𝜉[𝜏 ]+𝑜(𝑎). Expressing 𝜏 via 𝑡 determined earlier, we obtain

𝜏 = 𝑡+ 𝑎ℎ(𝑥, 𝑡) − 𝑎𝜉[𝑡] + 𝑜(𝑎).

As a result we have

𝑦(𝜏)|𝜏=𝑡+𝑎ℎ(𝑥,𝑡) = (𝑦(𝜏) + 𝑎𝜂[𝜏 ] + 𝑜(𝑎))|𝜏=𝑡+𝑎ℎ(𝑥,𝑡)−𝑎𝜉[𝑡]+𝑜(𝑎) =

= 𝑦(𝑡+ 𝑎ℎ(𝑥, 𝑡) − 𝑎𝜉[𝑡]) + 𝑎𝜂[𝑡] + 𝑜(𝑎) = 𝑦(𝑡) + 𝑎𝑦′(𝑡)(ℎ(𝑥, 𝑡) − 𝜉[𝑡]) + 𝑎𝜂[𝑡] + 𝑜(𝑎)
(10)
=

(10)
= 𝑦(𝑡) + 𝑎𝜂[𝑡] − 𝑎𝜉[𝑡]𝑦′(𝑡) + 𝑎

𝜉[𝑥]𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)
· 𝑔(𝑡) − 𝑔(𝑐)

𝑔′(𝑡)
𝑦′(𝑡) + 𝑜(𝑎). (12)

Then,

(𝑔(𝑥+ 𝑎𝜉[𝑥]) − 𝑔(𝜏))|𝜏=𝑡+𝑎ℎ(𝑥,𝑡) = 𝑔(𝑥) + 𝑎𝜉[𝑥]𝑔′(𝑥) − 𝑔(𝑡) − 𝑎ℎ(𝑥, 𝑡)𝑔′(𝑡) + 𝑜(𝑎) =

= 𝑔(𝑥) − 𝑔(𝑡) + 𝑎

(︂
𝜉[𝑥]𝑔′(𝑥) − 𝜉[𝑥]

𝑔(𝑡) − 𝑔(𝑐)

𝑔(𝑥) − 𝑔(𝑐)

𝑔′(𝑥)

𝑔′(𝑡)
𝑔′(𝑡)

)︂
+ 𝑜(𝑎) =

= (𝑔(𝑥) − 𝑔(𝑡))

(︂
1 + 𝑎

𝜉[𝑥]𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)

)︂
+ 𝑜(𝑎),

whence

[𝑔(𝑥+ 𝑎𝜉[𝑥]) − 𝑔(𝜏)]−𝛼
⃒⃒
𝜏=𝑡+𝑎ℎ(𝑥,𝑡)

= (𝑔(𝑥) − 𝑔(𝑡))−𝛼

(︂
1 − 𝛼𝑎

𝜉[𝑥]𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)

)︂
+ 𝑜(𝑎). (13)

Finally,(︂
𝑔′(𝜏)

𝑑𝜏

𝑑𝑡

)︂⃒⃒⃒⃒
𝜏=𝑡+𝑎ℎ(𝑥,𝑡)

= (𝑔′(𝑡) + 𝑎𝑔′′(𝑡)ℎ(𝑥, 𝑡))(1 + 𝑎ℎ𝑡(𝑥, 𝑡)) + 𝑜(𝑎)
(10)
=

(10)
= 𝑔′(𝑡) + 𝑎

𝜉[𝑥]𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)

(︂
𝑔′′(𝑡)

𝑔(𝑡) − 𝑔(𝑐)

𝑔′(𝑡)
+ 𝑔′(𝑡)

𝑑

𝑑𝑡

𝑔(𝑡) − 𝑔(𝑐)

𝑔′(𝑡)

)︂
+ 𝑜(𝑎) =

= 𝑔′(𝑡)

(︂
1 + 𝑎

𝜉[𝑥]𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)

)︂
+ 𝑜(𝑎). (14)

Substituting (12),(13),(14) into (11), we obtain(︁
𝑐𝐼

1−𝛼
𝑔(𝑥̄) 𝑦

)︁
(𝑥̄) =

1

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

(︂
𝑦(𝜏) [𝑔(𝑥+ 𝑎𝜉[𝑥]) − 𝑔(𝜏)]−𝛼 𝑔′(𝜏)

𝑑𝜏

𝑑𝑡

)︂⃒⃒⃒⃒
𝜏=𝑡+𝑎ℎ(𝑥,𝑡)

𝑑𝑡+ 𝑜(𝑎) =

=
1

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

(︂
𝑦(𝑡) + 𝑎𝜂[𝑡] − 𝑎𝜉[𝑡]𝑦′(𝑡) + 𝑎

𝜉[𝑥]𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)

𝑔(𝑡) − 𝑔(𝑐)

𝑔′(𝑡)
𝑦′(𝑡)

)︂
×

× (𝑔(𝑥) − 𝑔(𝑡))−𝛼

(︂
1 − 𝛼𝑎

𝜉[𝑥]𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)

)︂
𝑔′(𝑡)

(︂
1 + 𝑎

𝜉[𝑥]𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)

)︂
𝑑𝑡+ 𝑜(𝑎) =
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=
1

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

𝑦(𝑡)𝑔′(𝑡)𝑑𝑡

(𝑔(𝑥) − 𝑔(𝑡))𝛼
+

𝑎

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

𝑔′(𝑡)𝑑𝑡

(𝑔(𝑥) − 𝑔(𝑡))𝛼
×

×
(︂
𝜂[𝑡] − 𝜉[𝑡]𝑦′(𝑡) +

𝜉[𝑥]𝑔′(𝑥)

𝑔(𝑥) − 𝑔(𝑐)

[︂
𝑔(𝑡) − 𝑔(𝑐)

𝑔′(𝑡)
𝑦′(𝑡) + (1 − 𝛼)𝑦(𝑡)

]︂)︂
+ 𝑜(𝑎) =

=
(︁
𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦

)︁
(𝑥) + 𝑎𝑐𝐼

1−𝛼
𝑔(𝑥) (𝜂 − 𝜉𝑦′) (𝑥)+

+
𝑎𝜉[𝑥]𝑔′(𝑥)

Γ(1 − 𝛼)(𝑔(𝑥) − 𝑔(𝑐))

∫︁ 𝑥

𝑐

((𝑔(𝑡) − 𝑔(𝑐))𝑦′(𝑡) + (1 − 𝛼)𝑦(𝑡)𝑔′(𝑡)

(𝑔(𝑥) − 𝑔(𝑡))𝛼
𝑑𝑡+ 𝑜(𝑎).

Let us use properties 1 and 2 to transform the last integral:

1

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

. . . =
1

Γ(1 − 𝛼)

∫︁ 𝑥

𝑐

𝐷𝑡[𝑦(𝑡)(𝑔(𝑡) − 𝑔(𝑐))] − 𝛼𝑦(𝑡)𝑔′(𝑡)

(𝑔(𝑥) − 𝑔(𝑡))𝛼
𝑑𝑡

(7)
=

(7)
= 𝑐𝐷

𝛼
𝑔(𝑥)[𝑦(𝑥)(𝑔(𝑥) − 𝑔(𝑐))] − 𝛼𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦(𝑥) = 𝑐𝐷

𝛼
𝑔(𝑥)(𝑔(𝑥)𝑦(𝑥)) − 𝑔(𝑐)𝑐𝐷

𝛼
𝑔(𝑥)𝑦(𝑥) − 𝛼𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦(𝑥)

(6)
=

(6)
= 𝑔(𝑥)𝑐𝐷

𝛼
𝑔(𝑥)𝑦(𝑥) + 𝛼𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦(𝑥) − 𝑔(𝑐)𝑐𝐷

𝛼
𝑔(𝑥)𝑦(𝑥) − 𝛼𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦(𝑥) =

= (𝑔(𝑥) − 𝑔(𝑐))
(︀
𝑐𝐷

𝛼
𝑔(𝑥)𝑦

)︀
(𝑥).

This finally results in(︁
𝑐𝐼

1−𝛼
𝑔(𝑥̄) 𝑦

)︁
(𝑥̄) =

(︁
𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦

)︁
(𝑥) + 𝑎

(︁
𝑐𝐼

1−𝛼
𝑔(𝑥) (𝜂 − 𝜉𝑦′) (𝑥) + 𝜉[𝑥]𝑔′(𝑥)

(︀
𝑐𝐷

𝛼
𝑔(𝑥)𝑦

)︀
(𝑥)

)︁
+ 𝑜(𝑎),

which proves the proposition.

Proposition 2. In the conditions of proposition 1 the infinitesimal transformation of the
fractional derivative (5) of the order 𝛼 ∈ (0, 1) has the form(︀

𝑐𝐷
𝛼
𝑔(𝑥̄)𝑦

)︀
(𝑥̄) =

(︀
𝑐𝐷

𝛼
𝑔(𝑥)𝑦

)︀
(𝑥) + 𝑎𝜁𝛼[𝑥] + 𝑜(𝑎),

where

𝜁𝛼[𝑥] = 𝑐𝐷
𝛼
𝑔(𝑥)(𝜂 − 𝜉𝑦′)(𝑥) + 𝜉[𝑥]𝑔′(𝑥)

(︁
𝑐𝐷

𝛼+1
𝑔(𝑥)𝑦

)︁
(𝑥). (15)

Proof. By the definition, we have

(︀
𝑐𝐷

𝛼
𝑔(𝑥̄)𝑦

)︀
(𝑥̄) ≡ 1

𝑔′(𝑥̄)

𝑑

𝑑𝑥̄

(︁
𝑐𝐼

1−𝛼
𝑔(𝑥̄) 𝑦

)︁
(𝑥̄).

Using the infinitesimal expansions

𝑑

𝑑𝑥̄
=

(︂
𝑑𝑥̄

𝑑𝑥

)︂−1
𝑑

𝑑𝑥
= (1 − 𝑎𝐷𝑥𝜉[𝑥] + 𝑜(𝑎))

𝑑

𝑑𝑥
,

1

𝑔′(𝑥̄)
=

1

𝑔′(𝑥)

(︂
1 − 𝑎𝜉[𝑥]

𝑔′′(𝑥)

𝑔′(𝑥)
+ 𝑜(𝑎)

)︂
,

(︁
𝑐𝐼

1−𝛼
𝑔(𝑥̄) 𝑦

)︁
(𝑥̄) =

(︁
𝑐𝐼

1−𝛼
𝑔(𝑥) 𝑦

)︁
(𝑥) + 𝑎𝜁𝛼−1[𝑥] + 𝑜(𝑎),
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we obtain(︀
𝑐𝐷

𝛼
𝑔(𝑥̄)𝑦

)︀
(𝑥̄) =

1

𝑔′

(︂
1 − 𝑎𝜉

𝑔′′

𝑔′
+ 𝑜(𝑎)

)︂
(1 − 𝑎𝐷𝑥𝜉 + 𝑜(𝑎))

𝑑

𝑑𝑥

(︀
𝑐𝐼

1−𝛼
𝑔 𝑦 + 𝑎𝜁𝛼−1 + 𝑜(𝑎)

)︀
=

=
1

𝑔′

(︂
1 − 𝑎

𝐷𝑥(𝜉𝑔′)

𝑔′

)︂(︀
𝐷𝑥(𝑐𝐼

1−𝛼
𝑔 𝑦) + 𝑎𝐷𝑥𝜁𝛼−1

)︀
+ 𝑜(𝑎) =

=
1

𝑔′
𝐷𝑥(𝑐𝐼

1−𝛼
𝑔 𝑦) +

𝑎

𝑔′

(︂
𝐷𝑥𝜁𝛼−1 −

𝐷𝑥(𝜉𝑔′)

𝑔′
𝐷𝑥(𝑐𝐼

1−𝛼
𝑔 𝑦)

)︂
+ 𝑜(𝑎)

(8)
=

(8)
= 𝑐𝐷

𝛼
𝑔 𝑦 +

𝑎

𝑔′
(︀
𝐷𝑥(𝑐𝐼

1−𝛼
𝑔 (𝜂 − 𝜉𝑦′)) +𝐷𝑥(𝜉𝑔′𝑐𝐷

𝛼
𝑔 𝑦) −𝐷𝑥(𝜉𝑔′)𝑐𝐷

𝛼
𝑔 𝑦

)︀
+ 𝑜(𝑎) =

= 𝑐𝐷
𝛼
𝑔 𝑦 + 𝑎

(︂
1

𝑔′
𝐷𝑥(𝑐𝐼

1−𝛼
𝑔 (𝜂 − 𝜉𝑦′)) + 𝜉𝐷𝑥(𝑐𝐷

𝛼
𝑔 𝑦)

)︂
+ 𝑜(𝑎) =

= 𝑐𝐷
𝛼
𝑔 𝑦 + 𝑎

(︀
𝑐𝐷

𝛼
𝑔 (𝜂 − 𝜉𝑦′) + 𝜉𝑔′𝑐𝐷

𝛼+1
𝑔 𝑦

)︀
+ 𝑜(𝑎).

Here we omit the argument 𝑥 for all functions for the sake of brevity.

Remark 1. When 𝑔(𝑥) = 𝑥 (15) transforms into the prolongation formula for the Riemann-
Liouville type derivative obtained earlier [9], and in case of integer 𝛼, it coincides with the
known classical prolongation formulae for integer-order derivatives [14].

Remark 2. Unlike integer-order derivatives, it is impossible to expand brackets in the right-
hand side of (15) in the general case, because the fractional derivative of separate summands 𝜂
and 𝜉𝑦′ may not exist. An example of an operator with such coefficients is 𝑋1 from section 3.

Remark 3. One can show that the formulae (8) and (15) are valid for fractional integrals
and derivatives of an arbitrary order, respectively.

2. Nonlocal symmetries

Nonlocal symmetries of differential equations with integer-order derivatives have been known
for a long time [15] and provide possibilities to construct additional invariant solutions and con-
servation laws in a number of cases. Meanwhile, it should be mentioned that there exists no
constructive algorithm of finding such symmetries. Several heuristic approaches are known that
allow one to construct particular types of nonlocal symmetries. One of them is the introduction
of nonlocal variables and extension of the transformation action to these variables. This ap-
proach can be successfully applied for equations with fractional-order derivatives. In this case
the prolongation formulae (8), (15) constructed in the previous section can be used both for
construction of nonlocal symmetries and for verification of their admittance by the equation.

Let us demonstrate it by a simple example. We consider the equation

0𝐷
𝛼+1
𝑥 𝑦 = 0, 𝛼 ∈ (0, 1), (16)

which has the well-known general solution 𝑦 = 𝑥𝛼−1(𝑐1𝑥 + 𝑐2) (𝑐1, 𝑐2 are arbitrary constants).
According to the definition of the fractional derivative, the equation (16) can be written in the
form

𝐷2
𝑥(0𝐼

1−𝛼
𝑥 𝑦) = 0,

where (︀
0𝐼

1−𝛼
𝑥 𝑦

)︀
(𝑥) =

1

Γ(1 − 𝛼)

∫︁ 𝑥

0

𝑦(𝑡)

(𝑥− 𝑡)𝛼
𝑑𝑡

is the left sided integral of the fractional order 1 − 𝛼.
Upon the nonlocal substitution 𝑧 = 0𝐼

1−𝛼
𝑥 𝑦, the equation (16) is written in the form

𝑧′′ = 0, (17)

which admits the known eight-parameter group [9] determined by the infinitesimal operators

𝑋1 =
𝜕

𝜕𝑥
, 𝑋2 =

𝜕

𝜕𝑧
, 𝑋3 = 𝑥

𝜕

𝜕𝑥
, 𝑋4 = 𝑧

𝜕

𝜕𝑥
,
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𝑋5 = 𝑥
𝜕

𝜕𝑧
, 𝑋6 = 𝑧

𝜕

𝜕𝑧
, 𝑋7 = 𝑥2

𝜕

𝜕𝑥
+ 𝑥𝑧

𝜕

𝜕𝑥
, 𝑋8 = 𝑥𝑧

𝜕

𝜕𝑥
+ 𝑧2

𝜕

𝜕𝑧
.

By virtue of the identity 0𝐷
1−𝛼
𝑥 0𝐼

1−𝛼
𝑥 𝑦 = 𝑦 it is possible to reverse the nonlocal substitution:

𝑦 = 0𝐷
1−𝛼
𝑥 𝑧.

Applying the prolongation formula (15) with 𝑔(𝑥) = 𝑥, we can construct the prolongation of
each operator to the fractional derivative 0𝐷

1−𝛼
𝑥 𝑧:

𝜁1−𝛼 = 0𝐷
1−𝛼
𝑥 (𝜂 − 𝜉𝑧′) + 𝜉 0𝐷

2−𝛼
𝑥 𝑧. (18)

We omit the lower indices 0 and 𝑥 in the operators of fractional differentiation and integration
for the sake of simplicity .

The known relationship between the Riemann-Liouville and the Caputo derivatives (3) can
be written in this case as

𝐷𝛽𝑓 ≡ 𝐷𝐼1−𝛽𝑓 = 𝐼1−𝛽𝑓 ′ +
𝑓(0)𝑥−𝛽

Γ(1 − 𝛽)
, 𝛽 ∈ (0, 1). (19)

Differentiating (19), we have the relation

𝐷𝛽+1𝑓 = 𝐷𝛽𝑓 ′ +
𝑓(0)𝑥−𝛽−1

Γ(−𝛽)
. (20)

The relations (19) and (20) allow one to write

𝐼𝛼𝑧′ = 𝐷1−𝛼𝑧 − 𝑧(0)𝑥𝛼−1

Γ(𝛼)
, 𝐷1−𝛼𝑧′ = 𝐷2−𝛼𝑧 − 𝑧(0)𝑥𝛼−2

Γ(𝛼− 1)
(21)

when 𝛽 = 1 − 𝛼. Since the value 𝑧(0) exists, then the fractional derivative 0𝐷
1−𝛼
𝑥 𝑧′ also exists.

The Leibniz rule for the fractional differentiation of the product of two functions (see [3])
also appears useful for construction of the prolongations:

𝐷𝛽(𝑓𝑔) =
∞∑︁
𝑘=0

(︂
𝛽

𝑘

)︂
𝐷𝛽−𝑘𝑓 𝐷𝑘𝑔. (22)

Here
(︀
𝛽
𝑘

)︀
are binomial coefficients, 𝐷𝛽−𝑘𝑓 = 𝐼𝑘−𝛽𝑓 when 𝑘 > 𝛽. In particular,

𝐷𝛽(𝑥𝑓) = 𝑥𝐷𝛽(𝑓) + 𝛽𝐷𝛽−1(𝑓), (23)

𝐷𝛽(𝑥2𝑓) = 𝑥2𝐷𝛽(𝑓) + 2𝛽𝑥𝐷𝛽−1(𝑓) + 𝛽(𝛽 − 1)𝐷𝛽−2(𝑓). (24)

The fractional derivative of the power function has the form [3]

𝐷𝛼𝑥𝛾 =
Γ(𝛾 + 1)

Γ(𝛾 − 𝛼 + 1)
𝑥𝛾−𝛼, 𝛾 > −1, 𝛼 ∈ R. (25)

Prolongation of the operator 𝑋1: Here 𝜉 = 1, 𝜂 = 0 and

𝜁1−𝛼 = −𝐷1−𝛼(𝑧′) +𝐷2−𝛼𝑧
(21)
=

𝑧(0)𝑥𝛼−2

Γ(𝛼− 1)
.

Prolongation of the operator 𝑋2:

𝜁1−𝛼 = 𝐷1−𝛼(1)
(25)
=

𝑥𝛼−1

Γ(𝛼)
.

Prolongation of the operator 𝑋5:

𝜁1−𝛼 = 𝐷1−𝛼(𝑥)
(25)
=

𝑥𝛼

Γ(𝛼 + 1)
.

Prolongation of the operator 𝑋6:
𝜁1−𝛼 = 𝐷1−𝛼(𝑧).
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Prolongation of the operator 𝑋3:

𝜁1−𝛼 = −𝐷1−𝛼(𝑥𝑧′) + 𝑥𝐷2−𝛼(𝑧).

The assumption that the finite value 𝑧(0) exists entails that (𝑥𝑧)|𝑥=0 = 0. Then, due to (19)
we have 𝐷1−𝛼(𝑥𝑧)′ = 𝐷2−𝛼(𝑥𝑧) and substituting 𝑥𝑧′ as (𝑥𝑧)′ − 𝑧, we obtain

𝜁1−𝛼 = −𝐷2−𝛼(𝑥𝑧) +𝐷1−𝛼𝑧 + 𝑥𝐷2−𝛼(𝑧)
(23)
= (𝛼− 1)𝐷1−𝛼𝑧.

Prolongation of the operator 𝑋4:

𝜁1−𝛼 = −𝐷1−𝛼(𝑧𝑧′) + 𝑧𝐷2−𝛼(𝑧).

Applying the equation (17), the Leibniz rule (22) and the representations (21) it is possible to
eliminate nonlinearity under the operator of fractional differentiation:

𝜁1−𝛼
(22)
= −

∞∑︁
𝑛=0

(︂
1 − 𝛼

𝑛

)︂
𝐷𝑛(𝑧)𝐷1−𝛼−𝑛𝑧′+𝑧𝐷2−𝛼(𝑧)

(17)
= −𝑧𝐷1−𝛼𝑧′−(1−𝛼)𝑧′𝐼𝛼𝑧′+𝑧𝐷2−𝛼(𝑧)

(21)
=

(21)
= −(1−𝛼)𝑧′

(︂
𝐷1−𝛼𝑧 − 𝑧(0)𝑥𝛼−1

Γ(𝛼)

)︂
+
𝑧𝑧(0)𝑥𝛼−2

Γ(𝛼− 1)
= (𝛼−1)𝑧′𝐷1−𝛼𝑧− 𝑧′𝑧(0)𝑥𝛼−1

Γ(𝛼− 1)
+
𝑧𝑧(0)𝑥𝛼−2

Γ(𝛼− 1)
.

The presented form of the coefficient of the prolonged operator is not the only one possible.
In particular, we can eliminate the variable 𝑧′ by applying the representation of the fractional
derivative 𝐷1−𝛼𝑧 to the equation (17):

𝐷1−𝛼𝑧
(22)
=

∞∑︁
𝑛=0

(︂
1 − 𝛼

𝑛

)︂
𝐷𝑛(𝑧)𝐷1−𝛼−𝑛1

(17),(25)
=

𝑧𝑥𝛼−1

Γ(𝛼)
+

(1 − 𝛼)𝑧′𝑥𝛼

Γ(𝛼 + 1)
,

whence, due to relation Γ(𝛼 + 1) = 𝛼Γ(𝛼) we have

(1 − 𝛼)𝑧′ = Γ(𝛼 + 1)𝑥−𝛼𝐷1−𝛼𝑧 − 𝛼
𝑧

𝑥
.

As a result we find

𝜁1−𝛼 = −
(︁

Γ(𝛼 + 1)𝑥−𝛼𝐷1−𝛼𝑧 − 𝛼
𝑧

𝑥

)︁(︂
𝐷1−𝛼𝑧 − 𝑧(0)𝑥𝛼−1

Γ(𝛼)

)︂
+
𝑧𝑧(0)𝑥𝛼−2

Γ(𝛼− 1)
=

= −Γ(𝛼 + 1)
(𝐷1−𝛼𝑧)2

𝑥𝛼
+
𝛼𝑧𝐷1−𝛼𝑧

𝑥
+
𝑧(0)Γ(𝛼 + 1)𝐷1−𝛼𝑧

𝑥Γ(𝛼)
+

(︂
1

Γ(𝛼− 1)
− 𝛼

Γ(𝛼)

)︂
𝑧𝑧(0)𝑥𝛼−2 =

= −Γ(𝛼 + 1)
(𝐷1−𝛼𝑧)2

𝑥𝛼
+
𝛼(𝑧 + 𝑧(0))𝐷1−𝛼𝑧

𝑥
− 𝑧𝑧(0)𝑥𝛼−2

Γ(𝛼)
.

Prolongation of the operator 𝑋7:

𝜁1−𝛼 = 𝐷1−𝛼(𝑥𝑧 − 𝑥2𝑧′) + 𝑥2𝐷2−𝛼𝑧.

Acting similarly to the procedure of the operator 𝑋3 prolongation, we find

𝜁1−𝛼 = 𝐷1−𝛼(𝑥𝑧) −𝐷1−𝛼𝐷(𝑥2𝑧) +𝐷1−𝛼(2𝑥𝑧) + 𝑥2𝐷2−𝛼𝑧 =

= 3𝐷1−𝛼(𝑥𝑧) −𝐷2−𝛼(𝑥2𝑧) + 𝑥2𝐷2−𝛼𝑧
(23),(24)

= 3𝑥𝐷1−𝛼𝑧 + (3 − 3𝛼)𝐼𝛼𝑧 − (4 − 2𝛼)𝑥𝐷1−𝛼𝑧−
− (2 − 𝛼)(1 − 𝛼)𝐼𝛼𝑧 = (2𝛼− 1)𝑥𝐷1−𝛼𝑧 + (1 − 𝛼2)𝐷𝛼𝑧.

Prolongation of the operator 𝑋8:

𝜁1−𝛼 = 𝐷1−𝛼(𝑧2 − 𝑥𝑧𝑧′) + 𝑥𝑧𝐷2−𝛼𝑧. (26)

Applying the Leibniz rule (22), due to the equation (17) we find

𝐷1−𝛼(𝑧2)
(22)
=

∞∑︁
𝑛=0

(︂
1 − 𝛼

𝑛

)︂
𝐷𝑛𝑧 𝐷1−𝛼−𝑛𝑧

(17)
= 𝑧𝐷1−𝛼𝑧 + (1 − 𝛼)𝑧′𝐼𝛼𝑧. (27)
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Similarly, applying the Leibniz rule for 𝑥𝑧 · 𝑧′ and taking into account that due to the equation
(17) 𝐷3(𝑥𝑧) = 0, we have

−𝐷1−𝛼(𝑥𝑧𝑧′)
(22),(17)

= −𝑥𝑧𝐷1−𝛼(𝑧′) − (1 − 𝛼)(𝑧 + 𝑥𝑧′)𝐼𝛼𝑧′ − (1 − 𝛼)(−𝛼)𝑧′𝐼𝛼+1𝑧′
(21)
=

(21)
= −𝑥𝑧𝐷2−𝛼𝑧+𝑥𝑧

𝑧(0)𝑥𝛼−2

Γ(𝛼− 1)
−(1−𝛼)(𝑧+𝑥𝑧′)

[︂
𝐷1−𝛼𝑧 − 𝑧(0)𝑥𝛼−1

Γ(𝛼)

]︂
+𝛼(1−𝛼)𝑧′

[︂
𝐼𝛼𝑧 − 𝑧(0)𝑥𝛼

Γ(𝛼 + 1)

]︂
=

= −𝑥𝑧𝐷2−𝛼𝑧+
𝑧𝑧(0)𝑥𝛼−1

Γ(𝛼− 1)
−(1−𝛼)

[︂
𝑧𝐷1−𝛼𝑧 − 𝑧𝑧(0)𝑥𝛼−1

(𝛼− 1)Γ(𝛼− 1)
+ 𝑥𝑧′𝐷1−𝛼𝑧 − 𝑧′𝑧(0)𝑥𝛼

(𝛼− 1)Γ(𝛼− 1)

]︂
+

+ 𝛼(1 − 𝛼)

[︂
𝑧′𝐼𝛼𝑧 − 𝑧′𝑧(0)𝑥𝛼

𝛼(𝛼− 1)Γ(𝛼− 1)

]︂
=

= −𝑥𝑧𝐷2−𝛼𝑧 − (1 − 𝛼)𝑧𝐷1−𝛼𝑧 − (1 − 𝛼)𝑥𝑧′𝐷1−𝛼𝑧 + 𝛼(1 − 𝛼)𝑧′𝐼𝛼𝑧. (28)

Substituting (27) and (28) into (26) we obtain

𝜁1−𝛼 = 𝛼𝑧𝐷1−𝛼𝑧 + (1 − 𝛼2)𝑧′𝐼𝛼𝑧 − (1 − 𝛼)𝑥𝑧′𝐷1−𝛼𝑧.

As a result, the prolonged operators take the form

𝑋̃1 =
𝜕

𝜕𝑥
+
𝑧(0)𝑥𝛼−2

Γ(𝛼− 1)

𝜕

𝜕𝑧(1−𝛼)
,

𝑋̃2 =
𝜕

𝜕𝑧
+
𝑥𝛼−1

Γ(𝛼)

𝜕

𝜕𝑧(1−𝛼)
,

𝑋̃3 = 𝑥
𝜕

𝜕𝑥
+ (𝛼− 1)𝑧(1−𝛼) 𝜕

𝜕𝑧(1−𝛼)
,

𝑋̃4 = 𝑧
𝜕

𝜕𝑥
+

(︂
(𝛼− 1)𝑧′𝑧(1−𝛼) − 𝑧′𝑧(0)𝑥𝛼−1

Γ(𝛼− 1)
+
𝑧𝑧(0)𝑥𝛼−2

Γ(𝛼− 1)

)︂
𝜕

𝜕𝑧(1−𝛼)
,

𝑋̃5 = 𝑥
𝜕

𝜕𝑧
+

𝑥𝛼

Γ(𝛼 + 1)

𝜕

𝜕𝑧(1−𝛼)
,

𝑋̃6 = 𝑧
𝜕

𝜕𝑧
+ 𝑧(1−𝛼) 𝜕

𝜕𝑧(1−𝛼)
,

𝑋̃7 = 𝑥2
𝜕

𝜕𝑥
+ 𝑥𝑧

𝜕

𝜕𝑧
+
[︀
(2𝛼− 1)𝑥𝑧(1−𝛼) + (1 − 𝛼2)𝑧(−𝛼)

]︀ 𝜕

𝜕𝑧(1−𝛼)
,

𝑋̃8 = 𝑥𝑧
𝜕

𝜕𝑥
+ 𝑧2

𝜕

𝜕𝑧
+
[︀
𝛼𝑧𝑧(1−𝛼) − (1 − 𝛼)𝑥𝑧′𝑧(1−𝛼) + (1 − 𝛼2)𝑧′𝑧(−𝛼)

]︀ 𝜕

𝜕𝑧(1−𝛼)
,

where 𝑧(1−𝛼) ≡ 0𝐷
1−𝛼
𝑥 𝑧. Whence, after the reverse substitution of the variables 𝑧 = 0𝐼

1−𝛼
𝑥 𝑦, we

find symmetries of the equation (16):

𝑋1 =
𝜕

𝜕𝑥
+
𝑦(𝛼−1)(0)𝑥𝛼−2

Γ(𝛼− 1)

𝜕

𝜕𝑦
,

𝑋2 = 𝑥𝛼−1 𝜕

𝜕𝑦
, 𝑋3 = 𝑥

𝜕

𝜕𝑥
+ (𝛼− 1)𝑦

𝜕

𝜕𝑦
,

𝑋4 = 𝑦(𝛼−1) 𝜕

𝜕𝑥
+

(︂
(𝛼− 1)𝑦𝑦(𝛼) − 𝑦(𝛼)𝑦(𝛼−1)(0)𝑥𝛼−1

Γ(𝛼− 1)
+
𝑦(𝛼−1)𝑦(𝛼−1)(0)𝑥𝛼−2

Γ(𝛼− 1)

)︂
𝜕

𝜕𝑦
,

𝑋5 = 𝑥𝛼
𝜕

𝜕𝑦
, 𝑋6 = 𝑦

𝜕

𝜕𝑦
,

𝑋7 = 𝑥2
𝜕

𝜕𝑥
+ [(2𝛼− 1)𝑥𝑦 + (1 − 𝛼2)𝐼𝑦]

𝜕

𝜕𝑦
,

𝑋8 = 𝑥𝑦(𝛼−1) 𝜕

𝜕𝑥
+ [𝛼𝑦𝑦(𝛼−1) − (1 − 𝛼)𝑥𝑦𝑦(𝛼) + (1 − 𝛼2)𝑦(𝛼)𝐼𝑦]

𝜕

𝜕𝑦
.



64 R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK

Here 𝑦(𝛼−1) ≡ 0𝐼
1−𝛼
𝑥 𝑦, 𝐼𝑦 ≡ 0𝐼𝑥𝑦.

The symmetries 𝑋2, 𝑋3, 𝑋5, 𝑋6 are local, other symmetries are nonlocal. Let us note that
the initial value 𝑦(𝛼−1)(0) contained in the operators 𝑋1 and 𝑋4 is a natural initial condition
for the formulation of the Cauchy problem for fractional differential equations.

Let us show that the coefficients of the operators 𝑋1 . . . 𝑋8 satisfy the definite equation

𝜁𝛼+1|𝐷𝛼+1𝑦=0 = 0,

which takes the form
𝐷𝛼+1(𝜂 − 𝜉𝑦′)

⃒⃒
𝐷𝛼+1𝑦=0

= 0

for the equation (16).
Operators 𝑋2,𝑋5,𝑋6. The verification is trivial. For 𝑋6, we have

𝐷𝛼+1(𝑦)
⃒⃒
𝐷𝛼+1𝑦=0

= 0.

For 𝑋2, we have 𝜂 − 𝜉𝑦′ = 𝑥𝛼. By virtue of (25) we obtain

𝐷𝛼+1𝑥𝛼 = 0,

because the gamma-function has poles of the first order at the points 𝑥 = 0, 𝑥 = −𝑛, 𝑛 ∈ R.
Likewise for 𝑋5: 𝐷

𝛼+1𝑥𝛼−1 = 0.

Operator 𝑋1:

𝜁𝛼+1 = 𝐷𝛼+1

(︂
𝑦(𝛼−1)(0)𝑥𝛼−2

Γ(𝛼− 1)
− 𝑦′

)︂
.

Note that derivatives 𝐷𝛼+1𝑦′ and 𝐷𝛼+1𝑥𝛼−2 do not exist, therefore it is impossible to apply the
operator 𝐷𝛼+1 to the separate summands in this case.

The relationship (19) with 𝑓 = 𝐼1−𝛼𝑦 allows one to write the following representation of 𝑦:

𝑦 = 𝐷1−𝛼𝐼1−𝛼𝑦 = 𝐼𝛼𝐷𝐼1−𝛼𝑦 +
(𝐼1−𝛼𝑦)(0) · 𝑥𝛼−1

Γ(𝛼)
= 𝐼𝛼𝐷𝛼𝑦 +

𝑦(𝛼−1)(0)𝑥𝛼−1

Γ(𝛼)
, (29)

whence

𝑦′ = 𝐷1−𝛼𝐷𝛼𝑦 +
𝑦(𝛼−1)(0)𝑥𝛼−2

Γ(𝛼− 1)
(30)

due to (𝛼− 1)Γ(𝛼− 1) = Γ(𝛼). Then

𝜁𝛼+1 = −𝐷𝛼+1
𝑥 (𝐷1−𝛼

𝑥 𝐷𝛼
𝑥𝑦).

Due to the relationship (19) and the equation (16) we have

𝐷1−𝛼𝐷𝛼𝑦 = 𝐷𝐼𝛼𝐷𝛼𝑦
(19)
= 𝐼𝛼𝐷𝛼+1𝑦 +

(𝐷𝛼𝑦)(0)𝑥𝛼−1

Γ(1 − 𝛽)

(16)
=

(𝐷𝛼𝑦)(0)𝑥𝛼−1

Γ(1 − 𝛽)
(31)

(the existence of (𝐷𝛼𝑦)(0) follows from the formulation of the Cauchy problem for the original
equation or from the existence of 𝑧′(0)).

Due to (25) the 𝛼 + 1 fractional derivative of the expression (31) is equal to zero, whence

𝜁𝛼+1|𝐷𝛼+1𝑦=0 = 0.

Operator of the dilation group 𝑋3:

𝜁𝛼+1 = 𝐷𝛼+1((𝛼− 1)𝑦 − 𝑥𝑦′).

Applying the representation 𝑥𝑦′ = (𝑥𝑦)′−𝑦 and the relationship 𝐷𝛼+1(𝑥𝑦)′ = 𝐷𝛼+2(𝑥𝑦) (which
holds due to (𝑥𝑦)|𝑥=0 = 0), we obtain

𝜁𝛼+1 = 𝐷𝛼+1(𝛼𝑦 − (𝑥𝑦)′) = 𝛼𝐷𝛼+1𝑦 −𝐷𝛼+2(𝑥𝑦)
(23)
= −𝑥𝐷𝛼+2(𝑦) − 2𝐷𝛼+1(𝑦),

and
𝜁𝛼+1|𝐷𝛼+1𝑦=0 = 0.
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Operator 𝑋4:

𝜁𝛼+1 = 𝐷𝛼+1
𝑥

(︂
(𝛼− 1)𝑦𝑦(𝛼) − 𝑦(𝛼)𝑦(𝛼−1)(0)𝑥𝛼−1

Γ(𝛼− 1)
+
𝑦(𝛼−1)𝑦(𝛼−1)(0)𝑥𝛼−2

Γ(𝛼− 1)
− 𝑦(𝛼−1)𝑦′

)︂
.

Applying the Leibniz rule (22) it is easy to see that due to the equation (16) the fractional
derivatives of the first and the second summands vanish:

𝐷𝛼+1
𝑥 (𝑦𝑦(𝛼))

⃒⃒
𝐷𝛼+1𝑦=0

(22)
=

∞∑︁
𝑛=0

(︂
𝛼 + 1

𝑛

)︂
𝐷𝛼+1−𝑛𝑦 ·𝐷𝛼+𝑛𝑦

⃒⃒⃒⃒
⃒
𝐷𝛼+1𝑦=0

= 0,

𝐷𝛼+1
𝑥 (𝑥𝛼−1𝑦(𝛼))

⃒⃒
𝐷𝛼+1𝑦=0

(22)
=

∞∑︁
𝑛=0

(︂
𝛼 + 1

𝑛

)︂
𝐷𝛼+1−𝑛𝑥𝛼−1 ·𝐷𝛼+𝑛𝑦

⃒⃒⃒⃒
⃒
𝐷𝛼+1𝑦=0

(25)
= 0.

To simplify the remaining parts of the expression we use the representation 𝑦′ (30):

𝐷𝛼+1
𝑥

(︂
𝑦(𝛼−1)(0)𝑦(𝛼−1)𝑥𝛼−2

Γ(𝛼− 1)
− 𝑦(𝛼−1)𝑦′

)︂
(30)
= −𝐷𝛼+1

𝑥

(︀
𝐼1−𝛼𝑦 ·𝐷1−𝛼𝐷𝛼𝑦

)︀ (22)
=

(22)
= −

∞∑︁
𝑛=0

(︂
𝛼 + 1

𝑛

)︂
𝐷𝛼+1−𝑛(𝐷1−𝛼𝐷𝛼𝑦) ·𝐷𝑛(𝐼1−𝛼𝑦).

By virtue of the equation 𝐷𝛼+𝑛 = 0 and all summands with 𝑛 > 1 vanish. The first two
summands are also equal to zero due to the relationship (31), holding true for the equation:

−𝐷𝛼+1(𝐷1−𝛼𝐷𝛼𝑦) · 𝐼1−𝛼𝑦 − (𝛼 + 1)𝐷𝛼(𝐷1−𝛼𝐷𝛼𝑦) ·𝐷𝛼𝑦
(31)
= 0.

Remark. It is clear from the proof that an operator of a simpler form than 𝑋4 is admitted:

𝑋̂4 = 𝑦(𝛼−1) 𝜕

𝜕𝑥
+
𝑦(𝛼−1)𝑦(𝛼−1)(0)𝑥𝛼−2

Γ(𝛼− 1)

𝜕

𝜕𝑦
.

Operator 𝑋7:
𝜁𝛼+1 = 𝐷𝛼+1((2𝛼− 1)𝑥𝑦 + (1 − 𝛼2)𝐼𝑦 − 𝑥2𝑦′).

The following equalities hold:

𝐷𝛼+1𝐼𝑦 = 𝐷2𝐼1−𝛼𝐼𝑦 = 𝐷2𝐼(𝐼1−𝛼𝑦) = 𝐷𝐼1−𝛼𝑦 = 𝐷𝛼𝑦,

𝐷𝛼(𝑥𝑦′) = 𝐷𝛼(𝑥𝑦)′ −𝐷𝛼𝑦 = 𝐷𝛼+1(𝑥𝑦) −𝐷𝛼𝑦 = 𝑥𝐷𝛼+1𝑦 + 𝛼𝐷𝛼𝑦,

𝐷𝛼+1(𝑥𝑦′) = 𝐷𝐷𝛼(𝑥𝑦′) = (𝛼 + 1)𝐷𝛼+1𝑦 + 𝑥𝐷𝛼+2𝑦.

Thus,
𝐷𝛼+1𝐼𝑦 = 𝐷𝛼𝑦, 𝐷𝛼(𝑥𝑦′)|𝐷𝛼+1𝑦=0 = 𝛼𝐷𝛼𝑦, 𝐷𝛼+1(𝑥𝑦′)

⃒⃒
𝐷𝛼+1𝑦=0

= 0. (32)

Then,

𝜁𝛼+1 = (2𝛼− 1)𝐷𝛼+1(𝑥𝑦) + (1 − 𝛼2)𝐷𝛼+1𝐼𝑦 −𝐷𝛼+1(𝑥 · 𝑥𝑦′) =

= (2𝛼− 1)𝑥𝐷𝛼+1(𝑦) + (2𝛼− 1)(𝛼 + 1)𝐷𝛼𝑦 + (1 − 𝛼2)𝐷𝛼𝑦 − 𝑥𝐷𝛼+1(𝑥𝑦′) − (𝛼 + 1)𝐷𝛼(𝑥𝑦′).

After substituting the equation (16) and using the relationships (32), we obtain

𝜁𝛼+1|𝐷𝛼+1𝑦=0 = (2𝛼2 + 𝛼− 1 + 1 − 𝛼2)𝐷𝛼𝑦 − 0 − 𝛼(𝛼 + 1)𝐷𝛼𝑦 = 0.

Operator 𝑋8:

𝜁𝛼+1 = 𝐷𝛼+1[𝛼𝑦𝑦(𝛼−1) − (1 − 𝛼)𝑥𝑦𝑦(𝛼) + (1 − 𝛼2)𝑦(𝛼)𝐼𝑦 − 𝑥𝑦(𝛼−1)𝑦′].

Let us use the Leibniz rule (22) for representation of every summand taking into account that
𝐷𝛼+𝑛𝑦 = 0 due to the equation (16) when 𝑛 > 0.

𝐷𝛼+1[𝛼𝑦𝐼1−𝛼𝑦]
(22)
= 𝛼

∞∑︁
𝑛=0

(︂
𝛼 + 1

𝑛

)︂
𝐷𝛼+1−𝑛𝑦 𝐷𝑛+𝛼−1𝑦

(16)
= 𝛼(𝛼 + 1)(𝐷𝛼𝑦)2,
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𝐷𝛼+1[(𝛼− 1)𝑥𝑦𝐷𝛼𝑦]
(22)
= (𝛼− 1)

∞∑︁
𝑛=0

(︂
𝛼 + 1

𝑛

)︂
𝐷𝛼+1−𝑛(𝑥𝑦)𝐷𝑛+𝛼𝑦

(16)
= (𝛼− 1)𝐷𝛼+1(𝑥𝑦)

(23)
=

(23)
= (𝛼− 1)𝑥𝐷𝛼+1(𝑦) + (𝛼− 1)(𝛼 + 1)(𝐷𝛼𝑦)2

(16)
= (𝛼2 − 1)(𝐷𝛼𝑦)2,

𝐷𝛼+1[(1 − 𝛼2)𝐷𝛼𝑦 𝐼𝑦]
(22)
= (1 − 𝛼2)

∞∑︁
𝑛=0

(︂
𝛼 + 1

𝑛

)︂
𝐷𝛼+1−𝑛(𝐼𝑦)𝐷𝑛+𝛼𝑦

(16)
=

(16)
= (1 − 𝛼2)𝐷𝛼+1(𝐼𝑦)𝐷𝛼𝑦

(32)
= (1 − 𝛼2)(𝐷𝛼𝑦)2,

𝐷𝛼+1[−𝑥𝑦′𝐼1−𝛼𝑦]
(22)
= −

∞∑︁
𝑛=0

(︂
𝛼 + 1

𝑛

)︂
𝐷𝛼+1−𝑛(𝑥𝑦′)𝐷𝑛+𝛼−1𝑦

(16)
=

(16)
= −𝐷𝛼+1(𝑥𝑦′)𝐼1−𝛼𝑦 − (𝛼 + 1)𝐷𝛼(𝑥𝑦′)𝐷𝛼𝑦

(32)
= −𝛼(𝛼 + 1)(𝐷𝛼𝑦)2.

It is easy to see that the sum of right-hand sides turns to zero, which was to be proved. Note
that simpler operators are also admitted:

𝑋̂8 = 𝑥𝑦(𝛼−1) 𝜕

𝜕𝑥
+ 𝛼𝑦𝑦(𝛼−1) 𝜕

𝜕𝑦
, 𝑋̄8 =

(︀
(𝛼− 1)𝑥𝑦𝑦(𝛼) + (1 − 𝛼2)𝑦(𝛼)𝐼𝑦

)︀ 𝜕

𝜕𝑦
.

Remark. In our previous paper [9] five local symmetries, including the projective operator

𝑋9 = 𝑥2
𝜕

𝜕𝑥
+ 𝛼𝑥𝑦

𝜕

𝜕𝑦

were obtained from the principle of invariance of the equation (16). The present operator
cannot be combined from 𝑋1, . . . , 𝑋8, but the closest to it is 𝑋7 (obtained from the projective
operator for the equation 𝑧′′ = 0). It is easy to verify that the nonlocal operator

𝑋10 ≡ 𝑋7 −𝑋9 = [(𝛼− 1)𝑥𝑦 + (1 − 𝛼2)𝐼𝑦]
𝜕

𝜕𝑦

is admitted by the equation (16). Meanwhile, in the boundary case 𝛼 = 1 the operator 𝑋10

turns to zero, i.e. 𝑋7 matches 𝑋9.

Conclusion

The prolongation formulae obtained in the paper give an opportunity to investigate symmetry
properties of a new class of differential equations, containing fractional derivatives of a function
with respect to another function. Meanwhile, the following important problem to be solved is
the development of a method that allows to solve the resulting determining equations. The
main difficulty in this case is caused by splitting rules for the determining equation.

Another direction of the further research is systematization of results considering nonlocal
symmetries of fractional differential equations and developing new algorithms of their construc-
tion. The problem of determining classification rules for nonlocal symmetries of such equations
also seems to be important.
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