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THE PROBLEM OF NUMERICAL REALIZATION OF

INTEGRAL OPERATORS OF AXISYMMETRIC BOUNDARY

VALUE PROBLEMS (ALGORITHMS WITHOUT

SATURATION)

V.N. BELYKH

Abstract. In the paper a fundamentally new, unsaturated, method of numerical imple-
mentation integral operators of 𝐶∞-smooth axisymmetric boundary value problems is de-
scribed. The method allows to take into account the specifics of the axisymmetric problems
automatically. This specifics is an obstacle to any numerical methods with the principal
term of error.

The method was tested on the problem of precise evaluation of the Gauss integral of the
theory of harmonic potential in highly prolonged ellipsoids of evolution.

Keywords: unsaturated numerical method, Gauss integral, axisymmetric region, quadra-
ture formula without saturation.

1. Preamble.

Extended opportunities of modern computers are basically determined by success in mi-
croelectronics, whereas the value of the obtained numerical results significantly depends on
quality of the applied calculation algorithms. In this connection the search of new principles of
construction of numerical algorithms becomes an indispensable condition of development and
existence of computational mathematics as a science in the whole.

With the development of computational practice and appearance of new classes of applied
problems [1] in the scientific world, the role of smoothness reserve of their solutions is considered
differently. It is understood as existence of set of continuous derivatives in the solutions.
This set exceeds rather definite threshold. But such extraordinary smoothness reserves are
usually potential and are not realized if the method error has a dominant term, since with the
extension of approximate opportunities of the compact of solutions determined by smoothness
of its elements the error of the method does not decrease [2]. The specified defect significantly
decreases practical value of numerical methods having the dominant term of the error. It is
the factor that explains the tendency why calculators usually strive for the use of high order
methods, in which the mentioned defect decreases though does not vanish completely.

Modern computational science (both fundamental and applied) experience great demand
in appearance of numerical methods without the specified defect - existence of the dominant
term of the error, and called by K.I. Babenko unsaturated [2]. Genetically these methods join
methods of variable orders, with the only difference which corresponds an increased consistency
with the class of the problem correctness: unsaturated numerical methods are self-improved
with the increase of smoothness reserve. It means they automatically obtain the increment
of their practical effectiveness directly from the differential nature of the searched solutions of
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the problems (nonsaturation phenomenon [3]). Meanwhile the peak of effectiveness, that is the
exponential convergence is achieved for the classes of 𝐶∞-smooth solutions.

There are classes of problems, in which the information on extraordinary smoothness of
solutions can be applied with the profit for calculations. Thus, the quality discretions in the
elliptical problems differ by their ability to inherit characteristic properties, that is Shaudier
smoothness estimates [4]. Earlier this property was not demanded by practice, but it becomes
acute due to the known context, striving for the numerical answer of the guaranteed quality.
All this in the aggregate with good stipulation of discretization is able to result in the actual
𝑡𝑒𝑟𝑟𝑎 𝑖𝑛𝑐𝑜𝑔𝑛𝑖𝑡𝑎 of computer calculations, that is their evidentiary [2,5]. Good stipulation of
discretization is necessary in this case, though mathematical essentials, which are on the stage
of creating a numerical method very often become an ideal field for possible speculations not
considering such realities of computer calculations as rounding errors.

The classical method of representation of solutions of boundary-value problems for the
Laplace equation is based on the notion of harmonic potential and admits an equivalent formu-
lation in terms of solutions of boundary integral equations. In this connection in mathematical
folklore there is a supposition that if a problem is reduced to a “good” integral equation, then
its effective numerical solution is determined in advance. Meanwhile it is naively supposed that
finding the solution is a simple and sometimes standard activity. Indeed, the problem of value
or precision of the computer answer under construction, which is the same, completely depends
on the method of approximate realization of an integral operator of the problem and directly
depends on the properties of the applied cubature formulae.

Although, the use of standard cubature formulae, i.e. the ones having the dominant term of
the error faces only a formal statement of the existing difficulties, i.e. (“curses”) of the finite
mathematics (dimension of the space of independent variables [2,6] and order of integral [7])
without specifying possible ways to avoid them. As a result we can only hope for the chance
and not for a guaranteed success. It is the reason why the problem of finding the guaranteed
quality of the numerical solution of the Laplace equation in smooth three-dimensional domains
of a sufficiently arbitrary form is still understood as a very difficult computational problem.
Its solution, as theory [2] stipulates, is referred to the sphere of a higher intellectual degree:
they highlight the problem of construction of unsaturated cubature formulae. Existence of
difficulties on this way is also stipulated by the absence of the common sense highlights, which
could satisfy real demands of practice. Though, in the recent paper [8] an interesting attempt
to consider it was made.

The present point of view on the quality of computer calculations seriously influenced the
choice of data for the paper. We confine ourselves only to the consideration of the axisymmetric
boundary-value problems by advancing a new nonsaturated method of dicretization of the
integral operators of these problems. It is considered in general terms in [5]. Here we describe
the general source of difficulties computational these problems by the example of a precise
calculation of the Gauss integral: great increase of integrants close to the symmetry axis of the
domain, which is called a “boundary layer”, and which is a “stumbling block” for any standard
numerical methods. In this paper we specify an effective mechanism of numerical neutralization
of these difficulties due to a “high” smoothness of the problems solutions.

The limit of the article size does not allow to present detailed results and proofs, making us
exclude the considerations, including complicated manipulations with special functions. There-
fore, some topics here remain untouched. But we demonstrate all the key notions of the new
method in detail.

2. The Gauss integral on the axisymmetric surface

The new numerical methods are constructed under the influence and with the objective of
solution of some definite applied problem. In the problem under consideration this role is
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played by the Gauss integral of the theory of a harmonic potential [9]. This potential value
does not depend on the surface upon which it is calculated. At the same time its analytical
nature is sufficiently complicated to be a model for the general problem of smoothness in the
axisymmetric domain. This specifies its uniqueness as a test example.

Calculation of the Gauss integral is a visual demonstration of all the aspects of the pre-
cise numerical realization of integral operators of the axisymmetric boundary-value problems.
The general attention is paid to the process of a numerical algorithm construction, general
computational difficulties and methods of their effective overcoming.

Assume that 𝑥 ∈ R3, 𝑥 = (𝑥, 𝑦, 𝑧); 𝜔 ⊂ R3 is a domain with the axis of symmetry 𝑧, bounded

by the 𝐶∞-smooth closed surface of rotation 𝜕𝜔; the values 𝑟 =
√︀
𝑥2 + 𝑦2 and 𝑧 are invariants

of the group of rotation of the domain 𝜔 with respect to the axis 𝑧. The meridian section 𝜕𝜔 is
a parameter curve 𝛾 : [ 0, 1] → {𝑟(𝑠), 𝑧(𝑠)}, 𝑟 ≥ 0, 𝑑𝑧/𝑑𝑠 ≥ 0, 𝛾(𝑠) ∈ 𝐶∞[0, 1]. The points 𝛾(0)
and 𝛾(1) are poles 𝜕𝜔, and 𝑟(𝑠) and 𝑧(𝑠) have 𝐶∞-smooth 2-periodical extensions with [ 0, 1]
on [ 0, 2 ] (odd, even respectively).

We consider the curve 𝛾(𝑠) convex, so that the points close to the axis 𝑧 are always con-
centrated near the poles 𝛾(0) and 𝛾(1) of the surface 𝜕𝜔. The general (non-convex) case is
investigated by the corresponding division of 𝛾(𝑠) into parts.

The position of the points 𝑥 and 𝜉 on 𝜕𝜔 is determined by the cylindrical coordinates (𝑟, 𝑧, 𝑣)
and (𝜌, 𝜁, 𝜙) respectively: 𝑥 ≡ 𝑥(𝑠, 𝑣) = (𝑟 cos 𝑣, 𝑟 sin 𝑣, 𝑧), 𝜉 ≡ 𝑥(𝜎, 𝜙) = (𝜌 cos𝜙, 𝜌 sin𝜙, 𝜁).
We use the notation here: 𝑟 = 𝑟(𝑠), 𝑧 = 𝑧(𝑠), 𝜌 = 𝑟(𝜎), 𝜁 = 𝑧(𝜎) and 0 ≤ 𝑠, 𝜎 ≤ 1, 0 ≤ 𝑣, 𝜙 <
2𝜋.

Let us consider the point 𝑥 ∈ 𝜕𝜔 fixed, and the point 𝜉 ∈ 𝜕𝜔 to be variable.
The normal 𝑛 and the element of the area 𝑑𝜔𝜉 in the point 𝜉 ∈ 𝜕𝜔 are denoted by:

𝑛 =
(︁
− 𝛿−1 𝜁 ′ cos 𝜙, − 𝛿−1 𝜁 ′ sin 𝜙, 𝛿−1 𝜌 ′

)︁
, 𝑑 𝜔 𝜉 = 𝜌 𝛿 𝑑𝜎 𝑑𝜙,

respectively. Here 𝜁 ′ ≡ 𝑑 𝜁/𝑑 𝜎, 𝜌 ′ ≡ 𝑑 𝜌/𝑑 𝜎, 𝛿 ≡ 𝛿(𝜎) =
√︀
𝜌 ′ 2 + 𝜁 ′ 2.

The direct value of the normal derivative ∇𝑥𝑓 < 𝑛 > of the function 𝑓(𝜉,𝑥) on the surface
of rotation 𝜕𝜔 is determined by the equality

∇𝑥𝑓 < 𝑛 >= −𝛿−1

(︂
𝜁 ′ 𝜕𝑓

𝜕𝜌
− 𝜌 ′ 𝜕𝑓

𝜕𝜁

)︂ ⃒⃒⃒⃒
𝜉,𝑥 ∈ 𝜕𝜔

.

Let us consider the Gauss integral with respect to the closed rotation surface 𝜕𝜔:

𝜋 ≡ Γ(𝑥) =
1

2

∫︁
𝜕𝜔

∇𝑥
1

𝑃
< 𝑛 > 𝑑𝜔𝜉, 𝑥 ∈ 𝜕𝜔, 𝜉 ∈ 𝜕𝜔. (1)

Here 𝑃 = | 𝜉 − 𝑥| is the distance between the points 𝜉,𝑥 ∈ 𝜕𝜔, and
𝑃 2 = 𝑟2 + 𝜌2 + (𝜁 − 𝑧)2 − 2 𝜌 𝑟 cos (𝜙− 𝑣), and the integral is understood as a principal value.

Let us introduce the notation

ℎ2 ≡ ℎ2(𝜎, 𝑠) = (𝜌− 𝑟)2 + (𝜁 − 𝑧)2, ℎ2* ≡ ℎ2*(𝜎, 𝑠) = (𝜌+ 𝑟)2 + (𝜁 − 𝑧)2,

𝑞 ≡ 𝑞(𝜎, 𝑠) = 4 𝜌 𝑟 ℎ−2
* , 𝑢 ≡ 1 − 𝑞 = ℎ2 ℎ−2

* ,

𝐾(𝛽) =

𝜋/2∫︁
0

(1 − 𝛽 sin2 𝜃)−1/2 𝑑𝜃, 𝐸(𝛽) =

𝜋/2∫︁
0

(1 − 𝛽 sin2 𝜃)1/2 𝑑𝜃, 𝐷(𝛽) = 𝐾(𝛽) − 𝐸(𝛽).

Here 0 ≤ 𝛽 < 1 is a module of complete elliptical integrals 𝐾(𝛽), 𝐸(𝛽), 𝐷(𝛽).
The axis symmetry of the surface 𝜕𝜔 allows one to integrate once in (1), reducing the calcu-

lations into the meridian plane 𝑣 = 𝑐𝑜𝑛𝑠𝑡 = 0 on the basis of the following factors.
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Lemma 1. The following representation holds on the smooth closed surface of the rotation
𝜕𝜔:

∇𝑥
1

𝑃
= Ω(𝜎, 𝑠)

ℎ2

𝑃 3
− 𝑟

𝜁 ′

𝛿

1 − cos 𝜙

𝑃 3
,

where

Ω ≡ Ω(𝜎, 𝑠) =

{︃
(𝜎 − 𝑠)−1 𝑛 · 𝑟[𝜎, 𝑠] / | 𝑟[𝜎, 𝑠]| 2, 𝜎 ̸= 𝑠,

0.5 (𝑧 ′𝑟 ′ ′ − 𝑟 ′𝑧 ′ ′ ) / 𝑑 3, 𝜎 = 𝑠,

𝑟[𝜎, 𝑠] =

[︃
𝜌− 𝑟

𝜎 − 𝑠
cos 𝜙,

𝜌− 𝑟

𝜎 − 𝑠
sin 𝜙,

𝜁 − 𝑧

𝜎 − 𝑠

]︃
, 𝑑 ≡ 𝑑(𝑠) =

√︀
𝑟 ′ 2 + 𝑧 ′ 2.

Here 𝑟 ′, 𝑧 ′ and 𝑟 ′ ′, 𝑧 ′ ′ are the first and the second derivatives of the function 𝑟 = 𝑟(𝑠), 𝑧 = 𝑧(𝑠)
with respect to the local coordinate 𝑠, respectively.
Lemma 2. One has

2𝜋∫︁
0

𝑃−3 𝑑𝜙 = 4ℎ2 ℎ−1
* 𝐸(𝑞),

2𝜋∫︁
0

(1 − cos𝜙)𝑃−3 𝑑𝜙 = 2 𝑟−1 𝜌−1 ℎ−1
* 𝐷(𝑞)

on the smooth closed surface of the rotation 𝜕𝜔.
Due to Lemmas 1,2 the Gauss integral (1) is transformed to the form

𝜋 ≡ Γ(𝑠) =

1∫︁
0

(︂
2 𝜌 𝛿 Ω(𝜎, 𝑠)𝐸(𝑞) − 𝜁 ′𝐷(𝑞)

)︂
ℎ−1

* 𝑑 𝜎, ∀𝑠 ∈ [ 0, 1].

The existence of complete elliptical integrals here requires special methods of approximation
𝐸(𝑞) and 𝐷(𝑞) due to the fact that the module 𝑞 ≡ 𝑞(𝜎, 𝑠) is a function of two points: variable
𝜎 and fixed 𝑠. Meanwhile, there is always 𝑞(𝑠, 𝑠) = 1.

In [10] we obtain the representations

𝐸(𝑞) = 𝐸 *
𝑝(𝑞) − 𝑒 *𝑝 (𝑞) ln𝑢, 𝐷(𝑞) = 𝐷 *

𝑝(𝑞) − 𝑑 *
𝑝 (𝑞) ln𝑢.

Here the parameter 𝑝 ≥ 0 is an integer number, whose algorithm of choice will be determined
below; 𝑢 = 1 − 𝑞, and the functions 𝐸 *

𝑝(𝑞), 𝑒 *𝑝(𝑞), 𝐷
*
𝑝(𝑞), 𝑑

*
𝑝(𝑞) are set by the formulae:

𝐸 *
𝑝(𝑞) =

{︃
0.5𝜋(1 − 𝑞 𝐸 0 < 𝑞 >) + 𝑒 *𝑝 (𝑞) ln (1 − 𝑞), if 0 ≤ 𝑞 ≤ 0.5,

−𝐷𝑝 < 𝑢 > 𝑢𝑝+1 ln 𝑢+ 1 + 𝑢𝐺 < 𝑢 >, if 0.5 < 𝑞 ≤ 1,

𝐷 *
𝑝(𝑞) =

{︃
𝜋 𝑞 𝐷 0 < 𝑞 > +𝑑 *

𝑝 (𝑞) ln (1 − 𝑞), if 0 ≤ 𝑞 ≤ 0.5,

0.5𝐸𝑝 < 𝑢 > 𝑢𝑝+1 ln 𝑢+ ln (4/𝑒) − 𝑢𝑊 < 𝑢 >, if 0.5 < 𝑞 ≤ 1.

where

𝐸𝑝 < 𝑥 >=
∞∑︁

𝑛=𝑝+1

𝛾𝑛 𝑥
𝑛−𝑝−1

2𝑛− 1
, 𝑒 *𝑝 (𝑥) =

𝑝∑︁
𝑛=1

𝑛 𝛾𝑛 𝑥
𝑛

2𝑛− 1
, 𝑒 *0 (𝑥) = 0, 𝐺 < 𝑥 >=

∞∑︁
𝑛=1

𝐺𝑛,

𝐷𝑝 < 𝑥 >=
∞∑︁

𝑛=𝑝+1

𝑛 𝛾𝑛 𝑥
𝑛−𝑝−1

2𝑛− 1
, 𝑑 *

𝑝 (𝑥) = −0.5

𝑝∑︁
𝑛=1

𝛾𝑛 𝑥
𝑛

2𝑛− 1
, 𝑑 *

0 (𝑥) = 1, 𝑊 < 𝑥 >=
∞∑︁
𝑛=1

𝑊𝑛,

𝐺𝑛 =
(︁
𝜆𝑛 + 𝜆𝑛−1

)︁ 𝑛 𝛾𝑛 𝑥
𝑛−1

2𝑛− 1
, 𝑊𝑛 =

(︁ 1

2𝑛− 1
+ 𝜆𝑛

)︁ 𝛾𝑛 𝑥
𝑛−1

2𝑛− 1
,

𝛾 0 = 1, 𝛾𝑛 =

(︂
(1/2)𝑛 / 𝑛!

)︂2

, 𝜆 0 = ln 4, 𝜆𝑛 = 𝜓(𝑛+ 1) − 𝜓(𝑛+ 1/2), 𝑛 > 0,

(𝛼)𝑛 = Γ(𝛼 + 𝑛)/Γ(𝛼), 𝛼 > 0, 𝑛 > 0, 𝜓(𝑧) = 𝑑Γ(𝑧)/ 𝑑 𝑧 (𝑧 > 0).
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Here Γ(𝑧) and 𝜓(𝑧) are Γ- and 𝜓-functions of Euler, respectively (don’t mix it with the integral
Γ(𝑠)). Algorithms of calculation of the finite totals 𝑒 *𝑝 (𝑞) and 𝑑 *

𝑝 (𝑞) and fast-converging degree
series 𝐸 0 < 𝑞 >, 𝐷 0 < 𝑞 >, 𝐸 𝑝 < 𝑢 >, 𝐷 𝑝 < 𝑢 >, 𝑊 < 𝑢 >, 𝐺 < 𝑢 > are specified in [10].

Therefore, the Gauss integer (1) is reduced to a standard one for the axisymmetric domains
due to

𝜋 ≡ Γ(𝑠) =

1∫︁
0

(︂
2 𝜌 𝛿 Ω(𝜎, 𝑠) 𝐸 *

𝑝(𝑞) − 𝜁 ′ 𝐷 *
𝑝(𝑞)

)︂
ℎ−1
* 𝑑 𝜎−

1∫︁
0

(︂
2 𝜌 𝛿 Ω(𝜎, 𝑠) 𝑒 *𝑝 (𝑞) − 𝜁 ′ 𝑑 *

𝑝 (𝑞)

)︂
ℎ−1
* ln(1 − 𝑞) 𝑑 𝜎. (2)

Let us note that the representation (2) is regular in the poles 𝛾(0) and 𝛾(1) of the smooth
surface of the rotation 𝜕𝜔, i.e. it does not contain logarithmic singularities.

3. The specific character of computational difficulties in axisymmetric
problems

Far not every quadrature formula for the approximate realization (2) can be of practical
interest: the structure of complication of the integrant in (2) is determined both by the prop-
erties of the module 𝑞(𝜎, 𝑠), and by the behaviour of the function ℎ−1

* (𝜎, 𝑠) in points close to
the axis of symmetry 𝑧, i.e. near the poles 𝛾(0) and 𝛾(1). Indeed, the integrant in (2) has a
“mobile” logarithmic singularity on the diagonal 𝜎 = 𝑠, and in the points 𝑠 is close to the axis
of symmetry 𝑧, it demonstrates a highly expressed increase, we call it a boundary layer [3,11].
In terms of mathematics this supposes existence in (2) of a parameter such that when it tends
to zero we can observe the structure of increase of the integrant and its derivatives close to
the axis of symmetry 𝑧. In (2) this parameter is presented by the weighting function ℎ−1

* (𝜎, 𝑠).
Thus, being a peculiar payment for the cylindrical symmetry of the problem, the boundary
layer in (2) proves to be applicable to all the problems with the axis symmetry. It is clear that
this influences the realization (2) by quadrature formulae.

The precise computational experiments show that for the effective computer realization of
the representation (2) we need:

1) to apply properties of the module 𝑞(𝜎, 𝑠) for the finding logarithmic singularity uniform
in (𝜎, 𝑠), and the usual derivation according to the rule

ln(1 − 𝑞) = 2 ln |𝜎 − 𝑠| + 𝐴(𝜎, 𝑠), (𝜎, 𝑠) ∈ [ 0, 1] × ( 0, 1)

is useless near the axis 𝑧, since the function 𝐴(𝜎, 𝑠) is not uniformly continuous;
2) to ensure numerical neutralization of the boundary layer.
Mathematical investigation [3] formed the notation of the constructive terms convenient to

describe the specified difficulties and resources which ensure their numerical neutralization.
Let us reduce (2) to the form convenient for further analysis. Let us introduce the functions,

which are uniformly continuous in the square 𝐾 ×𝐾 (here 𝐾 ≡ [ 0, 1] ):

𝑅 2(𝜎, 𝑠) =

(︂
𝜌− 𝑟

sin 𝜋(𝜎−𝑠)
2

)︂2

+

(︂
𝜁 − 𝑧

sin 𝜋(𝜎−𝑠)
2

)︂2

, 𝑅 2
*(𝜎, 𝑠) =

(︂
𝜌+ 𝑟

sin 𝜋(𝜎+𝑠)
2

)︂2

+

(︂
𝜁 − 𝑧

sin 𝜋(𝜎+𝑠)
2

)︂2

,

𝑄(𝜎, 𝑠) = 4
(𝑟/ sin𝜋𝑠) (𝜌/ sin 𝜋𝜎)

𝑅 2
*(𝜎, 𝑠)

, 𝐵(𝜎, 𝑠) =
𝑅 2(𝜎, 𝑠)

𝑅 2
*(𝜎, 𝑠)

. (3)

The functions in (3) are uniformly continuous and belong to 𝐶∞[𝐾 ×𝐾] when 𝛾(𝑠) ∈ 𝐶∞[𝐾].
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The integer (2), in which the variable 𝜎 is implicitly substituted by the new variable

𝑡 ≡ 𝑡𝑠(𝜎) = 𝑡(𝜎, 𝑠) = sin
𝜋(𝜎 − 𝑠)

2
/ sin

𝜋(𝜎 + 𝑠)

2
, (4)

where 𝑠 ∈ ( 0, 1) is fixed, and the function 𝜎 = 𝜎𝑠(𝑡) ≡ 𝜎(𝑡, 𝑠) is inverse to 𝑡 ≡ 𝑡𝑠(𝜎) ≡ 𝑡(𝜎, 𝑠),
has the following form

𝜀Γ(𝑠) =

1∫︁
−1

̃︀Γ𝐶(𝑡) 𝑑 𝑡−
1∫︁

−1

̃︀Γ𝐿(𝑡) ln | 𝑡| 𝑑 𝑡, 𝜀 ≡ 𝜀(𝑠) = 0.5𝜋 sin 𝜋 𝑠, (5)

where the subintegral functions ̃︀Γ𝐶(𝑡) and ̃︀Γ𝐿(𝑡) are set by the formulae (see formula (2))̃︀Γ𝐶(𝑡) =
(︁

2̃︀𝜌 ̃︀Ω( ̃︀𝐸 *
𝑝 −̃︀𝑏̃︁𝑒 *𝑝 ) − ̃︀𝛿−1̃︀𝜁 ′( ̃︀𝐷 *

𝑝 −̃︀𝑏̃︁𝑑 *
𝑝 )
)︁̃︀𝑎, ̃︀Γ𝐿(𝑡) = 2

(︁
2̃︀𝜌 ̃︀Ω̃︁𝑒 *𝑝 − ̃︀𝛿−1̃︀𝜁 ′̃︁𝑑 *

𝑝 )
)︁̃︀𝑎,

̃︀𝑎(𝑡) ≡ ̃︀𝛿 ̃︀𝑅−1
* sin

𝜋 (𝜎 + 𝑠)

2
, ̃︀𝑏 ≡ ln ̃︀𝐵. (6)

For the uniformly continuous function 𝑔(𝜎, 𝑠) on 𝐾 ×𝐾 according to the definitioñ︀𝑔 ≡ ̃︀𝑔(𝑡) = 𝑔
(︀
𝜎𝑠(𝑡), 𝑠

)︀
, 𝑡 ∈ 𝐼 ≡ [−1, 1], 𝑠 ∈ ( 0, 1) fixed. (7)

If 𝑔(𝜎, 𝑠) ∈ 𝐶∞[𝐾 ×𝐾], then ̃︀𝑔(𝑡) ∈ 𝐶∞[𝐼] and the following equality holds(︂
𝑑

𝑑𝑡

)︂𝑘̃︀𝑔(𝑡) = 𝜀−𝑘

(︂
sin2 (𝜎 + 𝑠)

2

𝑑

𝑑𝜎

)︂𝑘

𝑔(𝜎, 𝑠), 𝜀 ≡ 𝜀(𝑠) = 0.5𝜋 sin 𝜋 𝑠, ∀𝑘 ≥ 0. (8)

The embedding 𝜎 : [−1, 1] → [ 0, 1] plays the key role in reducing integral (2) to the form (5):
on the one hand, it discovers the structure of “bad” functions of the problem:

̃︀𝑞 = (1 − 𝑡)(1 + 𝑡) ̃︀𝑄(𝑡), ̃︀𝑢 = 1 − ̃︀𝑞 = 𝑡 2 ̃︀𝐵(𝑡), ℎ−1
* (𝜎, 𝑠) 𝛿 𝑑 𝜎 = 𝜀−1 ̃︀𝛿 ̃︀𝑅−1

* (𝑡) sin
𝜋(𝜎 + 𝑠)

2
𝑑 𝑡,

on the other hand, it transforms the “mobile” logarithmic singularity from (2) into the immobile
one, i.e. the middle of the segment 𝐼 in (5).

For the approximate realization of integrals in (5) we apply the quadrature formulae, which
take into account the singularity of behaviour of a subintegral function. Their construction
is connected with the method of approximation of the functions (6) by polynomials from the
subspace 𝒫 𝑛 of the algebraic polynomials of the degree not higher than 𝑛− 1.

Let 𝐶[𝐼] and 𝐶 𝑘[𝐼] ( 𝑘 > 0 is an integer) be the space of continuous and 𝑘 times continuously
differentiated on the segment 𝐼 = [−1, 1] functions 𝑓 , respectively; ‖𝑓‖ = max

𝑡∈𝐼
| 𝑓(𝑡)| be the

Chebyshev norm and 𝐸𝑛(𝑓) = inf
𝐻𝑛∈𝒫 𝑛

‖𝑓 −𝐻𝑛‖ = ‖𝑓 − 𝑅𝑛‖ (𝑛 > 0 is an integer) be the best

Chebyshev approximation of the function 𝑓 ∈ 𝐶[𝐼] by the polynomial 𝑅𝑛 from 𝒫 𝑛.
Let 𝑡1, 𝑡2, . . . , 𝑡𝑛 be the splitting the segment 𝐼 by distinct nodes. The interpolation polyno-

mial 𝑃𝑛(𝑡; 𝑓) with these nodes and the functional of the error 𝛿𝑛(𝑡, 𝑓) has the form:

𝑃𝑛(𝑡; 𝑓) =
𝑛∑︁

𝑖=1

𝑓(𝑡𝑖)𝜔𝑛 𝑖(𝑡), 𝛿𝑛(𝑡, 𝑓) ≡ 𝑓(𝑡) − 𝑃𝑛(𝑡; 𝑓).

Here 𝜔𝑛 𝑖(𝑡) is the fundamental polynomial of the Lagrangian interpolation [2].
What precision of approximation can be obtained if we limit the degree 𝑛 of the approximat-

ing polynomials and the method of their construction in advance? To answer this question we
should note that for any polynomial 𝐻𝑛(𝑡) ∈ 𝒫 𝑛 the identity

𝛿𝑛(𝑡, 𝑓) = 𝑓(𝑡) − 𝑃𝑛(𝑡; 𝑓) = 𝑓(𝑡) −𝐻𝑛(𝑡) − 𝑃𝑛(𝑡; 𝑓 −𝐻𝑛)ℎ𝑜𝑙𝑑𝑠.

From this relationship we obtain the estimate of the error applying the Lebesgue inequality [2]:

| 𝛿𝑛(𝑡, 𝑓)| = | 𝑓(𝑡) − 𝑃𝑛(𝑡; 𝑓)| ≤ (1 + Λ𝑛)𝐸𝑛(𝑓),
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where Λ𝑛 is the corresponding Lebesgue constant. According to the Lozinsky-Kharshiladze the-
orem [12] Λ𝑛 ≥ ln𝑛

8
√
𝜋
. In practice splitting of the segment with a minimal growth of the constant

Λ𝑛 is preferable. The zeros of the first type Chebyshev polynomial 𝑇𝑛(𝑡) = cos (𝑛 arccos 𝑡) (𝑛 ≥
1) are explicitly calculated:

𝑡𝑖 = cos
𝜋 (2 𝑖− 1)

2𝑛
, 𝑡𝑖 ∈ 𝐼, 𝑖 = 1, 2, . . . 𝑛, 𝑛 > 0.

The corresponding Lebesgue constant is majorized according to the Bernstein theorem [13]:
Λ𝑛 ≤ 8 + 4

𝜋
ln𝑛. Thus, the polynomial interpolating the function 𝑓(𝑡) ∈ 𝐶[𝐼] has the form

𝑃𝑛(𝑡; 𝑓) =
𝑛∑︁

𝑖=1

𝑓(𝑡𝑖)
𝑇𝑛(𝑡)

𝑇 ′
𝑛(𝑡𝑖) (𝑡− 𝑡𝑖)

, 𝑇 ′
𝑛(𝑡𝑖) =

(−1)𝑖−1 𝑛√︀
(1 − 𝑡𝑖)(1 + 𝑡𝑖)

,

and the estimate of the error satisfies the inequality

| 𝛿𝑛(𝑡, 𝑓)| = | 𝑓(𝑡) − 𝑃𝑛(𝑡; 𝑓)| ≤
(︂

9 +
4

𝜋
ln𝑛

)︂
𝐸𝑛(𝑓). (9)

Any other choice of splitting the segment 𝐼 can result in the increase of the constant Λ𝑛 and,
generally speaking, in worsening the quality of the approximation of the function 𝑓 , as it results
from (9).

To argue for the record of extraordinary reserves of the smoothness of the function 𝑓 , we
develop not only advantages but also the analytical nature of adaptation of the procedure of
approximation to the reserves of smoothness.

It is well known [2,14] that any continuous function 𝑓 has the numerical characteristics
𝐸𝑛(𝑓) and according to the Weierstrass theorem, lim

𝑛→∞
𝐸𝑛(𝑓) = 0. The fundamental value

has the sufficient refinement of the Weierstrass theorem in the form of the so-called Jackson
inequality: if 𝑓 ∈ 𝐶 𝑘[𝐼] (𝑘 > 0), then

𝐸𝑛(𝑓) ≤ 𝜋

2
min
0≤𝑘≤𝑛

𝑎 𝑘‖𝑓 ( 𝑘)‖
𝑛 𝑘

, 𝑎 > 1 is an absolute constant (10)

( strengthened1 Jackson inequality [2, p. 307] ).
Reducing to zero with the increase of the parameter 𝑛 of the approximation of the function

follows from (9) and (10). If in this case the structure of the function 𝑓 is sufficiently good (for
example, 𝑓 has many derivatives), then the interpolation polynomial in the nodes of Chebyshev
presents 𝑓 with precision depending on the structure of the function 𝑓 itself providing approx-
imation almost as good as the best 𝑅𝑛. In other words, the method of interpolation in the
nodes of Chebyshev by the function of high smoothness does not differ much from the method
of approximation by its polynomial 𝑅𝑛 of the best Chebyshev approximation.

There are definite advantages in the consideration of infinitely differentiated functions. This
case is probably easier for consideration, but we also expect more from it. Indeed, when
𝑓 ∈ 𝐶∞[𝐼], 𝑓 /∈ 𝒫 𝑛, ‖𝑓‖ = 𝐺(0) ̸= 0, ‖𝑓 ( 𝑘)‖ ≤ 𝐺(𝑘), lim

𝑘→∞
𝑘
√︀
𝐺(𝑘) = ∞ the following functions

of the argument 𝑟 ∈ [ 0,∞) are determined:

𝜆(𝑟) =

⎧⎨⎩𝐺(0) when 0 ≤ 𝑟 < 1,

min
0≤𝑘≤𝑟

𝐺(𝑘)

𝑟 𝑘
when 𝑟 ≥ 1,

𝜃(𝑟) =

⎧⎨⎩0 when 0 ≤ 𝑟 < 1,

max

{︂
𝑘 | 1 ≤ 𝑘 ≤ 𝑟 and 𝜆(𝑟) =

𝐺(𝑘)

𝑟 𝑘

}︂
when 𝑟 ≥ 1,

1In the paper [3] this inequality contains a misprint. The author is thankful to Professor R.M. Trigub, who
paid his attention to this circumstances.



THE PROBLEM OF NUMERICAL REALIZATION OF INTEGRAL OPERATORS ... 29

and

𝜆(𝑟) = min
0≤𝑘≤𝑟

𝐺(𝑘)

𝑟 𝑘
=
𝐺[ 𝜃(𝑟) ]

𝑥 𝜃(𝑟)
and ‖𝑓 −𝑅𝑛‖ = 𝐸𝑛(𝑓) ≤ 𝜋

2
𝜆
(︁ 𝑛
𝑎

)︁
(11)

holds.
Theorem 1 [3]. When 𝑟 ≥ 1 the function 𝜃(𝑟) is integer and non-negative, non-decreasing,

continuous from the right-hand side and tends to infinity together with 𝑟; the function 𝜆(𝑟)
decreases monotonously, it is continuous from the right-hand side and tends to zero when
𝑟 → ∞. The function 𝜆(𝑟) experiences splits from the left-hand side only in the points of
splitting of the function 𝜃(𝑟). Meanwhile for any 𝜉 ≥ 0 the following equality holds:

𝜆(𝑟) = 𝜆(𝜉) 𝑒

−
𝑟∫︁

𝜉

𝜃(𝑡)

𝑡
𝑑𝑡

𝑒

−
∑︁

𝜉<𝑟𝑖≤𝑥

|𝜎𝑖|
, 𝑟 ≥ 𝜉.

Here 𝜎0 = 0 and 𝜎𝑖 = ln𝜆(𝑟𝑖 − 0) − ln𝜆(𝑟𝑖) for every 𝑖 > 0.
Corollary.The equality lim𝑟→∞ 𝑟𝑝 𝜆(𝑟) = 0 holds for any 𝑝 ≥ 0.
It results from the inequality (11) that existence of information about the “great” reserve

of smoothness of the function 𝑓 obtains, a definite and tactile value in practice due to The-
orem 1. The Chebyshev approximation process self-improves with the increase of 𝑛, i.e. it
gets its practical effectiveness in the differential nature of 𝑓 automatically, being fixed by the
factual smoothness 𝑓 for the maximum for the given 𝑛 convergence order 𝜃(𝑛) (phenomenon
of unsaturation [3]). Such a property of the method (9) intuitively means that the velocity of
decreasing the approximation method to zero increases with the increasing “reserve” of smooth-
ness of the function 𝑓 . Potential opportunities of the development of the method depend only
on the velocity of the increase of the function 𝜃(𝑛) in case of increase of the parameter 𝑛. The
method becomes of the maximum practical effectiveness, i.e.the exponential convergence in the
class of 𝐶∞-smooth functions. For 𝑓 ∈ 𝐶∞[𝐼] under the condition lim𝑘→∞

𝑘
√︀
𝐺(𝑘)/𝑘 𝛼 < ∞,

where 𝛼 > 0, we have |𝐸𝑛(𝑓)| ≤ 𝐶 𝑒−𝜚
𝛼
√
𝑛, here 𝐶, 𝜚 are positive constants.

In other words, the construction of the method (9) is initially such that it is able to contain,
figuratively speaking, opportunities of the infinite set of numerical methods. Developing the
opportunity of the “flexible” participating reserves of the smoothness of the function 𝑓 in the
estimate of the error, Theorem 1 also provides that the approximation method, whose error
is estimated in terms of characteristics 𝐸𝑛(𝑓), is unsaturated [2,3]. In particular, such is one
method (9).

The unsaturation property expands the sphere of practical application of the numerical
method to the class of 𝐶∞-smooth functions with the following property.
Definition [3]. The function 𝑓 ∈ 𝐶∞[𝐼] has a boundary layer of thickness 𝜀0, 0 < 𝜀0 < 1

on the segment 𝐼 ≡ [−1, 1 ], if there exists such a low positive number 𝜏 = 𝜏(𝜀0) and such a
positive function 𝐹 (𝑘) independent of 𝜀0 that with any integral 𝑘 ≥ 0 the following inequality
holds:

|𝑓 (𝑘)(𝑡)| ≤

{︃
𝐹 (𝑘), if 𝑡 ∈ 𝐼𝜏 ≡ [−1 + 𝜏, 1 − 𝜏 ],

𝜀0
−𝑘𝐹 (𝑘), if 𝑡 ∈ 𝐼 ∖ 𝐼𝜏 ,

(12)

where 𝜀0 ≡ 𝜀0(𝜏) > 0 is the thickness of the boundary layer, and 𝐹 (𝑘) is the function of the
parameter 𝑘.

Peculiarities of the behaviour of the function 𝑓 ∈ 𝐶∞[𝐼] near the ends of the segment 𝐼
reflect on the convergence to zero with the increase of 𝑛 of its Chebyshev characteristics 𝐸𝑛(𝑓).
It follows from the following statement.

Theorem (V.K. Dzyadyk [14]). For the 𝑘-th derivative of a function 𝑓 to satisfy the Hölder
condition with the index 0 < 𝛼 < 1 on the segment 𝐼 ≡ [−1, 1 ] it is necessary and sufficient to
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have with any integral 𝑛 ≥ 𝑘 such an algebraic polynomial 𝑄𝑛 ∈ 𝒫 𝑛 of the degree 𝑛− 1, that
for all 𝑡 ∈ 𝐼 the following estimates hold:

| 𝑓(𝑡) −𝑄𝑛(𝑡)| ≤ 𝐴𝑘

𝑛 𝑘+𝛼

(︂√
1 − 𝑡2 +

1

𝑛

)︂𝑘+𝛼

,

where 𝐴𝑘 is a constant independent of 𝑡 and 𝑛.
The presented result strengthens the Jackson inequality (10), since it establishes an oppor-

tunity of approximation near the ends of 𝐼 with the error 𝑂(𝑛−2( 𝑘+𝛼) ) in case of the uniform
estimate 𝐸𝑛(𝑓) ≤ 𝑀𝑛−( 𝑘+𝛼). Let us formulate the last observation strictly connecting it with
the definition of the boundary layer.

Theorem 2 [3]. If the function 𝑓 ∈ 𝐶∞[𝐼] and the condition (12) holds, then

𝐸𝑛(𝑓) ≤ 𝜋

2
min
0≤𝑘≤𝑛

𝜀0
−𝑘/2 𝐹𝑘

𝑛 𝑘
. (13)

Here the coefficients 𝐹𝑘 are effectively calculated according to the values 𝐹 (𝑘) from (12)(see [3]).
The applied meaning of estimate (13) is that due to redistribution of the boundary layer

along all the segment 𝐼, it is possible to increase its thickness to the value
√
𝜀0. Thus the

smoothness of the function 𝑓 ∈ 𝐶 𝑘[𝐼] is characterized by the value 𝜀
−𝑘/2
0 𝐹𝑘, whose increase is

compensated according to Theorem 1 and the choice of the parameter 𝑛.
Indeed, in case of the fixed 𝑛 among the inequalities (13), satisfying different 0 ≤ 𝑘 ≤ 𝑛,

we have the best: its number 𝑘0 = 𝜃(𝑛) is an order of that (maximal) derivative, which
participates in constructing estimate (13). Derivatives of higher orders 𝑘 > 𝑘0 can influ-
ence the value of the estimate (13) only in the case 𝑛 > 𝑛min starting with some thresh-
old value 𝑛min = 𝑛min(𝜀0). Therefore, the procedure of the neutralization of the boundary
layer is carried out due to Theorem 1, according to the choice of the parameter 𝑛 > 𝑛min:
𝐸𝑛(𝑓) ≤ 𝜋/2 min0≤𝑘≤𝑛 𝜀0

−𝑘/2𝐹𝑘/𝑛
𝑘 ≤ 𝜖, 0 < 𝜖 ≤ 𝜀0.

Certainly, in a real situation there is not always any opportunity to find 𝑘0 = 𝜃(𝑛) in the
explicit form. Fortunately, the precise value of 𝑘0 is not of great importance, and there is a
reason for it. With the increase of 𝑛 > 𝑛min the choice of the parameter 𝜃(𝑛) is carried out
automatically, due to the definite situation. In this connection for the neutralization of the
boundary layer 𝑓 ∈ 𝐶∞[𝐼] is not necessary: it is possible to do without the finite 𝜃(𝑛) reserve

of derivatives. Their number is estimated as 𝜃(𝑛) = 𝑂(𝜀
−1/2
0 ) when 𝑛→ ∞.
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4. Quadrature formula without saturation.

Taking into account that̃︀Γ𝐶(𝑡) = 𝑃𝑛(𝑡; ̃︀Γ𝐶) + 𝛿𝑛(𝑡; Γ𝐶), ̃︀Γ𝐿(𝑡) = 𝑃𝑛(𝑡; ̃︀Γ𝐿) + 𝛿𝑛(𝑡; Γ𝐿)

and substituting them in (5), we obtain the equality

Γ(𝑠) = 𝜀−1

𝑛∑︁
𝑖=1

̃︀Γ𝐶(𝑡𝑖)

𝑇 ′
𝑛(𝑡𝑖)

1∫︁
−1

𝑇𝑛(𝑡)

𝑡− 𝑡𝑖
𝑑 𝑡− 𝜀−1

𝑛∑︁
𝑖=1

̃︀Γ𝐿(𝑡𝑖)

𝑇 ′
𝑛(𝑡𝑖)

1∫︁
−1

𝑇𝑛(𝑡)

𝑡− 𝑡𝑖
ln | 𝑡| 𝑑 𝑡+ 𝜚𝑛(𝑠,Γ), (14)

where 𝜚𝑛(𝑠,Γ) is the functional of the error. Special integrals in (14) are calculated explicitly
and we construct the following quadrature formulae on their basis in [15]:

+1∫︁
−1

𝑓(𝑡) 𝑑𝑡 =
𝑛∑︁

𝑖=1

𝑐𝑖 𝑓(𝑡𝑖) + ℘ 𝑐
𝑛(𝑓), −

+1∫︁
−1

𝑓(𝑡) ln | 𝑡 | 𝑑𝑡 =
𝑛∑︁

𝑖=1

𝑙𝑖 𝑓(𝑡𝑖) + ℘ 𝑙
𝑛(𝑓). (15)

Here ℘ 𝑐
𝑛 and ℘ 𝑙

𝑛 are functionals of the error, and the weights 𝑐𝑘 and 𝑙𝑘 are set by the formulae

𝑐𝑖 = 2
𝐶(𝑛, 𝑡𝑖)

𝑇 ′
𝑛(𝑡𝑖)

, 𝑙𝑖 = − 2
𝐿(𝑛, 𝑡𝑖)

𝑇 ′
𝑛(𝑡𝑖)

, 𝑇 ′
𝑛(𝑡𝑖) =

(−1)𝑖−1 𝑛√︀
(1 − 𝑡𝑖)(1 + 𝑡𝑖)

,

which are realized with the help of the relationships{︂
𝐶(𝑛, 𝑡)

𝐿(𝑛, 𝑡)

}︂
=

[𝑛+1
2

]∑︁
𝑚=1

{︂
𝐶𝑚

−𝐿𝑚

}︂
𝑇𝑛+1−2𝑚(𝑡) − 1 − (−1)𝑛

4

{︂
𝐶[𝑛+1

2
]

−𝐿[𝑛+1
2

]

}︂
(𝑛 > 0).

Thus we apply coefficients which are preliminary calculated: 𝐶1 = 2, 𝐿1 = 2,

𝐶𝑚 = 1/(𝑚− 0.5), 𝐿𝑚 = −(𝑚− 1.5)𝐶𝑚 𝐿𝑚−1 − 𝐶 2
𝑚 /(𝑚− 1.5)/ 2, 2 ≤ 𝑚 ≤

[︁𝑛+ 1

2

]︁
.

The construction of the formulae (15) is simple though the motivation of its practical applica-
tion is not obvious. It would be untimely to express a stipulated meaning of its effectiveness
without considering the influence of rounding errors, a defining component of modern computer
calculations. Therefore the following becomes of a special importance

Theorem 3 [15]. If 𝑛 ≥ 1 and is odd, then the weights 𝑐𝑖 and 𝑙𝑖 in the formulae (15) are
strictly positive and their functinals of the errors ℘ 𝑐

𝑛, ℘
𝑙
𝑛 satisfy the inequalities

|℘ 𝑐
𝑛(𝑓) | ≤ 4𝐸𝑛(𝑓), |℘ 𝑙

𝑛(𝑓) | ≤ 4𝐸𝑛(𝑓). (16)

It results from (16), that the quadrature formulae (15) are unsaturated; positiveness of the
coefficients 𝑐𝑖, 𝑙𝑖 provides their resistance to the rounding errors.

The specified properties of the quadrature effectively solve the problem of numerical neu-
tralization of the boundary layer in (5). The formal side of the solution of this problem can
be described by the presented above scheme due to the estimates (16). Therefore all the con-
clusions made before with respect to the properties right-hand side of the inequality (13) also
hold true for the subintegral functions from (5). For these functions, the definition (12) holds
in advance if we assume that

𝜀0 ≤ 𝜀(𝑠) = 0.5 𝜋| sin 𝜋 𝑠| , 𝐹 (𝑘) = 𝜀−𝑘(𝑠) max
(𝜎, 𝑠) ∈𝐾×𝐾

⃒⃒⃒⃒(︂
sin2 𝜋(𝜎 + 𝑠)

2

𝑑

𝑑𝜎

)︂𝑘

𝑓(𝜎, 𝑠)

⃒⃒⃒⃒
,

and for the function 𝑓(𝜎, 𝑠) we take either Γ𝐶 (𝜎, 𝑠), or Γ𝐿 (𝜎, 𝑠) due to the transformation (4).
As a result the quadrature formulae (15) have a real opportunity to hold the inequalities

|℘ 𝑐
𝑛 (̃︀Γ𝐶)| ≤ 𝜖, |℘ 𝑙

𝑛 (̃︀Γ𝐿)| ≤ 𝜖, 0 < 𝜖 ≤ 𝜀0, which is carried out according to Theorem 1 due to
the choice of the parameter 𝑛 > 𝑛min(𝜀0) in the estimates (16). This results in neutralization
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of the boundary layer in (5) due to the required number 𝑘0 = 𝜃(𝑛) of the derivatives of the

functions ̃︀Γ𝐶(𝑡), ̃︀Γ𝐷(𝑡) ∈ 𝐶 2 𝑝+1[𝐼]. The choice of the parameter 𝑝 is subject to neutralization

of the boundary layer, i.e. to the inequality 𝑝 ≥ [ 𝜃(𝑛)−1
2

].
In the precise algorithms of the numerical solution of the axisymmetric boundary-value prob-

lems we should use “flexible” methods of calculation of complete elliptical integrals (for example,
the ones specified in [10]), since they most adequately correspond to the nature of the considered
problems and successfully complete the construction of the unsaturated algorithm of numerical
approximation of the Gauss integral (1).

5. The algorithm of calculation. Numerical parameters

Computer realization of the Gauss integral (1) is carried out according to following formulae:

𝜋 ≡ Γ(𝑠𝑗), Γ(𝑠) = 𝜀−1

(︃
𝑛∑︁

𝑖=1

𝑐 𝑖 ̃︀Γ𝐶(𝑡 𝑖) +
𝑛∑︁

𝑖=1

𝑙 𝑖 ̃︀Γ𝐿(𝑡 𝑖)

)︃
+ 𝜚𝑛(𝑠,Γ), 𝜀 = 0.5𝜋 sin 𝜋𝑠. (17)

The functions ̃︀Γ𝐶(𝑡), ̃︀Γ𝐿(𝑡) are set by the formulae (6), and the weights 𝑐 𝑖, 𝑙 𝑖 are given by the
formulae (15). The values 𝜎𝑖 ≡ 𝜎𝑠(𝑡𝑖, 𝑠) (1 ≤ 𝑖 ≤ 𝑛) are recovered due to the fixed value of

𝑠 ∈ ( 0, 1) and a set ordered array of the numbers {𝑡 𝑖 = cos 𝜋 ( 2 𝑖−1)
2𝑛

}:

𝑡 𝑖 = sin
(𝜎𝑖 − 𝑠)

2
/ sin

(𝜎𝑖 + 𝑠)

2
, 1 ≤ 𝑖 ≤ 𝑛.

Recovering of 𝜎 𝑖 is carried out by the Newton method by means of the following algorithm:

𝑘+1
𝑦 =

𝑘
𝑦 −𝑓(

𝑘
𝑦 )/𝑓 ′(

𝑘
𝑦 ), 𝑘 = 0, 1, 2, . . . 𝑖𝑠𝑡ℎ𝑒iteration number,

𝑓(𝑥) = 𝑥− 𝑠− 2

𝜋
arcsin

(︁
𝑡 𝑖 sin

𝜋(𝑥+ 𝑠)

2

)︁
, 𝑓 ′(𝑥) = 1 −

𝑡 𝑖 cos 𝜋(𝑥+𝑠)
2√︂(︁

1 − 𝑡 2𝑖 sin 2 𝜋(𝑥+𝑠)
2

)︁ .
The problem of the choice of the initial approximation

0
𝑦=

0
𝜎 𝑖 (1 ≤ 𝑖 ≤ 𝑛) is very important in

the Newton method. In the considered case it is solved very simply:

0
𝜎1 = 1 − 𝜋−1

(︁
1 − 𝑡1 cot

𝜋 𝑠

2

)︁
,

0
𝜎 𝑖+1 = 𝜎 𝑖 + 2

(𝑡 𝑖+1 − 𝑡 𝑖)

𝜋 sin 𝜋𝑠
sin2 𝜋(𝜎 𝑖 + 𝑠)

2
, 1 ≤ 𝑖 ≤ 𝑛− 1.

The specified iteration process has the quadratic convergence: already 2−3 iterations ensure
not less than 10 precise decimal ranks for 𝑠 ∈ ( 0.01, 0.99 ). It is easy to specify the fast iteration
process for 𝑠 ∈ ( 0.001, 0.999 ): it is necessary only to somehow modify the choice of the values
0
𝑦=

0
𝜎 𝑖 (1 ≤ 𝑖 ≤ 𝑛).

Let us now give test examples illustrating the property of unsaturation of the constructed
numerical method. Unfortunately, the size of the paper does not allow us to illustrate out the
extensive numerical data, however, we hope that it is still sufficient to give the definite meaning
to the statement on effectiveness of the constructed unsaturated numerical method.

The admitted domains which are usually applied to verify methods of the numerical solution
of the elliptical boundary-value problems are ellipsoids of rotation. These domains are conve-
nient because the computational difficulties of the problems are characterised in them by one
numerical parameter κ which denotes prolongation equivalent to the relationship of semiaxes.
We can easily vary the range of the computational difficulties of the problem by varying the
parameter κ.

Let us keep to consideration of rotation ellipsoids with the meridian section:

𝛾(𝑠) = {𝑎 sin 𝜋𝑠, 𝑏 cos𝜋𝑠}, κ = 𝑏/𝑎, 𝑠 ∈ [ 0, 1],
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having given the preference to the ellipsoids extended along the axis of symmetry 𝑧 (𝑏 ≥ 𝑎), as
the most “difficult” ones from the point of view of carrying out numerical calculations for the
domains.

The integral Γ(𝑠) is calculated in the points 𝑠𝑗 = 𝑗/100 (1 ≤ 𝑗 ≤ 100) by the formulae (17).
In Tables 1-5 we specify the difference 𝜋 − Γ(𝑠𝑗), which is an absolute error, in the first

ten points near the pole 𝛾0: they are mostly subject to the influence of the boundary layer,
though its presence appears in every considered point 𝑠𝑗 (1 ≤ 𝑗 ≤ 100), and the higher κ, the
more it appears. Thus the considered range of prolongations 1 ≤ κ ≤ 100 demonstrates real
opportunities of the unsaturated numerical method.

The idea of the results presented in Tables 1–5, consists in the following: if subintegral
functions in (5) are smoother when 𝑝 > 𝑝0 than when 𝑝 = 𝑝0, then under other equivalent
conditions the method calculates Γ(𝑠𝑗) with the precision higher that in the case 𝑝 = 𝑝0.
The case 𝑝 = 4 corresponds to the known [16] method of approximation of complete elliptical
integrals. Note that even a substitution of the parameter 𝑝 = 5 by 𝑝 = 10 in Table 5 increases
precision up to 8 decimal positions. Other examples of application of the constructed method
can be found, for example, in the paper [11].

The author is thankful to Professor V.L. Vaskevich for his help in editing the paper.

Table 1. The Gauss integral Γ(s)

a = b = 1/𝜋, sj = j /100, n = 40

𝑝 4 10 20 40
𝑗 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗)

1 0.00074996015 0.00085952336 0. 00094117975 0. 00096930719
2 0.00003620611 0.00005709499 0. 00005785123 0. 00005327380
3 0.00002540592 0.00000476493 0. 00000401157 0. 00000431754
4 0.00002168817 0.00000057541 0. 00000041157 0. 00000041578
5 0.00002993194 0.00000009031 0. 00000021862 0. 00000023572
6 0.00003338771 0.00000014374 0. 00000000286 0. 00000001958
7 0.00003562241 0.00000017582 0. 00000001728 0. 00000000286
8 0.00003693635 0.00000016574 0. 00000000166 0. 00000001053
9 0.00003752035 0.00000016399 0. 00000000158 0. 00000001187
10 0.00003751165 0.00000016414 0. 00000000009 0. 00000000887
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Table 2. The Gauss integral Γ(s)

a = b = 1/𝜋, sj = j /100, n = 80

𝑝 4 10 40 80
𝑗 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗)

1 0.00000791729 0.00000030422 0.00000036784 00000034329
2 0.00001499472 0.00000008073 0.00000000447 00000000455
3 0.00002152174 0.00000011099 0.00000000197 00000000200
4 0.00002704800 0.00000013839 0.00000000216 00000000217
5 0.00003145025 0.00000015930 0.00000000203 00000000203
6 0.00003471950 0.00000017262 0.00000000045 00000000045
7 0.00003693750 0.00000018305 0.00000000148 00000000148
8 0.00003823076 0.00000018725 0.00000000105 00000000107
9 0.00003875586 0.00000018790 0.00000000094 00000000093
10 0.00003866926 0.00000018571 0.00000000101 00000000080

Table 3. The Gauss integral Γ(s)

a = b = 1/𝜋, sj = j /100, n = 100

𝑝 4 10 50 100
𝑗 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗)

1 0.00000775635 0.00000005011 00000000742 00000000831
2 0.00001508046 0.00000008207 00000000443 00000000443
3 0.00002164322 0.00000011590 00000000492 00000000490
4 0.00002718896 0.00000013937 00000000080 00000000079
5 0.00003160697 0.00000016184 00000000192 00000000190
6 0.00003488173 0.00000017458 00000000041 00000000041
7 0.00003710023 0.00000018590 00000000148 00000000147
8 0.00003838814 0.00000018960 00000000059 00000000061
9 0.00003890500 0.00000018984 00000000018 00000000015
10 0.00003880950 0.00000018815 00000000080 00000000080
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Table 4. The Gauss integral Γ(s)

a = b = 1/𝜋, sj = j /100, n = 100

𝑝 5 25 55 95
𝑗 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗) 𝜋 − Γ(𝑠𝑗)

1 0.00000309766 0.00000000860 0.00000000742 0.00000000827
2 0.00000600681 0.00000000445 0.00000000443 0.00000000443
3 0.00000861302 0.00000000489 0.00000000491 0.00000000490
4 0.00001080007 0.00000000080 0.00000000082 0.00000000080
5 0.00001253228 0.00000000191 0.00000000192 0.00000000192
6 0.00001379995 0.00000000039 0.00000000040 0.00000000042
7 0.00001464497 0.00000000144 0.00000000148 0.00000000147
8 0.00001511599 0.00000000061 0.00000000061 0.00000000061
9 0.00001528089 0.00000000018 0.00000000017 0.00000000016
10 0.00001520526 0.00000000080 0.00000000081 0.00000000080
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Table 5. The Gauss in-
tegral Γ(s)

a = 1, b = 100, sj = j /100, n = 2000, p = 5

𝑗 𝜋 − Γ(𝑠𝑗) 𝑗 𝜋 − Γ(𝑠𝑗)

1 0.00000019329 26 0.00000269393
2 0.00000123943 27 0.00000225247
3 0.00000186769 28 0.00000165033
4 0.00000199312 29 0.00000201233
5 0.00000196848 30 0.00000241428
6 0.00000207644 31 0.00000285311
7 0.00000201963 32 0.00000218227
8 0.00000238756 33 0.00000135977
9 0.00000224457 34 0.00000157173
10 0.00000206489 35 0.00000179447
11 0.00000189213 36 0.00000202522
12 0.00000234309 37 0.00000226069
13 0.00000216461 38 0.00000249735
14 0.00000224396 39 0.00000273245
15 0.00000215630 40 0.00000296148
16 0.00000191624 41 0.00000318214
17 0.00000214350 42 0.00000338972
18 0.00000234187 43 0.00000358196
19 0.00000171960 44 0.00000111728
20 0.00000243399 45 0.00000116935
21 0.00000236408 46 0.00000121328
22 0.00000217242 47 0.00000124865
23 0.00000287342 48 0.00000127462
24 0.00000165453 49 0.00000129018
25 0.00000213453 50 0.00000129555
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