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REDUCTIONS OF STATIONARY BOUNDARY LAYER

EQUATION

A.V. AKSENOV, A.A. KOZYREV

Abstract. The equation describing a steady laminar boundary layer with a pressure
gradient is considered in the paper. All reductions to the ordinary differential equations
are obtained. It has been shown that this equation has a reduction which can be obtained
neither by classical nor by nonclassical symmetry methods.
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1. Introduction

The most important problem for the given differential equation with partial derivatives with
two independent variables is the problem of reductions of this equation, i.e. construction of such
ansatzes (types of solutions), which finding is reduced to the solution of an ordinary differential
equation (ODE). The reduction makes it possible to reduce the solution of the equation with
partial derivatives to the solution of ODE. Reductions are widely used in applications. The
mostly used are self-similar solutions [1]. Self-similar solutions have the form

𝑢 = 𝑥𝛼𝜙(𝜁) , 𝜁 = 𝑦/𝑥𝛽 , (1.1)

where 𝑢 is a dependent variable; 𝑥, 𝑦 are independent variables; 𝛼, 𝛽 are constants. These
solutions are obtained from one another by transformation of similarity. Self-similar solutions
are a particular case of invariant solutions (or symmetry reductions), obtained with the help
of symmetries [2]. Symmetry reductions are obtained by standard methods of group analysis.
Similarly, the reductions of the type of progressive waves [3] are used. The solutions of the
progressive waves type have the form

𝑢 = 𝜙(𝜁) + 𝑢0(𝑦) , 𝜁 = 𝑥 + 𝑉 (𝑦) .

These solutions are obtained, in case of a fixed value of the variable 𝑦, one from the other by
means of a transformation of the shift. In the paper [4] reductions of the type

𝑢 = 𝑃 (𝑥) + 𝐴(𝑥)𝜙(𝜁) , 𝜁 = 𝑦/𝐵(𝑥) + 𝑄(𝑥) , (1.2)

are considered that generalize reductions of the type (1.1).
The paper [5] contains the method of finding reductions of equations in partial derivatives

with two independent variables. In this paper there were all the reductions of the form

𝑢 = 𝑈(𝑥, 𝑦, 𝑤(𝑧)) , (1.3)

obtained for the Boussinesq’s equations

𝑢𝑦𝑦 +
1

2
(𝑢2)𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 = 0
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where 𝑧 = 𝑧(𝑥, 𝑦) and the function 𝑤(𝑧) is the solutions of an ODE. It was shown that there
are reductions different from the reductions obtained by means of symmetries. The cited paper
also contains all the reductions of the Boussinesq’s equation

𝑢𝑦 + 𝑢𝑢𝑥 = 𝑢𝑥𝑥 ,

of the Korteweg–de Vries equation

𝑢𝑦 + 𝑢𝑢𝑥 = 𝑢𝑥𝑥𝑥

and the modified Korteweg–de Vries equation

𝑢𝑦 + 𝑢2𝑢𝑥 = 𝑢𝑥𝑥𝑥 .

It is shown for these equations that the obtained reductions coincide with symmetry reductions.
It was also demonstrated that the reductions (1.3) have for these equations the form

𝑢 = 𝛼(𝑥, 𝑦) + 𝛽(𝑥, 𝑦)𝑤(𝑧) . (1.4)

In the present paper we consider the equation

𝑢𝑦𝑦𝑦 − 𝑢𝑦𝑢𝑥𝑦 + 𝑢𝑥𝑢𝑦𝑦 + 𝑃 (𝑥) = 0 . (1.5)

The equation (1.5) describes the movement of the viscous incompressible liquid in a laminar
stationary flat boundary layer with a gradient of pressure [6]. The equation is written in
dimensionless variables, 𝑢 where is the function of the current, 𝑃 (𝑥) = −𝜕𝑝/𝜕𝑥 is a given
function, 𝑝 is the pressure. Self-similar solutions of the equation (1.5) were considered in the
monographs [1, 6, 7]. Symmetry reductions of the equation (1.5) can be obtained on the basis
of the results, presented in [2]. The paper [4] contains reductions of the type (1.2). In the
paper [8] we obtained new reductions of the equation (1.5) of the form (1.4) based on the use
of the method of non-classical symmetries [9] and consideration of its generalization.

In the present paper we obtain all the reductions of the equation (1.5) of the form (1.3).
It is shown that the considered equation has reductions, which are not obtained by means of
symmetries.

2. Reductions of a boundary layer equation

Substituting the expression of the form (1.3) into the equation (1.5) we obtain the following
equation

𝑈𝑤𝑧
3
𝑦𝑤

′′′ + 3𝑈𝑤𝑤𝑧
3
𝑦𝑤

′𝑤′′ + 𝑧𝑦(3𝑈𝑦𝑤𝑧𝑦 + 𝑈𝑥𝑈𝑤𝑧𝑦 − 𝑈𝑦𝑈𝑤𝑧𝑥 + 3𝑈𝑤𝑧𝑦𝑦)𝑤
′′ +

+ 𝑈𝑤𝑤𝑤𝑧
3
𝑦(𝑤′)3 + (3𝑈𝑦𝑤𝑤𝑧

2
𝑦 − 𝑈𝑤𝑈𝑥𝑤𝑧

2
𝑦 + 𝑈𝑤𝑈𝑦𝑤𝑧𝑥𝑧𝑦 + 𝑈𝑥𝑈𝑤𝑤𝑧

2
𝑦 −

− 𝑈𝑦𝑈𝑤𝑤𝑧𝑥𝑧𝑦 + 𝑈2
𝑤𝑧𝑥𝑧𝑦𝑦 − 𝑈2

𝑤𝑧𝑦𝑧𝑥𝑦 + 3𝑈𝑤𝑤𝑧𝑦𝑧𝑦𝑦)(𝑤
′)2 + (3𝑈𝑦𝑦𝑤𝑧𝑦 − (2.1)

− 𝑈𝑤𝑈𝑥𝑦𝑧𝑦 + 𝑈𝑤𝑈𝑦𝑦𝑧𝑥 − 𝑈𝑦𝑈𝑥𝑤𝑧𝑦 − 𝑈𝑦𝑈𝑦𝑤𝑧𝑥 + 2𝑈𝑥𝑈𝑦𝑤𝑧𝑦 + 𝑈𝑥𝑈𝑤𝑧𝑦𝑦 −
− 𝑈𝑦𝑈𝑤𝑧𝑥𝑦 + 3𝑈𝑦𝑤𝑧𝑦𝑦 + 𝑈𝑤𝑧𝑦𝑦𝑦)𝑤

′ + 𝑈𝑦𝑦𝑦 − 𝑈𝑦𝑈𝑥𝑦 + 𝑈𝑥𝑈𝑦𝑦 + 𝑃 (𝑥) = 0 .

Let us divide both sides of the equation (2.1) by the coefficient of the higher derivative, i.e. by
𝑈𝑤𝑧

3
𝑦 . The condition of the obtained equation to be an ODE is dependence of each coefficients

of different powers of the derivatives of the function 𝑤(𝑧) only on the variables 𝑧 and 𝑤. Let
us consider the coefficient of the term, containing 𝑤′𝑤′′. It has the form

3𝑈𝑤𝑤

𝑈𝑤

= Γ1(𝑧, 𝑤) . (2.2)

Integrating the equation (2.2) twice we obtain

𝑈(𝑥, 𝑦, 𝑤) = 𝛽(𝑥, 𝑦)Γ(𝑧, 𝑤) + 𝛼(𝑥, 𝑦).
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If we take an arbitrary function of 𝑤 and 𝑧 as the function 𝑤(𝑧) then the reduction of the
equation (1.5) can be looked for in the form (1.4).

In the process of deducing the equation (2.2) it was supposed that 𝑧𝑦 ̸= 0. The case 𝑧𝑦 = 0
corresponds to the degenerated reduction. This case is not of special interest and its detailed
consideration is not presented.

Substituting (1.4) into the equation (1.5) we obtain the relationship

𝛽𝑧3𝑦𝑤
′′′ + 𝛽𝑧𝑦(𝛽𝑥𝑧𝑦 − 𝛽𝑦𝑧𝑥)𝑤𝑤′′ + 𝑧𝑦(3𝛽𝑧𝑦𝑦 + 3𝛽𝑦𝑧𝑦 + 𝛼𝑥𝛽𝑧𝑦 − 𝛼𝑦𝛽𝑧𝑥)𝑤′′ +

+ 𝛽(𝛽𝑧𝑥𝑧𝑦𝑦 − 𝛽𝑧𝑦𝑧𝑥𝑦 + 𝛽𝑦𝑧𝑥𝑧𝑦 − 𝑧2𝑦𝛽𝑥)(𝑤′)2 +

+ (𝛽𝑥𝛽𝑧𝑦𝑦 + 𝛽𝑧𝑥𝛽𝑦𝑦 − 𝛽2
𝑦𝑧𝑥 + 𝛽𝑦𝛽𝑥𝑧𝑦 − 𝛽𝑦𝛽𝑧𝑥𝑦 − 𝛽𝑧𝑦𝛽𝑥𝑦)𝑤𝑤

′ + (2.3)

+(𝛽𝑧𝑦𝑦𝑦 − 𝛼𝑦𝛽𝑥𝑧𝑦 − 𝛼𝑦𝛽𝑦𝑧𝑥 − 𝛼𝑦𝛽𝑧𝑥𝑦 − 𝛽𝑧𝑦𝛼𝑥𝑦 + 2𝛼𝑥𝛽𝑦𝑧𝑦 +

+ 𝛼𝑥𝛽𝑧𝑦𝑦 + 𝛽𝑧𝑥𝛼𝑦𝑦 + 3𝛽𝑦𝑧𝑦𝑦 + 3𝛽𝑦𝑦𝑧𝑦)𝑤
′ +

+ (𝛽𝑥𝛽𝑦𝑦 − 𝛽𝑦𝛽𝑥𝑦)𝑤
2 + (𝛽𝑦𝑦𝑦 + 𝛼𝑥𝛽𝑦𝑦 − 𝛽𝑦𝛼𝑥𝑦 − 𝛼𝑦𝛽𝑥𝑦 + 𝛽𝑥𝛼𝑦𝑦)𝑤 +

+ 𝛼𝑦𝑦𝑦 − 𝛼𝑦𝛼𝑥𝑦 + 𝛼𝑥𝛼𝑦𝑦 + 𝑃 (𝑥) = 0 .

The condition that the equation (2.3) is an ODE, means that the coefficients depending
on the functions 𝛼(𝑥, 𝑦), 𝛽(𝑥, 𝑦), 𝑧(𝑥, 𝑦) and their derivatives should be the functions of the
variable 𝑧. Hence we obtain the following overdetermined system of equations:

𝛽𝑥𝑧𝑦 − 𝛽𝑦𝑧𝑥
𝑧2𝑦

= Γ1(𝑧) ,

3𝛽𝑧𝑦𝑦 + 3𝛽𝑦𝑧𝑦 + 𝛼𝑥𝛽𝑧𝑦 − 𝛼𝑦𝛽𝑧𝑥
𝛽𝑧2𝑦

= Γ2(𝑧) ,

𝛽(𝛽𝑧𝑥𝑧𝑦𝑦 − 𝛽𝑧𝑦𝑧𝑥𝑦 + 𝛽𝑦𝑧𝑥𝑧𝑦 − 𝑧2𝑦𝛽𝑥)

𝛽𝑧3𝑦
= Γ3(𝑧) ,

𝛽𝑥𝛽𝑧𝑦𝑦 + 𝛽𝑧𝑥𝛽𝑦𝑦 − 𝛽2
𝑦𝑧𝑥 + 𝛽𝑦𝛽𝑥𝑧𝑦 − 𝛽𝑦𝛽𝑧𝑥𝑦 − 𝛽𝑧𝑦𝛽𝑥𝑦

𝛽𝑧3𝑦
= Γ4(𝑧) , (2.4)

𝛽𝑧𝑦𝑦𝑦 − 𝛼𝑦𝛽𝑥𝑧𝑦 − 𝛼𝑦𝛽𝑦𝑧𝑥 − 𝛼𝑦𝛽𝑧𝑥𝑦 − 𝛽𝑧𝑦𝛼𝑥𝑦

𝛽𝑧3𝑦
+

+
2𝛼𝑥𝛽𝑦𝑧𝑦 + 𝛼𝑥𝛽𝑧𝑦𝑦 + 𝛽𝑧𝑥𝛼𝑦𝑦 + 3𝛽𝑦𝑧𝑦𝑦 + 3𝛽𝑦𝑦𝑧𝑦

𝛽𝑧3𝑦
= Γ5(𝑧) ,

𝛽𝑥𝛽𝑦𝑦 − 𝛽𝑦𝛽𝑥𝑦

𝛽𝑧3𝑦
= 𝐺6(𝑧) ,

𝛽𝑦𝑦𝑦 + 𝛼𝑥𝛽𝑦𝑦 − 𝛽𝑦𝛼𝑥𝑦 − 𝛼𝑦𝛽𝑥𝑦 + 𝛽𝑥𝛼𝑦𝑦

𝛽𝑧3𝑦
= Γ7(𝑧) ,

𝛼𝑦𝑦𝑦 − 𝛼𝑦𝛼𝑥𝑦 + 𝛼𝑥𝛼𝑦𝑦 + 𝑃 (𝑥)

𝛽𝑧3𝑦
= Γ8(𝑧) .

Let us formulate the basic principles of the suggested method of construction of reductions:
1. Each equation from (2.4) is equivalent to the condition of vanishing the Jacobian of the left
side of this equation and the function 𝑧(𝑥, 𝑦). As a result we can obtain the overdetermined
system of equations (𝒜-system) for determining the functions 𝛼(𝑥, 𝑦), 𝛽(𝑥, 𝑦), 𝑧(𝑥, 𝑦) (we do
not present it because of its inconvenience).
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2. We introduce auxiliary functions 𝜇1(𝑥, 𝑦), 𝜇2(𝑥, 𝑦), 𝜇3(𝑥, 𝑦) determined from the equations

𝑧𝑥 − 𝜇1(𝑥, 𝑦)𝑧𝑦 = 0 ,

𝛽𝑥 − 𝜇1(𝑥, 𝑦)𝛽𝑦 − 𝜇2(𝑥, 𝑦)𝛽 = 0 , (2.5)

𝛼𝑥 − 𝜇1(𝑥, 𝑦)𝛼𝑦 − 𝜇2(𝑥, 𝑦)𝛼− 𝜇3(𝑥, 𝑦) = 0 .

The introduction of auxiliary functions is crucial for the suggested method. As it was noted in
the paper [5], the reductions of the form (1.4) admit the following transformations, mapping
the reduction into the reduction

𝑧 → 𝐹1(𝑧) ,

𝛽 → 𝛽

𝐹2(𝑧)
, (2.6)

𝛼 → 𝛼 +
𝛽

𝐹3(𝑧)
,

where 𝐹1(𝑧), 𝐹2(𝑧), 𝐹3(𝑧) are arbitrary functions. These transformations are connected with
the arbitrary way of finding ODE for the function 𝑤(𝑧). It can be shown, that the intro-
duced auxiliary functions are invariants of the transformations (2.6). We can also show that
𝒜-system admits transformations (2.6).
3. Finding from the relationships (2.5) derivatives 𝛼𝑥, 𝛽𝑥, 𝑧𝑥, . . . and substituting them into
the 𝒜-system, we obtain the following overdetermined system for the auxiliary functions:

𝜇1𝑦𝜇2 + 𝜇1𝑥𝑦 − 𝜇2
1𝑦 − 𝜇1𝜇1𝑦𝑦 = 0 ,

𝜇2
2 + 𝜇2𝑥 − 𝜇2𝜇1𝑦 − 𝜇1𝜇2𝑦 = 0 ,

𝜇2𝜇3 + 3𝜇1𝑦𝑦 + 3𝜇2𝑦 + 𝜇3𝑥 − 𝜇1𝜇3𝑦 − 𝜇1𝑦𝜇3 = 0 ,

𝜇2𝑦(2𝜇1𝑦 − 𝜇2) = 0 ,

𝜇2𝜇2𝑦𝑦 = 𝜇2
2𝑦 ,

(2.7)

4𝜇1𝑦𝑦𝑦 + 6𝜇2𝑦𝑦 − 𝜇2𝜇3𝑦 + 2𝜇2𝑦𝜇3 − 2𝜇1𝑦𝜇3𝑦 = 0 ,

𝜇2𝑦𝑦𝑦 + 2𝜇2𝑦𝜇3𝑦 − 𝜇2𝑦𝑦𝜇3 − 𝜇2𝜇3𝑦𝑦 = 0 ,

𝜇3𝑦𝑦𝑦 − 𝜇2
3𝑦 + 𝜇3𝜇3𝑦𝑦 − 3𝑃 (𝑥)𝜇1𝑦 − 𝑃 (𝑥)𝜇2 + 𝑃 ′(𝑥) = 0 .

Therefore, 𝒜-system is reduced to a more simple system of equations (2.7). The writing of
the 𝒜-system only via invariants of the transformations (2.6) results from its invariance with
respect to these transformations.
4. By the obtained auxiliary functions we can find the functions 𝛼(𝑥, 𝑦), 𝛽(𝑥, 𝑦), 𝑧(𝑥, 𝑦) from
the corresponding linear equations (2.5). Below we construct the demanded reductions with
the precision to the transformations (2.6) by the functions 𝛼(𝑥, 𝑦), 𝛽(𝑥, 𝑦), 𝑧(𝑥, 𝑦).

As it is seen from the forth equation of the system (2.7), it is necessary for its solution to
consider the following two cases: 𝜇2𝑦 = 0 and 2𝜇1𝑦 − 𝜇2 = 0. Hence in the first of them it is
needed to consider the cases 𝜇2 ̸= 0 and 𝜇2 = 0.
Case I. 𝜇2 = 𝜇2(𝑥) ̸= 0. In this case integration of the initial system is carried out in the

elementary way and results in several possible cases.
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Case I.1. 𝑃 (𝑥) = 𝜆(𝑥 + 𝜅)𝛿. In this case the solution of the system (2.7) has the form

𝜇1 = 𝑦
(𝛿 − 1)

4(𝑥 + 𝜅)
+ 𝑓(𝑥) ,

𝜇2 =
(𝛿 + 3)

4(𝑥 + 𝜅)
,

𝜇3 =
𝑐3(𝛿 + 3)

4(𝑥 + 𝜅)
, 𝑐3 = 𝑐𝑜𝑛𝑠𝑡 .

Here and below 𝑓(𝑥) is an arbitrary function of the variable 𝑥. Then we can assume that

𝛼(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡 , 𝛽(𝑥, 𝑦) = (𝑥 + 𝜅)
𝛿+3
4 ,

𝑧(𝑥, 𝑦) = 𝑦(𝑥 + 𝜅)
𝛿−1
4 +

∫︁
𝑓(𝑥)(𝑥 + 𝜅)

𝛿−1
4 𝑑𝑥 .

Hence we obtain the following ODE:

4𝑤′′′ + (𝛿 + 3)𝑤𝑤′′ − 2(𝛿 + 1)𝑤′2 + 4𝜆 = 0 .

Case I.2. 𝑃 (𝑥) = 𝜆 exp(𝛿𝑥). In this case the solution of the system (2.7) has the form

𝜇1 =
𝛿𝑦

4
+ 𝑓(𝑥), 𝜇2 =

𝛿

4
, 𝜇3 = 𝑐3 .

Then we can assume that

𝛼(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡 , 𝛽(𝑥, 𝑦) = exp

(︂
𝛿𝑥

4

)︂
,

𝑧(𝑥, 𝑦) = 𝑦 exp

(︂
𝛿𝑥

4

)︂
+

∫︁
𝑓(𝑥) exp

(︂
𝛿𝑥

4

)︂
𝑑𝑥 .

The corresponding ODE has the form

4𝑤′′′ + 𝛿𝑤𝑤′′ − 2𝛿𝑤′2 + 4𝜆 = 0.

Case I.3. 𝑃 (𝑥) = 𝜆 = 𝑐𝑜𝑛𝑠𝑡.
Case I.3.1. 𝜆 ̸= 0. In this case the solution of the system (2.7) has the form

𝜇1 = −𝑦
3

4𝑥 + 𝜅
+ 𝑓(𝑥) , 𝜇2 =

3

4𝑥 + 𝜅
, 𝜇3 =

𝑐3
4𝑥 + 𝜅

.

Then we can assume that

𝛼(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡 , 𝛽(𝑥, 𝑦) = (4𝑥 + 𝜅)
3
4 ,

𝑧(𝑥, 𝑦) =
𝑦

(4𝑥 + 𝜅)
1
4

+

∫︁
𝑓(𝑥)𝑑𝑥

(4𝑥 + 𝜅)
.

The corresponding ODE has the form

𝑤′′′ + 3𝑤𝑤′′ − 2𝑤′2 + 𝜆 = 0.

Case I.3.2. 𝜆 = 0. In this case the solution of the system (2.7) has the form

𝜇1 = 𝑦
1 − 𝑐1
𝑐1𝑥 + 𝑐2

+ 𝑓(𝑥) , 𝜇2 =
1

𝑐1𝑥 + 𝑐2
, 𝜇3 =

𝑐3
𝑐1𝑥 + 𝑐2

.

Then we can assume that

𝛼(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡 , 𝛽(𝑥, 𝑦) = (𝑐1𝑥 + 𝑐2)
1/𝑐1 ,

𝑧(𝑥, 𝑦) = 𝑦(𝑐1𝑥 + 𝑐2)
1/𝑐1−1 +

∫︁
𝑓(𝑥)(𝑐1𝑥 + 𝑐2)

1−1/𝑐1𝑑𝑥 .
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The corresponding ODE has the form

𝑤′′′ + 𝑤𝑤′′ − 2𝑤′2 + (𝑐1 − 2)𝑤2 = 0 .

Case I.4. 𝑃 (𝑥) = −𝜆2
1/(3𝑥 + 𝜅)5/3 + 𝜆2/(3𝑥 + 𝜅)1/3. In this case the solution of the

system (2.7) has the form

𝜇1 = − 𝑦

3𝑥 + 𝜅
+ 𝑓(𝑥) , 𝜇2 =

2

3𝑥 + 𝜅
,

𝜇3 =
𝜆1𝑦

(3𝑥 + 𝜅)4/3
+

𝑐

3𝑥 + 𝜅
+

𝜆1

∫︀ 𝑓(𝑥)𝑑𝑥

(3𝑥+𝜅)1/3

(3𝑥 + 𝜅)
.

In this case we can assume that

𝛼(𝑥, 𝑦) =
𝜆1𝑦

(3𝑥 + 𝜅)1/3
− 𝑐

2
− 𝜆1

∫︁
𝑓(𝑥)𝑑𝑥

(3𝑥 + 𝜅)1/3
,

𝛽(𝑥, 𝑦) = (3𝑥 + 𝜅)2/3 ,

𝑧(𝑥, 𝑦) =
𝑦

(3𝑥 + 𝜅)1/3
+

∫︁
𝑓(𝑥)𝑑𝑥

(3𝑥 + 𝜅)1/3
.

The corresponding ODE has the form

𝑤′′′ + 2𝑤𝑤′′ − 𝑤′2 + 𝜆2 = 0 .

Case II. 𝜇2 = 0. In this case the system (2.7) is simplified and takes the form

𝜇1𝑥𝑦 − 𝜇1
2
𝑦 − 𝜇1𝜇1𝑦𝑦 = 0 ,

3𝜇1𝑦𝑦 + 𝜇3𝑥 − 𝜇3𝜇1𝑦 − 𝜇3𝑦𝜇1 = 0 ,

2𝜇1𝑦𝑦𝑦 = 𝜇3𝑦𝜇1𝑦 ,
(2.8)

𝑑𝑃 (𝑥)

𝑑𝑥
− 𝜇3𝑦𝑦𝑦 + 𝜇2

3𝑦 − 𝜇3𝜇3𝑦𝑦 − 3𝑃 (𝑥)𝜇1𝑦 − 𝑃 (𝑥)𝜇2 = 0 .

Having integrated the first equation of the system (2.8) in 𝑦 we obtain

𝜇1𝑥 − 𝜇1𝜇1𝑦 = 𝑓 ′(𝑥) , (2.9)

where 𝑓 ′(𝑥) is an arbitrary function. We can write the general solution of the equation (2.9) in
the form

𝐹 (𝐼1, 𝐼2) = 0,

where 𝐹 is an arbitrary function, 𝐼1 = 𝑦 + 𝑥(𝜇1 − 𝑓(𝑥)) +
∫︀
𝑓(𝑥)𝑑𝑥, 𝐼2 = 𝜇1 − 𝑓(𝑥). Therefore,

one of the first integrals is a function of the other, i.e. 𝐼1 = 𝐺(𝐼2) or 𝐼2 = 𝐺(𝐼1). Let us dwell
on the latter case. We have

𝜇1 − 𝑓(𝑥) = 𝐺(𝑦 + 𝑥(𝜇1 − 𝑓(𝑥)) +

∫︁
𝑓(𝑥)𝑑𝑥) . (2.10)

Then, as it is easy to see that the general solution of the second equation of the system (2.8) is

𝜇3 = −3
𝜇1𝑦𝑦

𝜇1𝑦

+ 𝜇1𝑦𝐻(𝜇1 − 𝑓(𝑥)), (2.11)

where 𝐻 is an arbitrary function of its argument. Substituting (2.10), (2.11) into the last two
equations of the system (2.8) results in the relationships in which the functions 𝐺 and 𝐻 and
their derivatives are included polynomially, where the coefficients of monomials are powers of
the variable 𝑥. Since 𝐻 = 𝐻(𝜇1 − 𝑓(𝑥)), then 𝐻 also depends on 𝐺. Therefore, the functions
𝐺,𝐻 depend only on one complex argument and we should carry out splitting by the variable 𝑥.
This results an overdetermined system of ODE for the functions 𝐺 and 𝐻. Further calculations
are carried out in the elementary way and provide as a result the following cases.
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Case II.1. 𝑃 (𝑥) = 𝜆(𝑥 + 𝜅)−3. In this case

𝜇1 = − 𝑦

𝑥 + 𝜅
+ 𝑓(𝑥) , 𝜇2 = 0 , 𝜇3 =

𝑐

𝑥 + 𝜅
.

Then we can assume that

𝛼(𝑥, 𝑦) = 𝑐 ln(𝑥 + 𝜅) , 𝛽(𝑥, 𝑦) = 1 , 𝑧(𝑥, 𝑦) =
𝑦

𝑥 + 𝜅
+

∫︁
𝑓(𝑥)𝑑𝑥

𝑥 + 𝜅
.

The corresponding ODE has the form

𝑤′′′ + 𝑐𝑤′′ + 𝑤′2 + 𝜆 = 0 .

Case II.2. 𝑃 (𝑥) = 𝜆𝑥 + 𝜅. In this case

𝜇1 = 𝑓(𝑥) , 𝜇2 = 0,

and 𝜇3 satisfies the equation

𝜇3𝑦𝑦𝑦 + 𝜇3𝜇3𝑦𝑦 − 𝜇3
2
𝑦 −

𝑑𝑃 (𝑥)

𝑑𝑥
= 0.

Then the function 𝜇3 = 𝐻(𝑦 +
∫︀
𝑓(𝑥)𝑑𝑥) should be the solution of the equation

𝐻 ′′′ + 𝐻𝐻 ′′ −𝐻 ′2 − 𝜆 = 0 .

Then we can assume that

𝛼(𝑥, 𝑦) = 𝑥𝐻(𝑦 +

∫︁
𝑓(𝑥)𝑑𝑥) , 𝛽(𝑥, 𝑦) = 1 , 𝑧(𝑥, 𝑦) = 𝑦 +

∫︁
𝑓(𝑥)𝑑𝑥 .

The corresponding ODE has the form

𝑤′′′ + 𝐻𝑤′′ −𝐻 ′𝑤′ + 𝜅 = 0 .

Let us note that in the case 𝜇2 − 2𝜇1𝑦 = 0, as it is easy to verify, we obtain the considered
above reductions. Therefore, the consideration of this case is not presented.

3. Reductions obtained by means of symmetries

Let us find symmetries of the equations (1.5). The operator of the symmetry is searched in
the form

𝑋 = 𝜉1(𝑥, 𝑦, 𝑢)
𝜕

𝜕𝑥
+ 𝜉2(𝑥, 𝑦, 𝑢)

𝜕

𝜕𝑦
+ 𝜂(𝑥, 𝑦, 𝑢)

𝜕

𝜕𝑢
.

The system of the defining equations for the coefficients of the symmetry operator lead to the
following equations:

𝜉1𝑦 = 0, 𝜉1𝑢 = 0, 𝜉2𝑢 = 0, 𝜉2𝑥𝑦 = 0,

𝜂𝑥 = 0, 𝜂𝑦 = 0, 𝜉1𝑥 − 𝜉2𝑦 − 𝜂𝑢 = 0,

𝜉1𝑃 ′(𝑥) + (3𝜉2𝑦 − 𝜂𝑢)𝑃 (𝑥) = 0.

Symmetries of the equation (1.5) depend on the form of the given function 𝑃 (𝑥). The result
of the group classification is as follows.

Proposition 1. In case of an arbitrary function 𝑃 (𝑥) the basis of the symmetry operators
of the equation (1.5) is

𝑋1 = 𝑏(𝑥)
𝜕

𝜕𝑦
, 𝑋2 =

𝜕

𝜕𝑢
,

where 𝑏(𝑥) is an arbitrary function.
When 𝑃 (𝑥) = 𝜆(𝑥 + 𝜅)𝛿, 𝜆 ̸= 0, 𝛿 ̸= 0, the basis of the symmetry operators consists of the
operators

𝑋1 , 𝑋2 , 𝑌1 = 4(𝑥 + 𝜅)
𝜕

𝜕𝑥
+ (1 − 𝛿)𝑦

𝜕

𝜕𝑦
+ (𝛿 + 3)𝑢

𝜕

𝜕𝑢
.
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When 𝑃 (𝑥) = 𝜆𝑒𝛿𝑥, 𝜆 ̸= 0, 𝛿 ̸= 0, the basis of the symmetry operators consists of the operators

𝑋1 , 𝑋2 , 𝑌2 = 4
𝜕

𝜕𝑥
− 𝛿𝑦

𝜕

𝜕𝑦
+ 𝛿𝑢

𝜕

𝜕𝑢
.

When 𝑃 (𝑥) = 𝑎, 𝑎 ̸= 0 the basis of the symmetry operators consists of the operators

𝑋1 , 𝑋2 , 𝑍1 =
𝜕

𝜕𝑥
, 𝑍2 = 4𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
+ 3𝑢

𝜕

𝜕𝑢
.

When 𝑃 (𝑥) = 0 the basis of the symmetry operators consists of the operators

𝑋1 , 𝑋2 , 𝑍1 , 𝑍3 = 𝑥
𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
, 𝑍4 = 𝑥

𝜕

𝜕𝑎
+ 𝑢

𝜕

𝜕𝑢
.

The results of the group classification of the equation (1.5) correspond to the results of the
group classification of the system of equations describing a laminar stationary flat boundary
layer with the gradient of pressure [2].

In all the stated cases of the extension of the symmetries it is easy to determine the forms of
functions 𝜇1(𝑥, 𝑦), 𝜇2(𝑥, 𝑦), 𝜇3(𝑥, 𝑦) which correspond to invariant solutions. Let us formulate
the corresponding formulae.

Case 1. 𝑃 (𝑥) = 𝜆(𝑥 + 𝜅)𝛿. The symmetry operator of the general form is

𝑋 = 4𝑐1(𝑥 + 𝜅)
𝜕

𝜕𝑥
+ (𝑐1(1 − 𝛿)𝑦 + 𝑏(𝑥))

𝜕

𝜕𝑦
+ (𝑐1(𝛿 + 3)𝑢 + 𝑐2)

𝜕

𝜕𝑢
.

The functions 𝜇1(𝑥, 𝑦), 𝜇2(𝑥, 𝑦), 𝜇3(𝑥, 𝑦) corresponding to any invariant solution have the form

𝜇1 =
𝑦(𝛿 − 1)

4(𝑥 + 𝜅)
− 𝑏(𝑥)

4𝑐1(𝑥 + 𝜅)
,

𝜇2 =
(𝛿 + 3)

4(𝑥 + 𝜅)
,

𝜇3 = − 𝑐2
4𝑐1(𝑥 + 𝜅)

.

By analogy we can also find the functions 𝜇1(𝑥, 𝑦), 𝜇2(𝑥, 𝑦), 𝜇3(𝑥, 𝑦) in other cases.
Case 2. 𝑃 (𝑥) = 𝜆 exp(𝛿𝑥). The symmetry operator has the form

𝑋 = 4𝑐1
𝜕

𝜕𝑥
+ (𝑏(𝑥) − 𝑐1𝛿𝑦)

𝜕

𝜕𝑦
+ (𝑐1𝛿𝑢 + 𝑐2)

𝜕

𝜕𝑢
.

Therefore,

𝜇1 =
𝛿𝑦

4
− 𝑏(𝑥)

4𝑐1
, 𝜇2 =

𝛿𝑢

4
, 𝜇3 = − 𝑐2

4𝑐1
.

Case 3. 𝑃 (𝑥) = 𝑐𝑜𝑛𝑠𝑡 ̸= 0. The symmetry operator has the form

𝑋 = (4𝑐1𝑥 + 𝑐2)
𝜕

𝜕𝑥
+ (𝑐1𝑦 + 𝑏(𝑥))

𝜕

𝜕𝑦
+ (3𝑐1𝑢 + 𝑐3)

𝜕

𝜕𝑢
.

Therefore,

𝜇1 = − 𝑐1𝑦

4𝑐1𝑥 + 𝑐2
− 𝑏(𝑥)

4𝑐1𝑥 + 𝑐2
,

𝜇2 = − 3𝑐1
4𝑐1𝑥 + 𝑐2

,

𝜇3 = − 𝑐3
4𝑐1𝑥 + 𝑐2

.
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Case 4. 𝑃 (𝑥) = 0. The symmetry operator has the form

𝑋 = ((𝑐1 + 𝑐2)𝑥 + 𝑐3)
𝜕

𝜕𝑥
+ (𝑐2𝑦 + 𝑏(𝑥))

𝜕

𝜕𝑦
+ (𝑐1𝑢 + 𝑐4)

𝜕

𝜕𝑢
.

Therefore,

𝜇1 = − 𝑐2𝑦

(𝑐1 + 𝑐2)𝑥 + 𝑐3
− 𝑏(𝑥)

(𝑐1 + 𝑐2)𝑥 + 𝑐3
,

𝜇2 = − 𝑐1
(𝑐1 + 𝑐2)𝑥 + 𝑐3

,

𝜇3 = − 𝑐4
(𝑐1 + 𝑐2)𝑥 + 𝑐3

.

Comparing the enumerated expressions for the functions 𝜇1(𝑥, 𝑦), 𝜇2(𝑥, 𝑦), 𝜇3(𝑥, 𝑦), 𝑃 (𝑥) in
case of invariant solutions and in case of reductions obtained by a direct method it can be
concluded that the reductions of the cases I.4 and II.2 cannot be obtained with the help of the
classical method of finding invariant solutions, but, probably, can be obtained as differential-
invariant solutions or differential-invariant substitutions.

4. Reductions obtained with the help of non-classical symmetries

The so-called method of non-classical symmetries [9] generalizes the classical Lie method
of finding reductions. In accordance with this method one searches symmetry operators of
the system of equations consisting of the initial equation 𝐸(𝑢𝑥, 𝑢𝑦, 𝑢𝑥𝑥, 𝑢𝑥𝑦, ...) = 0 and the
supplementary condition (condition of invariance)

𝜉1(𝑥, 𝑦, 𝑢)𝑢𝑥 + 𝜉2(𝑥, 𝑦, 𝑦)𝑢𝑦 − 𝜂(𝑥, 𝑦, 𝑢) = 0 .

In this case, as opposed to the classical Lie method, the system of defining equations for the
components 𝜉1(𝑥, 𝑦, 𝑢), 𝜉2(𝑥, 𝑦, 𝑢), 𝜂(𝑥, 𝑦, 𝑢) of the symmetry operator

𝑋 = 𝜉1(𝑥, 𝑦, 𝑢)
𝜕

𝜕𝑥
+ 𝜉2(𝑥, 𝑦, 𝑦)

𝜕

𝜕𝑦
+ 𝜂(𝑥, 𝑦, 𝑢)

𝜕

𝜕𝑢

is non-linear. In the present article the calculations of non-classical symmetries and correspond-
ing solutions are not presented (all the necessary results can be found in the paper [8]). That
comparison with the results of application of the non-classical method shows that all the ob-
tained above reductions can be obtained with the help of the non-classical method. Therefore,
the method of non-classical symmetries and the direct approach suggested in the present paper
are equivalent and provide a similar result.

5. Conclusion

The general result of the paper is the suggested method of construction of reductions based
on the idea of invariance. The key difference of the suggested in the paper approach from the
Clarkson-Kruskal approach is the transformation from the non-linear inhomogeneous system of
equations for the functions 𝛼, 𝛽, 𝑧 to the homogeneous system of equations for the auxiliary
functions 𝜇1, 𝜇2, 𝜇3. The obtained system of equations is more convenient for integrating
than the system of equations for the functions 𝛼, 𝛽, 𝑧, containing indefinite functions 𝐺1(𝑧),
. . . , 𝐺8(𝑧). The suggested method due to its invariant nature is more simple in application
than the Clarkson-Kruskal method. With the help of the suggested method we have found all
the reductions of the equation (1.5) of the form (1.3). It was shown that the equation under
consideration has reductions which are not obtained with the help of symmetries.
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