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CHARACTERISTIC LIE RINGS

AND INTEGRABLE MODELS IN MATHEMATICAL PHYSICS

A.V. ZHIBER, R.D. MURTAZINA, I.T. HABIBULLIN, A.B. SHABAT

Abstract. The survey is devoted to a systematic exposition of the algebraic approach
based on the concept of the characteristic vector field to the study of nonlinear integrable
partial differential equations and their discrete analogues. A special attention is paid to
Darboux integrable equations and to soliton equations. The problem of constructing gen-
eralized symmetries for the equations as well as of their particular and general solutions is
discussed. In particular, it is shown that a hyperbolic partial differential equation is inte-
grated by quadrature if and only if its characteristic Lie rings in both directions are of finite
dimension. For the hyperbolic type equations integrable by the inverse scattering method,
the characteristic rings are of minimal growth. We suggest the ways of applying the concept
of characteristic Lie rings to the systems of hyperbolic differential equations with more than
two characteristic directions, to evolution equations, and to ordinary differential equations.
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1. Intorduction

The basic ideas of studying of the problem on the integration of hyperbolic partial differential
equations go back to classical works by Laplace, Liouville, Lie, Darboux, Goursat, Vessiot,
et al. And the meaning of the integration as obtaining an explicit formula for the general
solution was almost immediately supplanted by others less exacting definitions. For instance,
the Darboux method of integration of a hyperbolic equation consists in finding the integrals
in each characteristic direction and the consequent reducing it to two ordinary differential
equations. It is clear that in a general case it is quite complicated to end up with explicit
formulas expressing a simultaneous solution of these equations.

For finding the integrals (as well as for identification the integrability of a given equation)
Darboux employed the Laplace cascade method. In later studies (see [49,60,61]), an algebraic
approach using characteristic vector fields became the main tool of finding integrals (exactly
in the framework of such approach the first lists of the equations possessing the integrals in
both directions were likely obtained [49]). Another approach to the integrating of nonlinear
equation is related with one-parametric transformation groups, i.e., with symmetries. The
notion of symmetry introduced more than one hundred years ago in the works of S. Lie and
E. Noether, serves as the base for the modern integrability theory. The discover of the inverse
scattering method and appearance of the class of soliton equations gave a powerful incentive to
the developing of the symmetry approach in the integrability theory. It became clear that the
equations integrable by the method of inverse scattering problem possess an infinite hierarchy
of generalized symmetries.

During last three decades in the framework of symmetry approach effective algorithms for
solving classification problems were created and the complete lists for very important classes of
nonlinear partial differential equations and their discrete analogues were made up ( [2, 10, 11,
33,34,38–40,46–48,59]). In so doing, the greatest successes were related with the classification
of the evolution equations. However, in certain cases like the classification of the integrable
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equations of dimension 1 + 2 and higher, and also the classification of hyperbolic equations
with two independent variables and their discrete analogues the symmetry approach is not so
effective. In the last years new methods for classification of integrable equations appeared,
like Painlevé test, the method of algebraic entropy [55], the 3D compatibility condition [45],
etc. The monograph [24] devoted to a detailed description of some aspects of the theory of
integration for partial differential equations is also of interest for the experts.

In the present paper we consider an alternative approach to the problem on the classification
of integrable equations going back to the classical works of Goursat. Am important milestone
in forming of this approach was the work [44], where the system of hyperbolic equations

𝑢𝑖𝑥𝑦 = exp(𝑎𝑖1𝑢
1 + 𝑎𝑖2𝑢

2 + . . .+ 𝑎𝑖𝑛𝑢
𝑛), 𝑖 = 1, 2, . . . , 𝑛, (1.1)

was studied. In this work the notion of characteristic Lie algebra of vector fields was introduced
and it was shown that the characteristic Lie algebra for the system (1.1) has a finite dimension
if and only if the matrix 𝐴 = (𝑎𝑖𝑗) is the Cartan matrix of a simple Lie algebra. Then in the
work [30] for a system of hyperbolic equations of a more general form

𝑢𝑖𝑥𝑦 = 𝐹 𝑖(𝑢1, 𝑢2, . . . , 𝑢𝑛), 𝑖 = 1, 2, . . . , 𝑛, (1.2)

it was shown that the condition of integrability by quadrature is the finite dimension of its
characteristic Lie algebra.

The characteristic algebra for the hyperbolic systems

𝑢𝑖𝑥 = 𝑐𝑖𝑗𝑘𝑢
𝑗𝑣𝑘 + 𝑐𝑖𝑘𝑢

𝑘, 𝑣𝑘𝑦 = 𝑑𝑘𝑗𝑙𝑢
𝑗𝑣𝑙 + 𝑑𝑘𝑗𝑢

𝑗, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑛 (1.3)

were studied in the work [13]. In particular, there was given a complete description for the
basis of the characteristic algebra for the equation 𝑢𝑥𝑦 = sin𝑢.

Below in the first, third, and fourth section we shall give the definition and detailed de-
scription of the notion of the characteristic Lie ring for hyperbolic partial differential equations
(and the system of equations) and their discrete analogues. Here we just briefly dwell on main
aspects of the content. For a scalar hyperbolic equation (both continuous and discrete) the
characteristic Lie ring on each characteristic direction is generated by two operators; denote
them by 𝑋1 and 𝑋2. We indicate by 𝑉𝑗 the linear space over the field of locally analytic func-
tions spanned on 𝑋1, 𝑋2, and all multiple commutators of the operators 𝑋1 and 𝑋2 of order
less or equal to 𝑗, so that

𝑉0 = {𝑋1, 𝑋2}, 𝑉1 = {𝑋1, 𝑋2, [𝑋1, 𝑋2]}, . . . .

We introduce the function ∆(𝑘) = dim𝑉𝑘+1 − dim𝑉𝑘.
A deep connection between the properties of the characteristic Lie ring and the integrability

property of an equation was realized in the work [18]. In this work it was found that the
spaces of multiple commutators forming characteristic rings for such integrable equations like
Sine-Gordon equations, Tzitzeica equation, etc. grow very slowly in the first steps, saying more
precisely, ∆(1) = ∆(2) = ∆(3) = ∆(4) = 1. It was conjectured that such behavior of the
function ∆(𝑘) is intrinsic for all integrable equations. Later the idea was specified and justified
by numerous examples of integrable continuous and discrete models (see [35,53]). Then in the
works [42,51] it was formulated the following

Conjecture 1.1. (algebraic test). Each integrable scalar (continuous or discrete) hyperbolic
equation satisfies the condition that there exists a sequence of natural numbers {𝑡𝑘}∞𝑘=1 for which
∆(𝑡𝑘) 6 1.

Definition 1.1. The characteristic Lie ring for which there exists such sequence of natural
numbers is called a ring of minimal growth.

The property of minimal growth of a ring began to be considered as a classification criterion
for the integrable equations. For special classes of equations a series of model classification
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problem was solved ( [18,42,51]). These results convince that the property of minimal growth
of Lie ring is as universal property of integrable equation as the existence of an infinite hierarchy
of generalized symmetries.

The paper presents a survey of the authors’ results devoted to applications of the algebraic
method based on the notion of characteristic vector field to nonlinear integrable models.

The paper is organized as follows. In the second section we make the classification of scalar
hyperbolic equations of special form with infinite-dimensional characteristic Lie ring of minimal
growth. It is shown that the system of equations 𝑢𝑥 = 𝑓(𝑢, 𝑣), 𝑣𝑦 = 𝜙(𝑢, 𝑣), for which first
three 𝐷 and 𝐷-conditions of the existence of generalized symmetries are satisfied, possesses 𝑥-
and 𝑦-characteristic rings of minimal growth. We describe the classes of the equations with
finite-dimensional Lie ring. By using the generators of the characteristic Lie rings we con-
struct generalized symmetries of Liouville, Sine-Gordon, Tzitzeica, and modified Sine-Gordon
equations.

In the third section we provide a short review of the authors’ results (see [13,44,56]) devoted
to the classification of integrable hyperbolic systems of equations basing on the notions of
characteristic Lie rings and algebras.

In the forth section we introduce characteristic rings for a differential-difference equation. We
illustrate the application of characteristic vector fields in the classification problem of Liouville
type equations. We provide classification results. We study in details the characteristic ring of
an differential-difference analogue of Sine-Gordon equation. It is notable that in this case the
ring has a minimal growth.

In the fifth section we consider fully discrete equations. We give a general definition of the
integral, introduce the notion of characteristic Lie ring, and discuss possible ways of applying
these notions in the problems of classification integrable discrete equations.

The sixth section is devoted to the discussion of open questions and perspectives of algebraic
approach presented in the paper. For instance, we suggest the scheme for studying the charac-
teristic ring of the system of hyperbolic equations with more than two characteristic directions.
A typical example of such system is that of 𝑛-waves. We discuss briefly the possibility of ex-
tending the presented approach to other classes of nonlinear equations like of evolution type,
ordinary differential equations (see [8]).

2. Scalar integrable equations

2.1. Definition of characteristic Lie ring. To study the integrability of the equations

𝑢𝑥𝑦 = 𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦) (2.4)

we use an approach based on the notion of “characteristic ring”.
On the space of locally analytic functions depending on a finite number of variables

𝑥, 𝑦, 𝑢1, 𝑢, 𝑢1, 𝑢2, . . ., the operator of total differentiation w.r.t. 𝑦 reads as

𝐷 =
𝜕

𝜕𝑦
+ 𝑢2

𝜕

𝜕𝑢1
+ 𝑢1

𝜕

𝜕𝑢
+ 𝑓

𝜕

𝜕𝑢1
+𝐷(𝑓)

𝜕

𝜕𝑢2
+ . . . ,

while the operator of total differentiation w.r.t. 𝑥 is

𝐷 =
𝜕

𝜕𝑥
+𝐷(𝑓)

𝜕

𝜕𝑢2
+ 𝑓

𝜕

𝜕𝑢1
+ 𝑢1

𝜕

𝜕𝑢
+ 𝑢2

𝜕

𝜕𝑢1
+ . . . ,

where 𝑢1 = 𝑢𝑥, 𝑢1 = 𝑢𝑦, 𝑢2 = 𝑢𝑥𝑥, 𝑢2 = 𝑢𝑦𝑦, . . ..
We represent

𝐷 = 𝑢2𝑋2 +𝑋1, (2.5)

where

𝑋1 =
𝜕

𝜕𝑦
+ 𝑢1

𝜕

𝜕𝑢
+ 𝑓

𝜕

𝜕𝑢1
+𝐷(𝑓)

𝜕

𝜕𝑢2
+ . . . , 𝑋2 =

𝜕

𝜕𝑢1
.
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In accordance with (2.5), the characteristic equation

𝐷𝑊 (𝑥, 𝑦, 𝑢, 𝑢1, . . . , 𝑢𝑚) = 0 (2.6)

is equivalent to the system

𝑋1𝑊 = 0, 𝑋2𝑊 = 0. (2.7)

We note that the solution to equation (2.6) is called a 𝑥-integral of equation (2.4).
In a natural way with equations (2.7) one associates a Lie ring generated by the vec-

tor fields 𝑋1 and 𝑋2. In a similar way, while considering the characteristic equation
𝐷𝑊 (𝑥, 𝑦, 𝑢, 𝑢1, . . . , 𝑢𝑚) = 0, one introduces the Lie ring generated by the elements 𝑌1 and
𝑌2.

Let 𝐿𝑛 be the linear space of the commutators of generators of the length 𝑛 − 1,
𝑛 = 2, 3, . . .. For instance, 𝐿2 is the linear span of the vector fields 𝑋1, 𝑋2, and 𝐿3 is generated
by the element 𝑋3=[𝑋1, 𝑋2], 𝐿4 is generated by the commutators 𝑋4=[𝑋2, 𝑋3], 𝑋5=[𝑋1, 𝑋3],
etc. Then the 𝑥-characteristic Lie ring 𝐴 can be represented as

𝐴 =
∞∑︁
𝑖=2

𝐿𝑖,

and the 𝑦-characteristic Lie ring 𝐴 of equation (2.4) is

𝐴 =
∞∑︁
𝑖=2

𝐿𝑖.

We introduce the notation $𝑘 =
∑︀𝑘

𝑖=2 𝐿𝑖.
The classification of integrable equations is based on the following statement.

Lemma 2.1. Assume 𝑢 is a solution to equation (2.4) and the vector fields 𝑍 and 𝑍 read
as follows

𝑍 =
∞∑︁
𝑖=1

𝛼𝑖
𝜕

𝜕𝑢𝑖
, 𝛼𝑖 = 𝛼𝑖(𝑢, 𝑢1, 𝑢1, 𝑢2, . . . , 𝑢𝑛𝑖

),

𝑍 =
∞∑︁
𝑖=1

𝛼𝑖
𝜕

𝜕𝑢𝑖
, 𝛼𝑖 = 𝛼𝑖(𝑢, 𝑢1, 𝑢1, 𝑢2, . . . , 𝑢𝑛𝑖

), 𝑖 = 1, 2, . . . .

If [𝐷,𝑍] = 0, then 𝑍 = 0. In the same way, if [𝐷,𝑍] = 0, then 𝑍 = 0.

Proof. Since the operator of total differentation w.r.t. 𝑥 on the set of locally analytic
functions depending on a finite number of variables 𝑢1, 𝑢, 𝑢1, 𝑢2, . . .

𝐷 = 𝑓
𝜕

𝜕𝑢1
+ 𝑢1

𝜕

𝜕𝑢
+ 𝑢2

𝜕

𝜕𝑢1
+ . . . ,

then
[𝐷,𝑍] = (𝐷(𝛼1)

𝜕
𝜕𝑢1

+𝐷(𝛼2)
𝜕

𝜕𝑢2
+𝐷(𝛼3)

𝜕
𝜕𝑢3

+ . . .)−
−(𝛼1𝑓𝑢1

𝜕
𝜕𝑢1

+ 𝛼1
𝜕
𝜕𝑢

+ 𝛼2
𝜕

𝜕𝑢1
+ 𝛼3

𝜕
𝜕𝑢2

+ . . .).

By the assumption [𝐷,𝑍] = 0, and hence

𝛼1 = 0, 𝐷(𝛼𝑖) − 𝛼𝑖+1 = 0, 𝑖 = 1, 2, . . .

and, therefore, 𝛼𝑖 = 0 as 𝑖 = 1, 2, 3, . . .. In the same way, if [𝐷,𝑍] = 0 and

𝐷 = 𝑓
𝜕

𝜕𝑢1
+ 𝑢1

𝜕

𝜕𝑢
+ 𝑢2

𝜕

𝜕𝑢1
+ . . . ,

then 𝑍 = 0. The lemma is proven.
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2.2. Classification of integrable hyperbolic equation with an infinite-dimensional
characteristic Lie ring. In the case of 𝑓 = 𝑓(𝑢) on the set of locally analytic functions
depending on the variables 𝑢, 𝑢1, 𝑢2, . . . , 𝑢𝑚

𝐷 = 𝑢1
𝜕

𝜕𝑢
+ 𝑓

𝜕

𝜕𝑢1
+𝐷(𝑓)

𝜕

𝜕𝑢2
+ . . . = 𝑢1𝑋2 +𝑋1.

2.2.1. Klein-Gordon equation. In this subsection we consider the equations (see [15, 16])

𝑢𝑥𝑦 = 𝑓(𝑢). (2.8)

We have
[𝐷,𝑋1] = −𝑓𝑋2, [𝐷,𝑋2] = 0. (2.9)

We note that the operators 𝑋1, 𝑋2 are linearly independent as 𝑓(𝑢) ̸= 0.
Let 𝑋3 = [𝑋2, 𝑋1]. Employing Jacobi identity and (2.9), we get

[𝐷,𝑋3] = −𝑓𝑢𝑋2. (2.10)

Lemma 2.2. The dimension of the linear space $3 =
∑︀3

𝑖=2 𝐿𝑖 equals to two if and only if

𝑋3 − 𝑐𝑋1 = 0.

And here the right hand side of equation (2.8) becomes

𝑓(𝑢) = 𝛼e𝑐𝑢,

where 𝛼, 𝑐 are constants, 𝛼 ̸= 0.

Proof. Let dim$3 = 2. Then due to

𝑋3 = 𝑓 ′ 𝜕

𝜕𝑢1
+ 𝑓 ′′𝑢1

𝜕

𝜕𝑢2
+ . . . ,

then 𝑋3 = 𝑐(𝑢)𝑋1, in accordance with Lemma 2.1 and formulas (2.9) and (2.10) we get

[𝐷,𝑋3 − 𝑐𝑋1] = −𝑓 ′𝑋2 −𝐷(𝑐)𝑋1 + 𝑐𝑓𝑋2 = 0.

The last relation is equivalent to the following system of equations,

𝑓 ′ − 𝑐𝑓 = 0, 𝐷(𝑐) = 0.

Therefore, 𝑐 – 𝑐𝑜𝑛𝑠𝑡 and 𝑓 = 𝛼e𝑐𝑢. The lemma is proven.
Thus, nonlinear equation (2.8) with a two-dimensional characteristic Lie algebra 𝐴 is reduced

to the Liouville equation
𝑢𝑥𝑦 = 𝑒𝑢. (2.11)

Let 𝑋4 = [𝑋2, 𝑋3], 𝑋5 = [𝑋1, 𝑋3]. Employing Jacobi identity and relations (2.9), (2.10), we
obtain

[𝐷,𝑋4] = −𝑓 ′′𝑋2, [𝐷,𝑋5] = 𝑓 ′𝑋3 − 𝑓𝑋4. (2.12)

In what follows we assume that the dimension of the linear space $3 equals to three
(𝑋1, 𝑋2, 𝑋3 are linear independent), and we shall show that the case dim$4 = 3 is not re-
alized.

Indeed, if dim$4 = 3, then

𝑋4 = 𝑐1𝑋1 + 𝑐2𝑋3 and 𝑋5 = 𝑐1𝑋1 + 𝑐2𝑋3, (2.13)

where 𝑐𝑖 = 𝑐𝑖(𝑢, 𝑢1, 𝑢2, . . . , 𝑢𝑛𝑖
), 𝑐𝑖 = 𝑐𝑖(𝑢, 𝑢1, 𝑢2, . . . , 𝑢𝑛𝑖

), 𝑖 = 1, 2.
In accordance with Lemma 2.1 and the formulas (2.9)–(2.12), the first relation in (2.13) is

equivalent to the system

𝐷(𝑐1) = 0, 𝑐1𝑓 − 𝑓 ′′ + 𝑐2𝑓
′ = 0, 𝐷(𝑐2) = 0.

This is why 𝑐1, 𝑐2 are constants and

𝑓 ′′ − 𝑐2𝑓
′ − 𝑐1𝑓 = 0.
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The second relation in (2.13) is equivalent to the system

𝐷(𝑐1) + 𝑐1𝑓 = 0, 𝑐1𝑓 + 𝑐2𝑓
′ = 0, 𝐷(𝑐2) + 𝑐2𝑓 − 𝑓 ′ = 0.

The last equation implies that 𝑐2 is constant and 𝑓 ′ = 𝑐2𝑓 . Then, as it was shown above,
dim$3 = 2.

Lemma 2.3. The dimension of the space $4 generated by the operators 𝑋1, 𝑋2, 𝑋3, 𝑋4,
and 𝑋5 equals 4 if and only if the function 𝑓 satisfies the equation

𝑓 ′′ − 𝑝𝑓 ′ − 𝑞𝑓 = 0, (2.14)

where 𝑝, 𝑞 are constants and 𝑓 ′ ̸= 𝛽𝑓 . At that 𝑋4 = 𝑝𝑋3 + 𝑞𝑋1.

Proof. Employing Lemma 2.1 and formulas (2.9)–(2.12), we obtain that either

𝑋4 = 𝑐1𝑋1 + 𝑐2𝑋3 + 𝑐3𝑋5,

and, therefore,

𝐷(𝑐1) − 𝑐1𝑐3𝑓 = 0, 𝑓 ′′ − 𝑐1𝑓 − 𝑐2𝑓
′ = 0,

𝐷(𝑐2) + 𝑐3𝑓
′ − 𝑐2𝑐3𝑓 = 0,

(2.15)

or

𝑋5 = 𝑐1𝑋1 + 𝑐2𝑋3 + 𝑐3𝑋4,

and then
𝐷(𝑐1) = 0, 𝑐1𝑓 + 𝑐2𝑓

′ + 𝑐3𝑓
′′ = 0,

𝐷(𝑐2) − 𝑓 ′ = 0, 𝐷(𝑐3) + 𝑓 = 0.
(2.16)

According to the first and third equations in (2.15), 𝑐1, 𝑐2 are constants, 𝑐3 = 0 (otherwise
𝑓 ′ = 𝑐2𝑓 and then dim$3 = 2), and the function 𝑓 satisfies equation (2.14). If (2.16) holds
true, then 𝑓 = 0.

Vice-versa, if the function 𝑓 satisfies equation (2.14), then

[𝐷,𝑋4] = −(𝑝𝑓 ′ + 𝑞𝑓)𝑋2 = 𝑝[𝐷,𝑋3] + 𝑞[𝐷,𝑋1] = [𝐷, 𝑝𝑋3 + 𝑞𝑋1].

Thus, 𝑋4 = 𝑝𝑋3 + 𝑞𝑋1 and dim$4 = 4. The lemma is proven.

Remark 2.1. If 𝑋4 = 0, then 𝑝 = 𝑞 = 0, and equation (2.8) is reduced to the equation
𝑢𝑥𝑦 = 𝑢.

In what follows we assume that the assumption of Lemma 2.3 holds. We introduce the
operators of length 4,

𝑋6 = [𝑋2, 𝑋5] and 𝑋7 = [𝑋1, 𝑋5].

Employing Jacobi identity

[𝑋2, [𝑋1, 𝑋3]] + [𝑋3, [𝑋2, 𝑋1]] + [𝑋1, [𝑋3, 𝑋2]] = 0,

it is easy to show that 𝑋6 = 𝑝𝑋5. This is why dim$5 6 5.

Remark 2.2. If 𝑋6 = 0, then 𝑝 = 0, and identity (2.14) becomes

𝑓 ′′ − 𝑞𝑓 = 0.

Then equation (2.8) is reduced to the Sine-Gordon equation

𝑢𝑥𝑦 = 𝑒𝑢 + 𝑒−𝑢. (2.17)
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By formulas (2.9)–(2.12) we obtain that

[𝐷,𝑋7] = (𝑓 ′ − 2𝑝𝑓)𝑋5. (2.18)

Let us check that dim$5 = 5. Suppose the opposite, dim$5 = 4 and 𝑋7 = 𝑐1𝑋1 + 𝑐2𝑋3 +
𝑐3𝑋5. Then

𝐷(𝑐1) − 𝑐3𝑞𝑓 = 0,

𝑐1𝑓 + 𝑐2𝑓
′ = 0,

𝐷(𝑐2) + 𝑐3𝑓
′ − 𝑐3𝑝𝑓 = 0,

𝐷(𝑐3) + 2𝑝𝑓 − 𝑓 ′ = 0.

(2.19)

It is clear that 𝑐𝑖 are constants, 𝑖 = 1, 2, 3. From the last equation in (2.19) one can see that
𝑓 ′ = 2𝑝𝑓 , i.e., 𝑋3 = 2𝑝𝑋1 (Lemma 2.2).

We introduce now the operators of length 5,

𝑋8 = [𝑋2, 𝑋7], 𝑋9 = [𝑋1, 𝑋7], [𝑋3, 𝑋5].

It is easy to check that [𝑋3, 𝑋5] = −𝑝𝑋7 +𝑋8, and thus dim$6 6 7.
Employing (2.9)–(2.12), (2.18), we obtain that

[𝐷,𝑋8] = (𝑞 − 2𝑝2)𝑓𝑋5, [𝐷,𝑋9] = −𝑓𝑋8 + (𝑓 ′ − 2𝑝𝑓)𝑋7. (2.20)

If dim$6 = 5, the following relations

𝑋8 = 𝑐1𝑋1 + 𝑐2𝑋3 + 𝑐3𝑋5 + 𝑐4𝑋7,

𝑋9 = 𝑐1𝑋1 + 𝑐2𝑋3 + 𝑐3𝑋5 + 𝑐4𝑋7

hold true. We rewrite the former in accordance with Lemma 2.1 and the formulas (2.10)–(2.12),
(2.18), (2.20) as

𝐷(𝑐1) − 𝑞𝑐3𝑓 = 0, 𝑐1𝑓 + 𝑐2𝑓
′ = 0, 𝐷(𝑐3) + 𝑐3𝑓

′ − 𝑝𝑐3𝑓 = 0,

𝐷(𝑐3) + 𝑐4𝑓
′ − 2𝑝𝑐4𝑓 = 0, 𝐷(𝑐4) − 𝑓 ′ + 2𝑝𝑓 = 0.

It follows from the last equation that 𝑐4 = 0 and 𝑓 ′ = 2𝑝𝑓 . Hence, 𝑋3 = 2𝑝𝑋1, then dim$3 = 2.
Thus, dim$6 ≥ 6.

The following statement holds true.

Lemma 2.4. Let dim$𝑖 = 𝑖, 𝑖 = 3, 4, 5. Then the dimension of the space $6 equals 6 if
and only if

𝑋8 = 0.

Proof. Let dim$6 = 6. Then either

𝑋9 = 𝑐1𝑋1 + 𝑐2𝑋3 + 𝑐3𝑋5 + 𝑐4𝑋7 + 𝑐5𝑋8

and therefore

𝐷(𝑐1) − 𝑞𝑐3𝑓 = 0, 𝑐1𝑓 + 𝑐2𝑓
′ = 0, 𝐷(𝑐2) + 𝑐3𝑓

′ − 𝑝𝑐3𝑓 = 0,

𝐷(𝑐3) + 𝑐4𝑓
′ − 2𝑝𝑐4𝑓 + 𝑐5𝑓

′′ − 𝑐5𝑝𝑓
′ − 2𝑐5𝑝

2𝑓 = 0,

𝐷(𝑐4) − 𝑓 ′ + 2𝑝𝑓 = 0, 𝐷(𝑐5) + 𝑓 = 0,

(2.21)

or
𝑋8 = 𝑐1𝑋1 + 𝑐2𝑋3 + 𝑐3𝑋5 + 𝑐4𝑋7 + 𝑐5𝑋9,

and then
𝐷(𝑐1) − 𝑐3𝑞𝑓 − 𝑐1𝑐5𝑓 = 0, 𝑐1𝑓 + 𝑐2𝑓

′ = 0,

𝐷(𝑐2) + 𝑐3𝑓
′ − 𝑐3𝑝𝑓 − 𝑐2𝑐5𝑓 = 0,

𝐷(𝑐3) − (𝑞 − 2𝑝2)𝑓 + 𝑐4(𝑓
′ − 2𝑝𝑓) − 𝑐3𝑐5𝑓 = 0,

𝐷(𝑐4) − 𝑐4𝑐5𝑓 = 0, 𝐷(𝑐5) − 𝑐25𝑓 = 0.

(2.22)



CHARACTERISTIC LIE RINGS . . . 25

One can see that the last equation in (2.21) yields 𝑓 = 0. We rewrite the system (2.22) as

𝑐3𝑞 = 0, 𝑐1𝑓 + 𝑐2𝑓
′ = 0, 𝑐3(𝑓

′ − 𝑝𝑓) = 0,
−(𝑞 − 2𝑝2)𝑓 + 𝑐4(𝑓

′ − 2𝑝𝑓) = 0,

where 𝑐1, 𝑐2, 𝑐3, 𝑐4 – 𝑐𝑜𝑛𝑠𝑡, 𝑐5=0.
If 𝑐3 ̸= 0, the function 𝑓 satisfies the equation 𝑓 ′ = 𝑝𝑓 , then dim$3 = 2. If 𝑐3 = 0, then

𝑐4 = 0 (otherwise dim$3 = 2), and the fourth equation implies 𝑞 = 2𝑝2. Hence, 𝑋8 = 0. Thus,
the necessary condition is proven.

Let us prove the sufficient condition. Suppose 𝑋8 = 0, since [𝑋3, 𝑋5] = −𝑝𝑋7, then dim$6 6
6. If dim$6 = 5, then the operator 𝑋9 should be expressed as a linear combination of the
operators 𝑋1, 𝑋3, 𝑋5, and 𝑋7, but as it is shown above in this case dim$3 = 2. The lemma is
proven.

Remark 2.3. Thus, if 𝑋8 = 0, then 𝑞 = 2𝑝2, and equation (2.8), (2.14) is reduced to the
Tzitzeica equation

𝑢𝑥𝑦 = 𝑒𝑢 + 𝑒−2𝑢. (2.23)

2.2.2. Hyperbolic equations 𝑢𝑥𝑦 = 𝑓(𝑢, 𝑢𝑥, 𝑢𝑦). We consider a nonlinear equation

𝑢𝑥𝑦 = 𝑓(𝑢, 𝑢𝑥, 𝑢𝑦). (2.24)

In this subsection we obtain the conditions for the right hand side of the equation (2.24)
(see [16, 18,35]), for which

dim$𝑖 = 𝑖, 𝑖 = 2, 3, 4, 5, 6.

We exclude the equations (2.24) which are linear w.r.t. the variable 𝑢𝑥 or 𝑢𝑦.
We let

𝑋1 = 𝑢1
𝜕

𝜕𝑢
+ 𝑓

𝜕

𝜕𝑢1
+ . . .+𝐷𝑛−1(𝑓)

𝜕

𝜕𝑢𝑛
+ . . . , 𝑋2 =

𝜕

𝜕𝑢1
,

then
𝐷 = 𝑋1 + 𝑢2𝑋2. (2.25)

We have
[𝐷,𝑋1] = −(𝑢1𝑓𝑢 + 𝑓𝑓𝑢1)𝑋2, [𝐷,𝑋2] = −𝑓𝑢1𝑋2. (2.26)

Employing Jacobi identity

[𝐷,𝑋3] = [𝐷, [𝑋2, 𝑋1]] = −[𝑋1, [𝐷,𝑋2]] − [𝑋2, [𝑋1, 𝐷]]

and the relations (2.26), we get

[𝐷,𝑋3] = −(𝑓𝑢 + 𝑓𝑢1𝑓𝑢1)𝑋2 − 𝑓𝑢1𝑋3. (2.27)

The operators 𝑋4, 𝑋5 satisfy the relations

[𝐷,𝑋4] = −𝑓𝑢1𝑓𝑢1𝑢1𝑋2 − 𝑓𝑢1𝑢1𝑋3 − 2𝑓𝑢1𝑋4,
[𝐷,𝑋5] = (𝑓𝑢 + 𝑓𝑢1𝑓𝑢1 − 𝑢1𝑓𝑢𝑢1 − 𝑓𝑓𝑢1𝑢1)(𝑓𝑢1𝑋2 +𝑋3)−

−(𝑢1𝑓𝑢 + 𝑓𝑓𝑢1)𝑋4 − 𝑓𝑢1𝑋5.
(2.28)

Theorem 2.1. Suppose the dimension of the space $4 generated by the operators of length
1, 2, and 3 equals four. Then

𝑋4 + 𝑐1(𝑋1 − 𝑢1𝑋3) + 𝑐2𝑋5 = 0,

and we have one of the following relations for the right hand side of the equation (2.24),
either

𝑓 = 𝑐
(︀
𝑢1
∫︀

𝑐𝑢
𝑐2
𝑑𝑢1 +𝐵

)︀
, 𝑐𝑢1 + 𝛿𝑢1

𝑐
= 𝜆,

𝐵 = 𝐵(𝑢, 𝑢1), 𝑐 = 𝑐(𝑢, 𝑢1),
(2.29)

where 𝑐1 =
1

𝑐2
, 𝑐2 = 0, 𝛿, 𝜆− 𝑐𝑜𝑛𝑠𝑡;
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or the function 𝑓 satisfies the relations

𝑓𝑢 + 𝑓𝑢1𝑓𝑢1 − 𝑢1𝑓𝑢𝑢1 − 𝑓𝑓𝑢1𝑢1 − 𝑐𝑓𝑢1𝑢1 = 0,
𝐷(𝑐) − 𝑐𝑓𝑢1 − (𝑢1𝑓𝑢 + 𝑓𝑓𝑢1) = 0, 𝑐 = 𝑐(𝑢, 𝑢1),

(2.30)

where 𝑐1 = 0, 𝑐2 =
1

𝑐
, 𝑐2 ̸= 0.

Considering the 𝑦-characteristic ring, we obtain a “symmetric” version of Theorem 2.1.

Theorem 2.2. If the dimension of the space $4 equals four, then

𝑌4 + 𝑐1(𝑌1 − 𝑢1𝑌3) + 𝑐2𝑌5 = 0,

and we have one of the following relations for the right hand side of the equation (2.24),

either

𝑓 = 𝑐
(︀
𝑢1
∫︀

𝑐𝑢
𝑐2
𝑑𝑢1 +𝐵

)︀
, 𝑐𝑢1 + 𝛿𝑢1

𝑐
= 𝜆,

𝐵 = 𝐵(𝑢, 𝑢1), 𝑐 = 𝑐(𝑢, 𝑢1),
(2.31)

where 𝑐1 =
1

𝑐2
, 𝑐2 = 0, 𝛿, 𝜆− 𝑐𝑜𝑛𝑠𝑡;

or the function 𝑓 satisfies the relations

𝑓𝑢 + 𝑓𝑢1𝑓𝑢1 − 𝑢1𝑓𝑢𝑢1 − 𝑓𝑓𝑢1𝑢1 − 𝑐𝑓𝑢1𝑢1 = 0,
𝐷(𝑐) − 𝑐𝑓𝑢1 − (𝑢1𝑓𝑢 + 𝑓𝑓𝑢1) = 0, 𝑐 = 𝑐(𝑢, 𝑢1),

(2.32)

where 𝑐1 = 0, 𝑐2 =
1

𝑐
, 𝑐2 ̸= 0.

We observe that the relations (2.31), (2.32) can be obtained from the equations (2.29), (2.30)
by replacing 𝑢1 by 𝑢1 and 𝑢1 by 𝑢1.

Lemma 2.5. Let the right hand side of the equation (2.24) satisfies the identities (2.29),
(2.31). Then

𝑢𝑥𝑦 = 𝐾(𝑢)𝐿(𝑢𝑥)𝐵(𝑢𝑦), 𝐿′ + 𝜂
(︀
𝑢𝑥

𝐿

)︀
= ̃︀𝜆, 𝐵

′
+ 𝛿

(︀𝑢𝑦

𝐵

)︀
= 𝜆,̃︀𝜆, 𝜆, 𝜂, 𝛿 − 𝑐𝑜𝑛𝑠𝑡.

(2.33)

We note that for the equation (2.33) the operators 𝑋4 and 𝑌4 read as

𝑋4 +
𝛿

𝐵
2 (𝑋1 − 𝑢𝑦𝑋3) = 0, 𝑌4 +

𝜂

𝐿2
(𝑌1 − 𝑢𝑥𝑌3) = 0.

We introduce the operators of length 4,

𝑋6 = [𝑋2, 𝑋5], 𝑋7 = [𝑋1, 𝑋5].

It is easy to show that 𝑋6 = 𝛿𝑢1

𝐵
2 𝑋5.

We let

𝛼 = −(𝑢1𝑓𝑢 + 𝑓𝑓𝑢1), 𝛽 = −𝑓𝑢1 , 𝛾 = −(𝑓𝑢 + 𝑓𝑢1𝑓𝑢1), 𝑝 = −𝑓𝑢1𝑢1 ,
𝑞 = 𝑓𝑢1𝑝, 𝑟 = 𝑓𝑢 + 𝑓𝑢1𝑓𝑢1 − 𝑢1𝑓𝑢𝑢1 − 𝑓𝑓𝑢1𝑢1 , 𝑠 = 𝑓𝑢1𝑟.

Employing Jacobi identity and the relations (2.26), (2.27) (2.28), we have

[𝐷,𝑋7] = − 𝛿

𝐵
2 (𝑢1𝛼𝑢 + 𝑓𝛼𝑢1)(𝑋1 − 𝑢1𝑋3) + (𝑢1𝑟𝑢 + 𝑓𝑟𝑢1−

−𝑠)(𝑓𝑢1𝑋2 +𝑋3) + (2𝛼 𝛿𝑢1

𝐵
2 + 𝑢1𝛽𝑢 + 𝑓𝛽𝑢1 + 𝑟)𝑋5 + 𝛽𝑋7.

(2.34)

One can see that the dimension of the space $5 increases at most by one, i.e., dim$5 6 5.
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Let for the equation (2.33) the dimension of the space $5 equals five, i.e., the opera-
tors 𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋7 are linear independent. Then we introduce the operators of length
5, 𝑋8 = [𝑋2, 𝑋7], 𝑋9 = [𝑋1, 𝑋7], [𝑋3, 𝑋5]. Employing Jacobi identity, we have

[𝑋3, 𝑋5] = −𝛿𝑢1
𝐵

2 𝑋7 +𝑋8,

i.e., dim$6 6 7.
According to (2.26), (2.27), (2.28), and (2.34), we obtain

[𝐷,𝑋8] = (𝑢1𝑟𝑢 + 𝑓𝑟𝑢1 − 𝑠)𝑢1(𝑓𝑢1𝑋2 +𝑋3) − ( 𝛿

𝐵
2 (𝑢1𝑟𝑢 + 𝑓𝑟𝑢1 − 𝑠)+

+
(︁

𝛿

𝐵
2 (𝑢1𝛼𝑢 + 𝑓𝛼𝑢1)

)︁
𝑢1

+ 𝛿2

𝐵
4𝑢1(𝑢1𝛼𝑢 + 𝑓𝛼𝑢1))(𝑋1 − 𝑢1𝑋3)+

+
(︁(︁

2𝛿𝛼 𝑢1

𝐵
2 + 𝑢1𝛽𝑢 + 𝑓𝛽𝑢1 + 𝑟

)︁
𝑢1

+ 𝛿 𝑢1

𝐵
2 (2𝛿𝛼 𝑢1

𝐵
2 +

+𝑢1𝛽𝑢 + 𝑓𝛽𝑢1 + 𝑟)
)︁
𝑋5 + 𝛽𝑢1𝑋7 + 2𝛽𝑋8,

(2.35)

[𝐷,𝑋9] = (𝑢1(𝑢1𝑟𝑢 + 𝑓𝑟𝑢1 − 𝑠)𝑢 + 𝑓(𝑢1𝑟𝑢 + 𝑓𝑟𝑢1 − 𝑠)𝑢1−
−𝑓𝑢1(𝑢1𝑟𝑢 + 𝑓𝑟𝑢1 − 𝑠))(𝑓𝑢1𝑋2 +𝑋3) + (2𝑢1𝑟𝑢 + 2𝑓𝑟𝑢1 − 𝑠+

+𝑢1(3𝛿
𝑢1

𝐵
2𝛼𝑢 + 𝑢1𝛽𝑢𝑢 + 𝑓𝑢𝛽𝑢1) + 2𝑢1𝑓𝛽𝑢𝑢1+

+𝑓
(︁

3𝛿 𝑢1

𝐵
2𝛼𝑢1 + 𝑓𝑢1𝛽𝑢1 + 𝑓𝛽𝑢1𝑢1

)︁
)𝑋5 + (2𝛿 𝑢1

𝐵
2𝛼 + 2𝑢1𝛽𝑢+

+2𝑓𝛽𝑢1 + 𝑟)𝑋7 + 𝛼𝑋8 + 𝛽𝑋9 − 𝛿

𝐵
2 (2𝑢1𝑓𝛼𝑢𝑢1+

+𝑢1(𝑢1𝛼𝑢𝑢 + 𝑓𝑢𝛼𝑢1) + 𝑓(𝑓𝑢1𝛼𝑢1 + 𝑓𝛼𝑢1𝑢1))(𝑋1 − 𝑢1𝑋3).

(2.36)

Lemma 2.6. If the dimension of the space $6 for the equation (2.33) equals six, then the
functions 𝐾(𝑢), 𝐿(𝑢𝑥), and 𝐵(𝑢𝑦) satisfy the relations

𝐾 ′′ = 4𝜆2𝑘22𝐾
3 + 2𝑘2𝜆𝐾𝐾

′, 𝐿′ = 𝑘2(1 + 2𝑘2
𝑢𝑥
𝐿

), 𝐵
′
= 𝜆(1 + 2𝜆

𝑢𝑦

𝐵
). (2.37)

At that

𝑋8 + 𝑑1(𝑋1 − 𝑢𝑦𝑋3) + 𝑑3𝑋7 = 0,

where

𝑑1 = 2𝜆𝑘2(1 + 𝜆
𝑢𝑦

𝐵
)(2𝜆𝑘2𝐾

2 +𝐾 ′), 𝑑3 = 2𝜆
1

𝐵
(1 + 𝜆

𝑢𝑦

𝐵
).

Remark 2.4. For the equation (2.33), (2.37) the constant 𝜆 is non-zero, otherwise 𝐵
′
= 0.

Remark 2.5. The equation (2.33), (2.37) by the point change

𝐾 =
1

𝜆𝑘3
̃︀𝐾, 𝐿 = 𝑘2̃︀𝐿, 𝐵 = 𝜆 ̃︀𝐵

is reduced to the equation

𝑢𝑥𝑦 = ̃︀𝐾̃︀𝐿 ̃︀𝐵, ̃︀𝐾 ′′ = 4 ̃︀𝐾3 + 2 ̃︀𝐾 ̃︀𝐾 ′, ̃︀𝐿′ = 1 + 2
𝑢𝑥̃︀𝐿 , ̃︀𝐵′ = 1 + 2

𝑢𝑦̃︀𝐵 ,

which is related with the Tzitzeica equation 𝑣𝑥𝑦 = 𝑒𝑣 + 𝑒−2𝑣 by the differential substitution
(see [4,20])

𝑣 = −1

2
ln(𝑢𝑥 − ̃︀𝐿) − 1

2
(𝑢𝑦 − ̃︀𝐵) + 𝑃 (𝑢),

where the function 𝑃 is determined by the ordinary differential equation

𝑃 ′2 − 2 ̃︀𝐾𝑃 ′ − 3 ̃︀𝐾 ′ − 2 ̃︀𝐾2 = 0.
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For the equation (2.33) (𝜆 = ̃︀𝜆 = 0)

𝑢𝑥𝑦 = 𝐾(𝑢)
√︁

1 − 𝑢21

√︁
1 − 𝑢21 (2.38)

the dimension of the linear space 𝐿6 equals 2, i.e., the space $6 is generated by the elements
𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋7, 𝑋8, 𝑋9 (dim$6 = 7).

We introduce the operators of length 6,

𝑋10 = [𝑋2, 𝑋8] = 3𝑢1

1−𝑢2
1
𝑋8, 𝑋11 = [𝑋1, 𝑋8],

𝑋12 = [𝑋2, 𝑋9], 𝑋13 = [𝑋1, 𝑋9].

Theorem 2.3. Let the dimension of the space $7 for equation (2.38) equals nine. Then

𝑋11 = −3𝐾𝐾 ′𝑢1(𝑋1 − 𝑢1𝑋3) + (3𝐾2 + 𝜇)𝑢1𝑋5 +
𝑢1

1 − 𝑢21
𝑋9.

And the function 𝐾 satisfies the relation

𝐾 ′′ − 2𝐾3 − 𝜇𝐾 = 0, 𝜇− 𝑐𝑜𝑛𝑠𝑡. (2.39)

The equation (2.38), (2.39) in a much more cumbersome form appeared for the first time in
the work [3]. The latter by the change (see [20])

𝑣 = arcsin𝑢𝑥 + arcsin𝑢𝑦 + 𝑃 (𝑢), 𝑃 ′2 = 2𝐾 ′ − 2𝐾2 − 𝜆,

is reduced to Sine-Gordon equation 𝑣𝑥𝑦 = 𝑒𝑣 + 𝑒−𝑣.

2.3. System of equations 𝑢𝑥 = 𝑓(𝑢, 𝑣), 𝑣𝑦 = 𝜙(𝑢, 𝑣). In this subsection we consider the
system of the equations

𝑢𝑥 = 𝑓(𝑢, 𝑣), 𝑣𝑦 = 𝜙(𝑢, 𝑣). (2.40)

In work [21] for classification of integrable equations the symmetry approach was employed
and it was shown that if first three 𝐷 and 𝐷-conditions of generalized symmetries existence
hold true, then system (2.40) is reduced to one of the following

𝑢𝑥 = 𝑣, 𝑣𝑦 = sin𝑢,
𝑢𝑥 = 𝑣, 𝑣𝑦 = 𝑒𝑢 + 𝑒−2𝑢,
𝑢𝑥 = sin 𝑣, 𝑣𝑦 = sin𝑢,
𝑢𝑥 = 𝛼(𝑣), 𝑣𝑦 = 𝑒𝑢,
𝑢𝑥 = 1

𝑣
, 𝑣𝑦 = 𝑢𝑣 + 1,

𝑢𝑥 = 𝑣, 𝑣𝑦 = 𝑒𝑢𝑣 + 𝑒2𝑢,
𝑢𝑥 = 𝑢𝑣 + 1, 𝑣𝑦 = 𝑢𝑣 + 1.

(2.41)

On the set of locally-analytic functions depending on a finite number of the variables
𝑢, 𝑣, 𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑢3, 𝑣3, . . . , the operator of total differentation w.r.t. 𝑥 reads as

𝐷 = 𝑣1
𝜕

𝜕𝑣
+ 𝑓

𝜕

𝜕𝑢
+𝐷𝑓

𝜕

𝜕𝑢1
+𝐷

2
𝑓
𝜕

𝜕𝑢2
+ . . . ,

where 𝑢1 = 𝑢𝑦, 𝑣1 = 𝑣𝑥, 𝑢2 = 𝑢𝑦𝑦, 𝑣2 = 𝑣𝑥𝑥, . . ..
Then

𝐷 = 𝑣1𝑋1 +𝑋2, (2.42)

where

𝑋1 =
𝜕

𝜕𝑣
, 𝑋2 = 𝑓

𝜕

𝜕𝑢
+𝐷𝑓

𝜕

𝜕𝑢1
+𝐷

2
𝑓
𝜕

𝜕𝑢2
+ . . . .

Thus, in a natural way one can associate the Lie ring generated by the vector fields 𝑋1 and
𝑋2 with the system of equations (2.40).
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Let dim$3 6 3, dim$4 6 4. Then one of the following relations

(𝑖) 𝑋3 = 𝑐1𝑋1 + 𝑐2𝑋2, 𝑐1 = 𝑐1(𝑣), 𝑐2 = 𝑐2(𝑣);
(𝑖𝑖) 𝑋4 = 𝑐1𝑋1 + 𝑐2𝑋2 + 𝑐3𝑋3, 𝑋5 = ̃︀𝑐1𝑋1 + ̃︀𝑐2𝑋2 + ̃︀𝑐3𝑋3,

𝑐𝑖 = 𝑐𝑖(𝑣), ̃︀𝑐𝑖 = ̃︀𝑐𝑖(𝑣), 𝑖 = 1, 2, 3;
(𝑖𝑖𝑖) 𝑋4 = 𝑐1𝑋1 + 𝑐2𝑋2 + 𝑐3𝑋3 + 𝑐5𝑋5,

𝑐𝑖 = 𝑐𝑖(𝑣), 𝑖 = 1, 2, 3, 5;
(𝑖𝑣) 𝑋5 = 𝑐1𝑋1 + 𝑐2𝑋2 + 𝑐3𝑋3 + 𝑐4𝑋4,

𝑐𝑖 = 𝑐𝑖(𝑣), 𝑖 = 1, 2, 3, 4,

(2.43)

hold true.
The operator 𝐷 = 𝜙 𝜕

𝜕𝑣
+ 𝑢1

𝜕
𝜕𝑢

+ 𝑢2
𝜕

𝜕𝑢1
+ . . . coincides with that of total differentiation w.r.t.

𝑦 on the set of the functions depending on the variables 𝑣, 𝑢, 𝑢1, 𝑢2, 𝑢3, . . ..

Lemma 2.7. Let 𝑢 and 𝑣 be solutions to the system of equations (2.40) (𝜙′
𝑢 ̸= 0) and a

vector field 𝑍 reads as

𝑍 = 𝛼0(𝑢, 𝑣)
𝜕

𝜕𝑢
+ 𝛼1(𝑢, 𝑣, 𝑢1)

𝜕

𝜕𝑢1
+ 𝛼2(𝑢, 𝑣, 𝑢1, 𝑢2)

𝜕

𝜕𝑢2
+ . . . .

If [𝐷,𝑍] = 0, then 𝑍 = 0.

We have

[𝐷,𝑋1] = −𝜙𝑣𝑋1, [𝐷,𝑋2] = −𝑓𝜙𝑢𝑋1. (2.44)

Employing Jacobi identity and relations (2.44), we also obtain

[𝐷,𝑋3] = [𝐷, [𝑋1, 𝑋2]] = −[𝑋2, [𝐷,𝑋1]] − [𝑋1, [𝑋2, 𝐷]] =
= [𝑋2, 𝜙𝑣𝑋1] − [𝑋1, 𝑓𝜙𝑢𝑋1] = −𝑓𝑣𝜙𝑢𝑋1 − 𝜙𝑣𝑋3,

[𝐷,𝑋4] = [𝐷, [𝑋1, 𝑋3]] = −𝑓𝑣𝑣𝜙𝑢𝑋1 − 𝜙𝑣𝑣𝑋3 − 2𝜙𝑣𝑋4,
[𝐷,𝑋5] = [𝐷, [𝑋2, 𝑋3]] = 𝜙𝑢 (𝑓𝑢𝑓𝑣 − 𝑓𝑓𝑢𝑣)𝑋1+

+ (𝑓𝑣𝜙𝑢 − 𝑓𝜙𝑢𝑣)𝑋3 − 𝑓𝜙𝑢𝑋4 − 𝜙𝑣𝑋5.

(2.45)

Let the dimension of the characteristic ring equal two. Then 𝑋3 = 𝑐1𝑋1 +𝑐2𝑋2. In according
with Lemma 2.7 and relations (2.44) and (2.45) we have

𝑐1 = 0, (𝑓𝑣 − 𝑐2𝑓)𝜙𝑢 = 0, 𝐷(𝑐2) + 𝑐2𝜙𝑣 = 0. (2.46)

If the operators 𝑋1, 𝑋2, and 𝑋3 are linearly independent and the dimension of the character-
istic ring equals three, then 𝑋4 = 𝑐1𝑋1 + 𝑐2𝑋2 + 𝑐3𝑋3, 𝑋5 = ̃︀𝑐1𝑋1 + ̃︀𝑐2𝑋2 + ̃︀𝑐3𝑋3. Employing
Lemma 2.7 and relations (2.44) and (2.45), we rewrite the last identities in an equivalent form,

𝑐1 = ̃︀𝑐1 = 0, (𝑐2𝑓 + 𝑐3𝑓𝑣 − 𝑓𝑣𝑣)𝜙𝑢 = 0,
𝑐2𝑣𝜙+ 2𝑐2𝜙𝑣 = 0, 𝑐3𝑣𝜙+ 𝜙𝑣𝑣 + 𝑐3𝜙𝑣 = 0,̃︀𝑐2𝑓 + ̃︀𝑐3𝑓𝑣 + 𝑓𝑢𝑓𝑣 − 𝑓𝑓𝑢𝑣 = 0, ̃︀𝑐2𝑣𝜙+ ̃︀𝑐2𝜙𝑣 + 𝑐2𝑓𝜙𝑢 = 0,̃︀𝑐3𝑣𝜙+ 𝑐3𝑓𝜙𝑢 − 𝑓𝑣𝜙𝑢 + 𝑓𝜙𝑢𝑣 = 0.

(2.47)

Let us consider now the cases when the characteristic ring is of minimal growth, i.e., dim$4 =
4. If the operators 𝑋1, 𝑋2, 𝑋3, and 𝑋4 are linearly independent, and 𝑋5 = 𝑐1𝑋1 + 𝑐2𝑋2+
+𝑐3𝑋3 + 𝑐4𝑋4, then

𝑐1 = ̃︀𝑐1 = 0, (𝑐2𝑓 + 𝑐3𝑓𝑣 + 𝑐4𝑓𝑣𝑣 + 𝑓𝑢𝑓𝑣 − 𝑓𝑓𝑢𝑣)𝜙𝑢 = 0,
𝑐2𝑣𝜙+ 𝑐2𝜙𝑣 = 0, 𝑐3𝑣𝜙− 𝑐4𝜙𝑣𝑣 − 𝑓𝑣𝜙𝑢 + 𝑓𝜙𝑢𝑣 = 0,

𝑐4𝑣𝜙− 𝑐4𝜙𝑣 + 𝑓𝜙𝑢 = 0.
(2.48)
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If the operators 𝑋1, 𝑋2, 𝑋3, and 𝑋5 are linearly independent, and 𝑋4 = 𝑐1𝑋1 +𝑐2𝑋2 +𝑐3𝑋3 +
𝑐5𝑋5, then

𝑐1 = ̃︀𝑐1 = 0, (𝑐2𝑓 + 𝑐3𝑓𝑣 − 𝑓𝑣𝑣 − 𝑐5(𝑓𝑢𝑓𝑣 − 𝑓𝑓𝑢𝑣))𝜙𝑢 = 0,
𝑐2𝑣𝜙+ 2𝑐2𝜙𝑣 − 𝑐2𝑐5𝑓𝜙𝑢 = 0,

𝑐3𝑣𝜙+ 𝑐3𝜙𝑣 + 𝜙𝑣𝑣 + 𝑐5(𝑓𝑣𝜙𝑢 − 𝑓𝜙𝑢𝑣) − 𝑐3𝑐5𝑓𝜙𝑢 = 0,
𝑐5𝑣𝜙+ 𝑐5𝜙𝑣 − 𝑐25𝑓𝜙𝑢 = 0.

(2.49)

In the same we introduce the 𝑦-characteristic Lie ring of system of equations (2.40). The
condition of “slow” growth yields that one of the following relations

(𝑖′) 𝑌3 = 𝛽1𝑌1 + 𝛽2𝑌2, 𝛽1 = 𝛽1(𝑢), 𝛽2 = 𝛽2(𝑢);

(𝑖𝑖′) 𝑌4 = 𝛽1𝑌1 + 𝛽2𝑌2 + 𝛽3𝑌3, 𝑌5 = ̃︀𝛽1𝑌1 + ̃︀𝛽2𝑌2 + ̃︀𝛽3𝑌3,
𝛽𝑖 = 𝛽𝑖(𝑢), ̃︀𝛽𝑖 = ̃︀𝛽𝑖(𝑢), 𝑖 = 1, 2, 3;

(𝑖𝑖𝑖′) 𝑌4 = 𝛽1𝑌1 + 𝛽2𝑌2 + 𝛽3𝑌3 + 𝛽5𝑌5,
𝛽𝑖 = 𝛽𝑖(𝑢), 𝑖 = 1, 2, 3, 5;

(𝑖𝑣′) 𝑌5 = 𝛽1𝑌1 + 𝛽2𝑌2 + 𝛽3𝑌3 + 𝛽4𝑌4,
𝛽𝑖 = 𝛽𝑖(𝑢), 𝑖 = 1, 2, 3, 4,

(2.50)

hold true.
For system of equations (2.41) one of conditions (2.43) and (2.50) holds true. Namely, for

the first, second, sixth, and seventh system (2.41) 𝑋4 = 0. And also for the first system we
have 𝑌4 = −𝑌2, for the second 𝑌4 = 2𝑌2 − 𝑌3, for the sixth 𝑌4 = −2𝑌2 + 3𝑌3, for the seventh
𝑌4 = 0.

For the third system 𝑋4 = −𝑋2 and 𝑌4 = −𝑌2.
The 𝑦-characteristic Lie ring of the forth system of equations 𝑢𝑥 = 𝛼(𝑣), 𝑣𝑦 = 𝑒𝑢 is three-

dimensional (𝑌3 = 𝑌2), and the 𝑥-characteristic ring for each of the cases (𝑖)–(𝑖𝑣) determines
the function 𝛼(𝑣) as follows. As 𝑋3 = 𝑐2𝑋2, it reads 𝛼 = 𝛾𝑒𝑐2𝑣 (𝑐2, 𝛾 are constants); in the case
(𝑖𝑖) the function 𝛼 satisfies the relations

𝑐2𝛼 + 𝑐3𝛼
′ − 𝛼′′ = 0, ̃︀𝑐2𝛼 + ̃︀𝑐3𝛼′ = 0,̃︀𝑐′2 + 𝑐2𝛼 = 0, ̃︀𝑐′3 + 𝑐3𝛼− 𝛼′ = 0, 𝑐1 = ̃︀𝑐1 = 0,

where 𝑐2, 𝑐3 are constants, ̃︀𝑐2 = ̃︀𝑐2(𝑣), ̃︀𝑐3 = ̃︀𝑐3(𝑣).
In the case (𝑖𝑖𝑖) the function 𝛼 satisfies the relations

𝑐2𝛼 + 𝑐3𝛼
′ − 𝛼′′ = 0, 𝑐′2 − 𝑐2𝑐5𝛼 = 0,

𝑐′3 + 𝑐5𝛼
′ − 𝑐3𝑐5𝛼 = 0, 𝑐′5 − 𝑐25𝛼 = 0, 𝑐𝑖 = 𝑐𝑖(𝑣), 𝑖 = 2, 3, 5.

At that 𝑋4 = 𝑐2𝑋2 + 𝑐3𝑋3 + 𝑐5𝑋5.
In the case (𝑖𝑣) 𝑋5 = 𝑐2𝑋2 + 𝑐3𝑋3 + 𝑐4𝑋4 the function 𝛼 is so that

𝑐2𝛼 + 𝑐3𝛼
′ + 𝑐4𝛼

′′ = 0, 𝑐′3 = 𝛼′,
𝑐′4 = −𝛼, 𝑐2 − 𝑐𝑜𝑛𝑠𝑡, 𝑐𝑖 = 𝑐𝑖(𝑣), 𝑖 = 3, 4.

Remark 2.6. Nontrivial symmetries exist only as 𝛼′′

𝛼
= 𝑐𝑜𝑛𝑠𝑡 (see [21]).

The fifth system of equations 𝑢𝑥 = 1
𝑣
, 𝑣𝑦 = 𝑢𝑣+ 1 (𝑌4 = 0) by the change 𝑣 = 𝑒−𝑤 is reduced

to

𝑢𝑥 = 𝑒𝑤, 𝑤𝑦 = 𝑢+ 𝑒𝑤.

For the last system of equations 𝑋4 = 0.
Thus, it is shown that systems of equations (2.41) have the rings of minimal growth, i.e.,

they satisfy (2.43) and (2.50).
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2.4. Nonlinear integrable equations with a finite dimensional characteristic ring.
In this subsection we consider the equations (2.24) with the characteristic ring 𝐴 of the dimen-
sion 2 and 3 (see [16,18,35]) and the equation (2.33) as dim𝐴 = 4.

One can see that the operators 𝑋1 and 𝑋2 are linearly independent, i.e., dim𝐿2 = 2.
The following statement holds true.

Lemma 2.8. The dimension of the characteristic ring 𝐴 equals two if and only if the right
hand side 𝑓 of the equation (2.24) has the form

𝑓 = 𝐴(𝑢, 𝑢𝑥)𝑢𝑦.

At that 𝑋3 = 1
𝑢𝑦
𝑋1.

Let the dimension of the ring 𝐴 equals three. In this case the relations

𝑋4 + 𝑐(𝑋1 − 𝑢1𝑋3) = 0, 𝑋5 + 𝑐(𝑋1 − 𝑢1𝑋3) = 0,
𝑐 = 𝑐(𝑢, 𝑢1, 𝑢1, 𝑢2, . . .), 𝑐 = 𝑐(𝑢, 𝑢1, 𝑢1, 𝑢2, . . .)

hold true. Then

[𝐷,𝑋4 + 𝑐(𝑋1 − 𝑢1𝑋3)] = 0, [𝐷,𝑋5 + 𝑐(𝑋1 − 𝑢1𝑋3)] = 0.

In accordance with (2.26), (2.27), and (2.28), the last relations are equivalent to the following
system of equations

𝐷(𝑐) + 2𝑐𝑓𝑢1 = 0, 𝑓𝑢1𝑢1 + 𝑐(𝑓 − 𝑢1𝑓𝑢1) = 0,
𝐷(𝑐) + 𝑐(𝑢1𝑓𝑢 + 𝑓𝑓𝑢1) + 𝑐𝑓𝑢1 = 0,

𝑓𝑢 + 𝑓𝑢1𝑓𝑢1 − 𝑢1𝑓𝑢𝑢1 − 𝑓𝑓𝑢1𝑢1 − 𝑐(𝑓 − 𝑢1𝑓𝑢1) = 0.
(2.51)

It is clear that 𝑐 = 𝑐(𝑢, 𝑢1), 𝑐 = 𝑐(𝑢, 𝑢1).
The statement holds true.

Lemma 2.9. the equations (2.24) with the characteristic Lie ring 𝐴 of the dimension 3 by
the point change is reduced to one of the following

𝑢𝑥𝑦 = − 1

𝐵𝑢𝑥

(𝐵𝑢𝑢𝑦 + 1), 𝐵 = 𝐵(𝑢, 𝑢𝑥), 𝑐 = 𝑐 = 0;

or

𝑢𝑥𝑦 = 𝑒𝑢Ψ(𝑢𝑥), 𝑐 = 0, 𝑐 = 𝑐(𝑢, 𝑢𝑦);

or

𝑢𝑥𝑦 =
1

𝑢
𝑝(𝑢𝑥)𝑟(𝑢𝑦), 𝑟′ +

𝑢𝑦
𝑟

= 𝜆, 𝑝′ +
𝑢𝑥
𝑝

= 𝜆,

where 𝜆− 𝑐𝑜𝑛𝑠𝑡, 𝜆 ̸= 0, 𝑐 =
1

𝑟2
, 𝑐 = −1

𝑢
;

or

𝑢𝑥𝑦 = 𝑞(𝑢)𝑝(𝑢𝑥)𝑟(𝑢𝑦), (ln 𝑞)′′ = 𝑞2, 𝑟′ +
𝑢𝑦
𝑟

= 0, 𝑝′ +
𝑢𝑥
𝑝

= 0,

where 𝑐 =
1

𝑟2
, 𝑐 =

𝑞′

𝑞
;

or

𝑢𝑥𝑦 = 𝐹 (𝑢, 𝑢𝑦)𝑢𝑥,

where 𝑐 =
1

𝑢𝑦
(ln(𝐹 − 𝑢𝑦𝐹 𝑢𝑦))′𝑢𝑦

, 𝑐 = (ln(𝐹 − 𝑢𝑦𝐹 𝑢𝑦))′𝑢,

the function 𝐹 satisfies the relation

𝑢𝑦𝑒
−𝜙 + (𝐹 − 𝜙′𝑢𝑦)

∫︁
𝑒−𝜙𝑑𝑢 = Φ(𝐹 − 𝜙′𝑢𝑦), 𝜙 = 𝜙(𝑢).
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Here 𝐵,Ψ,Φ are arbitrary functions of their arguments. And

𝑋4 = −𝑐(𝑋1 − 𝑢𝑦𝑋3), 𝑋5 = −𝑐(𝑋1 − 𝑢𝑦𝑋3).

Let us consider now the equation (2.33) for which dim$4 = 4.

Lemma 2.10. Let the dimension of the space 𝑝𝑜𝑢𝑛𝑑𝑠4 equals for. For the equation (2.33)
dim$5 = 4 if and only if the function 𝐾 satisfies the relation(︂

𝐾 ′

𝐾

)︂′

= 𝜅𝐾2, 𝜅− 𝑐𝑜𝑛𝑠𝑡. (2.52)

We observe that the dimensions of the 𝑥- and 𝑦-characteristic Lie rings 𝐴 and 𝐴 of the
equation (2.33), (2.52) equal four (see [20]). This is a Liouville type equation.

2.5. Equation 𝑢𝑥𝑦 = 𝑓(𝑢, 𝑢𝑥, 𝑢𝑦) with second order 𝑥- and 𝑦-integrals. In the work [36]
the method for classification nonlinear hyperbolic equations (2.24) with second order 𝑥- and
𝑦-integrals based on studying characteristic Lie rings was suggested. The characteristic rings
of such equations are three-dimensional.

Theorem 2.4. Let the characteristic rings 𝐴 and 𝐴 of the equation (2.24) be three-
dimensional. The the following relations

𝐴𝑢1 = 0, 𝐴𝑢𝑢1 + 𝐴𝑢1𝑓 = −2𝑓𝑢1𝐴, (2.53)

𝐵𝑢1 = 0, 𝐵𝑢𝑢1 +𝐵𝑢1𝑓 = −(𝑓𝑢𝑢1 + 𝑓𝑓𝑢1)𝐴− 𝑓𝑢1𝐵, (2.54)

hold true, where 𝐴 =
𝑓𝑢1𝑢1

𝑓−𝑢1𝑓𝑢1
, 𝐵 =

𝑢1𝑓𝑢𝑢1+𝑓𝑓𝑢1𝑢1−𝑓𝑢−𝑓𝑢1𝑓𝑢1
𝑓−𝑢1𝑓𝑢1

, and

𝐴𝑢1 = 0, 𝐴𝑢𝑢1 + 𝐴𝑢1𝑓 = −2𝑓𝑢1𝐴, (2.55)

𝐵𝑢1 = 0, 𝐵𝑢𝑢1 +𝐵𝑢1𝑓 = −(𝑓𝑢𝑢1 + 𝑓𝑓𝑢1)𝐴− 𝑓𝑢1𝐵, (2.56)

where 𝐴 =
𝑓𝑢1𝑢1

𝑓−𝑢1𝑓𝑢1
, 𝐵 =

𝑢1𝑓𝑢𝑢1+𝑓𝑓𝑢1𝑢1−𝑓𝑢−𝑓𝑢1𝑓𝑢1
𝑓−𝑢1𝑓𝑢1

.

Relations (2.53)–(2.56) allow one to make the complete list of the equations with second
order integrals (see, for instance, [6]).

2.6. Linearized equation. For classification of nonlinear integrable equations instead of the
Lie ring one can uses the characteristic ring of its linearization.

Consider the linearization

(𝐷𝐷 − 𝑓𝑢𝑥𝐷 − 𝑓𝑢𝑦𝐷 − 𝑓𝑢)𝑣 = 0 (2.57)

of equation (2.4). For this equation we can define the sequence of Laplace invariants (see [20]).

Definition 2.1. Equation (2.4) is called Darboux integrable if there exist functions 𝜔, 𝜔
depending on a finite number of the variables

𝑥, 𝑦, 𝑢, 𝑢1, 𝑢2, 𝑢3, . . . , 𝑢1, 𝑢2, 𝑢3, . . . (2.58)

such that on the solutions of the equation (2.4) the function 𝜔 is independent on the variable
𝑦, and the function 𝜔 is independent of 𝑥.

Let us adduce the criterion for Darboux integrability (see [19, 32,41,49]).

Theorem 2.5. The nonlinear equation (2.4) is Darboux integrable if and only if the sequence
of the Laplace invariants for the linearized equation (2.57) breaks on both sides.

Employing the notion of Characteristic Lie ring, in the works [14, 17] it was shown that the
sequence the Laplace invariants for the linearized equation (2.57) breaks on both sides only in
the case when the characteristic Lie rings are finite-dimensional.
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2.7. Generalized symmetries of integrable equations. In the present section we provide
the description of generalized symmetries for integrable equations on the basis of the generators
of the characteristic Lie ring (see [10,32,37]).

The right hand side of the nonlinear equation 𝑢𝑥𝑦 = 𝑓(𝑢) possessing nontrivial Lie-Bäcklund
group is reduced to one of the forms 𝑒𝑢, 𝑒𝑢 + 𝑒−𝑢, 𝑒𝑢 + 𝑒−2𝑢.

2.7.1. Symmetries of Liouville equation. The 𝑥-characteristic Lie ring is generated by the
operators

𝑋1 = 𝑒𝑢
𝜕

𝜕𝑢1
+𝐷(𝑒𝑢)

𝜕

𝜕𝑢2
+ . . . , 𝑋2 =

𝜕

𝜕𝑢
.

Let

𝑋 = 𝑒−𝑢

∞∑︁
𝑘=1

𝐷𝑘−1(𝑒𝑢)
𝜕

𝜕𝑢𝑘
= 𝑒−𝑢𝑋1,

and obtain the operator 𝑋 by the change 𝑢𝑘 ↔ 𝑢𝑘, 𝐷 ↔ 𝐷.
It is known (see [22]) that a symmetry can be represented as

𝐹 = 𝜙(𝑢1, 𝑢2, . . . , 𝑢𝑛) + 𝜙(𝑢1, 𝑢2, . . . , 𝑢𝑚),

where 𝜙, 𝜙 are symmetries.
Now the generating equation

𝐷𝐷𝜙 = 𝑒𝑢𝜙

becomes

(𝐷 + 𝑢1)𝑋𝜙 = 𝜙. (2.59)

Applying the operator operator 𝑋 to the equation (2.59), we obtain

(𝐷 + 𝑢1)𝑋
2𝜙 = 0.

Therefore, ℎ = 𝑋𝜙 ∈ 𝐾𝑒𝑟𝐷, in the same way ℎ = 𝑋𝜙 ∈ 𝐾𝑒𝑟𝐷, and it follows from the formula
(2.59) that each symmetry of the Liouville equation can be represented as

𝑓 = (𝐷 + 𝑢1)ℎ+ (𝐷 + 𝑢1)ℎ, (2.60)

where ℎ(ℎ) is an arbitrary element of 𝐾𝑒𝑟𝐷(𝐷). Thus, the following statement holds true.

Theorem 2.6. The symmetries of Liouville equation are calculated by the formula

𝑓 = (𝐷 + 𝑢1)ℎ(𝑤,𝑤1, . . .) + (𝐷 + 𝑢1)ℎ(𝑤,𝑤1, . . .),

where 𝑤 = 𝑢2 − 𝑢2
1

2
(𝑤 = 𝑢2 − 𝑢2

1

2
), ℎ(ℎ) is an arbitrary function of its arguments.

2.7.2. The symmetries of Sine-Gordon equation. The vector field of the 𝑥-characteristic ring
for the Sine-Gordon equation

𝑋1 = (𝑒𝑢 + 𝑒−𝑢)
𝜕

𝜕𝑢1
+𝐷(𝑒𝑢 + 𝑒−𝑢)

𝜕

𝜕𝑢2
+ . . .

can be represented as (see [11])

𝑋1 = 𝑒𝑢𝑋 + 𝑒−𝑢𝑌.

Then the generating equation 𝐷𝐷𝐹 = (𝑒𝑢 − 𝑒−𝑢)𝐹 is equivalent to the system

(𝐷 + 𝑢1)𝑋𝐹 = 𝐹, (𝐷 − 𝑢1)𝑌 𝐹 = 𝐹. (2.61)

Since the commutator [𝐷,𝐷] = 0, then the relations

(𝐷 + 𝑢1)𝑋 = 𝑋𝐷, (𝐷 − 𝑢1)𝑌 = 𝑌 𝐷 (2.62)
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hold true. Applying the operator of differentiation 𝑋 and 𝑌 to the equations (2.61) and
employing (2.62), we arrive at the formulas

𝐷𝑌𝑋𝐹 = (𝑌 −𝑋)𝐹, (𝐷 + 𝑢1)𝑋𝑌𝑋𝐹 = 𝑌 𝑋𝐹,
(𝐷 − 𝑢1)𝑌

2𝑋𝐹 = −𝑌 𝑋𝐹. (2.63)

It follows from (2.61) – (2.63) that if 𝐹 is a symmetry of order 𝑛, then 𝑌 𝑋𝐹 is a symmetry of
order 𝑛− 2. Indeed, since

(𝑌 −𝑋)𝐹 = −2
(︁
𝑢1

𝜕
𝜕𝑢2

+ 𝑢2
𝜕

𝜕𝑢3
+ . . .+ (𝑢𝑛−1 + . . .) 𝜕

𝜕𝑢𝑛

)︁
(𝑢𝑛+

+𝑐𝑢𝑛−1 + 𝑔(𝑢1, . . . , 𝑢𝑛−2)),

then ord (𝑌 − 𝑋)𝐹 = 𝑛 − 1, and therefore we obtain by the first relation in (2.63) that
ord𝑌 𝑋𝐹 = 𝑛− 2. Hence, if the original equation possesses a symmetry of an even order, then
it should possess a second order symmetry. But no second order symmetry exists.

By the formulas (2.61) we get that

2𝐹 = (𝐷 − 𝑢1𝐷
−1𝑢1)(𝑋 − 𝑌 )𝐹.

The latter due to (2.63) is written as

2𝐹 = (−𝐷2 + 𝑢1𝐷
−1𝑢1𝐷)𝑌 𝑋𝐹 = −𝐿𝑌 𝑋𝐹.

Thus, the algebra of symmetries of Sine-Gordon equation is calculated by the recurrent formula

𝐹 (𝑛+2) = (𝐷2 − 𝑢21 + 𝑢1𝐷
−1𝑢2)𝐹

(𝑛), 𝐹 (1) = 𝑢1, 𝑛 = 1, 3, 5, . . . . (2.64)

2.7.3. Symmetries of Tzitzeica equation. We define the differentiations 𝑋 and 𝑌 by the rela-
tion 𝑒𝑢𝑋 + 𝑒−2𝑢𝑌 = 𝑋1, where

𝑋1 = (𝑒𝑢 + 𝑒−2𝑢)
𝜕

𝜕𝑢1
+𝐷(𝑒𝑢 + 𝑒−2𝑢)

𝜕

𝜕𝑢2
+ . . . .

Then for the functions 𝐹 (𝑢1, . . . , 𝑢𝑛) the generating equation

𝐷𝐷𝐹 = (𝑒𝑢 − 2𝑒−2𝑢)𝐹

is equivalent to the sytstem

(𝐷 + 𝑢1)𝑋𝐹 = 𝐹, (𝐷 − 2𝑢1)𝑌 𝐹 = −2𝐹. (2.65)

A consequent applying of the operators 𝑋 and 𝑌 to the equations (2.65) leads one to the
formulas

(𝐷 − 𝑢1)𝑌 𝑋𝐹 = (𝑌 −𝑋)𝐹, 𝐷𝑋𝑌𝑋𝐹 = 3𝑌 𝑋𝐹,
(𝐷 + 𝑢1)𝑋

2𝑌 𝑋𝐹 = 3𝑋𝑌𝑋𝐹, (𝐷 + 2𝑢1)𝑋
3𝑌 𝑋𝐹 = 2𝑋2𝑌 𝑋𝐹,

(𝐷 − 𝑢1)𝑌 𝑋
2𝑌 𝑋𝐹 = −𝑋2𝑌 𝑋𝐹,

𝐷𝑌 𝑋3𝑌 𝑋𝐹 = 2(𝑌 𝑋2𝑌 𝑋 −𝑋3𝑌 𝑋)𝐹,
(𝐷 + 𝑢1)𝑋(𝑌 𝑋3𝑌 𝑋𝐹 ) = 𝑌 𝑋3𝑌 𝑋𝐹,

(𝐷 − 2𝑢1)𝑌 (𝑌 𝑋3𝑌 𝑋𝐹 ) = −2𝑌 𝑋3𝑌 𝑋𝐹.

(2.66)

Let 𝐹 be the symmetry of order 𝑛. Then it follows from the formulas (2.65), (2.66) that
𝑌 𝑋3𝑌 𝑋𝐹 is the symmetry of the original equations of order 𝑛 − 6. Then we rewrite the
equations (2.65) as

𝐷(2𝑋 + 𝑌 )𝐹 + 2𝑢1(𝑋 − 𝑌 )𝐹 = 0, 𝐷(𝑋 − 𝑌 )𝐹 + 𝑢1(𝑋 + 2𝑌 )𝐹 = 3𝐹.

By the latter one can obtain the formula

3𝐹 = (𝐷 − 𝑢1 − 2𝑢1𝐷
−1𝑢1)(𝑋 − 𝑌 )𝐹. (2.67)

Employing now (2.66), we obtain a new representation for the symmetry (2.67)

27𝐹 = (𝐷 − 𝑢1 − 2𝑢1𝐷
−1𝑢1)(𝐷 − 𝑢1)𝐷(𝐷 + 𝑢1)𝑋

2𝑌 𝑋𝐹. (2.68)
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We write the forth and fifth identities in (2.66) as

[𝐷, (𝑋3𝑌 𝑋 + 2𝑌 𝑋2𝑌 𝑋) + 2𝑢1(𝑋
3𝑌 𝑋 − 𝑌 𝑋2𝑌 𝑋)]𝐹 = 0,

[𝐷(𝑋3𝑌 𝑋 − 𝑌 𝑋2𝑌 𝑋) + 𝑢1(2𝑋
3𝑌 𝑋 + 𝑌 𝑋2𝑌 𝑋) − 3𝑋2𝑌 𝑋]𝐹 = 0.

It follows from the last relations that

3𝑋2𝑌 𝑋𝐹 =
(︀
(𝐷 + 𝑢1 − 2𝐷−1𝑢1)(𝑋

3𝑌 𝑋 − 𝑌 𝑋2𝑌 𝑋)
)︀
𝐹. (2.69)

And finally, employing the sixth identity in (2.66) and (2.69), we can write the formula (2.68)
as

162𝐹 = 𝐿𝑌 𝑋3𝑌 𝑋𝐹,

where the recurrence operator 𝐿 is defined by the formula

𝐿 = (𝐷 − 𝑢1 − 2𝑢1𝐷
−1𝑢1)(𝐷 − 𝑢1)𝐷(𝐷 + 𝑢1)(𝐷 + 𝑢1 − 2𝑢1𝐷

−1𝑢1)𝐷. (2.70)

The last relation gives the recurrent formula for the symmetries

𝐹 (𝑛+6) = 𝐿𝐹 (𝑛). (2.71)

Letting 𝐹 (1) = 𝑢1 and 𝐹 (5) = 𝑢5+5(𝑢2−𝑢21)𝑢3−5𝑢1𝑢
2
2+𝑢51, we obtain from (2.71) two sequences

of symmetries {︀
𝐹 (1+6𝑘)

}︀
and

{︀
𝐹 (5+6𝑘)

}︀
, 𝑘 = 0, 1, 2, . . .

for the Tzitzeica equation.

2.7.4. Symmetries of modified Sine-Gordon equation. The modified Sine-Gordon equation
(2.38), (2.39) (mSG) can be represented as

𝑢𝑥𝑦 = 𝑠(𝑢)𝑏(𝑢1)𝑏(𝑢1), where 𝑠′′−2𝑠3−𝜇𝑠 = 0 𝑏′ = −𝑢1
𝑏
, 𝑏

′
= −𝑢1

𝑏
, 𝜇−𝑐𝑜𝑛𝑠𝑡. (2.72)

On the set of locally-analytic functions in ℑ
𝐷𝐹 (𝑢, 𝑢1, 𝑢2, . . .) = 𝑢1

𝜕
𝜕𝑢

+ 𝑠𝑏𝑏 𝜕
𝜕𝑢1

+𝐷(𝑠𝑏𝑏) 𝜕
𝜕𝑢2

+ . . . =

= 𝑢1
𝜕
𝜕𝑢

+ 𝑠𝑏𝑏 𝜕
𝜕𝑢1

+ (𝑠′𝑢1𝑏𝑏− 𝑠𝑢1𝑢2

𝑏
𝑏− 𝑠2𝑏2𝑢1)

𝜕
𝜕𝑢2

+ . . . .

This is why the generators of the 𝑥-characteristic Lie algebra 𝐴 of equation (2.72) read as

𝑋 =
𝜕

𝜕𝑢
− 𝑠2𝑏2𝑢1

𝜕

𝜕𝑢2
+ . . . , 𝑌 = 𝑠𝑏

𝜕

𝜕𝑢1
+ (𝑠′𝑢1𝑏− 𝑠

𝑢1𝑢2
𝑏

)
𝜕

𝜕𝑢2
+ . . . . (2.73)

Then 𝐷 = 𝑢1𝑋 + 𝑏𝑌 .

Theorem 2.7. The differential operator

𝑌 2 + 𝑠2

maps the generalized symmetries of order 𝑛 into the symmetries of order 𝑛− 2. The recurrence
operator

𝐷2 + 2
𝑢1𝑢2
𝑏2

𝐷 − 𝑢1𝐷
−1(

𝑢3
𝑏2
𝐷 +

𝑢1𝑢
2
2

𝑏4
𝐷 + 3𝑠2𝑢1𝐷+

+3𝑠𝑠′𝑢21 − 𝑠𝑠′ + 𝜆𝑢2) + 𝑠2 + 𝜆𝑢21
determines the algebra of the symmetries for the equation mSG (see [37]).

We observe that the recurrence operator was obtained in the work [28] by using Bäcklund
transformation.

If 𝜇 = 0, i.e., 𝑠′2 − 𝑠𝑠′′ + 𝑠4 = 0, then the function 𝑠 is determined as

𝑠 =

√
𝜆

cos(
√
𝜆𝑢− 𝑐)

, 𝜆, 𝑐− 𝑐𝑜𝑛𝑠𝑡.
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It happens that there exists an operator which maps the symmetries of the equation

𝑢𝑥𝑦 =
1

cos𝑢

√︁
1 − 𝑢21

√︁
1 − 𝑢21. (2.74)

into a 𝑦-integral.

Theorem 2.8. The operator
𝑏

𝑠
𝑌 + 𝑢1

maps a symmetry 𝐹 into an integral 𝑊 of the equation (2.74). And the operator(︂
𝑠′

𝑠
+
𝑢2
𝑏2

)︂−1(︂
𝐷 − 𝑠

𝑏
𝐷

(︂
𝑏

𝑠

)︂)︂
maps an integral into a symmetry.

3. System of hyperbolic equations

3.1. Symmetries. Characteristic ring.

3.1.1. Exponential systems of kind I and Cartan matrices. The integrability of the systems of
equations 𝑢𝑧𝑧 = 𝐹 (𝑢) is determined by the properties of the characteristic Lie algebra defined
by the vector field 𝐹 (𝑢) (see [30]). In this connection the problem on classification of finite-
dimensional (kind I) and possessing finite-dimensional representation (kind II) characteristic
algebras appear. We consider exponential systems of equations. The exponential system with
matrix of coefficients 𝐴 = (𝑎𝑖𝑗) is written as

𝑢𝑖𝑧𝑧 = 𝑒𝑣
𝑖

, 𝑣𝑖 = 𝑎𝑖1𝑢
1 + . . .+ 𝑎𝑖𝑟𝑢

𝑟, 𝑖 = 1, . . . , 𝑟. (3.75)

If 𝐴 is the Cartan matrix of a simple Lie algebra, then this system is integrated by qudrature
(see [29, 57]).

For systems of equations (3.75) with arbitrary matrix 𝐴 in the work [30] they made a conjec-
ture on coinciding the characteristic algebra 𝒳 (𝐴) with a generated by positive roots subalgebra
𝐺+(𝐴) of a countergraded Lie algebra canonically associated with the matrix 𝐴. It is known
(see [25]) that a countergraded Lie algebra is finite-dimensional if and only if the matrix 𝐴 is
equivalent to one of Cartan matrices of a simple Lie algebra.

Or aim is the description of finite-dimensional characteristic algebras 𝒳 (𝐴) correspond-
ing to non-degenerate matrices 𝐴. The elements of the algebra 𝒳 (𝐴) are the operators∑︀

𝑖,𝑗 𝑓𝑖𝑗(𝑢1, 𝑢2, . . .)
𝜕

𝜕𝑢𝑖
𝑗

in the space of variables 𝑢𝑗 = (𝑢1𝑗 , . . . , 𝑢
𝑟
𝑗), 𝑗 ≥ 1. The generators

𝑋1, . . . , 𝑋𝑟 of Lie algebra 𝒳 (𝐴) are determined by the relations

𝑋𝑗𝐷 = (𝐷 + 𝑎𝑗)𝑋𝑗, 𝑋𝑗𝑢
𝑘
1 = 𝛿𝑘𝑗 , (3.76)

where 𝐷 : 𝑢𝑗 → 𝑢𝑗+1, 𝑎𝑗 = 𝑎𝑗1𝑢
1
1 + . . .+ 𝑎𝑗𝑟𝑢

𝑟
1. Regarded as a vector space, the characteristic

algebra is generated by the multiple commutator of special form

𝑋𝛼1,...,𝛼𝑛 = 𝑎𝑑𝛼1 . . . 𝑎𝑑𝛼𝑛−1𝑋𝛼𝑛 , 𝑎𝑑𝑗 : 𝑌 → [𝑋𝑗, 𝑌 ]. (3.77)

It is convenient to replace the non-degeneracy condition for the matrix 𝐴 of system of equa-
tions (3.75) by the conditions

𝑎𝑖𝑖 = 2, 𝑎𝑖𝑗 = 0 ⇔ 𝑎𝑖𝑗 = 0,
𝑎𝑖𝑗 = 0,−1,−2, . . . (𝑖, 𝑗 = 1, . . . , 𝑟, 𝑖 ̸= 𝑗).

(3.78)

We call the matrix satisfying these conditions (possible degenerate) a generalized Cartan matrix.
Let us show that relations (3.78) are implications of the finite dimension of the algebra 𝒳 (𝐴)
and the condition det𝐴 ̸= 0.
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The finite dimension of the characteristic algebra means vanishing of commutators (3.77) of
sufficiently high order 𝑛. It follows from the expansion

𝒳 (𝐴) ≡ 𝒳 = 𝒳1 ⊕𝒳2 ⊕ . . .⊕𝒳𝑛 ⊕ . . . ,

where 𝒳𝑗 is the linear subspace spanned over commutators of order 𝑗. 𝒳𝑗 ∩ 𝒳𝑘 = {0}, since
the coefficients 𝑋𝛼𝑢

𝑖
𝑚 of the operator 𝑋𝛼 ∈ 𝒳𝑛 are generalized homogenous polynomials of

order 𝑚 − 𝑛. For the operators 𝑋1, . . . , 𝑋𝑟 ∈ 𝒳1 it holds true due to formula (3.76), and for
commutators (3.77) it does due to the general formula

𝑋𝛼𝐷 = (𝐷 + 𝑎𝛼1 + . . .+ 𝑎𝛼𝑛)𝑋𝛼 +𝑋[𝛼],

𝑋[𝛼] = −𝑎𝛼𝑛−1𝛼𝑛𝑋𝛼/𝛼𝑛 +
∑︀𝑛−1

𝑗=1 𝑐𝑗𝑋𝛼/𝛼𝑗
, 𝑐𝑗 =

∑︀𝑛
𝑘=𝑗+1 𝑎𝛼𝑘𝛼𝑗

.
(3.79)

where 𝛼/𝛼𝑗 is the multi-index obtained from 𝛼 by crossing out the component with index 𝑗.
Formula (3.79) implies in particular the relation

𝑋𝛼1...𝛼𝑛𝑢𝑛 = 𝑋[𝛼]𝑢𝑛−1, 𝑛 ≥ 2, (3.80)

which yields that as 𝑛 ≥ 1(︀
𝑎𝑑𝑛𝑗𝑋𝑘

)︀
𝑢𝑖𝑛+1 = 𝑛

(︀
𝑎𝑘𝑗 + 𝑛−1

2
𝑎𝑗𝑗
)︀
𝑎𝑑𝑛−1

𝑗 𝑋𝑘𝑢
𝑖
𝑛 = . . . =

= 𝑛!
∏︀𝑛

𝑝=2

(︀
𝑎𝑘𝑗 + 𝑝−1

2
𝑎𝑗𝑗
)︀
,

𝑋𝑗𝑘𝑢
𝑖
2 = 𝑛!

∏︀2
𝑝=2

(︀
𝑎𝑘𝑗 + 𝑝−1

2
𝑎𝑗𝑗
)︀ (︀
𝑎𝑘𝑗𝛿

𝑖
𝑘 − 𝑎𝑗𝑘𝛿

𝑘
𝑗

)︀
.

(3.81)

Letting 𝑎𝑗𝑗 = 0, we obtain 𝑎𝑑𝑛𝑗𝑋𝑘𝑢
𝛼
𝑛+1 = 𝑛! (𝑎𝑘𝑗)

𝑛−1 . Thus, for a finite-dimensional algebra
it follows from 𝑎𝑗𝑗 = 0 that 𝑎1𝑗 = 𝑎2𝑗 = . . . = 𝑎𝑟𝑗 = 0, and it contradicts to the non-degeneracy
of the matrix 𝐴. Hence, one can let 𝑎𝑗𝑗 = 2, ∀𝑗 = 1, . . . , 𝑟. Formula (3.81) as 𝑖 = 𝑗 implies
𝑎𝑗𝑘(𝑎𝑘𝑗 + 1)(𝑎𝑘𝑗 + 2) . . . (𝑎𝑘𝑗 + 𝑛) = 0, 𝑛≫ 1. Relations (3.78) are proven.

The matrix 𝐴 of order 𝑟 is called expansible if for some partition of the index set {1, . . . , 𝑟} =
𝐼1 ∪ 𝐼2, 𝐼1 ∩ 𝐼2 = ∅ the elements of the matrix 𝐴 satisfy the conditions 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0, ∀𝑖 ∈
𝐼1, 𝑗 ∈ 𝐼2. System of equations (3.75) with an expansible matrxi 𝐴 splits into two independent
subsystems. The matrices of systems (3.75) distinguishing only by the variables numeration
are called equivalent.

Theorem 3.1. Description of finite-dimensional characteristic algebras Non-
expansible generalized Cartan matrices with a finite-dimensional characteristic algebra is equiv-
alent to the Cartan matrix of a simple Lie algebra (table 1).

Table 1.

In Table 1 we give the graphs (Dynkin schemes) of Cartan matrix. The vertices of the graph
are numbered. The edge {𝑖, 𝑗} connects the vertices with the indexes 𝑖, 𝑗 if 𝑎𝑖𝑗𝑎𝑗𝑖 ̸= 0. The
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graphs given in the table determine uniquely the Cartan matrices (see [5]). The multiplicity
of the edge {𝑖, 𝑗} indicates the value of the product 𝑎𝑖𝑗𝑎𝑗𝑖 = 1, 2, 3. The arrow determines the
position of an element not equalling to −1. We note that the transition 𝑖 ↔ 𝑗 of the graph
vertices corresponds to the transition 𝑢𝑖 ↔ 𝑢𝑗.

Remark 3.1. The finite dimension of the characteristic algebra corresponding to one of the
Cartan matrices follows from relations (see (3.81))

𝑎𝑑
1−𝑎𝑘𝑗
𝑗 𝑋𝑘 = 0, 𝑗 ̸= 𝑘.

Indeed, similar relations determine completely the generated by positive roots subalgebra 𝐺+

of the countergraded Lie algebra, which is finite-dimensional in the case of the Cartan matrices
(see [25]).

The equation
𝜕
𝜕𝑧
𝜔 (𝑢1, . . . , 𝑢𝑛) = 0 (3.82)

is called the characteristic equation of the system 𝑢𝑖𝑧𝑧 = 𝐹 𝑖(𝑢1, . . . , 𝑢𝑟), 𝑖 = 1, 2, . . . , 𝑟. The
operator

𝜕
𝜕𝑧

= 𝐹 (𝑢) 𝜕
𝜕𝑢1

+ 𝐹𝑧(𝑢) 𝜕
𝜕𝑢2

+ 𝐹𝑧𝑧(𝑢) 𝜕
𝜕𝑢3

+ . . . (3.83)

determines the characteristic Lie algebra 𝒳 (𝐹 ) of this system. The generators of the algebra
𝒳 (𝐹 ) are operators (3.83) associated with different values of the parameter 𝑢 = (𝑢1, . . . , 𝑢𝑟).
It is easy to see that in the case of exponential system (3.75) corresponding to the generalized
Cartan matrix, the characteristic Lie algebra defined in this way coincides with the Lie algebra
generated by operators (3.76).

Lemma 3.1. Characteristic equation (3.82) of the system with a finite-dimensional algebra
𝒳 (𝐹 ), 𝐹 = (𝐹 1, . . . , 𝐹 𝑟) has 𝑟 solutions

𝜔𝑘 = 𝜔𝑘 (𝑢1, . . . , 𝑢𝑛𝑘
) , 𝑘 = 1, . . . , 𝑟,

satisfying the independence in general condition

det

[︂
𝜕𝜔1

𝜕𝑢𝑛1

, . . . ,
𝜕𝜔𝑟

𝜕𝑢𝑛𝑟

]︂
̸= 0.

The main property of finite dimensional characteristic algebras 𝒳 = 𝒳1 ⊕𝒳2 ⊕ . . ..

Lemma 3.2. Let 𝐴 be a generalized Cartan matrix, dim𝒳 (𝐴) < ∞. Then any finite set
{𝑋𝛼 = 𝑋𝛼1...𝛼𝑚} ⊂ 𝒳𝑚 satisfies the condition∑︁

𝛼

𝑐𝛼𝑋[𝛼] = 0 ⇒
∑︁
𝛼

𝑐𝛼

(︃
𝑚∑︁
𝑘=1

𝑎𝛼𝑘

)︃
𝑋𝛼𝑢

𝑖
𝑚 = 0, 1 6 𝑖 6 𝑟.

Let us show that for any matrix 𝐴 not containing in Table 1 (non-expansible and satisfying
conditions (3.78)) either for some 𝑛 6 4 dim𝒳𝑛+1(𝐴) > dim𝒳𝑛(𝑎) and Lemma 3.2 is appli-
cable or the characteristic algebra 𝒳 (𝐴) has a finite dimensional subalgebra associated with a
degenerate matrix.

Let 𝐴 be a non-expansible generalized Cartan matrix of order 𝑟 = 2. Due to formula (3.79),

𝑋[112] = 2 (1 + 𝑎21)𝑋12, 𝑋[212] = 2 (1 + 𝑎12)𝑋12.

Lemma 3.2 implies

(1 + 𝑎12) (2𝑎1 + 𝑎2)𝑋112𝑢3 − (1 + 𝑎21) (𝑎1 + 2𝑎2)𝑋212𝑢3 =
= (1 + 𝑎12) 𝑎1𝑋112𝑢3 − (1 + 𝑎21) 𝑎2𝑋212𝑢3 = 0.

By formula (3.80)

𝑋112𝑢3 = 2 (1 + 𝑎21)𝑋12𝑢2, 𝑋212𝑢3 = 2 (1 + 𝑎12)𝑋12𝑢2.
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Hence,

(1 + 𝑎12) (1 + 𝑎21) (𝑎1 − 𝑎2)𝑋12𝑢2 = 0.

Since the non-expansibility of the matrix 𝐴 means 𝑋12𝑢2 ̸= 0, then

(1 + 𝑎12) (1 + 𝑎21) = 0.

Assuming for definiteness 𝑎12 = −1, we obtain 𝑋212 = 𝑋2112 = 0 and

𝑋[11112] = 4 (3 + 𝑎21𝑋1112) , 𝑋[21112] = −𝑋[1112].

Lemma 3.2 yields

(1 + 𝑎21) (2 + 𝑎21) (3 + 𝑎21) = 0.

The obtained result can be generalized. Considering the subalgebras with two generators,
we make sure that the following holds true.

Remark 3.2. The elements of the generalized Cartan matrix 𝐴 = (𝑎𝑖𝑗) with a finite-
dimensional characteristic algebra satisfy the condition

∀𝑖 ̸= 𝑗 𝑎𝑖𝑗𝑎𝑗𝑖 = 0, 1, 2, 3.

The proven statement exhausts the statement on the classification of second order matrix
(see Table 1).

Remark 3.3. The elements of a non-expansible generalized Cartan matrix 𝐴 = (𝑎𝑖𝑗)
(𝑟 > 2, dim𝒳 (𝐴) <∞) satisfy the condition 𝑎𝑖𝑗𝑎𝑗𝑖 ̸= 3.

Remark 3.4. Let 𝐴 = (𝑎𝑖𝑗) be a non-expansible generalized Cartan of order 𝑟 ≥
3, dim𝒳 (𝐴) <∞. Then

𝑎𝑖𝑗𝑎𝑗𝑖 = 2 ⇒ 𝑎𝑖𝑘𝑎𝑘𝑖, 𝑎𝑗𝑘𝑎𝑘𝑗 ̸= 2, 𝑘 ̸= 𝑖, 𝑗.

The proof of the classification theorem is reduced to finding infinite subalgebras. In the
process of proving it is found out that any infinite characteristic algebra satisfying the conditions
given Remarks 3.2 – 3.4 contains the subalgebra corresponding to one of the matrices in Tables
2,3.

The matrices are formally divided into two tables. The infiniteness of the algebras in Table 2
is proven by Lemma 3.2. The matrices for which applying of Lemma 3.2 is complicated are
moved to Table 3 of degenerating matrices (the infinite dimension of the corresponding algebras
is checked independently).

Bearing in mind Table 2, let us write down the relations
∑︀
𝑐𝛼𝑋[𝛼] = 0 indicating the appli-

cability of Lemma 3.2. While using Lemma 3.2, some coefficients are inessential (see the proof
of Remark 3.4); they are not written down explicitly.
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Table 2. Table 3.

𝑀1
𝑟 : 𝑋[𝑟,1] +

𝑟−1∑︁
𝑘=1

𝑋[𝑘,𝑘+1] = 0,

𝑀2
𝑟 :

𝑟−4∑︁
𝑘=3

𝑋[𝑘−1,𝑘,𝑘+1] +
1

2

(︀
𝑋[123] +𝑋[32𝑟] −𝑋[12𝑟]

)︀
−

− 1

2

(︀
𝑋[𝑟−1,𝑟−3,𝑟−2] +𝑋[𝑟−1,𝑟−3,𝑟−4] −𝑋[𝑟−4,𝑟−3,𝑟−2]

)︀
= 0, 𝑟 ≥ 6,

𝑀2
5 : 𝑋[312] +𝑋[512] +𝑋[423] −𝑋[524] = 0,

𝑀3
𝑟 : 𝑋[123] +𝑋[134] +𝑋[234] + 2

𝑟−2∑︁
𝑘=4

𝑋[𝑘−1,𝑘,𝑘+1]+

+ 𝑐1𝑋[𝑟−2,𝑟−1,𝑟] + 𝑐2
(︀
𝑋[𝑟−1,𝑟−1,𝑟] +𝑋[𝑟,𝑟,𝑟−1]

)︀
= 0,

𝑀4
𝑟 : − (3 + 2𝑎21)

−1
(︀
𝑋[112] +𝑋[221]

)︀
+ 2𝑋[123] + 2𝑎21

𝑟−2∑︁
𝑘=3

𝑋[𝑘−1,𝑘,𝑘+1]+

+ 𝑐1𝑋[𝑟−2,𝑟−1,𝑟] + 𝑐2
(︀
𝑋[𝑟−1,𝑟−1,𝑟] +𝑋[𝑟,𝑟,𝑟−1]

)︀
= 0,

𝑀5
𝑟 : 𝑋[21𝑟] +

1

𝑎𝑟,𝑟−1

𝑋[𝑟−1,1,𝑟] +
𝑟−2∑︁
𝑘=2

𝑋[𝑘−1,𝑘,𝑘+1]+

+ 𝑐1𝑋[𝑟−2,𝑟−1,𝑟] + 𝑐2
(︀
𝑋[𝑟−1,𝑟−1,𝑟] +𝑋[𝑟,𝑟,𝑟−1]

)︀
= 0, 𝑟 ≥ 4,

𝑀6
4 : − 𝑎34

6 + 4𝑎21

(︀
𝑋[112] +𝑋[221]

)︀
+ 𝑎34𝑋[123] + 𝑎21𝑋[234]+

+ 𝑐
(︀
𝑋[334] +𝑋[443]

)︀
= 0.
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3.1.2. Quadratic systems. The systems of equations

𝑝𝑖𝑥 = 𝑐𝑖𝑗𝑘𝑝
𝑗𝑞𝑘 + 𝑐𝑖𝑘𝑞

𝑘, 𝑞𝑘𝑦 = 𝑑𝑘𝑗𝑙𝑝
𝑗𝑞𝑙 + 𝑑𝑘𝑗𝑝

𝑗 (3.84)

will be called quadratic. Here 𝑝𝑖 = 𝑝𝑖(𝑥, 𝑦), 𝑞𝑘 = 𝑞𝑘(𝑥, 𝑦), 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,𝑚 are
unknown functions; 𝑐𝑖𝑗𝑘, 𝑐𝑘, 𝑑

𝑘
𝑗𝑙, 𝑑𝑗 are constants.

For instance, the Liouville equation can be written as

𝑝𝑥 = 𝑝𝑞, 𝑞𝑦 = 𝑝 (𝑝 = 𝑒𝑢, 𝑞 = 𝑢𝑥). (3.85)

the Sine-Gordon equation can be written as

𝑝1𝑥 = 𝑝1𝑞, 𝑝2𝑥 = −𝑝2𝑞, 𝑞𝑦 = 𝑝1 + 𝑝2 (𝑝1 = 𝑒𝑢, 𝑝2 = 𝑒−𝑢, 𝑞 = 𝑢𝑥). (3.86)

Denote by 𝑎 the algebra of smooth functions depending on a finite number of the variables
𝑝𝑖, 𝑞𝑘, 𝑝𝑖1, 𝑞

𝑘
1 , . . . , 𝑝

𝑖
𝑙, 𝑞

𝑘
𝑙 , . . ., 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,𝑚, where

𝑝𝑖𝑙+1 = 𝐷𝑝𝑖𝑙, 𝑞𝑘𝑙+1 = 𝐷𝑞𝑘𝑙 , 𝑝𝑖0 = 𝑝𝑖, 𝑞𝑘0 = 𝑞𝑘.

By 𝑎𝑥 we indicate the algebra of smooth functions depending on the variables 𝑞𝑘𝑙 ,
𝑘 = 1, 2, . . . ,𝑚, 𝑙 = 0, 1, 2, . . . . In the same fashion we define the algebra 𝑎𝑦. If 𝑓 ∈ 𝑎𝑥,
then 𝐷𝑓 = 𝑓0 +

∑︀𝑛
𝑗=1 𝑝

𝑗𝑓𝑗, where 𝑓𝑗 ∈ 𝑎𝑥, 𝑗 = 1, 2, . . . , 𝑛. The mapping 𝑌𝑖 determined by the
identities 𝑌𝑖𝑓 = 𝑓𝑖 are the differentiations of the algebra 𝑎𝑥. Exactly in the same way we define
the differentiations 𝑋𝑖 of the algebra 𝑎𝑦.

Definition 3.1. A generated by the elements 𝑌𝑖 subalgebra 𝐿𝑥 of the algebra Der 𝑎𝑥 is called
a characteristic algebra of system (3.84) along 𝑥.

In the same way we define the characteristic Lie algebra 𝐿𝑦. In order to define the complete
algebra of system (3.84) we consider the relations

[𝑋0, 𝑌 𝑖] =
∑︀𝑚

𝑙=1 𝑑
𝑙
𝑖𝑋 𝑙, [𝑋 𝑙, 𝑌 0] = −

∑︀𝑛
𝑖=1 𝑐

𝑖
𝑙𝑌 𝑖,

[𝑋0, 𝑌 0] = 0, [𝑋 𝑙, 𝑌 𝑖] = −
∑︀𝑛

𝑗=1 𝑐
𝑗
𝑖𝑙𝑌 𝑗 +

∑︀𝑚
𝑘=1 𝑑

𝑘
𝑖𝑙𝑋𝑘,

(3.87)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . ,𝑚.

Definition 3.2. Let the Lie algebra 𝐿 generated by the elements 𝑋 𝑙, 𝑌 𝑖,
𝑙 = 0, 1, . . . ,𝑚, 𝑖 = 0, 1, 2, . . . , 𝑛, regarded as a vector space be the direct sum 𝐿 = 𝐿𝑥 ⊕ 𝐿𝑦

of its subalgebras generated by the elements 𝑌 𝑖 and 𝑋 𝑙, respectively. If the correspondences
𝑋𝑙 → 𝑋 𝑙 (𝑌𝑖 → 𝑌 𝑖) generate isomorphisms of Lie algebras 𝐿𝑦 → 𝐿𝑦 (𝐿𝑥 → 𝐿𝑥), then the
algebra 𝐿 is called a complete algebra of quadratic system (3.84).

We note that relations (3.87) are equivalent to the identity

[𝐷 +𝑋0 + 𝑞𝑘𝑋𝑘, 𝐷 + 𝑌 0 + 𝑝𝑖𝑌 𝑖] = 0 (3.88)

if 𝑝𝑖, 𝑞𝑘 are solutions to system (3.84). On the other hand, relations (3.87) and (3.88) generate
system (3.84) under the condition of linear independence of the elements 𝑋 𝑙, 𝑌 𝑖. In this case
equation (3.88) is called the zero curvature representation (𝐿−𝐴–pair) for system of equations
(3.84).

Definition 3.3. The set of the functions 𝑓 𝑖, 𝑔𝑘 ∈ 𝑎 is called a symmetry of equation (3.84)
if the equations

𝑝𝑖𝜏 = 𝑓 𝑖, 𝑞𝑘𝜏 = 𝑔𝑘, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,𝑚

are compatible with it.

Having differentiated system (3.84) w.r.t. the parameter 𝜏 , we obtain the system of equations
for determining the symmetries,

𝐷𝑓 𝑖 = 𝑐𝑖𝑗𝑘(𝑞𝑘𝑓 𝑗 + 𝑝𝑗𝑔𝑘) + 𝑐𝑖𝑘𝑔
𝑘,

𝐷𝑔𝑘 = 𝑑𝑘𝑗𝑙(𝑞
𝑙𝑓 𝑗 + 𝑝𝑗𝑔𝑙) + 𝑑𝑘𝑗𝑓

𝑗,
(3.89)
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where 𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . ,𝑚.
Let 𝑆 be a the linear space of symmetries and 𝑆𝑥 (𝑆𝑦) be the subset of the symmetries

𝑓 𝑖 = 𝑓 𝑖
0 + 𝑓 𝑖

𝑗𝑝
𝑗, 𝑔𝑘 (𝑓 𝑖, 𝑔𝑘 = 𝑔𝑘0 + 𝑔𝑘𝑗 𝑞

𝑗),

for which 𝑓 𝑖
𝑗 , 𝑔

𝑘 ∈ 𝑎𝑥 (𝑓 𝑖, 𝑔𝑘𝑗 ∈ 𝑎𝑦).
The space of symmetries of the equations 𝑆 seems to be the direct sum of its subspaces 𝑆𝑥

and 𝑆𝑦.
For the symmetries of system of equations (3.84) in the space 𝑆𝑥 determining system (3.89)

casts into the form

𝐷𝑓 𝑖
0 + 𝑐𝑖𝑘𝑞

𝑘𝑓 𝑖
𝑙 = 𝑐𝑖𝑗𝑘𝑞

𝑘𝑓 𝑗
0 + 𝑐𝑖𝑘𝑔

𝑘, 𝐷𝑓 𝑖
𝑙 + 𝑐𝑟𝑙𝑘𝑞

𝑘𝑓 𝑖
𝑟 = 𝑐𝑖𝑗𝑘𝑞

𝑘𝑓 𝑗
𝑙 + 𝑐𝑖𝑙𝑘𝑔

𝑘,

𝑌0𝑔
𝑘 = 𝑑𝑘𝑗𝑙𝑞

𝑙𝑓 𝑗
0 + 𝑑𝑘𝑗𝑓

𝑗
0 , 𝑌1𝑔

𝑘 = 𝑑𝑘𝑗𝑖𝑞
𝑖𝑓 𝑗

𝑙 + 𝑑𝑘𝑙𝑖𝑔
𝑖 + 𝑑𝑘𝑗𝑓

𝑗
𝑙 ,

(3.90)

𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,𝑚.
With the notations 𝑝1 = 𝑒2𝑢, 𝑝2 = 𝑒𝑢𝑣, 𝑞1 = 𝑢𝑥, 𝑞

2 = 𝑤 the system of equations

𝑢𝑥𝑦 = 𝛼𝑒2𝑢 + 𝑒𝑢𝑣𝑤, 𝑣𝑥 = 𝑒𝑢𝑤, 𝑤𝑦 = 𝑒𝑢𝑣

casts into a quadratic representation

𝑝1𝑥 = 2𝑝1𝑞1, 𝑝2𝑥 = 𝑝2𝑝1 + 𝑝1𝑞2, 𝑞1𝑦 = 𝛼𝑝1 + 𝑝2𝑞2, 𝑞2𝑦 = 𝑝2. (3.91)

For system (3.91) as 𝛼 = 4
9

in the work [31] it was obtained the zero curvature representation

in Virasoro algebra. More precisely, the system (3.91) for 𝛼 = 4
9

is the consequence of a
incompletely defined system of equations followed by the zero curvature representation. In the
paper another zero curvature representation is provided which is equivalent to this system.

The relations
[𝐷, 𝑌𝑖] = 𝑐𝑗𝑖𝑘𝑞

𝑘𝑌𝑗, [𝐷, 𝑌0] = 𝑐𝑖𝑘𝑞
𝑘𝑌𝑖, (3.92)

[𝐷,𝑋𝑘] = 𝑑𝑙𝑘𝑖𝑝
𝑖𝑋1, [𝐷,𝑋0] = 𝑑𝑙𝑖𝑝

𝑖𝑋1, (3.93)

implied by [𝐷,𝐷] = 0, 𝐷 = 𝑌0 + 𝑝𝑖𝑌𝑖, 𝐷 = 𝑋0 + 𝑞𝑖𝑋1 are useful for the description of the
characteristic algebra.

The following statement holds true.

Lemma 3.3. If 𝑄 ∈ 𝐷𝑒𝑟𝑎𝑥, [𝐷,𝑄] = 𝑓𝑄 and 𝑄(𝑞𝑘) = 0,𝑘 = 1, 2, . . . ,𝑚, then 𝑄 = 0.

Proof. We have
𝑄(𝑞𝑘1) = 𝑄𝐷(𝑞𝑘) = (𝐷𝑄− 𝑓𝑄)(𝑞𝑘) = 0.

Then by the induction w.r.t. 𝑖 we get 𝑄(𝑞𝑘𝑖 ) = 0. Thus, 𝑄 = 0. The lemma is proven.
System of equations (3.91).
We restrict ourselves by treating the most interesting case 𝛼 = 4

9
.

Equations (3.92), (3.93) for system (3.91) are as follows,

[𝐷,𝑋0] = 4
9
𝑝1𝑋1 + 𝑝2𝑋2, [𝐷,𝑋1] = 0, [𝐷,𝑋1] = 𝑝2𝑋1,

[𝐷, 𝑌1] = −2𝑞1𝑌1 − 𝑞2𝑌2, [𝐷, 𝑌2] = −𝑞1𝑌2, 𝑌0 = 0.
(3.94)

While describing the algebra 𝐿𝑦, we shall use the values of its generators 𝑋𝑘 on the functions
𝑝𝑖,

𝑋0(𝑝
1) = 0, 𝑋1(𝑝

1) = 2𝑝1, 𝑋2(𝑝
1) = 0,

𝑋0(𝑝
2) = 0, 𝑋1(𝑝

2) = 𝑝2, 𝑋2(𝑝
2) = 𝑝1.

(3.95)

From the identity [𝐷, [𝑋1, 𝑋2]] = 𝑝2𝑋1 by formulas (3.94), (3.95) and Lemma 3.3 we get
that [𝑋1, 𝑋2] = 𝑋2. Completely in the same way, employing the relation [𝐷, [𝑋1, 𝑋0]] =
= 8

9
𝑝1𝑋1 + 2𝑝2𝑋2, we establish that [𝑋1, 𝑋0] = 2𝑋0.

In what follows we let

𝑈0 = 𝑋1, 𝑈1 = 𝑋2, 𝑈2 = −𝑋0, 𝑈𝑖+2 = (𝑎𝑑𝑋2)
𝑖𝑈2, 𝑖 = 1, 2, . . . . (3.96)
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Lemma 3.4. The formulas

𝑈𝑖+2 =
3𝑖(𝑖− 1)

2(𝑖− 2)
[𝑋0, 𝑈𝑖], 𝑖 = 3, 4, . . . (3.97)

hold true.

It follows from the identities (3.96)–(3.97) that the elements 𝑈0, 𝑈1, 𝑈2, . . . form a basis of
the characteristic algebra 𝐿𝑦. For description of the algebra 𝐿𝑥 we introduce the elements

𝑉1 = 𝑌2, 𝑉2 = 𝑌1, 𝑉𝑖+2 = (𝑎𝑑𝑌2)
𝑖𝑉2, 𝑖 = 1, 2, . . . (3.98)

Lemma 3.5. The formulas

𝑉𝑖+2 =
3𝑖(𝑖− 1)

2(𝑖− 2)
[𝑌1, 𝑉𝑖], 𝑖 = 3, 4, . . . (3.99)

hold true.

Formulas (3.98) and (3.99) imply that the elements 𝑉𝑖, 𝑖 = 1, 2, . . . form a basis of the
characteristic algebra 𝐿𝑥.

Relations (3.87) for system of equations (3.91) as 𝛼 = 4
9

read

[𝑋0, 𝑌 1] = 4
9
𝑋1, [𝑋0, 𝑌 2] = 𝑋2, [𝑋1, 𝑌 1] = −2𝑌 1;

[𝑋1, 𝑌 2] = −𝑌 2, [𝑋2, 𝑌 1] = −𝑌 2, [𝑋2, 𝑌 2] = 𝑋1.

Then the structure of the algebras 𝐿𝑥 and 𝐿𝑦 point out that the representations for the gen-
erators 𝑋0, 𝑋1, 𝑋2, 𝑌 1, 𝑌 2 should be sought in the Virasoro algebra

(︀
[𝑒𝑖, 𝑒𝑗] = (𝑗 − 1)𝑒𝑖+𝑗,

𝑖 = 0,±1,±2, . . .
)︀
,

𝑋0 =
2

3
𝜆2𝑒2, 𝑋1 = 𝑒0, 𝑋2 = 𝜆𝑒1, 𝑌 2 = − 1

2𝜆
𝑒−1, 𝑌 1 = − 1

6𝜆2
𝑒−2.

The elements 𝑈 𝑖, 𝑉 𝑖 calculated by formulas (3.96) and (3.98) are as follows,

𝑈 𝑖 =
2

3
(𝑖− 2)!𝜆𝑖𝑒𝑖, 𝑉 𝑖 = −1

3

(︂
1

2

)︂𝑖−1

(𝑖− 2)!𝜆𝑖𝑒−1, 𝑖 = 2, 3, . . . .

It is easy to check that they satisfy relations (3.97) and (3.99). Hence, the elements
𝑈0, 𝑈 𝑖, 𝑉 𝑖, 𝑖 = 1, 2, . . . form a basis of the complete algebra of system (3.91) as 𝛼 = 4

9
. This

algebra is isomorphic to Virasoro algebra.
Zero curvature representation (3.88) for this systems is

[𝐷 +
2

3
𝜆2𝑒2 + 𝑞1𝑒0 + 𝑞2𝜆𝑒1, 𝐷 − 1

2𝜆
𝑝2𝑒−1 −

1

6𝜆2
𝑝1𝑒−2] = 0.

Symmetries of sysmtem (3.91).
Let 𝑓 𝑖, 𝑔𝑖, 𝑖 = 1, 2 is a symmetry of system of equations (3.91) in the space 𝑆𝑥. Then

employing formulas (3.94), it is easy to obtain from relations (3.90) that

𝑓 1 = 2𝑝1𝑌2𝑔
2, 𝑓 2 = (𝑝1𝑌1 + 𝑝2𝑌2)𝑔

2, 𝑔1 = 𝐷𝑌2𝑔
2, (3.100)

where the function 𝑔2 is a solution to the system of equations

(𝑌1 − 𝑌2)𝑔
2 = 0, ((𝐷 + 2𝑞1)𝑌1𝑌2 − 2𝛼𝑌2) 𝑔

2 = 0,
((𝐷 + 𝑞1)𝑌 2

2 − 𝑞2𝑌2 − 1) 𝑔2 = 0.
(3.101)

Applying differentiation 𝑌2 to latter equation (3.101), we obtain(︀
(𝐷 + 2𝑞1)𝑌 3

2 − 2𝑌2
)︀
𝑔2 = 0. (3.102)

It follows from (3.101) and (3.102) that

(𝛼𝑌 3
2 − 𝑌1𝑌2)𝑔

2 = 0. (3.103)
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Then we apply twice differentiation 𝑋2 to the equation (3.102). We get(︀
(𝐷 + 4𝑞1)𝑌 5

2 + 5𝑞2𝑌 4
2

)︀
𝑔2 = 0. (3.104)

The following statement holds.

Lemma 3.6. Let the function 𝜓 ∈ 𝑎𝑥 be a solution to the equation(︀
(𝐷 + 4𝑞1)𝑌 2

2 + 5𝑞2𝑌2
)︀
𝜓 = 0. (3.105)

Then 𝑌2𝜓 = 0.

Employing formulas (3.100)–(3.102), we obtain that the symmetries of system (3.91) in the
space 𝑆𝑥 are calculated by the formulas

𝑓 1 = 𝑝1 (𝐷 + 2𝑞1)𝜓, 𝑓 2 = 𝑝1𝑞2𝜓 + 1
2
𝑝2 (𝐷 + 2𝑞1)𝜓,

𝑔1 = 1
2
𝐷 (𝐷 + 2𝑞1)𝜓, 𝑔2 = (𝐷 + 2𝑞1) 𝑞2𝜓 − 1

2
𝑞2 (𝐷 + 2𝑞1)𝜓.

(3.106)

3.2. Characteristic Lie rings and Darboux integrability criterion for nonlinear
hyperbolic systems of equations. We this section we consider the system of equations

𝑢𝑥𝑦 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑦) (𝑢𝑖𝑥𝑦 = 𝐹 𝑖, 𝑖 = 1, 2, . . . , 𝑛), (3.107)

possessing the complete set of 𝑥- and 𝑦-integrals.
It is known (see [7]) that the maximal number of independent 𝑥−integrals is equal to the

order 𝑛 of the original system.

Definition 3.4. The system of equations (3.107) is called Darboux integrable if it possesses
the maximal number of independent 𝑥- and 𝑦-integrals.

Let us define 𝑥- and 𝑦-characteristic Lie rings for the system of equation (3.107). The operator
𝐷 on the functions in the space of locally-analytic functions depending on a finite number of
the variables 𝑢1, 𝑢, 𝑢1, 𝑢2, . . . , 𝑢𝑘 . . . acts as follows

𝐷 = 𝑢𝑖2𝑋𝑖 +𝑋𝑛+1,

where

𝑋𝑖 =
𝜕

𝜕𝑢
𝑖
1

, 𝑖 = 1, 2, . . . , 𝑛,

𝑋𝑛+1 = 𝑢𝑖1
𝜕

𝜕𝑢𝑖
+ 𝐹 𝑖 𝜕

𝜕𝑢𝑖1
+𝐷(𝐹 𝑖)

𝜕

𝜕𝑢𝑖2
+ . . .+𝐷𝑘−1(𝐹 𝑖)

𝜕

𝜕𝑢𝑖𝑘
+ . . . .

The 𝑥-characteristic Lie ring of the equation (3.107) is the ring 𝐴 generated by the vector fields
𝑋1, 𝑋2, . . . , 𝑋𝑛+1. In the same way the 𝑦−characteristic Lie ring 𝐴 is defined.

In the paper [27] the examples of the systems with the characteristic Lie ring 𝐴 and
𝐴 of dimension 5 are given. In the papers [30, 44] it was shown that the system 𝑢𝑖𝑥𝑦 =

𝐹 𝑖(𝑢), 1, 2, . . . , 𝑛 possesses the complete set 𝑥−integrals if any only if the characteristic ring
is finite-dimensional.

Theorem 3.2. The system of equations (3.107) is Darboux integrable if and only if the
characteristic Lie rings 𝐴 and 𝐴 are finite-dimensional. At that, if 𝑛𝑘 is the number of 𝑘-th
order 𝑥-integrals, 𝑘 = 1, 2, . . . ,𝑚, then

dim𝐴 = 𝑛+
𝑚∑︁
𝑖=1

𝑖𝑛𝑖. (3.108)
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Remark 3.5. For the system of equations

𝑢𝑖𝑥𝑦 = 𝐹 𝑖(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦), 𝑖 = 1, 2, . . . , 𝑛 (3.109)

the 𝑥-characteristic Lie ring is generated by the operators

𝑋𝑖 = 𝜕
𝜕𝑢𝑖

1
, 𝑖 = 1, 2, . . . , 𝑛,

𝑋𝑛+1 = 𝜕
𝜕𝑦

+ 𝑢𝑖1
𝜕

𝜕𝑢𝑖 + 𝐹 𝑖 𝜕
𝜕𝑢𝑖

1
+𝐷(𝐹 𝑖) 𝜕

𝜕𝑢𝑖
2

+ . . .+𝐷𝑘−1(𝐹 𝑖) 𝜕
𝜕𝑢𝑖

𝑘
+ . . . .

Then the system of equations (3.109) is Darboux integrable if and only if the characteristic Lie
rings 𝐴 and 𝐴 are finite-dimensional. At that, if 𝑠𝑖 is the order of 𝑖th 𝑥-integral 𝑖 = 1, 2, . . . , 𝑛,
then

dim𝐴 = 𝑛+ 1 +
𝑛∑︁

𝑖=1

𝑠𝑖.

3.3. Nonlinear hyperbolic systems of equations with first order integrals.
Consider the system of equations (3.107) with the complete set of 𝑥- and 𝑦-integrals
𝜔𝑖(𝑢, 𝑢1), 𝜔

𝑖(𝑢, 𝑢1), 𝑖 = 1, 2, . . . , 𝑛, i.e., with the 𝑥- and 𝑦-characteristic Lie rings 𝐴 and 𝐴
of dimension 2𝑛.

It follows from the equations

𝐷(𝜔𝑖) = 0, 𝐷(𝜔̄𝑖) = 0, 𝑖 = 1, 2, . . . , 𝑛

that the right hand side of the system (3.107) is

𝐹 𝑖(𝑢, 𝑢1, 𝑢̄1) = −Γ𝑖
𝑘𝑗(𝑢)𝑢𝑘1𝑢

𝑗
1, 𝑖 = 1, 2, . . . , 𝑛, (3.110)

where Γ𝑖
𝑘𝑗(𝑢) are Cristoffel symbols. The following statement holds.

Theorem 3.3. The system of equations (3.107), (3.110) possesses the maximal number of
first order 𝑥- and 𝑦-integrals if and only if the relations

𝑅̃𝑖
𝑝𝑞𝑗 =

𝜕

𝜕𝑢𝑞
Γ𝑖
𝑝𝑗 −

𝜕

𝜕𝑢𝑗
Γ𝑖
𝑝𝑞 + Γ𝑠

𝑝𝑗Γ
𝑖
𝑠𝑞 − Γ𝑖

𝑣𝑗Γ
𝑣
𝑝𝑞 = 0,

𝑅𝑖
𝑞𝑝𝑗 =

𝜕

𝜕𝑢𝑝
Γ𝑖
𝑗𝑞 −

𝜕

𝜕𝑢𝑗
Γ𝑖
𝑝𝑞 + Γ𝑖

𝑝𝑠Γ
𝑠
𝑗𝑞 − Γ𝑖

𝑗𝑣Γ
𝑣
𝑝𝑞 = 0

(3.111)

hold true. Here 𝑅𝑖
𝑞𝑝𝑗 is the Riemann tensor, and 𝑅̃𝑖

𝑝𝑞𝑗 is the adjoint Riemann tensor.

We observe that the 𝑥-integrals of the system (3.107), (3.110) are given by the formulas

𝜔𝑖(𝑢, 𝑢1) = 𝐴𝑖
𝑠(𝑢)𝑢𝑠1, 𝑖 = 1, 2, . . . , 𝑛,

where the functions 𝐴𝑖
𝑠(𝑢) are a solution to the system of equations

𝜕

𝜕𝑢𝑘
𝐴𝑖

𝑠(𝑢) − Γ𝑗
𝑠𝑘𝐴

𝑖
𝑗(𝑢) = 0.

The compatibility condition for the last system of equations is written as 𝑅̃𝑖
𝑝𝑞𝑗 = 0.

Theorem 3.4. Each system of equations (3.107) (𝑛 = 2) with the complete set of first order
𝑥- and 𝑦-integrals is reduced by a point transformation 𝑢 = 𝜑(𝑣) to

𝑣𝑖𝑥𝑦 = 𝑣2𝑥𝑣
1
𝑦 − 𝑣𝑘𝑥𝑣

𝑘
𝑦

𝜕

𝜕𝑣𝑘
ln
(︀
𝑝(𝑣1) + 𝑞(𝑣2)

)︀
, 𝑖 = 1, 2. (3.112)

The integrals of the system (3.112) are calculated by the formulas

𝜔1 = 𝑣1𝑥 − 𝑣2𝑥, 𝜔2 =
[︁
𝑒−𝑣1𝑝(𝑣1) + 𝑠(𝑣1)

]︁
𝑣1𝑥 +

[︁
𝑒−𝑣1𝑞(𝑣2) − 𝑠(𝑣1)

]︁
𝑣2𝑥,

𝜔̄1 = 𝑣1𝑦 − 𝑣2𝑦 , 𝜔̄2 =
[︁
𝑒−𝑣2𝑝(𝑣1) − 𝑟(𝑣2)

]︁
𝑣1𝑦 +

[︁
𝑒−𝑣2𝑞(𝑣2) + 𝑟(𝑣2)

]︁
𝑣2𝑦 ,
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where the functions 𝑠(𝑣1), 𝑟(𝑣2), 𝑝(𝑣1) and 𝑞(𝑣2) are related by the identities

𝑠
′
(𝑣1) = 𝑒−𝑣1𝑝(𝑣1), 𝑟

′
(𝑣2) = 𝑒−𝑣2𝑞(𝑣2).

3.4. Two-component systems of equations with first and second order integrals.
It was shown in the work [12] that any non-degenerate system of equations (3.107) as 𝑛 = 2
with the integrals

𝜔1(𝑢, 𝑢1), 𝜔
2(𝑢, 𝑢1, 𝑢2), 𝜔̄

1(𝑢, 𝑢̄1), 𝜔̄
2(𝑢, 𝑢̄1) (3.113)

is reduced by a point transformation to one of the following types,

𝑢𝑖𝑥𝑦 = −Γ𝑖
𝑘𝑗(𝑢)𝑢𝑘1𝑢̄

𝑗
1, 𝑖 = 1, 2 (3.114)

or

𝑢1𝑥𝑦 = 𝑢11𝑢̄
2
1, 𝑢

2
𝑥𝑦 = 𝑟(𝑢1, 𝑢̄11, 𝑢̄

2
1)𝑢

1
1. (3.115)

Here we consider the classification problem for system of equations (3.114) and (3.115) with
integrals (3.113).

Lemma 3.7. There exist no systems of equations (3.114) with integrals (3.113). The system
of equations (3.115) possesses the integrals (3.113) if and only if the function 𝑟 is a solution to
the equation

𝜕𝑟

𝜕𝑢1
+ 𝑢̄21

𝜕𝑟

𝜕𝑢̄11
+ 𝑟

𝜕𝑟

𝜕𝑢̄21
+ 𝑢̄11

𝑃
′
(𝑢1)

2
+ 𝑃 (𝑢1)𝑢̄21 = 0. (3.116)

At that,

𝜔1 = 𝑒−𝑢2

𝑢11, 𝜔
2 = 𝑢22 − 𝑢21

𝐷𝜔1

𝜔
− (𝑢21)

2

2
+

1

2
𝑃 (𝑢1)𝑒2𝑢

2

(𝜔1)2, (3.117)

and the 𝑦-integrals 𝜔̄1 and 𝜔̄2 are determined by the first order partial differential equations(︂
𝜕

𝜕𝑢1
+ 𝑢̄21

𝜕

𝜕𝑢̄11
+ 𝑟

𝜕

𝜕𝑢̄21

)︂
𝜔̄ = 0,

𝜕

𝜕𝑢2
𝜔̄ = 0. (3.118)

In what follows we shall provide the conditions under those system of equations (3.107) as
𝑛 = 2 possesses the integrals

𝜔1(𝑢, 𝑢1), 𝜔
2(𝑢, 𝑢1, 𝑢2), 𝜔̄

1(𝑢, 𝑢̄1), 𝜔̄
2(𝑢, 𝑢̄1, 𝑢̄2). (3.119)

Lemma 3.8. System of equations (3.107) as 𝑛 = 2 with the complete set of integrals (3.119)
is reduced to one of the following systems,

𝑢𝑖𝑥𝑦 = 𝐴𝑖(𝑢, 𝑢1)𝐴𝑖(𝑢, 𝑢̄1) + Φ𝑖
𝑘𝑗(𝑢)𝑢𝑘1𝑢̄

𝑗
1, 𝑖 = 1, 2, (3.120){︃

𝑢1𝑥𝑦 = 𝐵1(𝑢, 𝑢1)𝐵̄1(𝑢, 𝑢̄1) + Ψ1
𝑘𝑗(𝑢)𝑢𝑘1𝑢̄

𝑗
1

𝑢2𝑥𝑦 = 𝑢̄𝑘1𝛼𝑘(𝑢)𝐵2(𝑢, 𝑢1) + 𝑢𝑘1𝛽𝑘(𝑢)𝐵̄2(𝑢, 𝑢̄1) + Ψ2
𝑘𝑗(𝑢)𝑢𝑘1𝑢̄

𝑗
1,

(3.121)

𝑢𝑖𝑥𝑦 = 𝑢̄𝑘1𝛾𝑘(𝑢)𝐶𝑖(𝑢, 𝑢1) + 𝑢𝑘1𝛿𝑘(𝑢)𝐶𝑖(𝑢, 𝑢̄1) + Σ𝑖
𝑘𝑗(𝑢)𝑢𝑘1𝑢̄

𝑗
1, 𝑖 = 1, 2. (3.122)

Next, on the first order integrals we impose the conditions(︃
𝜕

𝜕𝑢11

(︃
𝜔1
𝑢1
1

𝜔1
𝑢2
1

)︃)︃2

+

(︃
𝜕

𝜕𝑢21

(︃
𝜔1
𝑢1
1

𝜔1
𝑢2
1

)︃)︃2

̸= 0,(︃
𝜕

𝜕𝑢̄11

(︃
𝜔̄1
𝑢̄1
1

𝜔̄1
𝑢̄2
1

)︃)︃2

+

(︃
𝜕

𝜕𝑢̄21

(︃
𝜔̄1
𝑢̄1
1

𝜔̄1
𝑢̄2
1

)︃)︃2

̸= 0,

(3.123)

which mean that the integrals 𝜔1 and 𝜔̄1 are not reduced to 𝜔1 = 𝑊 (𝑝, 𝑞, 𝑝1), 𝜔̄
1 = 𝑊̄ (𝑝, 𝑞, 𝑝1)

by the point transformation 𝑢1 = 𝜙(𝑝, 𝑞), 𝑢2 = 𝜓(𝑝, 𝑞).
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Under conditions (3.123) with employing the equations 𝐷̄𝜔1 = 0, 𝐷𝜔̄1 = 0 it is possible to
specify the right hand sides of systems (3.120)–(3.122). Namely, systems (3.120), (3.121) are
reduced to⎧⎪⎪⎨⎪⎪⎩

𝑢1𝑥𝑦 =𝐴(𝑢, 𝑢1)𝐴(𝑢, 𝑢̄1) + Φ̃1
𝑘𝑗(𝑢)𝑢𝑘1𝑢̄

𝑗
1

𝑢2𝑥𝑦 =𝜇(𝑢)𝐴(𝑢, 𝑢1)𝐴(𝑢, 𝑢̄1) + 𝑢̄𝑘1𝜙𝑘(𝑢)𝐴(𝑢, 𝑢1) + 𝑢𝑘1𝜓𝑘(𝑢)𝐴(𝑢, 𝑢̄1)+

+ Φ̃2
𝑘𝑗(𝑢)𝑢𝑘1𝑢̄

𝑗
1,

(3.124)

and system (3.122) to⎧⎪⎪⎨⎪⎪⎩
𝑢1𝑥𝑦 =𝑢̄𝑘1𝜒

1
𝑘(𝑢)𝐵(𝑢, 𝑢1) + 𝑢𝑘1𝜖

1
𝑘(𝑢)𝐵̄(𝑢, 𝑢̄1) + Ψ̃2

𝑘𝑗(𝑢)𝑢𝑘1𝑢̄
𝑗
1

𝑢2𝑥𝑦 =𝜆(𝑢)𝐵(𝑢, 𝑢1)𝐵̄(𝑢, 𝑢̄1) + 𝑢̄𝑘1𝜒
2
𝑘(𝑢)𝐵(𝑢, 𝑢1) + 𝑢𝑘1𝜖

2
𝑘(𝑢)𝐵̄(𝑢, 𝑢̄1)+

+ Ψ̃2
𝑘𝑗(𝑢)𝑢𝑘1𝑢̄

𝑗
1.

(3.125)

Lemma 3.9. Systems of equations (3.124), (3.125) with the complete set of integrals (3.119)
satisfying condition (3.123) are reduced to the equations

𝑢𝑖𝑥𝑦 = −Γ𝑖
𝑘𝑗(𝑢)𝑢𝑘1𝑢̄

𝑗
1, 𝑖 = 1, 2, (3.126)

by point transformations.

For system (3.126) the 𝑥-characteristic Lie ring is generated by the operators

𝑋𝑖 =
𝜕

𝜕𝑢̄𝑖1
, 𝑋3 = 𝑢̄𝑝1𝑌𝑝,

where

𝑌𝑖 =
𝜕

𝜕𝑢𝑖
− Γ𝑝

𝑘𝑖𝑢
𝑘
1

𝜕

𝜕𝑢𝑝1
+ . . . , 𝑖 = 1, 2.

According to Theorem 3.2 if system of equations (3.126) possesses 𝑥-integrals (3.119), then
dim𝐴 = 5, which in its turn is equivalent to the fact that the vector fields 𝑌1, 𝑌2 and 𝑌3
(𝑌3 = [𝑌1, 𝑌2]) are linearly independent and

[𝑌𝑖, 𝑌3] = 𝐴𝑖(𝑢, 𝑢1, 𝑢̄1)𝑌3. (3.127)

Identity (3.127) can be rewritten as

[𝐷, [𝑌𝑖, 𝑌3]] = 𝐴𝑖[𝐷, 𝑌3] +𝐷(𝐴𝑖)𝑌3. (3.128)

Employing the equation [𝐷, 𝐷̄] = 0, we find

[𝐷, 𝑌𝑖] = Γ𝑝
𝑘𝑗𝑢

𝑘
1𝑌𝑝, 𝑖 = 1, 2,

[𝐷, 𝑌3] = 𝑅̃𝑝
𝑘12𝑢

𝑘
1𝑌𝑝 + (Γ1

𝑘1 + Γ2
𝑘2)𝑢

𝑘
1𝑌3.

(3.129)

Now taking into consideration relations (3.127) and (3.129), we obtain that identity (3.128) is
equivalent to the system

𝜕

𝜕𝑢𝑖
𝑅̃𝑝

𝑘12 + 𝑅̃𝑞
𝑘12Γ

𝑞
𝑞𝑖 − 𝑅̃𝑝

𝑞12Γ
𝑞
𝑘𝑖 = 𝐴𝑖(𝑢)𝑅̃𝑝

𝑘12,

𝑅̃2
𝑘12 +

𝜕

𝜕𝑢1
(Γ1

𝑘1 + Γ2
𝑘2) − Γ𝑞

𝑘1(Γ
1
𝑞1 + Γ2

𝑞2) =
𝜕

𝜕𝑢𝑘
𝐴1(𝑢) − Γ𝑞

𝑘1𝐴𝑞(𝑢),

− 𝑅̃1
𝑘12 +

𝜕

𝜕𝑢2
(Γ1

𝑘1 + Γ2
𝑘2) − Γ𝑞

𝑘2(Γ
1
𝑞1 + Γ2

𝑞2) =
𝜕

𝜕𝑢𝑘
𝐴2(𝑢) − Γ𝑞

𝑘2𝐴𝑞(𝑢).

The last relations are necessary conditions for the existence of the 𝑥-integrals (3.119) for
system of equations (3.126). In the same way one obtains the conditions for the existence of
the 𝑦-integrals.
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3.5. Quadratic systems of equations with first and second order integrals. In this
subsection we consider the system of equations (3.126) (see [56]).

We note that under the transformation 𝑢𝑖 → 𝑝𝑖(𝑢1, 𝑢2), 𝑖 = 1, 2 system of equations (3.126)
does not change the form, and the functions 𝑝𝑖 can be chosen so that Γ1

21 = Γ1
22 = 0. In

addition, we shall assume that Γ2
11 = Γ2

21 = 0. Hence, we consider the system of equations

𝑢1𝑥𝑦 = Γ1
1𝑗𝑢

1
1𝑢̄

𝑗
1, 𝑢2𝑥𝑦 = Γ2

𝑖2𝑢
𝑖
1𝑢̄

2
1 (3.130)

with the complete set of integrals

𝜔1(𝑢1, 𝑢2, 𝑢11, 𝑢
2
1), 𝜔

2(𝑢1, 𝑢2, 𝑢11, 𝑢
2
1, 𝑢

1
2, 𝑢

2
2), (3.131)

𝜔̄1(𝑢1, 𝑢2, 𝑢̄11, 𝑢̄
2
1), 𝜔̄

2(𝑢1, 𝑢2, 𝑢̄11, 𝑢̄
2
1, 𝑢̄

1
2, 𝑢̄

2
2). (3.132)

The following statement holds.

Theorem 3.5. System of equations (3.130) possesses the set of 𝑥-integrals (3.131) if and
only if the relations

𝜕2Γ2
22

𝜕𝑢1𝜕𝑢1
=
𝜕Γ2

22

𝜕𝑢1
· 𝜕 ln𝐹

𝜕𝑢1
, (3.133)

𝜕2Γ2
22

𝜕𝑢1𝜕𝑢2
=
𝜕Γ2

22

𝜕𝑢1
· 𝜕 ln𝐹

𝜕𝑢2
, (3.134)

−2
𝜕Γ2

22

𝜕𝑢1
=
𝜕2 ln𝐹

𝜕𝑢1𝜕𝑢2
, (3.135)(︂

𝜕

𝜕𝑢1
+ Γ1

11 −
𝜕 ln𝐹

𝜕𝑢1

)︂(︂
𝜕Γ2

12

𝜕𝑢1
+ Γ1

11Γ
2
12

)︂
= 0, (3.136)

−Γ2
22

(︂
𝜕 ln𝐹

𝜕𝑢2
+ Γ2

22

)︂
=

𝜕

𝜕𝑢2

(︂
𝜕 ln𝐹

𝜕𝑢2
+ Γ2

22

)︂
, (3.137)

Γ2
12

(︂
𝐹 − 𝜕Γ2

22

𝜕𝑢1

)︂
−
(︂

𝜕

𝜕𝑢2
− Γ2

22 + Γ1
12 −

𝜕 ln𝐹

𝜕𝑢2

)︂
·
(︂
𝜕Γ2

12

𝜕𝑢1
+ Γ1

11Γ
2
12

)︂
= 0, (3.138)(︂

𝜕

𝜕𝑢2
+ Γ1

12

)︂(︂
𝜕 ln𝐹

𝜕𝑢1
+ Γ1

11 + Γ2
12

)︂
+ Γ2

12

(︂
𝜕 ln𝐹

𝜕𝑢2
+ Γ2

22

)︂
− 𝐹 = 0, (3.139)(︂

𝜕

𝜕𝑢1
+ Γ1

11

)︂(︂
𝜕 ln𝐹

𝜕𝑢1
+ Γ1

11 + Γ2
12

)︂
+
𝜕Γ2

12

𝜕𝑢1
+ Γ1

11Γ
2
12 = 0 (3.140)

hold, where

𝐹 (𝑢1, 𝑢2) =
𝜕Γ1

12

𝜕𝑢1
− 𝜕Γ1

11

𝜕𝑢2
. (3.141)

Considering the 𝑦-characteristic ring of system of equations (3.130), we obtain a “symmetric”
version of Theorem 3.5.



CHARACTERISTIC LIE RINGS . . . 49

Theorem 3.6. System of equations (3.130) possesses the set of integrals (3.132) if and only
if the relations

𝜕2Γ1
11

𝜕𝑢2𝜕𝑢2
=
𝜕Γ1

11

𝜕𝑢2
· 𝜕 ln𝐹

𝜕𝑢2
, (3.142)

𝜕2Γ1
11

𝜕𝑢1𝜕𝑢2
=
𝜕Γ1

11

𝜕𝑢2
· 𝜕 ln𝐹

𝜕𝑢1
, (3.143)

−2
𝜕Γ1

11

𝜕𝑢2
=
𝜕2 ln𝐹

𝜕𝑢1𝜕𝑢2
, (3.144)(︂

𝜕

𝜕𝑢2
+ Γ2

22 −
𝜕 ln𝐹

𝜕𝑢2

)︂(︂
𝜕Γ1

12

𝜕𝑢2
+ Γ2

22Γ
1
12

)︂
= 0, (3.145)

−Γ1
11

(︂
𝜕 ln𝐹

𝜕𝑢1
+ Γ1

11

)︂
=

𝜕

𝜕𝑢1

(︂
𝜕 ln𝐹

𝜕𝑢1
+ Γ1

11

)︂
, (3.146)

Γ1
12

(︂
𝐹 +

𝜕Γ1
11

𝜕𝑢2

)︂
+

(︂
𝜕

𝜕𝑢1
− Γ1

11 + Γ2
12 −

𝜕 ln𝐹

𝜕𝑢1

)︂
·
(︂
𝜕Γ1

12

𝜕𝑢2
+ Γ2

22Γ
1
12

)︂
= 0, (3.147)(︂

𝜕

𝜕𝑢1
+ Γ2

12

)︂(︂
𝜕 ln𝐹

𝜕𝑢2
+ Γ1

12 + Γ2
22

)︂
+ Γ1

12

(︂
𝜕 ln𝐹

𝜕𝑢1
+ Γ1

11

)︂
+ 𝐹 = 0, (3.148)(︂

𝜕

𝜕𝑢2
+ Γ2

22

)︂(︂
𝜕 ln𝐹

𝜕𝑢2
+ Γ1

12 + Γ2
22

)︂
+
𝜕Γ1

12

𝜕𝑢2
+ Γ2

22Γ
1
12 = 0, (3.149)

hold, where

𝐹 =
𝜕Γ2

22

𝜕𝑢1
− 𝜕Γ2

12

𝜕𝑢2
. (3.150)

Thus, according to Theorems 3.5, 3.6 the classification of integrable system of equations
(3.130) is reduced to the study of the compatibility for equations (3.133)–(3.140), (3.142)–
(3.149) w.r.t. unknowns Γ1

11,Γ
1
12,Γ

2
12,Γ

2
22.

Theorem 3.7. Assume the condition

𝜕Γ1
11

𝜕𝑢2
· 𝜕Γ2

22

𝜕𝑢1
̸= 0 (3.151)

hold. Then system (3.130) with the complete set of integrals (3.131), (3.132) is reduced to one
of the following types,

𝑢1𝑥𝑦 =
𝑢11𝑢̄

1
1

𝑋
+

(︂
1

𝑋
+

1

𝛼𝑌

)︂
𝑢11𝑢̄

2
1, 𝑢2𝑥𝑦 =

𝑢21𝑢̄
2
1

𝑌
+

(︂
1

𝛼𝑋
+

1

𝛼2𝑌

)︂
𝑢11𝑢̄

2
1,

𝑋 = 𝑢1 + 𝑢2 + 𝑐, 𝑌 =
𝑢1

𝛼2
+ 𝑢2 − 𝑐,

(3.152)

or

𝑢1𝑥𝑦 =
𝑢2

𝑋
𝑢11𝑢̄

1
1 +

(︂
1

𝑋
+

1

𝛼𝑌

)︂
𝑢1𝑢11𝑢̄

2
1, 𝑢2𝑥𝑦 =

𝑢1

𝑌
𝑢21𝑢̄

2
1 +

(︂
𝛼

𝑋
+

1

𝑌

)︂
𝑢2𝑢11𝑢̄

2
1,

𝑋 = 𝑢1𝑢2 + 𝑑2, 𝑌 = 𝑢1𝑢2 + 𝑐2,
𝛼 + 1

𝛼
𝑑2 = (𝛼 + 1)𝑐2,

(3.153)

where 𝑐 is an arbitrary constant, 𝑐2, 𝑑2, 𝛼 are non-zero constants.

To solve the complete classification problem for systems of equations (3.130), it remains to
treat the case when condition (3.151) is broken.

Lemma 3.10. Let the condition

𝜕Γ2
22

𝜕𝑢1
· 𝜕Γ1

11

𝜕𝑢2
= 0
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holds true, then there exist no systems of equations (3.130) with the complete set of integrals
(3.131), (3.132).

Consider now the problem of constructing 𝑥− and 𝑦−integrals for systems of equations
(3.152), (3.153).

We note that the change 𝑢1 → 𝑢1 +
2𝛼2

1 − 𝛼2
𝑐, 𝑢2 → 𝑢2 −

1 + 𝛼2

1 − 𝛼2
𝑐 reduce system of equations

(3.152) as 𝛼 ̸= 1 to the system with zero constant 𝑐.
The following statements hold.

Theorem 3.8. The integrals of system of equations (3.152) are given by the formulas,
as 𝛼 = 1,

𝜔1 = 2𝑢2 − 𝑢21
𝑧

+ 2𝑐 ln 𝑧, 𝜔̄1 = 2𝑢1 − 𝑢̄11
𝑧

− 2𝑐 ln 𝑧, (3.154)

𝜔2 =
𝑧1
𝑧
− 𝑧, 𝜔̄2 =

𝑧1
𝑧
− 𝑧, (3.155)

and as 𝛼 ̸= 1 (𝑐 = 0),

𝜔1 =

(︂
1

𝛼
+ 1

)︂
𝑢2𝑧1−𝛼 − 𝑢21𝑧

−𝛼, 𝜔̄1 =

(︂
1

𝛼
+ 1

)︂
𝑢1𝑧1−𝛼 − 𝑢̄11𝑧

−𝛼, (3.156)

𝜔2 =
𝑧1
𝑧
− 𝑧

𝛼
, 𝜔̄2 =

𝑧1
𝑧
− 𝑧

𝛼
, (3.157)

where

𝑧 =
𝑢11
𝑋
, 𝑧 =

𝑢̄21
𝑌
, 𝑧1 =

𝜕𝑧

𝜕𝑥
, 𝑧1 =

𝜕𝑧

𝜕𝑦
.

Theorem 3.9. The the integrals of systems of equations (3.153) are given by the formulas,
as 𝛼 = −1,

𝜔1 =
(𝑢2)2𝑧2

2
(𝑑2 − 𝑐2) − 𝑐2𝑢

2
1𝑧, 𝜔̄

1 =
(𝑢̄1)2𝑧2

2
(𝑐2 − 𝑑2) − 𝑑2𝑢̄

1
1𝑧, (3.158)

𝜔2 =
𝑧1
𝑧

+
𝑑2
𝑐2
𝑢2𝑧, 𝜔̄2 =

𝑧1
𝑧

+
𝑐2
𝑑2
𝑢1𝑧, (3.159)

and as 𝛼 ̸= −1,

𝜔1 =
𝑢21 − (𝑢2)2𝑧𝛼

𝑧𝛼
, 𝜔̄1 =

𝑢̄11 −
(𝑢1)2𝑧

𝛼
𝑧

1
𝛼

, (3.160)

𝜔2 = 𝑢2𝑧 − 𝑧1
𝑧
, 𝜔̄2 = 𝑢1𝑧 − 𝑧1

𝑧
, (3.161)

where

𝑧 =
𝑢11
𝑋
, 𝑧 =

𝑢̄21
𝑌
, 𝑧1 =

𝜕𝑧

𝜕𝑥
, 𝑧1 =

𝜕𝑧

𝜕𝑦
.

Theorem 3.10. The general solution of system of equations (3.152) are given by the for-
mulas,

as 𝛼 = 1,

𝑢1(𝑥, 𝑦) = 𝐴(𝑥)+𝐵(𝑦)
(𝐶(𝑥)+𝐷(𝑦))2

+ 𝑐 ln 1
𝐶(𝑥)+𝐷(𝑦)

−

− 𝐵
′
(𝑦)

𝐷′ (𝑦)(𝐶(𝑥)+𝐷(𝑦))
+ 𝑐

2
,

𝑢2(𝑥, 𝑦) = 𝐴(𝑥)+𝐵(𝑦)
(𝐶(𝑥)+𝐷(𝑦))2

− 𝑐 ln 1
𝐶(𝑥)+𝐷(𝑦)

−

− 𝐴
′
(𝑥)

𝐶′ (𝑥)(𝐶(𝑥)+𝐷(𝑦))
− 𝑐

2
,

(3.162)
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and as 𝛼 ̸= 1 (𝑐 = 0),

𝑢1(𝑥, 𝑦) =
𝛼𝐴(𝑥) +𝐵(𝑦)

𝛼(𝐶(𝑥) +𝐷(𝑦))𝛼+1
− 𝐵

′
(𝑦)

𝛼𝐷′(𝑦)(𝐶(𝑥) +𝐷(𝑦))𝛼
,

𝑢2(𝑥, 𝑦) =
𝐴(𝑥) + 𝛼𝐵(𝑦)

𝛼(𝐶(𝑥) +𝐷(𝑦))𝛼+1
− 𝐴

′
(𝑥)

𝛼𝐶 ′(𝑥)(𝐶(𝑥) +𝐷(𝑦))𝛼
.

(3.163)

Theorem 3.11. The general solution to system of equations (3.153) are given by the for-
mulas,

as 𝛼 = −1 and 𝑐2 + 𝑑2 = 0,

𝑢1(𝑥, 𝑦) =

(︂
𝐵

′
(𝑦)

𝑌 ′(𝑦)
+𝑋(𝑥)

)︂
𝑒−𝐴(𝑥)−𝐵(𝑦)−𝑋(𝑥)𝑌 (𝑦),

𝑢2(𝑥, 𝑦) = −𝑑2
(︂
𝐴

′
(𝑥)

𝑋 ′(𝑥)
+ 𝑌 (𝑦)

)︂
𝑒𝐴(𝑥)+𝐵(𝑦)+𝑋(𝑥)𝑌 (𝑦),

(3.164)

as 𝛼 = −1 and 𝑐2 + 𝑑2 ̸= 0,

𝑢1(𝑥, 𝑦) =
(︁

2𝑑2
𝑐2+𝑑2

· 𝑋(𝑥)
𝑋(𝑥)𝑌 (𝑦)+𝑐

− 𝑊̄
′
(𝑦)

𝑊̄ (𝑦)𝑌 ′ (𝑦)

)︁
×

×(𝑋(𝑥)𝑌 (𝑦) + 𝑐)
2𝑐2

𝑐2+𝑑2
𝑊̄ (𝑦)
𝑊 (𝑥)

,

𝑢2(𝑥, 𝑦) =
(︁

2𝑐2
𝑐2+𝑑2

· 𝑌 (𝑦)
𝑋(𝑥)𝑌 (𝑦)+𝑐

− 𝑊
′
(𝑥)

𝑊 (𝑥)𝑋′ (𝑥)

)︁
×

×(𝑋(𝑥)𝑌 (𝑦) + 𝑐)
2𝑑2

𝑐2+𝑑2
𝑊 (𝑥)

𝑊̄ (𝑦)
,

(3.165)

where

𝑐 =
𝑐2 + 𝑑2

2
,

and as 𝛼 ̸= −1,

𝑢1(𝑥, 𝑦) = − (𝐴(𝑦) − (1 + 𝛼)𝐵(𝑦)𝐷(𝑥) − (1 + 𝛼)𝐸(𝑥))−
1

1+𝛼 ×
× 𝛼

1+𝛼
· 𝑐2
𝐵′ (𝑦)

(︀
𝐴

′
(𝑦) − (1 + 𝛼)𝐵

′
(𝑦)𝐷(𝑥)

)︀
,

𝑢2(𝑥, 𝑦) = (𝐴(𝑦) − (1 + 𝛼)𝐵(𝑦)𝐷(𝑥) −
− (1 + 𝛼)𝐸(𝑥))−

𝛼
1+𝛼

(︁
𝐵(𝑦) + 𝐸

′
(𝑥)

𝐷′ (𝑥)

)︁
.

(3.166)

3.6. Linearization of exponential systems of rank 2. We consider the systems of equa-
tions (see [26])

𝑢𝑥𝑦 = 𝑎𝑖1𝑒
𝑢1

+ . . .+ 𝑎𝑖𝑛𝑒
𝑢𝑛

, 𝑖 = 1, 2, . . . , 𝑛. (3.167)

In the case 𝑛 = 2
𝑢𝑥𝑦 = 𝑎11𝑒

𝑢 + 𝑎12𝑒
𝑣, 𝑣𝑥𝑦 = 𝑎21𝑒

𝑢 + 𝑎22𝑒
𝑣. (3.168)

To solve the classification problem, we study the structure of the characteristic ring for the
linearization of system of equations (3.168).

The linearization of the system of equations (3.168) reads as

𝑝𝑥𝑦 = 𝑎11𝑒
𝑢𝑝+ 𝑎12𝑒

𝑣𝑞, 𝑞𝑥𝑦 = 𝑎21𝑒
𝑢𝑝+ 𝑎22𝑒

𝑣𝑞. (3.169)

In what follows we assume that 𝑢 and 𝑣 are given functions and ∆ = 𝑎11𝑎22 − 𝑎12𝑎21 ̸= 0.
Let us define the 𝑥− and 𝑦−characteristic Lie rings for the system of equations (3.169).

The operator 𝐷̄ on the space of locally analytic functions depending on a finite number of
independent variables 𝑥, 𝑦, 𝑝, 𝑞, 𝑝1, 𝑞1, 𝑝2, 𝑞2 . . . acts as

𝐷̄ = 𝑝1𝑌
(0)
1 + 𝑞1𝑌

(0)
2 +𝑋1,

where

𝑌
(0)
1 =

𝜕

𝜕𝑝
, 𝑌

(0)
2 =

𝜕

𝜕𝑞
,
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𝑋1 =
𝜕

𝜕𝑦
+ (𝑎11𝑒

𝑢𝑝+ 𝑎12𝑒
𝑣𝑞)

𝜕

𝜕𝑝1
+ (𝑎21𝑒

𝑢𝑝+ 𝑎22𝑒
𝑣𝑞)

𝜕

𝜕𝑞1
+ . . . .

The 𝑥-characteristic Lie ring of system of equations (3.169) is the ring 𝐴 generated by the

vector fields 𝑌
(0)
1 , 𝑌

(0)
2 , 𝑋1. In the same was the 𝑦-characteristic Lie ring 𝐴 is defined.

Lemma 3.11. Let

𝑍 =
∞∑︁
𝑖=1

𝛼𝑖
𝜕

𝜕𝑝𝑖
+

∞∑︁
𝑖=1

𝛽𝑖
𝜕

𝜕𝑞𝑖
, 𝛼𝑖, 𝛽𝑖 ∈ 𝐹, 𝑖 = 1, 2, . . . .

Then the relation [𝐷,𝑍] = 0 holds true if and only if 𝑍 = 0.

Consider the commutators

𝑌
(1)
1 = [𝑌

(0)
1 , 𝑋1] = 𝑒𝑢[𝑎11

𝜕

𝜕𝑝1
+ 𝑎21

𝜕

𝜕𝑞1
+ 𝑎11𝑢1

𝜕

𝜕𝑝2
+ 𝑎21𝑢1

𝜕

𝜕𝑞2
+ . . .],

𝑌
(1)
2 = [𝑌

(0)
2 , 𝑋1] = 𝑒𝑣[𝑎12

𝜕

𝜕𝑝1
+ 𝑎22

𝜕

𝜕𝑞1
+ 𝑎12𝑣1

𝜕

𝜕𝑝2
+ 𝑎22𝑣1

𝜕

𝜕𝑞2
+ . . .].

We introduce the notations

𝑌
(0)
1 = 𝑍

(0)
1 , 𝑌

(0)
2 = 𝑍

(0)
2 ,

𝑌
(1)
1 = 𝑒𝑢𝑍

(1)
1 , 𝑌

(1)
2 = 𝑒𝑣𝑍

(1)
2 .

Next, we define

𝑍
(𝑛+1)
1 = [𝑍

(𝑛)
1 , 𝑋1], 𝑍

(𝑛+1)
2 = [𝑍

(𝑛)
2 , 𝑋1], 𝑛 = 1, 2, . . . .

We note that the vector fields 𝑋1, 𝑍
(0)
1 , 𝑍

(0)
2 , 𝑍

(1)
1 , 𝑍

(1)
2 are linearly independent.

In view of the last notations the operator 𝐷̄ becomes

𝐷̄ = 𝑝1𝑍
(0)
1 + 𝑞1𝑍

(0)
2 +𝑋1.

It is easy to check that

[𝐷,𝑍
(0)
1 ] = [𝐷,𝑍

(0)
2 ] = 0,

[𝑍
(𝑖)
1 , [𝐷,𝑋1]] = [𝑍

(𝑖)
2 , [𝐷,𝑋1]] = 0, 𝑖 = 1, 2, . . . .

The formulas

[𝐷,𝑋1] = −(𝑎11𝑒
𝑢𝑝+ 𝑎12𝑒

𝑣𝑞)𝑍
(0)
1 − (𝑎21𝑒

𝑢𝑝+ 𝑎22𝑒
𝑣𝑞)𝑍

(0)
2 ,

[𝐷,𝑍
(1)
1 ] = −𝑢1𝑍(1)

1 − 𝑎11𝑍
(0)
1 − 𝑎21𝑍

(0)
2 ,

[𝐷,𝑍
(1)
2 ] = −𝑣1𝑍(1)

2 − 𝑎12𝑍
(0)
1 − 𝑎22𝑍

(0)
2 ,

[𝐷,𝑍
(2)
1 ] = −𝑢1𝑍(2)

1 + 𝑎12𝑒
𝑣𝑍

(1)
1 − 𝑎21𝑒

𝑣𝑍
(1)
2 ,

[𝐷,𝑍
(2)
2 ] = −𝑣1𝑍(2)

2 − 𝑎12𝑒
𝑢𝑍

(1)
1 + 𝑎21𝑒

𝑢𝑍
(1)
2

(3.170)

hold true.

Lemma 3.12. The operators 𝑍
(2)
1 and 𝑍

(2)
2 satisfy the relation

𝑒𝑢𝑍
(2)
1 + 𝑒𝑣𝑍

(2)
2 = 0. (3.171)

For the sake of convenience in what follows we introduce the notations

𝑍
(0)
1 = 𝑊

(0)
1 , 𝑍

(0)
2 = 𝑊

(0)
2 , 𝑍

(1)
1 = 𝑊

(1)
1 , 𝑍

(1)
2 = 𝑊

(1)
2 ,

𝑍
(2)
1 = 𝑒𝑣𝑊

(2)
1 , 𝑍

(2)
2 = 𝑒𝑢𝑊

(2)
2 .

We define
𝑊

(𝑛+1)
1 = [𝑊

(𝑛)
1 , 𝑋1], 𝑛 = 2, 3, . . . .
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At that, it is easy to show the validity of the identities

[𝑊
(𝑛)
1 , [𝐷,𝑋1]] = 0,

[𝐷,𝑊
(𝑛+1)
1 ] = −[𝑋1, [𝐷,𝑊

(𝑛)
1 ]].

We observe that the vector fields 𝑋1, 𝑊
(0)
1 , 𝑊

(0)
2 , 𝑊

(1)
1 , 𝑊

(1)
2 , 𝑊

(2)
1 are linearly independent

and the operators 𝑊
(2)
2 and 𝑊

(2)
1 are related by the formula

𝑊
(2)
2 = −𝑊 (2)

1 .

Lemma 3.13. The relation

[𝐷,𝑊
(𝑛)
1 ] = −(𝑢1 + 𝑣1)𝑊

(𝑛)
1 +

+
𝑛−1∑︁
𝑖=2

(−1)𝑛−𝑖−1𝐶𝑖−2
𝑛−2𝑋

𝑛−𝑖
1 (𝑢1 + 𝑣1)𝑊

(𝑖)
1 +

+
𝑛−1∑︁
𝑖=2

(−1)𝑛−𝑖−1𝐶𝑖−2
𝑛−3𝑋

𝑛−𝑖−1
1 (𝑎12𝑒

𝑣 + 𝑎21𝑒
𝑢)𝑊

(𝑖)
1 , 𝑛 = 3, 4, . . . ,

(3.172)

holds true.

Suppose now that the characteristic Lie ring of system of equations (3.169) is
finite-dimensional. It means that there exists 𝑛 ≥ 2, for which the operators

𝑋1,𝑊
(0)
1 , 𝑊

(0)
2 , 𝑊

(1)
1 , 𝑊

(1)
2 , 𝑊

(2)
1 , 𝑊

(3)
1 , . . . 𝑊

(𝑛)
1 form a basis of this ring. Then the op-

erator 𝑊
(𝑛+1)
1 is a linear combination of the elements of this basis.

Since

𝑊
(0)
1 =

𝜕

𝜕𝑝
, 𝑊

(0)
2 =

𝜕

𝜕𝑞
,

and the higher order operators have the structure

𝛼𝑖
𝜕

𝜕𝑝𝑖
+ 𝛽𝑖

𝜕

𝜕𝑞𝑖
+ . . . , 𝑖 = 1, 2, . . . ,

then

𝑊
(𝑛+1)
1 =

𝑛∑︁
𝑘=1

𝐴𝑘𝑊
(𝑘)
1 +𝐵1𝑊

(1)
2 ,

where 𝐴𝑘, 𝐵1 are functions of the variables 𝑢, 𝑣, 𝑢1, 𝑣1, 𝑢̄1, 𝑣1, . . ..
The last relation is equivalent to the identity

[𝐷,𝑊
(𝑛+1)
1 ] =

𝑛∑︁
𝑘=1

𝐷(𝐴𝑘)𝑊
(𝑘)
1 +𝐷(𝐵1)𝑊

(1)
2 +

𝑛∑︁
𝑘=1

𝐴𝑘[𝐷,𝑊
(𝑘)
1 ] +𝐵1[𝐷,𝑊

(1)
2 ].

By Lemma 3.13 we obtain

𝐷(𝐴1)𝑊
(1)
1 +𝐷(𝐵1)𝑊

(1)
2 + 𝐴1(−𝑢1𝑊 (1)

1 − 𝑎11𝑊
(0)
1 − 𝑎21𝑊

(0)
2 )+

+𝐴2(𝑎12𝑊
(1)
1 − 𝑎21𝑊

(1)
2 ) +𝐵1(−𝑣1𝑊 (1)

2 − 𝑎12𝑊
(0)
1 − 𝑎22𝑊

(0)
2 ) = 0.

Comparing the coefficients at the vector field 𝑊
(0)
1 ,𝑊

(0)
2 ,𝑊

(1)
1 ,𝑊

(1)
2 in the left and right hand

sided of the last identity, we get the system

−𝑎11𝐴1 − 𝑎12𝐵1 = 0,

−𝑎21𝐴1 − 𝑎22𝐵1 = 0,

𝐷(𝐴1) + 𝑎12𝐴2 − 𝑢1𝐴1 = 0,

𝐷(𝐵1) − 𝑎21𝐴2 − 𝑣1𝐵1 = 0.
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It implies 𝐴1 = 𝐵1 = 0 and 𝐴2 = 0. Thus, we have proven the following statement.

Lemma 3.14. The 𝑥-characteristic algebra 𝐴 of system of equations (3.169) is finite-

dimensional if and only if either 𝑊
(3)
1 = 0 or

𝑊
(𝑛+1)
1 =

𝑛∑︁
𝑘=3

𝐴𝑘𝑊
(𝑘)
1 , 𝐴𝑘 = 𝐴𝑘(𝑢, 𝑣, 𝑢1, 𝑣1, 𝑢̄1, 𝑣1, . . .), 𝑛 = 3, 4, . . . .

At that, either dim𝐴 = 6 or dim𝐴 = 𝑛+ 4, 𝑛 = 3, 4, . . ., respectively.

Employing now Lemmas 3.13 and 3.14, let us right down necessary and sufficient conditions
for the characteristic ring of the system (3.169) to be finite-dimensional.

As dim𝐴 = 6, we obtain

𝑋1(𝑢1 + 𝑣1) + 𝑎12𝑒
𝑣 + 𝑎21𝑒

𝑢 = 0, (3.173)

and in the case dim𝐴 = 𝑛+ 4 (𝑛 ≥ 3) we have

(−1)𝑛−2𝑋𝑛−2
1 ((𝑎11 + 2𝑎21)𝑒

𝑢 + (𝑎22 + 2𝑎12)𝑒
𝑣) =

=
𝑛∑︁

𝑝=3

𝐴𝑝(−1)𝑝−3𝑋𝑝−3
1 ((𝑎11 + 2𝑎21)𝑒

𝑢 + (𝑎22 + 2𝑎12)𝑒
𝑣),

(−1)𝑛−𝑖
(︀
𝐶𝑖−2

𝑛−1𝑋
𝑛−𝑖+1
1 (𝑢1 + 𝑣1) + 𝐶𝑖−2

𝑛−2𝑋
𝑛−𝑖
1 (𝑎12𝑒

𝑣 + 𝑎21𝑒
𝑢)
)︀

= (3.174)

=
𝑛∑︁

𝑝=𝑖+1

𝐴𝑝(−1)𝑝−𝑖−1
(︀
𝐶𝑖−2

𝑝−2𝑋
𝑝−𝑖
1 (𝑢1 + 𝑣1) + 𝐶𝑖−2

𝑝−3𝑋
𝑝−𝑖−1
1 (𝑎12𝑒

𝑣 + 𝑎21𝑒
𝑢)
)︀

+

+𝐷(𝐴𝑖), 𝑖 = 3, 4, . . . , 𝑛− 1,

(𝑛− 1)𝑋1(𝑢1 + 𝑣1) + 𝑎12𝑒
𝑣 + 𝑎21𝑒

𝑢 = 𝐷(𝐴𝑛).

It can be shown that for system (3.174) the unknowns 𝐴𝑖 are the functions of the variables
𝑢̄1, 𝑣1, . . . , 𝑢̄𝑛−𝑖+1, 𝑣𝑛−𝑖+1, 𝑖 = 3, 4, . . . , 𝑛− 1.

Theorem 3.12. If the characteristic Lie algebra of system of equations (3.169) is finite-
dimensional, then system (3.168) is reduced to

𝑢𝑥𝑦 = 2𝑒𝑢 + 𝑎12𝑒
𝑣, 𝑣𝑥𝑦 = −𝑒𝑢 + 2𝑒𝑣. (3.175)

We proceed to systems (3.175).
We remind that the Lie algebra 𝐴 for linearized system of equations (3.169) is generated by

the vector fields 𝑋1, 𝑊
(0)
1 , 𝑊

(0)
2 , 𝑊

(1)
1 , 𝑊

(1)
2 , 𝑊

(2)
1 and thus dim𝐴 ≥ 6.

In what follows we study the systems of equations for which dim𝐴 6 9.

Theorem 3.13. The dimension of the 𝑥-characteristic algebra 𝐴 for linearized system of
equations (3.169) does not exceed 9 if and only if the coefficient 𝑎12 takes one of the values −1,
−2, or −3. At that, dim𝐴 = 6, 7, 9, respectively.

We have obtained all the equations for which the dimension of the characteristic ring of the
linearization does not exceed 9. It has been shown that the right hand sides of these equations
are determined by the Cartan matrices of a simple Lie algebra.

4. Differential-difference hyperbolic equations

In this section we consider the chains of differential-difference equations

𝑡𝑥(𝑛+ 1) = 𝑓(𝑡(𝑛), 𝑡(𝑛+ 1), 𝑡𝑥(𝑛)), (4.176)

where an unknown function 𝑡 = 𝑡(𝑛, 𝑥) depends on a discrete variable 𝑛 and a continuous
variable 𝑥. Chain (4.176) can be regarded as an infinite system of ordinary differential equations
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with the sequence of unknown functions {𝑡(𝑛)}𝑛=+∞
𝑛=−∞. The function 𝑓(𝑡, 𝑡1, 𝑡𝑥) is assumed to be

locally analytic w.r.t. all three arguments, and in a some domain the condition

𝜕𝑓

𝜕𝑡𝑥
̸= 0 (4.177)

holds true. We use the subscript to indicate the shift of the discrete argument 𝑡𝑘 = 𝑡(𝑛+ 𝑘, 𝑥)
(𝑡0 = 𝑡), and also to denote the derivatives w.r.t. 𝑥,

𝑡𝑥 =
𝜕

𝜕𝑥
𝑡(𝑛, 𝑥), 𝑡𝑥𝑥 =

𝜕2

𝜕𝑥2
𝑡(𝑛, 𝑥).

Denote by 𝐷 and 𝐷𝑥 the shift operator and the operator of total derivative w.r.t. 𝑥, re-
spectively. For instance, 𝐷ℎ(𝑛, 𝑥) = ℎ(𝑛 + 1, 𝑥) and 𝐷𝑥ℎ(𝑛, 𝑥) = 𝜕

𝜕𝑥
ℎ(𝑛, 𝑥). As the dynamical

variables we choose the variables {𝑡𝑘}∞𝑘=−∞ and {𝐷𝑚
𝑥 𝑡}∞𝑚=1. Below we regard the dynamical

variables as independent.

4.1. Liouville type differential-difference equations. The functions 𝐼 and 𝐹 depending
on 𝑥 and finite number of dynamical variables are called respectively 𝑛- and 𝑥-integrals of the
equation (4.176) if the identities 𝐷𝐼 = 𝐼 and 𝐷𝑥𝐹 = 0 hold. The integrals 𝐼 = 𝐼(𝑥), 𝐹 = 𝑐𝑜𝑛𝑠𝑡
are called trivial integrals.

Definition 4.1. Chain (4.176) is called Darboux integrable if it possesses non-trivial 𝑥- and
𝑛-integrals.

It should be noted that a Darboux integrable chain is reduced to a pair of equations, an
ordinary difference and an ordinary differential equations. Indeed, it follows from the definition
that an 𝑛-integral can depend only on 𝑥 and an 𝑥-integral only on 𝑛. This is why each solution
of chain (4.176) satisfies two equations

𝐼(𝑥, 𝑡, 𝑡𝑥, 𝑡𝑥𝑥, . . .) = 𝑝(𝑥), 𝐹 (𝑥, 𝑡, 𝑡±1, 𝑡±2, . . .) = 𝑞(𝑛)

with appropriately chosen functions 𝑝(𝑥) and 𝑞(𝑛).
At present discrete nonlinear models have important applications in physics and are actively

studied. The detailed discussion of the applications and the overview of the literature can be
found in the works [1, 23, 58,62].

In this chapter we suggest an algorithm for classification of Darboux integrable chains (4.176)
based on the notion of the characteristic Lie ring (see [43,50–54]).

We introduce the notion of the characteristic ring 𝐿𝑛 of chain (4.176) in the direction of 𝑛.
We observe that

𝐷−𝑗 𝜕

𝜕𝑡1
𝐷𝑗𝐼 = 0 (4.178)

for any 𝑛-integral and 𝑗 ≥ 1. Indeend, the identity 𝐷𝐼 = 𝐼 can be rewritten in the expanded
form,

𝐼(𝑥, 𝑡1, 𝑓, 𝑓𝑥, 𝑓𝑥𝑥, . . .) = 𝐼(𝑥, 𝑡, 𝑡𝑥, 𝑡𝑥𝑥, . . .). (4.179)

The left hand side of the last identity depends on the variable 𝑡1, while the right hand side does
not. Therefore,

𝜕

𝜕𝑡1
𝐷𝐼 = 0

that yields

𝐷−1 𝜕

𝜕𝑡1
𝐷𝐼 = 0.

Arguing in this way, it is easy to obtain formula (4.178). We introduce the vector fields

𝑌𝑗 = 𝐷−𝑗 𝜕

𝜕𝑡1
𝐷𝑗, 𝑗 ≥ 1 (4.180)
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and

𝑋𝑗 =
𝜕

𝜕𝑡−𝑗

, 𝑗 ≥ 1. (4.181)

Thus, we see that each 𝑛-integral 𝐼 lies in the kernel of the operators 𝑋𝑗 and 𝑌𝑗 for each 𝑗 ≥ 1.
The next theorem contains the definition of the characteristic ring 𝐿𝑛 for (4.176) (see [43]).

Theorem 4.1. If equation (4.176) possesses a non-trivial 𝑛-integral, then the following two
conditions hold,

- the linear span of the operators {𝑌𝑗}∞𝑗=1 has a finite dimension. Denote this dimension by
𝑁 .

- the Lie ring 𝐿𝑛 over field of locally differentiable functions generated by the operators
𝑌1, 𝑌2, . . . , 𝑌𝑁 , 𝑋1, 𝑋2, . . . , 𝑋𝑁 , has a finite dimension, We call 𝐿𝑛 a characteristic Lie ring
in the direction of 𝑛.

Let us introduce the notion of a characteristic ring 𝐿𝑥 for chain (4.176) in the direction of 𝑥.
In order to it, we observe that by condition (4.177) chain (4.176) can be rewritten as

𝑡𝑥(𝑛− 1) = 𝑔(𝑡(𝑛), 𝑡(𝑛− 1), 𝑡𝑥(𝑛)).

By definition, the 𝑥-integral 𝐹 (𝑥, 𝑡, 𝑡±1, 𝑡±2, . . .) satisfies the equation 𝐷𝑥𝐹 = 0, i.e., 𝐾0𝐹 = 0,
where

𝐾0 =
𝜕

𝜕𝑥
+ 𝑡𝑥

𝜕

𝜕𝑡
+ 𝑓

𝜕

𝜕𝑡1
+ 𝑔

𝜕

𝜕𝑡−1

+ 𝑓1
𝜕

𝜕𝑡2
+ 𝑔−1

𝜕

𝜕𝑡−2

+ . . . . (4.182)

But since 𝐹 can not depend on 𝑡𝑥, we get 𝑋𝐹 = 0, where

𝑋 =
𝜕

𝜕𝑡𝑥
. (4.183)

Then it is obvious that 𝐹 lies in the kernel of each operator in the Lie ring generated by the
pair of the operators 𝑋 and 𝐾0 over field of locally analytic functions.

It is possible to prove the following important statement (see [9]).

Theorem 4.2. Chain (4.176) possesses a non-trivial 𝑥-integral if and only if its character-
istic Lie ring 𝐿𝑥 has a finite dimension.

4.2. Classification of Darboux integrable chains of special form. Consider the prob-
lem on description of all chains

𝑡1𝑥 = 𝑡𝑥 + 𝑑(𝑡, 𝑡1), (4.184)

possessing nontrivial 𝑥- and 𝑛-integrals. The complete list of chains (4.184) possessing 𝑥-
integrals is provided in the next theorem.

Theorem 4.3. Chain (4.184) possesses a nontrivial 𝑥-integral if and only if 𝑑(𝑡, 𝑡1) belongs
to one of the classes

(1) 𝑑(𝑡, 𝑡1) = 𝐴(𝑡− 𝑡1),
(2) 𝑑(𝑡, 𝑡1) = 𝑐0(𝑡− 𝑡1)𝑡+ 𝑐2(𝑡− 𝑡1)

2 + 𝑐3𝑡− 𝑐3𝑡1,
(3) 𝑑(𝑡, 𝑡1) = 𝐴(𝑡− 𝑡1)𝑒

𝛼𝑡,
(4) 𝑑(𝑡, 𝑡1) = 𝑐4(𝑒

𝛼𝑡1 − 𝑒𝛼𝑡) + 𝑐5(𝑒
−𝛼𝑡1 − 𝑒−𝛼𝑡),

where 𝐴 = 𝐴(𝑡− 𝑡1), 𝑐𝑖 = 𝑐𝑜𝑛𝑠𝑡, 𝑖 = 0, . . . , 5, 𝑐0 ̸= 0, 𝑐4 ̸= 0, 𝑐5 ̸= 0 and 𝛼− 𝑐𝑜𝑛𝑠𝑡, 𝛼 ̸= 0.
At that, the 𝑥-integrals read as
(i) 𝐹 = 𝑥+

∫︀ 𝜏 𝑑𝑢
𝐴(𝑢)

if 𝐴(𝑢) ̸= 0 and 𝐹 = 𝑡1 − 𝑡 if 𝐴(𝑢) ≡ 0,

(ii) 𝐹 = 1
−𝑐2−𝑐0

ln |−(𝑐2+𝑐0)𝜏1
𝜏2

+ 𝑐2|+ 1
𝑐2

ln | 𝑐2𝜏1
𝜏

− 𝑐2− 𝑐0| as 𝑐2(𝑐2 + 𝑐0) ̸= 0, 𝐹 = ln 𝜏1− ln 𝜏2 + 𝜏1
𝜏

as 𝑐2 = 0 and 𝐹 = 𝜏1
𝜏2
− ln 𝜏 + ln 𝜏1 as 𝑐2 = −𝑐0,

(iii) 𝐹 =
∫︀ 𝜏
𝑒−𝛼𝑢 𝑑𝑢

𝐴(𝑢)
−
∫︀ 𝜏1 𝑑𝑢

𝐴(𝑢)
,

(iv) 𝐹 = (𝑒𝛼𝑡−𝑒𝛼𝑡2 )(𝑒𝛼𝑡1−𝑒𝛼𝑡3 )
(𝑒𝛼𝑡−𝑒𝛼𝑡3 )(𝑒𝛼𝑡1−𝑒𝛼𝑡2 )

,

where 𝜏 = 𝑡− 𝑡1, 𝜏1 = 𝑡1 − 𝑡2, 𝜏2 = 𝑡2 − 𝑡3.
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Let us discuss some necessary conditions for the existence of 𝑥-integral. Denote by 𝐹 the class
of locally analytic functions each of those depends on a finite number of dynamical variables.
In particular, we obtain 𝑓(𝑡, 𝑡1, 𝑡𝑥) ∈ 𝐹 . In what follows we shall deal with the vector fields
defined as formal series

𝑌 =
∞∑︁
−∞

𝑦𝑘
𝜕

𝜕𝑡𝑘
(4.185)

with the coefficients 𝑦𝑘 ∈ 𝐹 . Let us specify how the linear dependence and linear independence
is understood for vector fields (4.185). Let 𝑃𝑁 be the projector defined in the class of formal
series (4.185),

𝑃𝑁(𝑌 ) =
𝑁∑︁
−𝑁

𝑦𝑘
𝜕

𝜕𝑡𝑘
. (4.186)

Consider first the vector fields defined by a finite sum,

𝑍 =
𝑁∑︁
−𝑁

𝑧𝑘
𝜕

𝜕𝑡𝑘
. (4.187)

Vector fields 𝑍1, 𝑍2, . . . , 𝑍𝑚 of the form (4.187) are linearly dependent in a some open domain
Ω if there exists a set of function 𝜆1, 𝜆2, . . . , 𝜆𝑚 defined in Ω such that the function |𝜆1|2 +
|𝜆2|2 + . . .+ |𝜆𝑚|2 is not identically zero and for all points of the domain Ω the identity

𝜆1𝑍1 + 𝜆2𝑍2 + . . .+ 𝜆𝑚𝑍𝑚 = 0 (4.188)

holds true.
We call the set of vector fields 𝑌1, 𝑌2, . . . , 𝑌𝑚 of the form (4.185) linearly dependent in the

domain Ω if for each natural 𝑁 the set of the vector fields 𝑃𝑁(𝑌1), 𝑃𝑁(𝑌2), . . . , 𝑃𝑁(𝑌𝑚) defined
by finite sums is linearly dependent in this domain. Otherwise the set 𝑌1, 𝑌2, . . . , 𝑌𝑚 is called
linearly independent.

In an obvious was the definition of linear dependence of vector fields implies the following
statement.

Remark 4.1. If a vector field 𝑌 is a linear combination

𝑌 = 𝜆1𝑌1 + 𝜆2𝑌2 + . . .+ 𝜆𝑚𝑌𝑚, (4.189)

where the vector fields 𝑌1, 𝑌2, . . . , 𝑌𝑚 are linearly independent in Ω, and the coefficients of all vec-
tor fields 𝑌, 𝑌1, 𝑌2, . . . , 𝑌𝑚 belong to 𝐹 and are defined in Ω, then the coefficients 𝜆1, 𝜆2, . . . , 𝜆𝑚
also belong to 𝐹 .

Let us return back to chains (4.184). In this case the ring 𝐿𝑥 splits into the direct sum of

two subrings. Indeed, since 𝑓 = 𝑡𝑥 + 𝑑 and 𝑔 = 𝑡𝑥 − 𝑑−1, then 𝑓𝑘 = 𝑡𝑥 + 𝑑 +
∑︀𝑘

𝑗=1 𝑑𝑗 and

𝑔−𝑘 = 𝑡𝑥 −
∑︀𝑘+1

𝑗=1 𝑑−𝑘 as 𝑘 ≥ 1, where 𝑑 = 𝑑(𝑡, 𝑡1), 𝑑𝑗 = 𝑑(𝑡𝑗, 𝑡𝑗+1). This is why it is easy to see

that 𝐾0 = 𝑡𝑥 ̃︀𝑋 + 𝑌 , where

̃︀𝑋 =
𝜕

𝜕𝑡
+

𝜕

𝜕𝑡1
+

𝜕

𝜕𝑡−1

+
𝜕

𝜕𝑡2
+

𝜕

𝜕𝑡−2

+ . . . (4.190)

and

𝑌 =
𝜕

𝜕𝑥
+ 𝑑

𝜕

𝜕𝑡1
− 𝑑−1

𝜕

𝜕𝑡−1

+ (𝑑+ 𝑑1)
𝜕

𝜕𝑡2
− (𝑑−1 + 𝑑−2)

𝜕

𝜕𝑡−2

+ . . . . (4.191)

It follows from the relations [𝑋, ̃︀𝑋] = 0 and [𝑋, 𝑌 ] = 0 that ̃︀𝑋 = [𝑋,𝐾0] ∈ 𝐿𝑥 so that

𝑌 ∈ 𝐿𝑥. Hence, 𝐿𝑥 = {𝑋} ⊕ 𝐿𝑥1, where 𝐿𝑥1 is the Lie ring generated by the operators ̃︀𝑋 and
𝑌 .
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Lemma 4.1. If equation (4.184) has a nontrivial 𝑥-integral, then it has 𝑥-integral indepen-
dent explicitly on 𝑥.

Proof. Suppose there exists a nontrivial 𝑥-integral of chain (4.184). Then the Lie ring 𝐿𝑥 is
finite-dimensional. We choose its basis as follows,

𝑇1 =
𝜕

𝜕𝑥
+

∞∑︁
𝑘=−∞

𝑎1,𝑘
𝜕

𝜕𝑡𝑘
, 𝑇𝑗 =

∞∑︁
𝑘=−∞

𝑎𝑗,𝑘
𝜕

𝜕𝑡𝑘
, 2 6 𝑗 6 𝑁.

Moreover, there exists a 𝑥-integral 𝐹 (𝑥, 𝑡, 𝑡1, . . . , 𝑡𝑁−1) satisfying the system of equations

𝜕𝐹

𝜕𝑥
+

𝑁−1∑︁
𝑘=0

𝑎1,𝑘
𝜕𝐹

𝜕𝑡𝑘
= 0,

𝑁−1∑︁
𝑘=0

𝑎𝑗,𝑘
𝜕𝐹

𝜕𝑡𝑘
= 0, 2 6 𝑗 6 𝑁.

Due to the known Jacobi theore (see [30]), there exists a change of variables
𝜃𝑗 = 𝜃𝑗(𝑡, 𝑡1, . . . , 𝑡𝑁−1) reducing the system to

𝜕𝐹

𝜕𝑥
+

𝑁−1∑︁
𝑘=0

̃︀𝑎1,𝑘 𝜕𝐹
𝜕𝜃𝑘

= 0,
𝜕𝐹

𝜕𝜃𝑘
= 0, 2 6 𝑗 6 𝑁 − 2,

which is equivalent to the equation

𝜕𝐹

𝜕𝑥
+ ̃︀𝑎1,𝑁−1

𝜕𝐹

𝜕𝑡𝑁−1

= 0

for 𝐹 = 𝐹 (𝑥, 𝜃𝑁−1).
Here two cases are possible, (1) ̃︀𝑎1,𝑁−1 = 0 and (2) ̃︀𝑎1,𝑁−1 ̸= 0. In the case (1) we find

𝜕𝐹
𝜕𝑥

= 0, and in the second

𝐹 = 𝑥+𝐻(𝜃𝑁−1) = 𝑥+𝐻(𝑡, 𝑡1, . . . , 𝑡𝑁−1)

for some function 𝐻. It is obvious that 𝐹1 = 𝐷𝐹 = 𝑥 + 𝐻(𝑡1, 𝑡2, . . . , 𝑡𝑁) is also an 𝑥-integral.
This is why 𝐹1−𝐹 is a non-trivial 𝑥-integral independent explicitly on 𝑥. The lemma is proven.

By Lemma 4.1 one can seek 𝑥-integral depending only on the variables 𝑡, 𝑡±1, 𝑡±2, . . .. In

other words, one restrict himself by the study of the Lie ring generated by the vector fields ̃︀𝑋
and ̃︀𝑌 , ̃︀𝑌 = 𝑑

𝜕

𝜕𝑡1
− 𝑑−1

𝜕

𝜕𝑡−1

+ (𝑑+ 𝑑1)
𝜕

𝜕𝑡2
− (𝑑−1 + 𝑑−2)

𝜕

𝜕𝑡−2

+ . . . . (4.192)

It can be shown that the linear operator acting as 𝑍 → 𝐷𝑍𝐷−1 defines an automorphism
of the characteristic ring 𝐿𝑥. This automorphism plays a key role in studying the chains. A
straightforward calculation shows that

𝐷 ̃︀𝑋𝐷−1 = ̃︀𝑋, 𝐷̃︀𝑌 𝐷−1 = −𝑑 ̃︀𝑋 + ̃︀𝑌 . (4.193)

Lemma 4.2. Let the vector field 𝑍 =
∑︀
𝑎(𝑗) 𝜕

𝜕𝑡𝑗
with the coefficients 𝑎(𝑗) =

𝑎(𝑗, 𝑡, 𝑡±1, 𝑡±2, . . .) depending on a finite number of the dynamical variables satisfies the con-
dition 𝐷𝑍𝐷−1 = 𝜆𝑍 and let 𝑎(𝑗) = 0 for some 𝑗 = 𝑗0, then 𝑍 = 0.

Proof. Applying the shift automorphism to the operator 𝑍, we obtain 𝐷𝑍𝐷−1 =∑︀
𝐷(𝑎(𝑗)) 𝜕

𝜕𝑡𝑗+1
. Now to complete the proof we compare the coefficients at 𝜕

𝜕𝑡𝑗
in the iden-

tity 𝐷𝑍𝐷−1 = 𝜆𝑍. The lemma is proven.

Let us construct an infinite sequence of multiple commutators of the vector fields ̃︀𝑋 and ̃︀𝑌 ,̃︀𝑌1 = [ ̃︀𝑋, ̃︀𝑌 ], ̃︀𝑌𝑘 = [ ̃︀𝑋, ̃︀𝑌𝑘−1] for 𝑘 ≥ 2. (4.194)
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Lemma 4.3. The identity

𝐷̃︀𝑌𝑘𝐷−1 = − ̃︀𝑋𝑘(𝑑) ̃︀𝑋 + ̃︀𝑌𝑘, 𝑘 ≥ 1 (4.195)

holds true.

We prove the lemma by induction. As 𝑘 = 1, it follows from (4.193) and (4.194) that

𝐷̃︀𝑌1𝐷−1 = 𝐷[ ̃︀𝑋, ̃︀𝑌 ]𝐷−1 = [𝐷 ̃︀𝑋𝐷−1, 𝐷̃︀𝑌 𝐷−1] = [ ̃︀𝑋,−𝑑 ̃︀𝑋 + ̃︀𝑌 ] = − ̃︀𝑋(𝑑) ̃︀𝑋 + ̃︀𝑌1.
Suppose now that the statement holds true for 𝑘 − 1, then we get

𝐷̃︀𝑌𝑘𝐷−1 = [𝐷 ̃︀𝑋𝐷−1, 𝐷̃︀𝑌𝑘−1𝐷
−1] = [ ̃︀𝑋,− ̃︀𝑋𝑘−1(𝑑) ̃︀𝑋 + ̃︀𝑌𝑘−1] = − ̃︀𝑋𝑘(𝑑) ̃︀𝑋 + ̃︀𝑌𝑘.

The lemma is proven.

Since the vector fields 𝑋, ̃︀𝑋 and ̃︀𝑌 are linearly independent, then the dimension of the Lie

ring 𝐿𝑥 is at least three. By (4.195) the case ̃︀𝑌1 = 0 means ̃︀𝑋(𝑑) = 0 or 𝑑𝑡 + 𝑑𝑡1 = 0 that
implies 𝑑 = 𝐴(𝑡− 𝑡1). Here 𝐴(𝜏) is an arbitrary function of one variable.

Suppose chain (4.184) possesses a nontrivial 𝑥-integral and ̃︀𝑌1 ̸= 0. Consider the sequence

of vector fields {̃︀𝑌1, ̃︀𝑌2, ̃︀𝑌3, . . . , }. Since 𝐿𝑥 is of finite dimension, there exists a natural 𝑁 such
that ̃︀𝑌𝑁+1 = 𝛾1̃︀𝑌1 + 𝛾2̃︀𝑌2 + . . .+ 𝛾𝑁 ̃︀𝑌𝑁 , 𝑁 ≥ 1, (4.196)

and ̃︀𝑌1, ̃︀𝑌2, . . . , ̃︀𝑌𝑁 are linearly independent. Therefore,

𝐷̃︀𝑌𝑁+1𝐷
−1 = 𝐷(𝛾1)𝐷̃︀𝑌1𝐷−1 +𝐷(𝛾2)𝐷̃︀𝑌2𝐷−1 + . . .+𝐷(𝛾𝑁)𝐷̃︀𝑌𝑁𝐷−1, 𝑁 ≥ 1.

By Lemma 4.3 and (4.196) the last equation can be rewritten as

− ̃︀𝑋𝑁+1(𝑑) ̃︀𝑋 + 𝛾1̃︀𝑌1 + 𝛾2̃︀𝑌2 + . . .+ 𝛾𝑁 ̃︀𝑌𝑁 = 𝐷(𝛾1)(− ̃︀𝑋(𝑑) ̃︀𝑋 + ̃︀𝑌1)+
+𝐷(𝛾2)(− ̃︀𝑋2(𝑑) ̃︀𝑋 + ̃︀𝑌2) + . . .+𝐷(𝛾𝑁)(− ̃︀𝑋𝑁(𝑑) ̃︀𝑋 + ̃︀𝑌𝑁).

Comparing the coefficients at the linearly independent operators ̃︀𝑋, ̃︀𝑌1, ̃︀𝑌2, . . . , ̃︀𝑌𝑁 , we obtain
the following system of equations,̃︀𝑋𝑁+1(𝑑) = 𝐷(𝛾1) ̃︀𝑋(𝑑) +𝐷(𝛾2) ̃︀𝑋2(𝑑) + . . .+𝐷(𝛾𝑁) ̃︀𝑋𝑁(𝑑),

𝛾1 = 𝐷(𝛾1), 𝛾2 = 𝐷(𝛾2), . . . , 𝛾𝑁 = 𝐷(𝛾𝑁).

Since the coefficients at the vector-fields ̃︀𝑌𝑗 depend only on variables 𝑡, 𝑡±1, 𝑡±2, . . ., then the
coefficients 𝛾𝑗 can depend only on these variables (see Remark 4.1). Moreover, it follows from
the last system that the coefficients 𝛾𝑘 are constant for all 1 6 𝑘 6 𝑁 , and the functions
𝑑 = 𝑑(𝑡, 𝑡1) satisfy the differential equatioñ︀𝑋𝑁+1(𝑑) = 𝛾1 ̃︀𝑋(𝑑) + 𝛾2 ̃︀𝑋2(𝑑) + . . .+ 𝛾𝑁 ̃︀𝑋𝑁(𝑑), ̃︀𝑋(𝑑) = 𝑑𝑡 + 𝑑𝑡1 . (4.197)

Employing the change of variables 𝑠 = 𝑡 and 𝜏 = 𝑡− 𝑡1, we rewrite equation (4.197) as

𝜕𝑁+1𝑑

𝜕𝑠𝑁+1
= 𝛾1

𝜕𝑑

𝜕𝑠
+ 𝛾2

𝜕2𝑑

𝜕𝑠2
+ . . .+ 𝛾𝑁

𝜕𝑁𝑑

𝜕𝑠𝑁
. (4.198)

Therefore, the following statement holds.

Theorem 4.4. The needed function 𝑑 = 𝑑(𝑡, 𝑡1) reads as

𝑑(𝑡, 𝑡1) =
∑︁
𝑘

(︃
𝑚𝑘−1∑︁
𝑗=0

𝜆𝑘,𝑗(𝑡− 𝑡1)𝑡
𝑗

)︃
𝑒𝛼𝑘𝑡, (4.199)

where 𝜆𝑘,𝑗(𝑡− 𝑡1) are some functions, 𝛼𝑘 are the characteristic roots of the multiplicity 𝑚𝑘 for
equation (4.198).
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Let 𝛼0 = 0, 𝛼1, . . . , 𝛼𝑠 are the distinct roots of the characteristic equation. Then equation
(4.197) can be represented as

Λ( ̃︀𝑋)𝑑 = ̃︀𝑋𝑚0( ̃︀𝑋 − 𝛼1)
𝑚1( ̃︀𝑋 − 𝛼2)

𝑚2 . . . ( ̃︀𝑋 − 𝛼𝑠)
𝑚𝑠𝑑 = 0,

𝑚0 +𝑚1 + . . .+𝑚𝑠 = 𝑁 + 1, 𝑚0 ≥ 1.
(4.200)

Starting with formula (4.192), we introduce the mapping ℎ → 𝑌ℎ, which maps a function
ℎ = ℎ(𝑡, 𝑡±1, 𝑡±2, . . .) into the vector field

𝑌ℎ = ℎ
𝜕

𝜕𝑡1
− ℎ−1

𝜕

𝜕𝑡−1

+ (ℎ+ ℎ1)
𝜕

𝜕𝑡2
− (ℎ−1 + ℎ−2)

𝜕

𝜕𝑡−2

+ . . . .

For each polynomial with constant coefficients 𝑃 (𝜆) = 𝑐0+𝑐1𝜆+. . .+𝑐𝑚𝜆
𝑚 we have the formula

𝑃 (𝑎𝑑 ̃︀𝑋)̃︀𝑌 = 𝑌𝑃 ( ̃︀𝑋)𝑑, 𝑎𝑑𝑋𝑌 = [𝑋, 𝑌 ], (4.201)

which makes an isomorphism between the linear space 𝑉 of all solutions to equation (4.198)

and the linear span ̃︀𝑉 of the vector fields ̃︀𝑌 , ̃︀𝑌1, . . . , ̃︀𝑌𝑁 .
We represent function (4.199) as the sum 𝑑(𝑡, 𝑡1) = 𝑃 (𝑡, 𝑡1) + 𝑄(𝑡, 𝑡1) of a poly-

nomial term 𝑃 (𝑡, 𝑡1) =
∑︀𝑚0−1

𝑗=0 𝜆0,𝑗(𝑡 − 𝑡1)𝑡
𝑗 and an “exponential” one 𝑄(𝑡, 𝑡1) =∑︀𝑠

𝑘=1

(︁∑︀𝑚𝑘−1
𝑗=0 𝜆𝑘,𝑗(𝑡− 𝑡1)𝑡

𝑗
)︁

e𝛼𝑘𝑡.

Lemma 4.4. Let equation (4.184) possess a nontrivial 𝑥-integral. Then at least one of the
functions 𝑃 (𝑡, 𝑡1) and 𝑄(𝑡, 𝑡1) is identically zero.

Proof. Suppose the opposite, i.e., none of the functions is identically zero. We first show
that in this case the ring 𝐿𝑥 contains the vector fields 𝑇0 = 𝑌𝐴(𝜏)𝑒𝛼𝑘𝑡 and 𝑇1 = 𝑌𝐵(𝜏) with

some functions 𝐴(𝜏) and 𝐵(𝜏). As 𝑇0 we choose the vector field Λ0(𝑎𝑑 ̃︀𝑋)̃︀𝑌 = 𝑌Λ0( ̃︀𝑋)𝑑 ∈ 𝐿𝑥,

where Λ0(𝜆) = Λ(𝜆)
𝜆−𝛼𝑘

. It is obvious that the function ̃︀𝐴(𝑡, 𝑡1) = Λ0( ̃︀𝑋)𝑑 satisfies the equation

( ̃︀𝑋 − 𝛼𝑘) ̃︀𝐴(𝑡, 𝑡1) = Λ( ̃︀𝑋)𝑑 = 0, which implies immediately that ̃︀𝐴(𝑡, 𝑡1) = 𝐴(𝜏)𝑒𝛼𝑘𝑡.
In the same way one can construct the field 𝑇1 = 𝑌𝐵(𝜏) ∈ 𝐿𝑥. We observe that in accordance

with our assumption the functions 𝐴(𝜏) and 𝐵(𝜏) are not identically zero.
We consider an infinite sequence of the vector fields defined by the rule

𝑇2 = [𝑇0, 𝑇1], 𝑇3 = [𝑇0, 𝑇2], . . . , 𝑇𝑛 = [𝑇0, 𝑇𝑛−1], 𝑛 ≥ 3.

It can be shown that

[ ̃︀𝑋,𝑇0] = 𝛼𝑘𝑇0, [ ̃︀𝑋,𝑇1] = 0, [ ̃︀𝑋,𝑇𝑛] = 𝛼𝑘(𝑛− 1)𝑇𝑛, 𝑛 ≥ 2,

𝐷𝑇0𝐷
−1 = −𝐴𝑒𝛼𝑘𝑡 ̃︀𝑋 + 𝑇0, 𝐷𝑇1𝐷

−1 = −𝐵 ̃︀𝑋 + 𝑇1, . . . ,

𝐷𝑇𝑛𝐷
−1 = 𝑇𝑛 − (𝑛−1)(𝑛−2)

2
𝛼𝑘𝐴𝑒

𝛼𝑘𝑡𝑇𝑛−1 + 𝑏𝑛 ̃︀𝑋 +
∑︀𝑛−2

𝑘=0 𝑎
(𝑛)
𝑘 𝑇𝑘, 𝑛 ≥ 2.

Since the algebra is finite-dimensional and ̃︀𝑋,𝑇0, 𝑇1, . . . , 𝑇𝑁 are linearly independent, there
exists a number 𝑁 such that

𝑇𝑁+1 = 𝜆 ̃︀𝑋 + 𝜇0𝑇0 + 𝜇1𝑇1 + . . .+ 𝜇𝑁𝑇𝑁 . (4.202)

We have

𝐷𝑇𝑁+1𝐷
−1 = 𝐷(𝜆) ̃︀𝑋 +𝐷(𝜇0)

(︁
−𝐴𝑒𝛼𝑘𝑡 ̃︀𝑋 + 𝑇0

)︁
+ . . .+,

+𝐷(𝜇𝑁)
(︁
𝑇𝑁 − (𝑁−1)(𝑁−2)

2
𝛼𝑘𝐴𝑒

𝛼𝑘𝑡𝑇𝑁−1 + . . .
)︁
.

Comparing the coefficients at the operator 𝑇𝑁 in the last equation, we find

𝜇𝑁 − 𝑁(𝑁 − 1)

2
𝛼𝑘𝐴(𝜏)𝑒𝛼𝑘𝑡 = 𝐷(𝜇𝑁).
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It follows that 𝜇𝑁 is a function depending on 𝑡 only. Applying the operator 𝑎𝑑 ̃︀𝑋 to both sides
of equation (4.202), we get

𝑁𝛼𝑘𝑇𝑁+1 = [ ̃︀𝑋,𝑇𝑁+1] = ̃︀𝑋(𝜆) ̃︀𝑋 +
(︁ ̃︀𝑋(𝜇0) + 𝜇0𝛼𝑘

)︁
𝑇0 + . . .+

+
(︁ ̃︀𝑋(𝜇𝑁) + 𝜇𝑁(𝑁 − 1)𝛼𝑘

)︁
𝑇𝑁 .

Again comparing the coefficients at 𝑇𝑁 , we find

𝑁𝛼𝑘𝜇𝑁 = ̃︀𝑋(𝜇𝑁) + (𝑁 − 1)𝛼𝑘𝜇𝑁 or ̃︀𝑋(𝜇𝑁) = 𝛼𝑘𝜇𝑁 .

Therefore, 𝜇𝑁 = 𝐴1𝑒
𝛼𝑘𝑡, where 𝐴1 is a non-zero constant and this is why

𝐴(𝜏)𝑒𝛼𝑘𝑡 = 𝐴2𝑒
𝛼𝑘𝑡 − 𝐴2𝑒

𝛼𝑘𝑡1 , 𝐴2 = 𝑐𝑜𝑛𝑠𝑡.

We have 𝑇0 = 𝐴2𝑒
𝛼𝑘𝑡 ̃︀𝑋 − 𝐴2𝑆0, where 𝑆0 =

∑︀∞
𝑗=−∞ 𝑒𝛼𝑘𝑡𝑗 𝜕

𝜕𝑡𝑗
. And also

[ ̃︀𝑋,𝑆0] = 𝛼𝑘𝑆0, 𝐷𝑆0𝐷
−1 = 𝑆0.

We consider a new sequence of vector fields

𝑃1 = 𝑆0, 𝑃2 = [𝑇1, 𝑆0], 𝑃3 = [𝑇1, 𝑃2], 𝑃𝑛 = [𝑇1, 𝑃𝑛−1], 𝑛 ≥ 3.

It can be shown that

[ ̃︀𝑋,𝑃𝑛] = 𝛼𝑘𝑃𝑛, 𝐷𝑃𝑛𝐷
−1 = 𝑃𝑛 − 𝛼𝑘(𝑛− 1)𝐵𝑃𝑛−1+

+𝑏𝑛 ̃︀𝑋 + 𝑎𝑛𝑆0 +
∑︀𝑛−2

𝑗=2 𝑎
(𝑛)
𝑗 𝑃𝑗, 𝑛 ≥ 2.

Since the algebra 𝐿𝑥 is finite-dimensional, there exists a number 𝑀 such that

𝑃𝑀+1 = 𝜆* ̃︀𝑋 + 𝜇*
2𝑃2 + . . .+ 𝜇*

𝑀𝑃𝑀 , (4.203)

where the fields ̃︀𝑋,𝑃2, . . . , 𝑃𝑀 are linearly independent. Then

𝐷𝑃𝑀+1𝐷
−1 = 𝐷(𝜆*) ̃︀𝑋 +𝐷(𝜇*

2)(𝑃2 + . . .) + . . .+
+𝐷(𝜇*

𝑀)(𝑃𝑀 − 𝛼𝑘(𝑀 − 1)𝐵𝑃𝑀−1 + . . .).

Comparing the coefficients at 𝑃𝑀 in the last relations, we obtain

𝜇*
𝑀 −𝑀𝛼𝑘𝐵(𝜏) = 𝐷(𝜇*

𝑀). (4.204)

Hence, 𝜇*
𝑀 is a function depending on 𝑡 only.

We apply the operator 𝑎𝑑 ̃︀𝑋 to both sides of equation (4.203), then we get

𝛼𝑘𝑃𝑀+1 = [ ̃︀𝑋,𝑃𝑀+1] = ̃︀𝑋(𝜆*) ̃︀𝑋 + ( ̃︀𝑋(𝜇*
2) + 𝛼𝑘𝜇

*
2)𝑃2+

+ . . .+ ( ̃︀𝑋(𝜇*
𝑀) + 𝛼𝑘𝜇

*
𝑀)𝑃𝑀 .

Afresh, comparing the coefficients at 𝑃𝑀 and knowing that 𝛼𝑘𝜇
*
𝑀(𝑡) = ̃︀𝑋(𝜇*

𝑀(𝑡))+ +𝛼𝑘𝜇
*
𝑀(𝑡),

we obtain that 𝜇*
𝑀 is constant. It follows from equation (4.204) that 𝐵(𝜏) = 0. This contra-

diction implies that at least one of the functions 𝑃 (𝑡, 𝑡1) and 𝑄(𝑡, 𝑡1) is identically zero. The
lemma is proven.

Further specification of the function 𝑑(𝑡, 𝑡1) and the complete proof of Theorem 4.3 can be
found in the work [53].

The result of the complete classification of equation (4.184) is contained in the next statement
(see [52]).

Theorem 4.5. The chain (4.184) possessing simultaneously nontrivial 𝑥- and 𝑛-integrals
belongs to one of the types,

(1) 𝑑(𝑡, 𝑡1) = 𝐴(𝑡1 − 𝑡), where 𝐴(𝑡1 − 𝑡) = 𝑑
𝑑𝜃
𝑃 (𝜃), 𝑡1 − 𝑡 = 𝑃 (𝜃), 𝑃 (𝜃) is a quasipolynomial

w.r.t. 𝜃,
(2) 𝑑(𝑡, 𝑡1) = 𝐶1(𝑡

2
1 − 𝑡2) + 𝐶2(𝑡1 − 𝑡),

(3) 𝑑(𝑡, 𝑡1) =
√︀
𝐶3𝑒2𝛼𝑡1 + 𝐶4𝑒𝛼(𝑡1+𝑡) + 𝐶3𝑒2𝛼𝑡,

(4) 𝑑(𝑡, 𝑡1) = 𝐶5(𝑒
𝛼𝑡1 − 𝑒𝛼𝑡) + 𝐶6(𝑒

−𝛼𝑡1 − 𝑒−𝛼𝑡),



62 A.V. ZHIBER, R.D. MURTAZINA, I.T. HABIBULLIN, A.B. SHABAT

where 𝛼 ̸= 0, 𝐶𝑖, 1 6 𝑖 6 6 are arbitrary constant. At that the corresponding integrals of
minimal order can be reduced to

i) 𝐹 = 𝑥 −
∫︀ 𝑡1−𝑡 𝑑𝑠

𝐴(𝑠)
, 𝐼 = 𝐿(𝐷𝑥)𝑡𝑥, where 𝐿(𝐷𝑥) is a differential operator vanishing on

𝑑
𝑑𝜃
𝑃 (𝜃). At that 𝐷𝑥𝜃 = 1.

ii) 𝐹 = (𝑡3−𝑡1)(𝑡2−𝑡)
(𝑡3−𝑡2)(𝑡1−𝑡)

, 𝐼 = 𝑡𝑥 − 𝐶1𝑡
2 − 𝐶2𝑡,

iii) 𝐹 =
∫︀ 𝑡1−𝑡 e−𝛼𝑠𝑑𝑠√

𝐶3e2𝛼𝑠+𝐶4e𝛼𝑠+𝐶3

−
∫︀ 𝑡2−𝑡1 𝑑𝑠√

𝐶3e2𝛼𝑠+𝐶4e𝛼𝑠+𝐶3

, 𝐼 = 2𝑡𝑥𝑥 − 𝛼𝑡2𝑥 − 𝛼𝐶3e
2𝛼𝑡,

iv) 𝐹 = (e𝛼𝑡−e𝛼𝑡2 )(e𝛼𝑡1−e𝛼𝑡3 )
(e𝛼𝑡−e𝛼𝑡3 )(e𝛼𝑡1−e𝛼𝑡2 )

, 𝐼 = 𝑡𝑥 − 𝐶5𝑒
𝛼𝑡 − 𝐶6𝑒

−𝛼𝑡.

4.3. 𝑆-integrable differential-difference equations. Employing coordinate representa-
tions (4.182), (4.183) of the characteristic vector fields, it is possible to construct the char-
acteristic Lie ring 𝐿𝑥 = {𝑋,𝐾0} associated with an arbitrary differential-difference equation
(4.176).

In what follows we study in detail the characteristic Lie ring of the chain

𝑡1𝑥 = 𝑡𝑥 + 𝐴1(e
𝛼𝑡1 + e𝛼𝑡) + 𝐴2(e

−𝛼𝑡 + e−𝛼𝑡1), (4.205)

which is a differential-difference analogue of the Sine-Gordon equation. 𝑢𝑥𝑦 = sin𝑢. Since
equation (4.205) read as (4.184), then as the generators of the rings one choose the operators̃︀𝑋, ̃︀𝑌 (see (4.190), (4.192)). Then we employ identity (4.201), in which we let 𝑑 = 𝐴1(e

𝛼𝑡1 +
e𝛼𝑡) + 𝐴2(e

−𝛼𝑡 + e−𝛼𝑡1). We let 𝑃0(𝜆) = 1
2𝛼𝐴1

(𝜆+ 𝛼), 𝑃1(𝜆) = − 1
2𝛼𝐴2

(𝜆− 𝛼).

We introduce two operators 𝑆*
0 = 𝑃0(𝑎𝑑 ̃︀𝑋)̃︀𝑌 and 𝑆*

1 = 𝑃1(𝑎𝑑 ̃︀𝑋)̃︀𝑌 ,

𝑆*
0 = (e𝛼𝑡1 + e𝛼𝑡) 𝜕

𝜕𝑡1
− (e𝛼𝑡−1 + e𝛼𝑡) 𝜕

𝜕𝑡−1
+

+(e𝛼𝑡 + 2e𝛼𝑡1 + e𝛼𝑡2) 𝜕
𝜕𝑡2

− (e𝛼𝑡 + 2e𝛼𝑡−1 + e𝛼𝑡−2) 𝜕
𝜕𝑡−2

+ . . . ,
(4.206)

𝑆*
1 = (e−𝛼𝑡1 + e−𝛼𝑡) 𝜕

𝜕𝑡1
− (e−𝛼𝑡−1 + e−𝛼𝑡) 𝜕

𝜕𝑡−1
+

+(e−𝛼𝑡 + 2e−𝛼𝑡1 + e−𝛼𝑡2) 𝜕
𝜕𝑡2

− (e−𝛼𝑡 + 2e−𝛼𝑡−1 + e−𝛼𝑡−2) 𝜕
𝜕𝑡−2

+ . . . .
(4.207)

It follows from the obvious identities [ ̃︀𝑋,𝑆*
0 ] = 𝛼𝑆*

0 , [ ̃︀𝑋,𝑆*
1 ] = −𝛼𝑆*

1 , ̃︀𝑌 = 𝐴1𝑆
*
0 +𝐴2𝑆

*
1 that

𝐿𝑥1 = { ̃︀𝑋} ⊕ 𝐿𝑥2, where 𝐿𝑥2 is the Lie ring generated by the operators 𝑆*
0 , 𝑆

*
1 .

Let us construct the basis of the space consisting of the elements of the ring 𝐿𝑥2. We replace
the dependent variables as 𝜏𝑗 = 𝑡𝑗 − 𝑡𝑗+1, then 𝜏𝑗 and 𝑡 = 𝑡0 are new variable and the identities
𝜕
𝜕𝑡𝑗

= − 𝜕
𝜕𝜏𝑗−1

+ 𝜕
𝜕𝜏𝑗

hold true that allows us to rewrite the operators 𝑆*
0 , 𝑆

*
1 as 𝑆*

0 = −e𝛼𝑡𝑆0,

𝑆*
1 = −e−𝛼𝑡𝑆1, where

𝑆0 =
∑︁
𝑗

𝐴(𝜏𝑗)e
𝛼𝜌(𝑗) 𝜕

𝜕𝜏𝑗
, 𝑆1 =

∑︁
𝑗

𝐵(𝜏𝑗)e
−𝛼𝜌(𝑗) 𝜕

𝜕𝜏𝑗
, (4.208)

and also
𝐴(𝜏) = 1 + e−𝛼𝜏 , 𝐵(𝜏) = 1 + e𝛼𝜏 , (4.209)

𝜌(𝑗) =

⎧⎨⎩ −𝜏 − 𝜏1 − . . .− 𝜏𝑗−1, if 𝑗 ≥ 1;
0, if 𝑗 = 0;
𝜏−1 + 𝜏−2 + . . .+ 𝜏𝑗, if 𝑗 6 −1.

(4.210)

Employing the identity 𝐷𝜌(𝑗) = 𝜌(𝑗 + 1) + 𝜏 , it is easy to check that

𝐷𝑆0𝐷
−1 = e𝛼𝜏𝑆0, 𝐷𝑆1𝐷

−1 = e−𝛼𝜏𝑆1. (4.211)

As expected, the characteristic ring 𝐿𝑥2 has an infinite dimension. The ring 𝐿𝑥2 (as well as
𝐿𝑥1, 𝐿𝑥) is the ring of minimal growth. In other words, the dimension of the linear space of
multiple commutators increases by one as the multiplicity increases, and by two subject to the
parity. For instance, if 𝑉𝑗 is the linear space of all the commutators of the multiplicity at most
𝑗, then a basis of 𝑉2𝑘 consists of the operators {𝑆0, 𝑆1, 𝑃1, 𝑃2, 𝑃3, . . . , 𝑃2𝑘, 𝑄2, 𝑄4, . . . , 𝑄2𝑘}, and
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a basis of 𝑉2𝑘+1 does of the operators {𝑆0, 𝑆1, 𝑃1, 𝑃2, 𝑃3, . . . , 𝑃2𝑘+1, 𝑄2, 𝑄4, . . . , 𝑄2𝑘}. Here the
operators 𝑃𝑗, 𝑄𝑗 are defined consequently,

𝑃1 = [𝑆0, 𝑆1] + 𝛼𝑆0 + 𝛼𝑆1, 𝑄1 = 𝑃1,
𝑃2 = [𝑆1, 𝑃1], 𝑄2 = [𝑆0, 𝑄1],
𝑃3 = [𝑆0, 𝑃2] + 𝛼𝑃2, 𝑄3 = [𝑆1, 𝑄2] − 𝛼𝑄2,
𝑃2𝑗 = [𝑆1, 𝑃2𝑗−1], 𝑄2𝑗 = [𝑆0, 𝑄2𝑗−1],
𝑃2𝑗+1 = [𝑆0, 𝑃2𝑗] + 𝛼𝑃2𝑗, 𝑄2𝑗+1 = [𝑆1, 𝑄2𝑗] − 𝛼𝑄2𝑗,

for 𝑗 ≥ 1. The calculations show that

𝐷𝑃1𝐷
−1 = 𝑃1 − 2𝛼(𝑆0 + 𝑆1),

𝐷𝑃2𝐷
−1 = e−𝛼𝜏 (𝑃2 + 2𝛼𝑃1 − 2𝛼2(𝑆0 + 𝑆1)),

𝐷𝑃3𝐷
−1 = 𝑃3 + 2𝛼𝑄2 − 2𝛼𝑃2 − 4𝛼2𝑃1 + 4𝛼3(𝑆0 + 𝑆1),

𝐷𝑃4𝐷
−1 = e−𝛼𝜏 (𝑃4 + 2𝛼𝑄3 − 4𝛼2𝑃2 + 4𝛼2𝑄2−

−4𝛼3𝑃1 + 4𝛼4(𝑆0 + 𝑆1)),
𝐷𝑄2𝐷

−1 = e𝛼𝜏 (𝑄2 − 2𝛼𝑃1 + 2𝛼2(𝑆0 + 𝑆1)),
𝐷𝑄3𝐷

−1 = 𝑄3 + 2𝛼𝑄2 − 2𝛼𝑃2 − 4𝛼2𝑃1 + 4𝛼3(𝑆0 + 𝑆1),
𝐷𝑄4𝐷

−1 = e𝛼𝜏 (𝑄4 − 2𝛼𝑃3 + 2𝛼2(𝑃2 −𝑄2)+
+4𝛼3𝑃1 − 4𝛼4(𝑆0 + 𝑆1)),

𝑃3 = 𝑄3, [𝑆1, 𝑃2] = −𝛼𝑃2, [𝑆0, 𝑄2] = 𝛼𝑄2,
[𝑆1, 𝑃4] = −𝛼𝑃4, [𝑆0, 𝑄4] = 𝛼𝑄4.

(4.212)

The coefficient at
𝜕

𝜕𝜏
in all vector fields 𝐷𝑃𝑖𝐷

−1, 𝐷𝑄𝑖𝐷
−1, 1 6 𝑖 6 4 is zero.

Lemma 4.5. For each 𝑗 ≥ 1 the identities

(1) 𝐷𝑃2𝑗+1𝐷
−1 + 2𝛼e𝛼𝜏𝐷𝑃2𝑗𝐷

−1 = 𝑃2𝑗+1 + 2𝛼𝑄2𝑗,
(2) e𝛼𝜏𝐷𝑃2𝑗+2𝐷

−1 − 𝛼𝐷𝑃2𝑗+1𝐷
−1 = 𝑃2𝑗+2 + 𝛼𝑄2𝑗+1,

(3) 𝐷𝑄2𝑗+1𝐷
−1 − 2𝛼e−𝛼𝜏𝐷𝑄2𝑗𝐷

−1 = 𝑄2𝑗+1 − 2𝛼𝑃2𝑗,
(4) e−𝛼𝜏𝐷𝑄2𝑗+2𝐷

−1 + 𝛼𝐷𝑄2𝑗+1𝐷
−1 = 𝑄2𝑗+2 − 𝛼𝑃2𝑗+1,

(5) 𝑃2𝑗+1 = 𝑄2𝑗+1,
(6) [𝑆1, 𝑃2𝑗+2] = −𝛼𝑃2𝑗+2,
(7) [𝑆0, 𝑄2𝑗+2] = 𝛼𝑄2𝑗+2

hold true. Moreover, the coefficient at
𝜕

𝜕𝜏
in all vector fields 𝐷𝑃𝑘𝐷

−1, 𝐷𝑄𝑘𝐷
−1 is zero.

Proof. By the induction in 𝑗. By (4.212) it is clear that the statement of the lemma holds
as 𝑗 = 1. Suppose (1) − (7) are valid for all 𝑗, 1 6 𝑗 6 𝑘. Let us show that (1) is valid for
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𝑗 = 𝑘 + 1.

𝐷𝑃2𝑗+3𝐷
−1 = 𝐷([𝑆0, 𝑃2𝑗+2] + 𝛼𝑃2𝑗+2)𝐷

−1 = [e𝛼𝜏𝑆0, 𝐷𝑃2𝑗+2𝐷
−1] + 𝛼𝐷𝑃2𝑗+2𝐷

−1 =

= [e𝛼𝜏𝑆0, 𝛼e−𝛼𝜏𝐷𝑃2𝑗+1𝐷
−1 + e−𝛼𝜏𝑃2𝑗+2 + 𝛼e−𝛼𝜏𝑄2𝑗+1] + 𝛼𝐷𝑃2𝑗+2𝐷

−1 =

= −𝛼2(1 + e−𝛼𝜏 )𝐷𝑃2𝑗+1𝐷
−1 + 𝛼e−𝛼𝜏 [e𝛼𝜏𝑆0, 𝐷𝑃2𝑗+1𝐷

−1] − 𝛼(1 + e−𝛼𝜏 )𝑃2𝑗+2−
− 𝛼2(1 + e−𝛼𝜏 )𝑄2𝑗+1 + 𝑃2𝑗+3 − 𝛼𝑃2𝑗+2 + 𝛼𝑄2𝑗+2 + 𝛼𝐷𝑃2𝑗+2𝐷

−1 =

= −𝛼2(1 + e−𝛼𝜏 )𝐷𝑃2𝑗+1𝐷
−1 + 𝛼e−𝛼𝜏𝐷[𝑆0, 𝑄2𝑗+1]𝐷

−1 − 𝛼(2 + e−𝛼𝜏 )𝑃2𝑗+2−
− 𝛼2(1 + e−𝛼𝜏 )𝑄2𝑗+1 + 𝑃2𝑗+3 + 𝛼𝑄2𝑗+2 + 𝛼𝐷𝑃2𝑗+2𝐷

−1 =

= −𝛼2(1 + e−𝛼𝜏 )𝐷𝑃2𝑗+1𝐷
−1 + 𝛼𝑄2𝑗+2 − 𝛼2𝑃2𝑗+1 − 𝛼2𝐷𝑄2𝑗+1𝐷

−1−
− 𝛼(2 + e−𝛼𝜏 )𝑃2𝑗+2 − 𝛼2(1 + e−𝛼𝜏 )𝑄2𝑗+1 − 2𝛼2𝑄2𝑗+1 − 2𝛼𝑃2𝑗+2 + 𝑃2𝑗+3 =

= −2𝛼2𝐷𝑃2𝑗+1𝐷
−1 + 2𝛼𝑄2𝑗+2 − 2𝛼2𝑄2𝑗+1 − 2𝛼𝑃2𝑗+2 + 𝑃2𝑗+3 =

= 2𝛼𝑃2𝑗+2 + 2𝛼2𝑄2𝑗+1 − 2𝛼e𝛼𝜏𝐷𝑃2𝑗+2𝐷
−1 + 2𝛼𝑄2𝑗+2 − 2𝛼2𝑄2𝑗+1−

− 2𝛼𝑃2𝑗+2 + 𝑃2𝑗+3 = −2𝛼e𝛼𝜏𝐷𝑃2𝑗+2𝐷
−1 + 2𝛼𝑄2𝑗+2 + 𝑃2𝑗+3.

The condition (3) is proven exactly in the same way as (1). Let us show that (5) is valid for
𝑗 = 𝑘 + 1. It is obvious that we have

𝐷𝑃2𝑗+3𝐷
−1 = −2𝛼e𝛼𝜏𝐷𝑃2𝑗+2𝐷

−1 + 2𝛼𝑄2𝑗+2 + 𝑃2𝑗+3 =

= −2𝛼(𝛼𝐷𝑃2𝑗+1𝐷
−1 + 𝑃2𝑗+2 + 𝛼𝑄2𝑗+1) + 2𝛼𝑄2𝑗+2 + 𝑃2𝑗+3,

and

𝐷𝑄2𝑗+3𝐷
−1 = 2𝛼e−𝛼𝜏𝐷𝑄2𝑗+2𝐷

−1 − 2𝛼𝑃2𝑗+2 +𝑄2𝑗+3 =

= 2𝛼(−𝛼𝐷𝑄2𝑗+1𝐷
−1 +𝑄2𝑗+2 − 𝛼𝑃2𝑗+1) − 2𝛼𝑃2𝑗+2 +𝑄2𝑗+3.

By (5) 𝑃2𝑗+1 = 𝑄2𝑗+1, and hence

𝐷(𝑃2𝑗+3 −𝑄2𝑗+3)𝐷
−1 = −2𝛼𝑃2𝑗+2 − 2𝛼𝑄2𝑗+2 + 2𝛼𝑄2𝑗+2 + 2𝛼𝑃2𝑗+2 = 0.

therefore, 𝑃2𝑗+3 = 𝑄2𝑗+3.
Let us show that (2) is valid as 𝑗 = 𝑘 + 1. We have

e𝛼𝜏𝐷𝑃2𝑗+1𝐷
−1 = e𝛼𝜏𝐷[𝑆1, 𝑃2𝑗+3]𝐷

−1 = e𝛼𝜏 [e−𝛼𝜏𝑆1, 𝐷𝑃2𝑗+3𝐷
−1] =

= e𝛼𝜏 [e−𝛼𝜏𝑆1,−2𝛼e𝛼𝜏𝐷𝑃2𝑗+2𝐷
−1 + 2𝛼𝑄2𝑗+2 + 𝑃2𝑗+3] =

= e𝛼𝜏 (−2𝛼2(1 + e𝛼𝜏 )𝐷𝑃2𝑗+2𝐷
−1) − 2𝛼e2𝛼𝜏 [e−𝛼𝜏𝑆1, 𝐷𝑃2𝑗+2𝐷

−1]+
+𝑃2𝑗+4 + 2𝛼𝑄2𝑗+3 + 2𝛼2𝑄2𝑗+2 = −2𝛼2(e𝛼𝜏 + e2𝛼𝜏 )𝐷𝑃2𝑗+2𝐷

−1+
+2𝛼2e2𝛼𝜏𝐷𝑃2𝑗+2𝐷

−1 + 𝑃2𝑗+4 + 2𝛼𝑄2𝑗+3 + 2𝛼2𝑄2𝑗+2 =
= −2𝛼2e𝛼𝜏𝐷𝑃2𝑗+2𝐷

−1 + 𝑃2𝑗+4 + 2𝛼𝑄2𝑗+3 + 2𝛼2𝑄2𝑗+2 =
= 𝛼𝐷𝑃2𝑗+3𝐷

−1 − 𝛼𝑃2𝑗+3 − 2𝛼2𝑄2𝑗+2 + 𝑃2𝑗+4 + 2𝛼𝑄2𝑗+3+
+2𝛼2𝑄2𝑗+2 = 𝛼𝐷𝑃2𝑗+3𝐷

−1 + 𝛼𝑄2𝑗+3 + 𝑃2𝑗+4.

The proof of (4) is similar to that of (2).
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Let us prove (6) for 𝑗 = 𝑘 + 1.

𝐷[𝑆1, 𝑃2𝑗+4]𝐷
−1 = [e−𝛼𝜏𝑆1, 𝛼e−𝛼𝜏𝐷𝑃2𝑗+3𝐷

−1 + e−𝛼𝜏𝑃2𝑗+4 + 𝛼e−𝛼𝜏𝑄2𝑗+3] =
= [e−𝛼𝜏𝑆1, 𝛼e−𝛼𝜏 (−2𝛼e𝛼𝜏𝐷𝑃2𝑗+2𝐷

−1 + 𝑃2𝑗+3 + 2𝛼𝑄2𝑗+2)+
+e−𝛼𝜏𝑃2𝑗+4 + 𝛼e−𝛼𝜏𝑄2𝑗+3] = [e−𝛼𝜏𝑆1,−2𝛼2𝐷𝑃2𝑗+2𝐷

−1+
+2𝛼e−𝛼𝜏𝑃2𝑗+3 + 2𝛼2e−𝛼𝜏𝑄2𝑗+2 + e−𝛼𝜏𝑃2𝑗+4] = −2𝛼2𝐷[𝑆1, 𝑃2𝑗+2]𝐷

−1−
−2𝛼2e−2𝛼𝜏 (1 + e𝛼𝜏 )𝑃2𝑗+3 − 2𝛼3e−2𝛼𝜏 (1 + e𝛼𝜏 )𝑄2𝑗+2 + 2𝛼e−2𝛼𝜏𝑃2𝑗+4+

+2𝛼2e−2𝛼𝜏𝑄2𝑗+3 + 2𝛼3e−2𝛼𝜏𝑄2𝑗+2 − 𝛼e−2𝛼𝜏 (1 + e𝛼𝜏 )𝑃2𝑗+4+
+e−2𝛼𝜏 [𝑆1, 𝑃2𝑗+4] = 2𝛼3𝐷𝑃2𝑗+2𝐷

−1 − 2𝛼2e−𝛼𝜏𝑃2𝑗+3 + 𝛼(e−2𝛼𝜏−
−e−𝛼𝜏 )𝑃2𝑗+4 − 2𝛼3e−𝛼𝜏𝑄2𝑗+2 + e−2𝛼𝜏 [𝑆1, 𝑃2𝑗+4] =

= 𝛼2e−𝛼𝜏𝑃2𝑗+3 + 2𝛼3e−𝛼𝜏𝑄2𝑗+2 − 𝛼2e−𝛼𝜏𝐷𝑃2𝑗+3𝐷
−1 − 2𝛼2e−𝛼𝜏𝑃2𝑗+3+

+𝛼(e−2𝛼𝜏 − e−𝛼𝜏 )𝑃2𝑗+4 − 2𝛼3e−𝛼𝜏𝑄2𝑗+2 + e−2𝛼𝜏 [𝑆1, 𝑃2𝑗+4] =
= −𝛼2e−𝛼𝜏𝑃2𝑗+3 + 𝛼(e−2𝛼𝜏 − e−𝛼𝜏 )𝑃2𝑗+4 − 𝛼𝐷𝑃2𝑗+4𝐷

−1 + 𝛼e−𝛼𝜏𝑃2𝑗+4+
+𝛼2e−𝛼𝜏𝑄2𝑗+3 + e−2𝛼𝜏 [𝑆1, 𝑃2𝑗+4].

Hence,

𝐷[𝑆1, 𝑃2𝑗+4]𝐷
−1 = e−2𝛼𝜏 [𝑆1, 𝑃2𝑗+4] + 𝛼e−2𝛼𝜏𝑃2𝑗+4 − 𝛼𝐷𝑃2𝑗+4𝐷

−1

𝐷([𝑆1, 𝑃2𝑗+4] + 𝛼𝑃2𝑗+4)𝐷
−1 = e−2𝛼𝜏 ([𝑆1, 𝑃2𝑗+4] + 𝛼𝑃2𝑗+4).

Therefore, [𝑆1, 𝑃2𝑗+4] = −𝛼𝑃2𝑗+4.
The proof of (7) is similar to that of (6). The lemma is proven.

Remark 4.2. The identities

e−𝛼𝜏𝐷𝑄2𝑗𝐷
−1 + e𝛼𝜏𝐷𝑃2𝑗𝐷

−1 = 𝑄2𝑗 + 𝑃2𝑗,

𝐷𝑃2𝑗+1𝐷
−1 = 𝑃2𝑗+1 +

𝑗∑︁
𝑘=1

(𝜇
(2𝑗+1)
2𝑘 𝑃2𝑘 + 𝜈

(2𝑗+1)
2𝑘 𝑄2𝑘)+

+
∑︀𝑗−1

𝑘=0 𝜇
(2𝑗+1)
2𝑘+1 𝑃2𝑘+1 + 𝜇

(2𝑗+1)
0 𝑆0 + 𝜈

(2𝑗+1)
0 𝑆1,

𝐷𝑃2𝑗𝐷
−1 = e−𝛼𝜏 (𝑃2𝑗 +

𝑗−1∑︁
𝑘=1

(𝜇
(2𝑗)
2𝑘 𝑃2𝑘 + 𝜈

(2𝑗)
2𝑘 𝑄2𝑘)+

+
∑︀𝑗−1

𝑘=0 𝜇
(2𝑗)
2𝑘+1𝑃2𝑘+1 + 𝜇

(2𝑗)
0 𝑆0 + 𝜈

(2𝑗)
0 𝑆1),

𝐷𝑄2𝑗𝐷
−1 = e𝛼𝜏 (𝑄2𝑗 −

𝑗−1∑︁
𝑘=1

(𝜇
(2𝑗)
2𝑘 𝑃2𝑘 + 𝜈

(2𝑗)
2𝑘 𝑄2𝑘)−

−
∑︀𝑗−1

𝑘=0 𝜇
(2𝑗)
2𝑘+1𝑃2𝑘+1 − 𝜇

(2𝑗)
0 𝑆0 − 𝜈

(2𝑗)
0 𝑆1)

hold true. Moreover, 𝜇
(2𝑗+1)
2𝑗 = −2𝛼, 𝜈

(2𝑗+1)
2𝑗 = 2𝛼, 𝜇

(2𝑗)
2𝑗−1 = 2𝛼.

Suppose 𝐿𝑥 is finite-dimensional. Then there are three possibilities,

1) 𝑆0, 𝑆1, 𝑃1, 𝑃2, 𝑄2, 𝑃3, 𝑃4, 𝑄4, . . . , 𝑃2𝑗−1 are linearly independent and
𝑆0, 𝑆1, 𝑃1, 𝑃2, 𝑄2, 𝑃3, 𝑃4, 𝑄4, . . . , 𝑃2𝑗−1, 𝑃2𝑗 are linearly dependent,

2) 𝑆0, 𝑆1, 𝑃1, 𝑃2, 𝑄2, 𝑃3, 𝑃4, 𝑄4, . . . , 𝑃2𝑗−1, 𝑃2𝑗 are linearly independent and
𝑆0, 𝑆1, 𝑃1, 𝑃2, 𝑄2, 𝑃3, 𝑃4, 𝑄4, . . . , 𝑃2𝑛−1, 𝑃2𝑗, 𝑄2𝑗 are linearly dependent,

3) 𝑆0, 𝑆1, 𝑃1, 𝑃2, 𝑄2, 𝑃3, 𝑃4, 𝑄4, . . . , 𝑃2𝑗, 𝑄2𝑗 are linearly independent and
𝑆0, 𝑆1, 𝑃1, 𝑃2, 𝑄2, 𝑃3, 𝑃4, 𝑄4, . . . , 𝑃2𝑗, 𝑄2𝑗, 𝑃2𝑗+1 are linearly dependent.

In the case 1),

𝑃2𝑗 = 𝛾2𝑗−1𝑃2𝑗−1 + 𝛾2𝑗−2𝑃2𝑗−2 + 𝜂2𝑗−2𝑄2𝑗−2 + . . .

and
𝐷𝑃2𝑗𝐷

−1 = 𝐷(𝛾2𝑗−1)𝐷𝑃2𝑗−1𝐷
−1+

+𝐷(𝛾2𝑗−2)𝐷𝑃2𝑗−2𝐷
−1 +𝐷(𝜂2𝑗−2)𝐷𝑄2𝑗−2𝐷

−1 + . . . .
(4.213)
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We employ Remark 4.2 for comparing the coefficients at 𝑃2𝑗−1 in (4.213) and obtain the incon-
sistent equation

e−𝛼𝜏 (𝛾2𝑗−1 + 2𝛼) = 𝐷(𝛾2𝑗−1).

It shows that the case 1) does not realize.
In the case 2),

𝑄2𝑗 = 𝛾2𝑗𝑃2𝑗 + 𝛾2𝑗−1𝑃2𝑗−1 + 𝜂2𝑗−2𝑄2𝑗−2 + . . .

and
𝐷𝑄2𝑗𝐷

−1 = 𝐷(𝛾2𝑗)𝐷𝑃2𝑗𝐷
−1+

+𝐷(𝛾2𝑗−1)𝐷𝑃2𝑗−1𝐷
−1 +𝐷(𝜂2𝑗−2)𝐷𝑄2𝑗−2𝐷

−1 + . . . .
(4.214)

We again employ Remark 4.2 for comparing the coefficients at 𝑃2𝑗−1 in (4.214) and arrive to
the inconsistent condition

e𝛼𝜏 (𝛾2𝑗−1 − 2𝛼) = 𝐷(𝛾2𝑗−1),

which shows that the case 2) is impossible.
In the case 3)

𝑃2𝑗+1 = 𝜂2𝑗𝑄2𝑗 + 𝛾2𝑗𝑃2𝑗 + . . .

and
𝐷𝑃2𝑗+1𝐷

−1 = 𝐷(𝜂2𝑗)𝐷𝑄2𝑗𝐷
−1 +𝐷(𝛾2𝑗)𝐷𝑃2𝑗𝐷

−1 + . . . . (4.215)

We employ Remark 4.2 for comparing the coefficients at 𝑃2𝑗−1 in (4.215) and and arrive at the
contradiction

(𝛾2𝑗 − 2𝛼) = 𝐷(𝛾2𝑗)e
−𝛼𝜏 .

This is why the case 3) is impossible. Therefore, the characteristic Lie ring 𝐿𝑥 has an infinite
dimension.

5. Fully discrete equations

At present the discrete models

𝑢1,1 = 𝑓(𝑚,𝑛, 𝑢, 𝑢1, 𝑢1) (5.216)

called also the equations on a square graph are studied intensively due to their important
applications in physics, discrete geometry, architecture, biology, etc. In equation (5.216) the
sought function 𝑢 = 𝑢(𝑚,𝑛) depends on two independent discrete variables. The subscripts
and the bar accent over a letter indicate the shift of the arguments,

𝑢𝑘 = 𝑢(𝑚+ 𝑘, 𝑛), 𝑢𝑘 = 𝑢(𝑚,𝑛+ 𝑘), 𝑢𝑖,𝑗 = 𝑢(𝑚+ 𝑖, 𝑛+ 𝑗).

The function 𝑓 is supposed to be smooth and defined in some domain R3. It is also assumed
that equation (5.216) can be solvable at least locally w.r.t. each of three variables 𝑢, 𝑢1, 𝑢1, i.e.,
there exist functions 𝑓 𝑖,𝑗 such that

𝑢 = 𝑓−1,−1(𝑚,𝑛, 𝑢1,1, 𝑢1, 𝑢1),
𝑢1 = 𝑓 1,−1(𝑚,𝑛, 𝑢1, 𝑢1,1, 𝑢),
𝑢1 = 𝑓−1,1(𝑚,𝑛, 𝑢1, 𝑢, 𝑢1,1).

5.1. Liouville type discrete equations. In this subsection we consider the equations of
the form (5.216) possessing integrals.

Definition 5.1. As 𝑛-integral of equation (5.216) we call a sequence of the functions
{𝐼(𝑖)(𝑚,𝑛, 𝑢−𝑗, 𝑢−𝑗+1, . . . , 𝑢𝑘)}+∞

𝑖=−∞ depending on 𝑚, 𝑛, and a finite number of dynamical vari-
ables {𝑢𝑖} such that the relation

𝐷𝐼(𝑖)(𝑚,𝑛, 𝑢−𝑗, 𝑢−𝑗+1, . . . , 𝑢𝑘) = 𝐼(𝑖+1)(𝑚,𝑛, 𝑢−𝑗, 𝑢−𝑗+1, . . . , 𝑢𝑘)

holds, where 𝐷 is the operator of argument shift such that 𝐷ℎ(𝑚,𝑛) = ℎ(𝑚,𝑛+ 1).
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Remark 5.1. In process of proving Theorem 5.1 (see below) it is found out that a 𝑛-integral
can be represented as 𝐼 = 𝐼(𝑚,𝑛,𝐺), where 𝐺 = 𝐺(𝑢, 𝑢1, . . . , 𝑢𝑁) is a some function.

Example 5.1. Consider the equation of the form (5.216),

𝑢1,1 =
1

𝑢1
,

whose 𝑛-integral is the sequence of the functions 𝐼(𝑖) = 𝐼(𝑖)(𝑢1) such that

𝐼(𝑖) =

{︂
𝑢1, 𝑖𝑖𝑠even;
1
𝑢1
, 𝑖𝑖𝑠odd.

Indeed,
𝐷𝐼(2𝑚) = 𝐷𝑢1 = 𝑢1,1 = 1

𝑢1
= 𝐼(2𝑚+1),

𝐷𝐼(2𝑚+1) = 𝐷 1
𝑢1

= 1
𝑢1,1

= 𝑢1 = 𝐼(2𝑚+2).

The coordinate representation the equation 𝐷𝐼(𝑖) = 𝐼(𝑖+1) is

𝐼(𝑖)(𝑚,𝑛, 𝑟−𝑗+1, 𝑟−𝑗+2, . . . , 𝑟, 𝑢1, 𝑓, 𝑓1, . . . , 𝑓𝑘−1) = 𝐼(𝑖+1)(𝑚,𝑛, 𝑢−𝑗, 𝑢−𝑗+1, . . . , 𝑢𝑘), (5.217)

where 𝑟 = 𝑓−1,1(𝑚,𝑛, 𝑢, 𝑢−1, 𝑢1). As dynamical (independent) variables we choose {𝑢𝑗}+∞
𝑗=−∞

and {𝑢𝑗}+∞
𝑗=−∞. Then the function 𝑟−1 = 𝐷−1(𝑟) can be rewritten as

𝑟−1 = 𝑓−1,1(𝑚− 1, 𝑛, 𝑢−1, 𝑢−2, 𝑢−1,1) = 𝑓−1,1(𝑚− 1, 𝑛, 𝑢1, 𝑢, 𝑓
−1,1(𝑚,𝑛, 𝑢, 𝑢−1, 𝑢1)).

Here 𝐷 is the operator of the shift of the variable 𝑚, 𝐷𝑦(𝑚,𝑛) = 𝑦(𝑚+ 1, 𝑛). In the same way
all the shifts in (5.217) can be represented as a superposition of the functions depending only on
the dynamical variables. We note the right hand side of identity (5.217) is independent of the
variable 𝑢1, and the condition 𝜕

𝜕𝑢1
𝐷𝐼(𝑖) = 0 is thus satisfied, or, which is the same, 𝑌1𝐼(𝑖) = 0,

where 𝑌1 = 𝐷
−1 𝜕

𝜕𝑢1
𝐷. In the expanded form the operator 𝑌1 reads as

𝑌1 = 𝜕
𝜕𝑢

+𝐷
−1
(︁

𝜕𝑓
𝜕𝑢1

)︁
𝜕

𝜕𝑢1
+𝐷

−1
(︁

𝜕𝑟
𝜕𝑢1

)︁
𝜕

𝜕𝑢−1
+

+𝐷
−1
(︁

𝜕𝑓1
𝜕𝑢1

)︁
𝜕

𝜕𝑢2
+𝐷

−1
(︁

𝜕𝑟−1

𝜕𝑢1

)︁
𝜕

𝜕𝑢−2
+ . . .

(5.218)

We introduce the notations 𝑥 = 𝐷
−1 𝜕𝑓(𝑢,𝑢1,𝑢1)

𝜕𝑢1
= − 𝜕𝑓1,−1(𝑢,𝑢1,𝑢̄−1)/𝜕𝑢

𝜕𝑓1,−1(𝑢,𝑢1,𝑢̄−1)/𝜕𝑢1
.

Lemma 5.1. The identities
𝜕𝑟
𝜕𝑢1

= 1

𝐷−1
(︁

𝜕𝑓
𝜕𝑢1

)︁ ,
𝜕𝑓𝑗
𝜕𝑢1

= 𝜕𝑓
𝜕𝑢1

·𝐷
(︁

𝜕𝑓
𝜕𝑢1

)︁
· . . . ·𝐷𝑗

(︁
𝜕𝑓
𝜕𝑢1

)︁
hold true.

Proof. The second of the relations in the lemma is an obvious implication of the formula for
derivative of a composite function. For instance, for 𝑗 = 1 we have

𝜕𝑓1
𝜕𝑢1

=
𝜕

𝜕𝑢1
𝑓(𝑢1, 𝑢2𝑓(𝑢, 𝑢1, 𝑢1)) = 𝐷

(︂
𝜕𝑓

𝜕𝑢1

)︂
· 𝜕𝑓
𝜕𝑢1

.

To prove the first relation it is sufficient to differentiated the identity

𝑢1 = 𝑓−1,1(𝑢1, 𝑢, 𝑓(𝑢, 𝑢1, 𝑢1))

w.r.t. the variable 𝑢1 and to get

1 = 𝐷

(︂
𝜕𝑓−1,1

𝜕𝑢1

)︂
· 𝜕𝑓
𝜕𝑢1

.

The lemma is proven.
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Employing the lemma, the operator 𝑌1 can be rewritten as

𝑌1 =
𝜕

𝜕𝑢
+ 𝑥

𝜕

𝜕𝑢1
+

1

𝑥−1

𝜕

𝜕𝑢−1

+ 𝑥𝑥1
𝜕

𝜕𝑢2
+

1

𝑥−1𝑥−2

𝜕

𝜕𝑢−2

+ . . . . (5.219)

We call the operator 𝑌1 a characteristic vector field.
It is clear now that 𝑛-integral in a solution to the first order partial differential equation

𝑌1𝐼(𝑖) = 0, whose coefficients are expressed in terms of the variable 𝑥 and its shifts, and this
is why they depend, generally speaking, on the variable 𝑢−1, while the function 𝐼(𝑖) itself can

not depend on 𝑢−1, i.e., 𝑋1𝐼(𝑖) = 0, where 𝑋1 = 𝜕
𝜕𝑢−1

. It is notable that in a general case

except these two equations and their differential consequences the 𝑛-integral 𝐼 satisfies also
other equations which is a distinguishing property of a discrete equation. Indeed, the it follows

from the identity 𝐷𝐼(𝑖) = 𝐼(𝑖+1) that each integer 𝑘 𝐷
𝑘
𝐼(𝑖) = 𝐼(𝑖+𝑘). In the last identity under the

condition 𝑘 > 0 the right hand side is independent of the variable 𝑢1, while in the left hand side

𝑢1 appears formally; hence, we have 𝐷
−𝑘 𝜕

𝜕𝑢1
𝐷

𝑘
𝐼(𝑖) = 0, 𝑘 ≥ 0. Straightforward calculations

show that

𝐷
−𝑘 𝜕

𝜕𝑢1
𝐷

𝑘
= 𝑋𝑘−1 + 𝑌𝑘, 𝑘 ≥ 2,

where

𝑌𝑗+1 = 𝐷
−1

(𝑌𝑗𝑓) 𝜕
𝜕𝑢1

+𝐷
−1

(𝑌𝑗𝑟)
𝜕

𝜕𝑢−1
+

+𝐷
−1

(𝑌𝑗𝑓1)
𝜕

𝜕𝑢2
+𝐷

−1
(𝑌𝑗𝑟−1)

𝜕
𝜕𝑢−2

+ . . . ,

𝑋𝑗 = 𝜕
𝜕𝑢−𝑗

, 𝑗 ≥ 1.

(5.220)

Denote by 𝑁* the dimension of linear space generated by the operators {𝑌𝑗}∞1 . We shall the
Lie ring over the field of locally analytic functions generated by the operators {𝑌𝑗}𝑁

*
1 ∪{𝑋𝑗}𝑁

*
1

a characteristic Lie ring 𝐿𝑛 of equation (5.216) in the direction of 𝑛.

Theorem 5.1. The equation (5.216) possesses a nontrivial 𝑛-integral if and only if dim𝐿𝑛 <
∞.

Proof. Suppose equation (5.216) possesses a nontrivial 𝑛-integral 𝐼 = 𝐼(𝑖)(𝑚,𝑛, 𝑢−𝑗, 𝑢−𝑗+1, . . . , 𝑢𝑘),

where 𝜕𝐼
𝜕𝑢−𝑗

̸= 0, 𝜕𝐼
𝜕𝑢𝑘

̸= 0. We introduce the Lie ring 𝑀 generated by the vector fields

{𝑌𝑗}∞1 ∪ {𝑋𝑗}𝑁2
1 , where the number 𝑁2 will be determined below. We let

𝑀 (𝑗,𝑘) = {𝑇 𝑗,𝑘 = 𝑃𝑗,𝑘(𝑇 ) : 𝑇 ∈𝑀},

where 𝑃𝑗,𝑘 is the projector defined as

𝑃𝑖,𝑚 :
−1∑︁

𝑠=−𝑁2

𝑎𝑠
𝜕

𝜕𝑢𝑠
+

+∞∑︁
−∞

𝑏𝑠
𝜕

𝜕𝑢𝑠
→

−1∑︁
𝑠=−𝑁2

𝑎𝑠
𝜕

𝜕𝑢𝑠
+

𝑚∑︁
𝑠=−𝑖

𝑏𝑠
𝜕

𝜕𝑢𝑠
,

𝑖,𝑚 = 1, 2, 3, . . ..
Denote by 𝑁1 the dimension of the space𝑀 (𝑗,𝑘). It is obvious that

𝑁1 6 𝑁2+𝑘+𝑗+1. Let the set of the operator {𝑇01, 𝑇02, . . . , 𝑇0𝑁1} form a basis in 𝑀 (𝑗,𝑘). We in-
dicate by 𝑇𝑖 =

∑︀−1
𝑠=−𝑁2

𝑎𝑠(𝑇𝑗)
𝜕

𝜕𝑢𝑠
+
∑︀+∞

−∞ 𝑏𝑠(𝑇𝑗)
𝜕

𝜕𝑢𝑠
the vector field in 𝑀 such that 𝑃𝑗,𝑘(𝑇𝑗) = 𝑇0𝑗,

𝑗 = 1, 2, . . . , 𝑁1. Let us show that the set of the operators {𝑇1, 𝑇2, . . . , 𝑇𝑁1} forms a basis in
𝑀 .

We take an arbitrary vector field 𝑇 =
∑︀−1

𝑠=−𝑁2
𝑎𝑠(𝑇 ) 𝜕

𝜕𝑢𝑠
+
∑︀+∞

−∞ 𝑏𝑠(𝑇 ) 𝜕
𝜕𝑢𝑠

in 𝑀 . Since

𝑃𝑗,𝑘(𝑇 ) ∈ 𝑀 (𝑗,𝑘), then 𝑃𝑗,𝑘(𝑇 ) =
∑︀𝑁1

𝑚=1 𝛽𝑚𝑇0𝑚. Let us check that 𝑇 =
∑︀𝑁1

𝑚=1 𝛽𝑚𝑇𝑗𝑚 which

is equivalent to the identity 𝑍 = 0, where 𝑍 = 𝑇 −
∑︀𝑁1

𝑚=1 𝛽𝑚𝑇𝑗𝑚. By definition we have
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𝑃𝑗,𝑘(𝑍) = 0. Since 𝐼 is an 𝑛-integral depending on 𝑚,𝑛, 𝑢−𝑗, 𝑢−𝑗+1, . . . , 𝑢𝑘, then 𝐷𝐼 is an 𝑛-
integral depending on 𝑚,𝑛, 𝑢−𝑗+1, 𝑢−𝑗+2, . . . , 𝑢𝑘+1. Indeed, 𝐷(𝐷𝐼) = 𝐷(𝐷𝐼) = 𝐷𝐼. Therefore,

0 = 𝑍(𝐷𝐼) = 𝑃𝑗,𝑘(𝑍)𝐷𝐼 +
(︁
𝑎𝑘+1(𝑇 ) −

∑︀𝑁1

𝑠=1 𝛽𝑠𝑎𝑘+1(𝑇𝑠)
)︁

𝜕
𝜕𝑢𝑘+1

𝐷𝐼 =

=
(︁
𝑎𝑘+1(𝑇 ) −

∑︀𝑁1

𝑠=1 𝛽𝑠𝑎𝑘+1(𝑇𝑠)
)︁

𝜕
𝜕𝑢𝑘+1

𝐷𝐼.

Since 𝜕
𝜕𝑢𝑘+1

𝐷𝐼 = 𝐷
(︁

𝜕
𝜕𝑢𝑘

𝐼
)︁

̸= 0, then 𝑎𝑘+1(𝑇 ) =
∑︀𝑁1

𝑠=1 𝛽𝑠𝑎𝑘+1(𝑇𝑠), and it means that

𝑃𝑗,𝑘+1(𝑍) = 0. Applying the operator 𝑍 consequently to the integrals 𝐷2𝐼, 𝐷3𝐼, . . ., and
also to the integrals 𝐷−1𝐼, 𝐷−2𝐼, . . ., we find that 𝑃𝑖,𝑚(𝑍) = 0 for any natural numbers 𝑖,𝑚.
Therefore, 𝑍 = 0. It proves that the ring 𝑀 is of finite dimension for any choice of the number
𝑁2. Then the linear span of the vector fields {𝑌𝑗}∞1 has a finite dimension; denote it by 𝑁 . Let
us specify now the value of the number 𝑁2 by choosing 𝑁2 ≥ 𝑁 . Then we have that the ring
𝐿𝑛 generated by the operators {𝑌𝑗}𝑁1 ∪{𝑋𝑗}𝑁1 is a subring of a finite-dimensional ring 𝑀 . This
is why the ring 𝐿𝑛 is finite-dimensional.

Suppose the dimension of the characteristic Lie ring 𝐿𝑛 is finite; denote it by 𝑁1. Let 𝑁 be
the dimension of the span of the vector fields {𝑌𝑗}∞1 . Then the set {𝑌1, 𝑌2, . . . , 𝑌𝑁} forms a
basis in it. We let 𝑁2 = 𝑁1 −𝑁 . Introduce

𝐿(𝑁2)
𝑛 = {𝑇 (𝑚) = 𝑃

(𝑁)
𝑁2

(𝑇 ) : 𝑇 ∈ 𝐿𝑛},

where the projector 𝑃
(𝑁)
𝑁2

acts according the rule

𝑃
(𝑁)
𝑁2

(︁∑︀−1
𝑠=−𝑁 𝑎𝑠

𝜕
𝜕𝑢𝑠

+
∑︀∞

𝑠=0 𝑏𝑠
𝜕

𝜕𝑢𝑠

)︁
=

=
∑︀−1

𝑠=−𝑁 𝑎𝑠
𝜕

𝜕𝑢𝑠
+
∑︀𝑁2

𝑠=0 𝑏𝑠
𝜕

𝜕𝑢𝑠
.

(5.221)

Let {𝑇0𝑖}𝑁1
𝑖=1 form a basis in the linear space 𝐿

(𝑁2)
𝑛 . Then we have 𝑁1 equations of the form

𝑇0𝑖𝐺 = 0 for a function 𝐺 of 𝑁1 + 3 variables 𝑚,𝑛, 𝑢, 𝑢1, . . . , 𝑢𝑁2 , 𝑢−1, 𝑢−2, . . . , 𝑢−𝑁 . At that
𝑚 and 𝑛 are involved as parameters in the coefficients of the equation. According to Jacobi
theorem, the considered system of equations has a non-constant solution 𝐺. By the equations
𝑋𝑗𝐺 = 0 this function is independent on the variables 𝑢1, 𝑢2, . . . , 𝑢𝑁 and satisfies the condition
𝑇𝐺 = 0 for any 𝑇 ∈ 𝐿𝑛. The function 𝐺 is not defined uniquely, any other solution of the
system depending on the same variables 𝑚,𝑛, 𝑢, 𝑢1, . . . , 𝑢𝑁2 can be represented as ℎ(𝑚,𝑛,𝐺)
for some function ℎ.

Since 𝐷
−1
𝑌1𝐷 = 𝑋1 + 𝑌2, 𝐷

−1
𝑋𝑗𝐷 = 𝑋𝑗+1, 𝑗 ≥ 1, 𝐷

−1
𝑌𝑘𝐷 = 𝑌𝑘+1, 𝑘 ≥ 2, for any vector

filed 𝑍 in 𝐿𝑛 we have 𝐷
−1
𝑍𝐷 = 𝑍*+𝜆𝑋𝑁+1 for some 𝑍* ∈ 𝐿𝑛 and some function 𝜆. Therefore,

𝑍𝐷𝐺 = 𝐷(𝐷
−1
𝑍𝐷𝐺) = 𝐷(𝑍* + 𝜆𝑋𝑁+1)𝐺 = 0

for each 𝑍 ∈ 𝐿𝑛. This is why 𝐷𝐺 is also a solution to the aforementioned system of partial
differential equations that implies 𝐷𝐺 = ℎ(𝑚,𝑛,𝐺).

In the same one can show that 𝐷
−1
𝐺 = 𝑔(𝑚,𝑛,𝐺) for some function 𝑔. To construct the

desired 𝑛-integral 𝐼, it is sufficient now to let

𝐺(𝑚,𝑛, 𝑢, 𝑢1, . . . , 𝑢𝑁) = 𝐼(0)(𝑚,𝑛, 𝑢, 𝑢1, . . . , 𝑢𝑁),

𝐷
𝑖
𝐺(𝑚,𝑛, 𝑢, 𝑢1, . . . , 𝑢𝑁) = 𝐼(𝑖)(𝑚,𝑛, 𝑢, 𝑢1, . . . , 𝑢𝑁),

𝐷
−𝑖
𝐺(𝑚,𝑛, 𝑢, 𝑢1, . . . , 𝑢𝑁) = 𝐼(−𝑖)(𝑚,𝑛, 𝑢, 𝑢1, . . . , 𝑢𝑁), 𝑖 ≥ 1.

The constructed in this way sequence of the functions 𝐼(𝑖)(𝑚,𝑛, 𝑢, 𝑢1, . . . , 𝑢𝑁) is an 𝑛-integral,

since it satisfies the relation 𝐷𝐼(𝑖) = 𝐼(𝑖+1).
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5.2. General discrete equations. Employing explicit expressions (5.218) – (5.220), one
can determine the characteristic vector fields 𝑍𝑘 = 𝑋𝑘−1 + 𝑌𝑘, 𝑘 ≥ 2 for an arbitrary equation
of the form (5.216). According to Theorem 5.1, the ring 𝐿𝑛 is infinite-dimensional provided
there exists no 𝑛-integral. It is obvious that the operators {𝑍𝑘}∞1 are linearly independent.

Lemma 5.2. The commutation relations

1) [𝑍𝑘, 𝑍𝑗] = 0 for all 𝑘, 𝑗 ≥ 1;
2) [𝑋𝑘, 𝑍𝑗] = 0 for all 𝑘 > 𝑗

hold true, where 𝑍1 := 𝑌1.

Proof. Let 𝑗 > 𝑘, the identity [ 𝜕
𝜕𝑢1
, 𝑍𝑗−𝑘] = 0 is valid since the coefficients of the operators

𝑍𝑖, 𝑖 ≥ 1 are independent of the variable 𝑢1. Applying the conjugation operator (it is not an
automorphism of the ring)

𝑍 → 𝐷
−1
𝑍𝐷 (5.222)

𝑘 times, we obtain

[𝐷
−𝑘 𝜕

𝜕𝑢1
𝐷

𝑘
, 𝐷

−𝑘
𝑍𝑗−𝑘𝐷

𝑘
] = [𝑍𝑘, 𝑍𝑗] = 0.

The second part of the lemma is implied by the fact that 𝑋𝑘 = 𝜕
𝜕𝑢−𝑘

, and the coefficients of

the operator 𝑍𝑗 are independent of 𝑢−𝑘 as 𝑘 > 𝑗. The lemma is proven.
The key role in the description of the ring 𝐿𝑛 is played by the automorphism defined by the

rule
𝑍 → 𝐷𝑍𝐷−1, (5.223)

where 𝐷 is the operator of shift of the argument 𝑛. Let us show that 𝑋1 and 𝑌1 regarded as
the operators on the set of the functions depending on a finite number of the variables in a
restricted dynamical set 𝑆𝑁 = {𝑢−𝑁 , 𝑢−𝑁+1, . . . , 𝑢−1, 𝑢, 𝑢±1, 𝑢±2, . . .} satisfy the relations

𝐷𝑋1𝐷
−1 = 𝑝𝑋1 + 𝑝(1)𝑋2 + . . .+ 𝑝(𝑁 − 1)𝑋𝑁 , (5.224)

𝐷𝑌1𝐷
−1 =

1

𝑥
𝑌1, (5.225)

where 𝑝 = 𝐷𝑋1𝑓
−1,−1, 𝑝(𝑘) = 𝐷𝑋1𝐷

−𝑘
𝑓−1,−1, and 𝑓−1,−1 = 𝑓−1,−1(𝑢, 𝑢−1, 𝑢−1). We observe

that the coefficients of the operators 𝑌1, 𝑌2, . . . , 𝑌𝑁 depend only on the variables in the set 𝑆𝑁 .
Identity (5.224) can be easily checked by applying both sides of the identity to the dynamical
variables. Exactly in the same way one can prove (5.225).

We introduce similar identities for generalized characteristic operators 𝑌𝑗, 𝑋𝑗, 𝑗 ≥ 1. It is
convenient to begin with the operator 𝑌0 = 𝜕

𝜕𝑢1
. We first specify the action of the operator on

the functions depending on all dynamical variables. It is obvious that

𝐷𝑌0𝐷
−1 = 𝜉(1)

𝜕

𝜕𝑢1
+ 𝜉(2)

𝜕

𝜕𝑢2
+ . . .+ 𝜉(𝑗)

𝜕

𝜕𝑢𝑗
, (5.226)

where 𝜉(𝑘) = 𝐷𝑌0𝐷
𝑘−1

𝑓−1,1, 𝑓−1,1 = 𝑓−1,1(𝑢, 𝑢−1, 𝑢1). The last identity can be checked easily
by applying to the variables 𝑢1, 𝑢2, . . . , 𝑢𝑗, . . .. It is also clear that all other dynamical variables
lie in the kernel of operator (5.226). We apply now conjugation operator (5.222) to identity

(5.226) and obtain as a result, taking into consideration the identities 𝐷𝐷 = 𝐷𝐷, 𝐷
−1
𝑌0𝐷 =

𝑌1, 𝐷
−1 𝜕

𝜕𝑢𝑘
𝐷 = 𝜕

𝜕𝑢𝑘−1
as 𝑘 ≥ 2, the relation

𝐷𝑌1𝐷
−1 = 𝜉−1(1)𝑌1 + 𝜉−1(2)𝑌0 + 𝜉−1(3)

𝜕

𝜕𝑢2
+ . . . , (5.227)

where 𝜉−1(𝑗) = 𝐷
−1
𝜉(𝑗), that proves in particular formula (5.225). It remains to check that

𝜉−1(1) = 1
𝑥
. Indeed, differentiating the identity 𝑢1 = 𝑓(𝑢−1, 𝑢, 𝑓

−1,1(𝑢, 𝑢−1, 𝑢1)) w.r.t. the
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variable 𝑢1, we find 𝐷−1
(︁

𝜕𝑓
𝜕𝑢1

)︁
· 𝜕𝑓−1,1

𝜕𝑢1
= 1. It yields that 𝜉(1) · 𝑥1 = 1. Hence, 𝐷

−1
𝜉(1) = 1

𝑥
.

Applying now repeatedly operator (5.222) to identity (5.227), we find

𝐷𝑍𝑘𝐷
−1 = 𝜉−𝑘(1)𝑍𝑘 + 𝜉−𝑘(2)𝑍𝑘−1 + . . .+

+𝜉−𝑘(𝑘)𝑌1 + 𝜉−𝑘(𝑘 + 1)𝑌0 + 𝜉−𝑘(𝑘 + 2) 𝜕
𝜕𝑢2

+ . . . ,
(5.228)

where 𝑍𝑘 = 𝐷
1−𝑘

𝑌1𝐷
𝑘−1

= 𝑌𝑘+𝑋𝑘−1 as 𝑘 ≥ 2. On the restricted set of the dynamical variables
𝑆𝑁 identity (5.228) casts into the form

𝐷𝑍𝑘𝐷
−1 = 𝜉−𝑘(1)𝑍𝑘 + 𝜉−𝑘(2)𝑍𝑘−1 + . . .+ 𝜉−𝑘(𝑘)𝑌1. (5.229)

For instance, as 𝑘 = 2 we have

𝐷𝑍2𝐷
−1 =

1

𝑥−1

𝑍2 + 𝜉−2(2)𝑌1. (5.230)

On whole the set of the dynamical variables formula (5.224) is extended as

𝐷𝑋1𝐷
−1 = 𝑝𝑋1 +

∞∑︁
𝑖=1

𝑝(𝑖)𝑋𝑖+1.

We apply conjugation operator (5.222) on this identity; bearing in mind the conditions

𝐷
−1
𝑋𝑗𝐷 = 𝑋𝑗+1, 𝑗 ≥ 1, we get

𝐷𝑋𝑗𝐷
−1 = 𝑝1−𝑗𝑋𝑗 + 𝑝1−𝑗(1)𝑋𝑗+1 + . . .+ 𝑝1−𝑗(𝑘)𝑋𝑘+1 + . . . ,

whose restriction on 𝑆𝑁 yields

𝐷𝑋𝑗𝐷
−1 = 𝑝1−𝑗𝑋𝑗 + 𝑝1−𝑗(1)𝑋𝑗+1 + . . .+ 𝑝1−𝑗(𝑁 − 1)𝑋𝑁 (5.231)

as 𝑗 6 𝑁 .

Lemma 5.3. Suppose that 𝑍 =
∑︀+∞

−∞ 𝑏(𝑗) 𝜕
𝜕𝑢𝑗

∈ 𝐿𝑛 satisfies two conditions, 𝐷𝑍𝐷−1 = 𝑐𝑍

for some function 𝑐 and 𝑏(𝑗0) ≡ 0 for some fixed value 𝑗 = 𝑗0. Then 𝑍 = 0.

The proof is carried out by simple calculations (see [42]).

Example 5.2. As an example we consider one of the discrete versions of the Liouville equa-
tion

𝑒𝑢1,1+𝑢 = 𝑒𝑢1+𝑢1 + 1. (5.232)

Let us calculate the functions 𝑥 and 𝑝 for equation (5.232). We have

𝑢1,−1 = ln
(︀
𝑒𝑢−1+𝑢+1 − 1

)︀
− 𝑢. (5.233)

Therefore, 𝑟 = 𝑓−1,1(𝑢, 𝑢−1, 𝑢1) = ln (𝑒𝑢1+𝑢−1 − 1) − 𝑢. Employing the identity

𝑥 = 𝐷
−1
(︂
𝜕𝑓(𝑢, 𝑢1, 𝑢1)

𝜕𝑢1

)︂
= −

𝜕𝑓1,−1(𝑢,𝑢1,𝑢−1)
𝜕𝑢

𝜕𝑓1,−1(𝑢,𝑢1,𝑢−1)
𝜕𝑢1

, (5.234)

we find 𝑥 = 1 − 𝑒−𝑢1−𝑢−1. Then we find 𝐷−1
(︀
1
𝑥

)︀
= 1

𝑥−1
= 1 + 𝑒−𝑢−1−𝑢−1.

To describe 𝑝, we employ the identity

𝑝 = 𝐷

(︂
𝜕𝑓−1,−1(𝑢, 𝑢−1, 𝑢−1)

𝜕𝑢−1

)︂
= − 1

𝜕𝑓1,−1(𝑢,𝑢1,𝑢−1)
𝜕𝑢−1

. (5.235)

As a result we get 𝑝 = 𝑥. This is why

𝐷𝑋1𝐷
−1 = (1 − 𝑒−𝑢1−𝑢−1)𝑋1, 𝐷𝑌1𝐷

−1 =
1

1 − 𝑒−𝑢1−𝑢−1
𝑌1.
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On the operators 𝑅1 = [𝑋1, 𝑌1], 𝑃1 = [𝑋1, 𝑅1], 𝑄1 = [𝑌1, 𝑅1] mapping (5.223) acts by the
rule

𝐷𝑅1𝐷
−1 = 𝑅1 + 𝑥−1

𝑥
𝑌 + (𝑥− 1)𝑋1,

𝐷𝑃1𝐷
−1 = 𝑥𝑃1 + (𝑥− 1)𝑅1 − 𝑥−1

𝑥
𝑌 − (𝑥− 1)𝑋1,

𝐷𝑄1𝐷
−1 = 1

𝑥
𝑄1 − 𝑥−1

𝑥
𝑅1 − 𝑥−1

𝑥
𝑌 − (𝑥− 1)𝑋1.

(5.236)

It follows from formulas (5.236) that 𝐷(𝑃1+𝑅1)𝐷
−1 = 𝑥(𝑃1+𝑅1) and 𝐷(𝑄1+𝑅1) = 1

𝑥
(𝑄1+𝑅1).

The last relations by Lemma 5.3 imply the identities 𝑃1 = −𝑅1, 𝑄1 = −𝑅1.
In the same way one can check that

𝑍2 = 𝑋1 −
(︀
1 + 𝑒𝑢−𝑢−2

)︀
𝑅1. (5.237)

For this it is sufficient to compare the identity

𝐷𝑍2𝐷
−1 =

1

𝑥−1

𝑍2 +

(︂
1

𝑥𝑥−1

− 1

)︂
𝑌1

with the first of formulas (5.236) taking into consideration the identity 𝐷𝑋1𝐷
−1 = 𝑥𝑋1.

By Lemma 5.3 it follows from (5.237) that 𝑌2 = − (1 + 𝑒𝑢−𝑢−2)𝑅1. Therefore, the char-
acteristic algebra 𝐿𝑛 for equation (5.232) is three-dimensional as the linear space spanned on
the vectors 𝑋1, 𝑌1, 𝑅1; the 𝑛-integral of minimal order depends on three variables, for instance,
𝐼 = 𝐼(𝑢, 𝑢1, 𝑢−1).

In order to find 𝐼, we solve the linear system 𝑌1𝐼 = 0, 𝑅1𝐼 = 0, or in the expanded form
𝜕𝐼
𝜕𝑢

+ (1 − 𝑒−𝑢1−𝑢−1) 𝜕𝐼
𝜕𝑢1

+ (1 + 𝑒−𝑢−1−𝑢−1) 𝜕𝐼
𝜕𝑢−1

= 0,

𝑒−𝑢1−𝑢−1 𝜕𝐼
𝜕𝑢1

− 𝑒−𝑢−1−𝑢−1 𝜕𝐼
𝜕𝑢−1

= 0.

It implies easily that 𝐼 = 𝑒𝑢−1−𝑢 + 𝑒𝑢1−𝑢.

Let us find out how the characteristic algebra changes under the change of variables in a
discrete equation. The most general point transformation in the equation (5.216) is defined by
the function

𝑢(𝑚,𝑛) = 𝜑(𝑚,𝑛, 𝑣(𝑚,𝑛)). (5.238)

Change (5.238) reduces (5.216) to the equation

𝑣1,1 = ̃︀𝑓(𝑚,𝑛, 𝑣, 𝑣1, 𝑣1), (5.239)

where ̃︀𝑓 = 𝜑−1(𝑚,𝑛, 𝑓(𝑚,𝑛, 𝜑(𝑚,𝑛, 𝑣), 𝜑(𝑚+ 1, 𝑛, 𝑣1), 𝜑(𝑚,𝑛+ 1, 𝑣1))).

Let u find out how the characteristic vector fields 𝑋𝑗, 𝑍𝑗 and ̃︀𝑋𝑗, ̃︀𝑍𝑗 of equations (5.238)
and (5.239) are related.

Lemma 5.4. The identities

𝑥 = −
𝜕𝑓1,−1

𝜕𝑢
𝜕𝑓1,−1

𝜕𝑢1

,
1

𝑥−1

= −
𝜕𝑓−1,−1

𝜕𝑢
𝜕𝑓−1,−1

𝜕𝑢−1

hold true.

Proof. Let us prove the second identity in the statement. Differentiating an obvious identity

𝑢−1 = 𝑓−1,−1
(︀
𝑢1, 𝑓

−1,1(𝑢, 𝑢−1, 𝑢1), 𝑢
)︀

w.r.t. the variable 𝑢1, we find

0 = 𝐷

(︂
𝜕𝑓−1,−1(𝑢, 𝑢−1, 𝑢−1)

𝜕𝑢

)︂
+𝐷

(︂
𝜕𝑓−1,−1(𝑢, 𝑢−1, 𝑢−1)

𝜕𝑢−1

)︂
· 𝜕𝑓

−1,1(𝑢, 𝑢−1, 𝑢−1)

𝜕𝑢1
.

It yields

1

𝑥−1

= 𝐷
−1𝜕𝑓−1,1

𝜕𝑢1
= −

𝜕𝑓−1,−1

𝜕𝑢
𝜕𝑓−1,−1

𝜕𝑢−1

.
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The first identity in the statement is proven in the same way by differentiating the identity

𝑢1 = 𝑓 1,−1 (𝑢1, 𝑓(𝑢, 𝑢1, 𝑢1), 𝑢)

w.r.t. 𝑢1. The lemma is proven.
By Lemma 5.4 we have

̃︀𝑥 = −
𝜕 ̃︀𝑓1,−1

𝜕𝑣
𝜕 ̃︀𝑓1,−1

𝜕𝑣1

= −
𝜕𝑓1,−1

𝜕𝑢
·𝜑′(𝑣)

𝜕𝑓1,−1

𝜕𝑢1
·𝜑′(𝑣1)

= 𝜑′(𝑣)
𝜑′(𝑣1)

𝑥,

1̃︀𝑥−1
= −

𝜕 ̃︀𝑓−1,−1

𝜕𝑣
𝜕 ̃︀𝑓−1,−1

𝜕𝑣−1

= −
𝜕𝑓−1,−1

𝜕𝑢
·𝜑′(𝑣)

𝜕𝑓−1,−1

𝜕𝑢−1
·𝜑′(𝑣−1)

= 𝜑′(𝑣)
𝜑′(𝑣−1)

· 1
𝑥−1

This is why 𝜕
𝜕𝑣

= 𝜑′(𝑣) 𝜕
𝜕𝑢

, and also

̃︀𝑥 · ̃︀𝑥1 · . . . · ̃︀𝑥𝑗 𝜕

𝜕𝑣𝑗+1

= 𝜑′(𝑣) · 𝑥 · 𝑥1 · . . . · 𝑥𝑗
𝜕

𝜕𝑢𝑗+1

(5.240)

and
1̃︀𝑥−1

· 1̃︀𝑥−2

· . . . · 1̃︀𝑥−𝑗

𝜕

𝜕𝑣−𝑗

= 𝜑′(𝑣) · 1

𝑥−1

· 1

𝑥−2

· . . . · 1

𝑥−𝑗

𝜕

𝜕𝑢−𝑗

. (5.241)

By (5.240), (5.241) explicit expression (5.219) and the formulas

̃︀𝑌1 =
𝜕

𝜕𝑣
+ ̃︀𝑥 𝜕

𝜕𝑣1
+

1̃︀𝑥−1

𝜕

𝜕𝑣−1

+ ̃︀𝑥̃︀𝑥1 𝜕

𝜕𝑣2
+

1̃︀𝑥−1̃︀𝑥−2

𝜕

𝜕𝑣−2

+ . . .

we find the desired relation ̃︀𝑌1 = 𝜑′(𝑚,𝑛, 𝑣)𝑌1. (5.242)

It is obvious that 𝑋1 = 𝜕
𝜕𝑢−1

and ̃︀𝑋1 = 𝜕
𝜕𝑣−1

are related by the identity

̃︀𝑋1 = 𝜑′(𝑚,𝑛− 1, 𝑣−1)𝑋1. (5.243)

Applying conjugation operator (5.222) to (5.242), (5.243) and employing the identities

𝑍𝑗+1 = 𝐷
−𝑗
𝑌1𝐷

𝑗
, 𝑋𝑗+1 = 𝐷

−𝑗
𝑋𝑗𝐷,

we get ̃︀𝑍𝑗+1 = 𝜑(𝑚,𝑛− 𝑗, 𝑣−𝑗)𝑍𝑗+1, ̃︀𝑋𝑗+1 = 𝜑(𝑚,𝑛− 𝑗 − 1, 𝑣−𝑗−1)𝑋𝑗+1. (5.244)

5.3. 𝑆-integrable discrete equations. In this section we study the characteristic operators
of 𝑆-integrable discrete equations of the form (5.216), i.e., of soliton type equations. Let a Lie
ring 𝑇 be generated by the vector fields 𝑋 and 𝑌 . Denote by 𝑉𝑗, 𝑗 ≥ 0 the linear space over
the field of locally analytic functions spanned on 𝑋, 𝑌 , and all multiple commutators of the
operators 𝑋, 𝑌 of order less or equal 𝑗 so that

𝑉0 = {𝑋, 𝑌 }, 𝑉1 = {𝑋, 𝑌, [𝑋, 𝑌 ]},
𝑉2 = {𝑋, 𝑌, [𝑋, 𝑌 ], [𝑋, [𝑋, 𝑌 ]], [𝑌, [𝑋, 𝑌 ]]}, . . . .

We introduce the function △(𝑘) = dim𝑉𝑘+1 − dim𝑉𝑘.

Definition 5.2. We call 𝑇 a ring of minimal growth if there exists a sequence of natural
numbers {𝑡𝑘}∞𝑘=1, for which △(𝑡𝑘) 6 1.

Denote by 𝑇𝑘𝑗 the Lie rings generated by the operators 𝑋𝑘, 𝑌𝑗. The following conjecture
looks credible.

Proposition 5.1. Suppose equation (5.216) is 𝑆-integrable, then for all 𝑘, 𝑗 ≥ 1 the associ-
ated ring 𝑇𝑘𝑗 is a ring of minimal growth.
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As an example we consider the discrete potential KdV equation

𝑢1,1 = 𝑢+
1

𝑢1 − 𝑢1
. (5.245)

We represent (5.245) in two different ways (𝑢 − 𝑢−1,−1)(𝑢−1 − 𝑢−1) = 1 and
(𝑢1 − 𝑢−1)(𝑢1,−1 − 𝑢) = 1. It yields

𝑢−1,−1 = 𝑢+
1

𝑢−1 − 𝑢−1

:= 𝑓−1,−1, 𝑢1,−1 = 𝑢+
1

𝑢1 − 𝑢−1

:= 𝑓 1,−1.

Hence,

𝑥 = −
𝜕𝑓1,−1

𝜕𝑢
𝜕𝑓1,−1

𝜕𝑢1

= (𝑢1 − 𝑢−1)
2,

1
𝑥−1

= −
𝜕𝑓−1,−1

𝜕𝑢
𝜕𝑓−1,−1

𝜕𝑢−1

= (𝑢−1 − 𝑢−1)
2,

𝑝 = 1
𝜕𝑓1,−1

𝜕𝑢−1

= (𝑢1 − 𝑢−1)
2.

This is why

𝑌1 =
𝜕

𝜕𝑢
+ (𝑢1 − 𝑢−1)

2 𝜕

𝜕𝑢1
+ (𝑢−1 − 𝑢−1)

2 𝜕

𝜕𝑢−1

+ . . . . (5.246)

It is easy to see that

𝑌1𝑥 = 𝑌1(𝑢1 − 𝑢−1)
2 = 2(𝑢1 − 𝑢−1)

3 = 2𝑥
√
𝑥,

𝑌1𝑥−1 = 𝑌1(𝑢−1 − 𝑢−1)
−2 = 2

√
𝑥−1,

𝑋1𝑥 = 𝜕
𝜕𝑢−1

(𝑢1 − 𝑢−1)
2 = −2(𝑢1 − 𝑢−1) = −2

√
𝑥,

𝑋1𝑥−1 = 𝜕
𝜕𝑢−1

(𝑢−1 − 𝑢−1)
−2 = −2(𝑢−1 − 𝑢−1)

−3 = −2𝑥−1
√
𝑥−1.

Consider the ring 𝑇1,1 generated by the operators (see (5.246)) 𝑌1 and 𝑋1 = 𝜕
𝜕𝑢−1

. We

construct the sequence of multiple commutators,

𝑅1 = [𝑋1, 𝑌1], 𝑃1 = [𝑋1, 𝑅1], 𝑄1 = [𝑌1, 𝑅1],
𝑅𝑘+1 = [𝑋1, 𝑄𝑘], 𝑃𝑘 = [𝑋1, 𝑅𝑘], 𝑄𝑘 = [𝑌1, 𝑅𝑘], 𝑘 ≥ 1.

Theorem 5.2. The sequence 𝑋1, 𝑌1, 𝑅1, 𝑃1, 𝑄1, 𝑅2, 𝑃2, 𝑄2, . . . forms a basis of the ring 𝑇1,1
(see [42]).

Proof. We employ the identities 𝐷𝑋1𝐷
−1 = 𝑥𝑋1 and 𝐷(𝑦𝑌1)𝐷

−1 = 𝑌1, where 𝑦 = 𝑥−1, and
write [𝐷𝑋1𝐷

−1, 𝐷(𝑦𝑌1)𝐷
−1] = [𝑥𝑋1, 𝑌1]. We reduce the last identity to

𝐷(𝑅1 − 2
√
𝑦𝑌1)𝐷

−1 = 𝑅1 − 2
√
𝑥𝑋1. (5.247)

The symmetric expression is the most simple and convenient one. We commute (5.247),
preserving the symmetricity with 𝐷𝑋1𝐷

−1 = 𝑥𝑋1,

[𝐷(𝑅1 − 2
√
𝑦𝑌1)𝐷

−1, 𝐷𝑋1𝐷
−1] = [𝑅1 − 2

√
𝑥𝑋1, 𝑥𝑋1].

The last identity is reduced to

𝐷(𝑃1 − 2
√
𝑦𝑅1 + 2𝑦𝑌1)𝐷

−1 = 𝑥(𝑃1 + 2𝑋1). (5.248)

Commuting (5.247) with 𝐷(𝑦𝑌1)𝐷
−1 = 𝑌1, we obtain

𝐷(𝑦(𝑄1 − 2𝑌1))𝐷
−1 = 𝑄1 + 2

√
𝑥𝑅1 − 2𝑥𝑋1. (5.249)

We commute 𝐷𝑋1𝐷
−1 = 𝑥𝑋1 with identity (5.248), then

𝐷 ([𝑋1, 𝑃1] − 2
√
𝑦𝑃1 + 4𝑦𝑅1 − 4𝑦

√
𝑦𝑌1)𝐷

−1 = 𝑥2[𝑋1, 𝑃1] − 2𝑥
√
𝑥𝑃1 − 4𝑥

√
𝑥𝑋1.

From the last identity we deduct term by term identity (5.248) multiplied by 2
√
𝑥, and as a

result we get 𝐷[𝑋1, 𝑃1] = 𝑥2[𝑋1, 𝑃1]. By Lemma 5.3 it implies [𝑋1, 𝑃1] = 0. In the same one
can check that [𝑌1, 𝑄1] = 0.
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It can be checked that the action of automorphism (5.223) on the operator 𝑅2, 𝑃2, 𝑄2 is
written as

𝐷(𝑅2 − 2
√
𝑦𝑄1)𝐷

−1 = 𝑅2 + 2
√
𝑥𝑃1,

𝐷(𝑃2 + 2
√
𝑦𝑅2 − 2𝑦𝑄1)𝐷

−1 = 𝑥(𝑃2 − 2𝑃1),
𝐷(𝑦(𝑄2 − 2𝑄1))𝐷

−1 = 𝑄2 + 2
√
𝑥𝑅2 + 2𝑥𝑃1.

By induction one can prove that for all 𝑗 > 1 the relations

𝐷(𝑅𝑗 − 2
√
𝑦𝑄𝑗−1)𝐷

−1 = 𝑅𝑗 + 2
√
𝑥𝑃𝑗−1,

𝐷(𝑃𝑗 + 2(−1)𝑗
√
𝑦𝑅𝑗 + 2(−1)𝑗−1𝑦𝑄𝑗−1)𝐷

−1 = 𝑥(𝑃𝑗 − 2𝑃𝑗−1),
𝐷(𝑦(𝑄𝑗 − 2𝑄𝑗−1))𝐷

−1 = 𝑄𝑗 + 2
√
𝑥𝑅𝑗 − 2𝑥𝑃𝑗−1𝑋

hold, and [𝑋1, 𝑃𝑗] = 0, [𝑌1, 𝑄𝑗] = 0, [𝑌1, 𝑃𝑗] = [𝑋,𝑄𝑗], [𝑅𝑗, 𝑃𝑘] = 𝑃𝑘+𝑗, [𝑅𝑗, 𝑄𝑘] = −𝑄𝑘+𝑗,
[𝑅𝑗, 𝑅𝑘] = 0, [𝑃𝑗, 𝑄𝑘] = −𝑅𝑘+𝑗+1, [𝑃𝑗, 𝑃𝑘] = 0, [𝑄𝑗, 𝑄𝑘] = 0. The theorem is proven.

Corollary 5.1. The ring 𝑇1,1 is that of minimal growth.

Proof. By construction we have 𝑉0 = {𝑋1, 𝑌1}, 𝑉1 = 𝑉0 ⊕ {𝑅1},
𝑉2 = 𝑉1 ⊕ {𝑃1, 𝑄1}, . . . , 𝑉2𝑘−1 = 𝑉2𝑘−2 ⊕ {𝑅𝑘}, 𝑉2𝑘 = 𝑉2𝑘−1 ⊕ {𝑃𝑘, 𝑄𝑘}, . . .. Hence,
△(2𝑘 + 1) = dim𝑉2𝑘+2 − dim𝑉2𝑘+1 = 2, △(2𝑘) = dim𝑉2𝑘+1 − dim𝑉2𝑘 = 1 for each 𝑘 ≥ 0.

In works [42,51] the connection between the integrability of equation (5.216) and the property
of minimal growth for the rings 𝑇𝑗,𝑘 was studied.

In work [42] the following statement was proven.

Theorem 5.3. Assume the Lie ring 𝑇1,1 of the discrete equation

𝑢1,1 = 𝑢+ 𝜑(𝑢1 − 𝑢1) (5.250)

satisfies the condition that there exists at least one natural number 𝑗 such that ∆(𝑘) 6 1. Then
by a point change the equation is reduced to one of the following equations,

(1) 𝑢1,1 = 𝑢+ 𝑐(𝑢1 − 𝑢1 − 𝛽),
(2) (𝑢1,1 − 𝑢− 𝛼)(𝑢1 − 𝑢1 − 𝛽) = 𝛾,
(3) (𝛼𝑢1 + 𝛽𝑢1)𝑢1,1 + 𝑢(𝛾𝑢1 − 𝛿𝑢1) = 0.

We note that in this theorem on the Lie ring there imposed a very weak condition, namely,
the existence of a sequence of natural numbers for which ∆(𝑘) 6 1 is replaced the condition
that at least one such number exists. At that a certain list of the equations is obtained and
all of them integrable. The equation (1) is linear, the equation (2) is the discrete potential
Korteweg-de Vries equation, and the equation (3) belongs to the known list of Adler, Bobenko,
Suris (ABS) (see [45]).

In the work [51] the equation

𝑢1,1 + 𝑢 = 𝜑(𝑢1 + 𝑢1) (5.251)

is studied under a similar restriction.

Theorem 5.4. Let the ring 𝑇1,1 of discrete equation (5.251) satisfies the condition that there
exists at least one natural 𝑘 such that ∆(𝑘) 6 1. Then equation (5.251) is reduced by a point
change to one of the following equations,

(1) 𝑢1,1 + 𝑢 = 𝑐(𝑢1 − 𝑢1 − 𝛽),
(2) (𝑢1,1 + 𝑢− 𝛼)(𝑢1 + 𝑢1 − 𝛽) = 𝛾,
(3) 𝛼1𝑢𝑢1𝑢1,1 + 𝛼2𝑢𝑢1,1 + 𝛼3𝑢1𝑢1 + 𝛼4 = 0.

We observe that the equation (2) is integrable as 𝛼 = 𝛽, since it is reduced to the potential
KdV equation, and the equation (3) as 𝛼3 = ±𝛼2 is reduced to a known equation from the list
of ABS. In other cases these equations are non-integrable.
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6. Perspectives of algebraic method

6.1. Characteristic ring of “𝑛-waves” equations. We consider the system of hyperbolic
partial differential equations

(
𝜕

𝜕𝑡
+ 𝑎𝑖

𝜕

𝜕𝑥
)𝑢𝑖 = 𝜑𝑖(𝑢

1, 𝑢2, . . . , 𝑢𝑛), 𝑖 = 1, 2, . . . , 𝑛. (6.252)

Here 𝑎𝑖 are arbitrary constants and 𝜑𝑖 are arbitrary functions. As the functions 𝜑𝑖 are quadratic,
we deal with the system of 𝑛-waves equations [63]. In order to determine two characteristic
directions, we introduce independent variables 𝜉 and 𝜂 as follows,

𝜕

𝜕𝑡
+ 𝑎𝑖0

𝜕

𝜕𝑥
=

𝜕

𝜕𝜉
,

𝜕

𝜕𝑡
+ 𝑎𝑖1

𝜕

𝜕𝑥
=

𝜕

𝜕𝜂
.

In terms of new variables the system casts into the form

𝑝𝜉 = 𝑓(𝑝, 𝑞, 𝑟),

𝑞𝜂 = 𝜑(𝑝, 𝑞, 𝑟), (6.253)

𝑟𝜉 = 𝑟𝜂𝐴+ 𝜓(𝑝, 𝑞, 𝑟),

where 𝑓 = (𝑓 1, 𝑓 2, . . . , 𝑓 𝑠), 𝜑 = (𝜑1, 𝜑2, . . . , 𝜑𝑙), 𝜓 = (𝜓1, 𝜓2, . . . , 𝜓𝑚), 𝑝 = (𝑢𝑖1 , 𝑢𝑖2 , . . . , 𝑢𝑖𝑠),
𝑞 = (𝑢𝑗1 , 𝑢𝑗2 , . . . , 𝑢𝑗𝑙), 𝑟 = (𝑢𝑘1 , 𝑢𝑘2 , . . . , 𝑢𝑘𝑚), 𝐴 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, . . . , 𝜆𝑚), ∀𝑖 𝜆𝑖 ̸= 0, where
𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑠), 𝑞 = (𝑞1, 𝑞2, . . . , 𝑞𝑙), 𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑚). Denote by 𝐹 (𝐹 ) the set of locally
analytic functions depending on a finite number of the variables 𝑝, 𝑞, 𝑟, 𝑞1, 𝑟1, 𝑞2, 𝑟2, . . . , 𝑞𝑖, 𝑟𝑖, . . .
(𝑝, 𝑞, 𝑟, 𝑝1, 𝑟1, 𝑝2, 𝑟2, . . . , 𝑝𝑖, 𝑟𝑖, . . .). Here 𝑞𝑖 = 𝐷𝑖𝑞, 𝑟𝑖 = 𝐷𝑖𝑟, 𝑝𝑖 = 𝐷̄𝑖𝑝, 𝑟𝑖 = 𝐷̄𝑖𝑟, 𝑖 = 1, 2, . . . ,
𝐷 = 𝑑

𝑑𝜉
, 𝐷̄ = 𝑑

𝑑𝜂
. The operator of total differentiation 𝐷̄ w.r.t. the variable 𝜂 on the set 𝐹 is

defined as

𝐷̄ =
𝑠∑︁

𝑖=1

𝑝𝑖1
𝜕

𝜕𝑝𝑖
+

𝑙∑︁
𝑖=1

𝜑𝑖(𝑝, 𝑞, 𝑟)
𝜕

𝜕𝑞𝑖
+

𝑚∑︁
𝑖=1

[
1

𝜆𝑖
𝑟𝑖1 −

1

𝜆𝑖
𝜓𝑖(𝑝, 𝑞, 𝑟)]

𝜕

𝜕𝑟𝑖
+

+
𝑙∑︁

𝑖=1

𝐷𝜑𝑖(𝑝, 𝑞, 𝑟)
𝜕

𝜕𝑞𝑖1
+

𝑚∑︁
𝑖=1

[
1

𝜆𝑖
𝑟𝑖2 −

1

𝜆𝑖
𝐷𝜓𝑖(𝑝, 𝑞, 𝑟)]

𝜕

𝜕𝑟𝑖1
+ . . . (6.254)

+
𝑙∑︁

𝑖=1

𝐷𝑛𝜑𝑖(𝑝, 𝑞, 𝑟)
𝜕

𝜕𝑞𝑖𝑛
+

𝑚∑︁
𝑖=1

[
1

𝜆𝑖
𝑟𝑖𝑛+1 −

1

𝜆𝑖
𝐷𝑛𝜓𝑖(𝑝, 𝑞, 𝑟)]

𝜕

𝜕𝑟𝑖𝑛
+ . . . .

Considering the vector fields 𝑋𝑖 = 𝜕
𝜕𝑝𝑖
, 𝑖 = 1, 2, . . . , 𝑠 and

𝑋𝑠+1 =
𝑙∑︁

𝑖=1

𝜑𝑖(𝑝, 𝑞, 𝑟)
𝜕

𝜕𝑞𝑖
+

𝑚∑︁
𝑖=1

[
1

𝜆𝑖
𝑟𝑖1 −

1

𝜆𝑖
𝜓𝑖(𝑝, 𝑞, 𝑟)]

𝜕

𝜕𝑟𝑖
+

+
𝑙∑︁

𝑖=1

𝐷𝜑𝑖(𝑝, 𝑞, 𝑟)
𝜕

𝜕𝑞𝑖1
+

𝑚∑︁
𝑖=1

[
1

𝜆𝑖
𝑟𝑖2 −

1

𝜆𝑖
𝐷𝜓𝑖(𝑝, 𝑞, 𝑟)]

𝜕

𝜕𝑟𝑖1
+ . . . (6.255)

+
𝑙∑︁

𝑖=1

𝐷𝑛𝜑𝑖(𝑝, 𝑞, 𝑟)
𝜕

𝜕𝑞𝑖𝑛
+

𝑚∑︁
𝑖=1

[
1

𝜆𝑖
𝑟𝑖𝑛+1 −

1

𝜆𝑖
𝐷𝑛𝜓𝑖(𝑝, 𝑞, 𝑟)]

𝜕

𝜕𝑟𝑖𝑛
+ . . . ,

we obtain that 𝐷̄ =
∑︀𝑠

𝑖=1 𝑝
𝑖
1𝑋𝑖 +𝑋𝑠+1.

Definition 6.1. The Lie ring 𝑅𝜉 over the field 𝐹 generated by the vector fields
𝑋1, 𝑋2, . . . , 𝑋𝑠+1 is called the characteristic Lie ring in the directions of 𝜉 of the system of
equations (6.252).
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In the similar way we define the characteristic Lie ring 𝑅𝜂 in the direction of 𝜂. It is generated
by the following vector fields,

𝑌𝑖 =
𝜕

𝜕𝑞𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

𝑌𝑙+1 =
𝑠∑︁

𝑖=1

𝑓 𝑖(𝑝, 𝑞, 𝑟)
𝜕

𝜕𝑝𝑖
+

𝑚∑︁
𝑖=1

[𝜆𝑖𝑟
𝑖
1 + 𝜓𝑖(𝑝, 𝑞, 𝑟)]

𝜕

𝜕𝑟𝑖
+ . . . (6.256)

+
𝑠∑︁

𝑖=1

𝐷̄𝑛𝑓 𝑖(𝑝, 𝑞, 𝑟)
𝜕

𝜕𝑝𝑖𝑛
+

𝑚∑︁
𝑖=1

[𝜆𝑖𝑟
𝑖
𝑛+1 + 𝐷̄𝑛𝜓𝑖(𝑝, 𝑞, 𝑟)]

𝜕

𝜕𝑟𝑖𝑛
+ . . . .

In this case the operator of total differentiation 𝐷 w.r.t. the variable 𝜉 on the set 𝐹 reads as
𝐷 =

∑︀𝑙
𝑖=1 𝑞

𝑖
1𝑌𝑖 + 𝑌𝑙+1.

6.2. Evolution equations.

6.2.1. Lie rings of evolution equations. We consider the evolution equations

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢,

𝜕𝑢

𝜕𝑥
, . . . ,

𝜕𝑛𝑢

𝜕𝑥𝑛
). (6.257)

In order to determine the vector fields generating the Lie ring of equation (6.257), we shall
study the auxiliary equation

𝜕2𝑢

𝜕𝑡𝜕𝑥
= 𝐹 (𝑢,

𝜕𝑢

𝜕𝑥
, . . . ,

𝜕𝑛+1𝑢

𝜕𝑥𝑛+1
), (6.258)

where 𝐹 = 𝐷𝑓 , 𝐷 is the operator of total differentiation w.r.t. the variable 𝑥. We define
the operator 𝐷̄ in the space of locally analytic functions depending on a finite number of the
variables 𝑢, 𝑢1, 𝑢2, . . . , 𝑢𝑖, . . . (𝑢𝑛 = 𝜕𝑛𝑢

𝜕𝑥𝑛 ) by the rule

𝐷̄ =
𝜕𝑢

𝜕𝑡

𝜕

𝜕𝑢
+ 𝐹

𝜕

𝜕𝑢1
+𝐷𝐹

𝜕

𝜕𝑢2
+ . . .+𝐷𝑛−1𝐹

𝜕

𝜕𝑢𝑛
+ . . . .

We introduce the vector fields

𝑋1 =
𝜕

𝜕𝑢
, 𝑋2 = 𝐹

𝜕

𝜕𝑢1
+𝐷𝐹

𝜕

𝜕𝑢2
+ . . .+𝐷𝑛−1 𝜕

𝜕𝑢𝑛
+ . . . .

Definition 6.2. The Lie ring 𝑅 generated by the vector fields 𝑋1 and 𝑋2 is called a char-
acteristic Lie ring of the equation (6.257).

The following statement holds.

Lemma 6.1. If dim𝑅 < ∞, then the right hand side 𝐹 (𝑢, 𝜕𝑢
𝜕𝑥
, . . . , 𝜕

𝑛+1𝑢
𝜕𝑥𝑛+1 ) of the equation

(6.258) is a quasipolynom w.r.t. the variable 𝑢.

Proof. Since [𝐷, 𝐷̄] = 0, employing [𝐷, 𝐷̄] = [𝐷, 𝜕𝑢
𝜕𝑡
𝑋1 +𝑋2], we have

[𝐷,𝑋1] = 0, [𝐷,𝑋2] = 𝐹𝑋1. (6.259)

We let 𝑋3 = [𝑋1, 𝑋2] and, employing Jacobi identity and relations (6.259), we obtain

[𝐷,𝑋3] =
𝜕𝐹

𝜕𝑢
𝑋1. (6.260)

We define the sequence of vector fields 𝑋𝑖, 𝑖 = 4, 5, . . . as 𝑋𝑖 = [𝑋1, 𝑋𝑖−1]. As above, we get
that

[𝐷,𝑋𝑖] =
𝜕𝑖−2𝐹

𝜕𝑢𝑖−2
𝑋1, 𝑖 = 4, 5, . . . . (6.261)
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Let the ring 𝑅 be finite-dimensional. Then there exists 𝑚 such that the vector fields
𝑋2, 𝑋3, . . . , 𝑋𝑚 are linearly independent and

𝑋𝑚+1 =
𝑚∑︁
𝑖=2

𝛼𝑖𝑋𝑖, (6.262)

where the coefficients 𝛼𝑖, 𝑖 = 2, 3, . . . ,𝑚 are the functions of the variables 𝑢, 𝑢1, 𝑢2, . . . .
By (6.262) we have [𝐷,𝑋𝑚+1] =

∑︀𝑚
𝑖=2𝐷(𝛼𝑖)𝑋𝑖+

∑︀𝑚
𝑖=2 𝛼𝑖[𝐷,𝑋𝑖]. In accordance with (6.261),

we rewrite the latter as

𝜕𝑚−1𝐹

𝜕𝑢𝑚−1
𝑋1 =

𝑚∑︁
𝑖=2

𝐷(𝛼𝑖)𝑋𝑖 +
𝑚∑︁
𝑖=2

𝛼𝑖
𝜕𝑖−2𝐹

𝜕𝑢𝑖−2
𝑋1.

Since the vector fields 𝑋1, 𝑋2, . . . , 𝑋𝑚 are linearly independent, we obtain

𝐷(𝛼𝑖) = 0, 𝑖 = 2, 3, . . . ,𝑚, (6.263)

𝜕𝑚−1𝐹

𝜕𝑢𝑚−1
=

𝑚∑︁
𝑖=2

𝛼𝑖
𝜕𝑖−2𝐹

𝜕𝑢𝑖−2
. (6.264)

These equations imply that 𝛼𝑖 is constant and 𝐹 is a quasipolynom w.r.t. the variable 𝑢. The
lemma is proven.

Remark 6.1. If the Lie ring 𝑅 of the evolution equation is finite-dimensional, then according
to (3.141) the right hand side 𝑓(𝑢, 𝑢1, . . . , 𝑢𝑛) is the solution to the partial differential equation

𝜕𝑚−1

𝜕𝑢𝑚−1

(︃
𝑛∑︁

𝑖=0

𝑢𝑖+1
𝜕𝑓

𝜕𝑢𝑖

)︃
=

𝑚∑︁
𝑖=2

𝛼𝑖

(︃
𝜕𝑖−2

𝜕𝑢𝑖−2

𝑛∑︁
𝑘=0

𝑢𝑘+1
𝜕𝑓

𝜕𝑢𝑘

)︃
.

Let us give examples of Lie rings of evolution equations.

Example 6.1. We consider the equation

𝑢𝑡 = 𝑢𝑥 + 𝑢2.

Applying the operator 𝐷, we get 𝑢𝑥𝑡 = 𝑢𝑥𝑥 + 2𝑢𝑢𝑥.
It follows from the relation

𝐷𝑡𝐹 (𝑢, 𝑢1, 𝑢2, . . .) = (𝑢𝑡
𝜕

𝜕𝑢
+ 𝑓

𝜕

𝜕𝑢1
+𝐷𝑓

𝜕

𝜕𝑢2
+ . . .)𝐹 = (𝑢𝑡𝑋1 +𝑋2)𝐹

that
𝐷𝑡 = 𝑢𝑡𝑋1 +𝑋2, (6.265)

where 𝑓 = 𝑢𝑥𝑥 + 2𝑢𝑢𝑥.

Lemma 6.2. The vector field 𝑌 = 𝑎1(𝑢, 𝑢1, . . . , 𝑢𝑛1)
𝜕

𝜕𝑢1
+𝑎2(𝑢, 𝑢1, . . . , 𝑢𝑛2)

𝜕
𝜕𝑢2

+. . . commutes
with the operator 𝐷 if and only if 𝑌 = 0.

The proof is implied by the formula [𝐷, 𝑌 ] = (𝐷𝑎1
𝜕

𝜕𝑢1
+𝐷𝑎2

𝜕
𝜕𝑢2

+𝐷𝑎3
𝜕

𝜕𝑢3
+ . . .)− −𝑎1 𝜕

𝜕𝑢
−

𝑎2
𝜕

𝜕𝑢1
− 𝑎3

𝜕
𝜕𝑢2

− . . ..

Due to (6.265) and [𝐷,𝐷𝑡] = 0 we have

𝑓𝑋1 + 𝑢𝑡[𝐷,𝑋1] + [𝐷,𝑋2] = 0.

The last relation splits into to equations [𝐷,𝑋1] = 0 and [𝐷,𝑋2] = −𝑓𝑋1.
We introduce the operators 𝑋3 = [𝑋1, 𝑋2], 𝑋4 = [𝑋1, 𝑋3], 𝑋5 = [𝑋2, 𝑋3]. It is easy to show

that [𝐷,𝑋3] = −2𝑢1𝑋1 and [𝐷,𝑋4] = 0. It follows from the lemma that 𝑋4 = 0.
Since the operator 𝑋3 = 2𝑢1

𝜕
𝜕𝑢1

+ 2𝑢2
𝜕

𝜕𝑢2
+ . . . ., then

[𝐷,𝑋5] = (𝑋3𝑓)𝑋1 + [𝑋2,−2𝑢1𝑋1] = (4𝑢1𝑢+ 2𝑢2)𝑋1 + 2𝑢1𝑋3 − 2𝑓𝑋1,
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or [𝐷,𝑋5] = 2𝑢1𝑋3.
Let us prove that a basis of the ring consists of the operators 𝑋1, 𝑋2, 𝑋3, 𝑋5. One can see

that [𝑋1, 𝑋5] = 0. Consider 𝑋7 = [𝑋2, 𝑋5]. By straightforward calculations we obtain that
[𝐷,𝑋7] = −4𝑢21𝑋1 + 2𝑢1𝑋5 + 2𝑓𝑋3, hence 𝑋7 = 2𝑢1𝑋3 + 2𝑢𝑋5. Consider now the operator
𝑋8 = [𝑋3, 𝑋5]. Calculate [𝐷,𝑋8],

[𝐷,𝑋8] = −[𝑋5, [𝐷,𝑋3]] + [𝑋3, [𝐷,𝑋5]] = 2𝑋5(𝑢1)𝑋1 + 2𝑋3(𝑢1)𝑋3 = 4𝑢1𝑋3.

Comparing the relations [𝐷,𝑋8] = 4𝑢1𝑋3 and [𝐷,𝑋5] = 2𝑢1𝑋3, we get 𝑋8 = 2𝑋5. It
yields that the Lie ring of this equation is four-dimensional and the elements 𝑋1, 𝑋2, 𝑋3, 𝑋5

are linearly dependent.

Example 6.2. Burgers equation

𝑢𝑡 = 𝑢𝑥𝑥 + 2𝑢𝑢𝑥.

The corresponding equation (6.258) reads as

𝑢𝑥𝑡 = 𝑢3 + 2𝑢𝑢2 + 2𝑢21. (6.266)

The characteristic vector fields

𝑋1 = 𝜕
𝜕𝑢
, 𝑋2 = (𝑢3 + 2𝑢𝑢2 + 2𝑢21)

𝜕
𝜕𝑢1

+ (𝑢4 + 2𝑢𝑢3 + 6𝑢1𝑢2)
𝜕

𝜕𝑢2
+ . . .+

+(𝑢𝑛+1 + 2𝑢𝑢𝑛 + . . .) 𝜕
𝜕𝑢𝑛

+ . . . .

Here

𝑋3 = [𝑋1, 𝑋2] = 2𝐷 − 2𝑢1𝑋1, (6.267)

where 𝐷 = 𝑢1
𝜕
𝜕𝑢

+ 𝑢2
𝜕

𝜕𝑢1
+ . . .+ 𝑢𝑛

𝜕
𝜕𝑢𝑛−1

+ . . . .

It follows from the relation [𝐷, 𝐷̄] = 0 that

[𝐷, 𝑢𝑡𝑋1 +𝑋2] = (𝑢3 + 2𝑢𝑢2 + 2𝑢21)𝑋1 + 𝑢𝑡[𝐷,𝑋1] + [𝐷,𝑋2] = 0.

Then

[𝐷,𝑋1] = 0 and [𝐷,𝑋2] = −(𝑢3 + 2𝑢𝑢2 + 2𝑢21)𝑋1. (6.268)

Employing (6.267) and (6.268), we obtain

𝑋4 = [𝑋1, 𝑋3] = [𝑋1, 2𝐷 − 2𝑢1𝑋1] = 0,
𝑋5 = [𝑋2, 𝑋3] = [𝑋2, 2𝐷 − 2𝑢1𝑋1] =

= 2(𝑢3 + 2𝑢𝑢2 + 2𝑢21)𝑋1 − 2(𝑢3 + 2𝑢𝑢2 + 2𝑢21)𝑋1 + 2𝑢1𝑋3.

It yields 𝑋4 = 0, 𝑋5 = 2𝑢1𝑋3. Thus, a basis of the characteristic ring for Burgers equations
consists of the operators 𝑋1, 𝑋2, 𝑋3.

Example 6.3. Consider the Korteweg-de Vries equation 𝑢𝑡 = 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥. The equation
(6.258) becomes

𝑢𝑥𝑡 = 𝑢4 + 𝑢𝑢2 + 𝑢21. (6.269)

For the equation (6.269) it is easy to show that 𝑋4 = [𝑋1, 𝑋3] = 0, 𝑋5 = [𝑋2, 𝑋3] = = 𝑢1𝑋3.
Therefore, a basis of the characteristic Lie ring of the Korteweg-de Vries equations consists of
the operators 𝑋1, 𝑋2, 𝑋3.

Example 6.4. For the modified Korteweg-de Vries equation 𝑢𝑡 = 𝑢𝑥𝑥𝑥 + 𝑢2𝑢𝑥 the equation
(6.258) casts into the form

𝑢𝑥𝑡 = 𝑢4 + 𝑢2𝑢2 + 2𝑢𝑢21.

The operators 𝑋1, 𝑋2, 𝑋3 = [𝑋1, 𝑋2], 𝑋4 = [𝑋1, 𝑋3] form a basis of the characteristic Lie
ring of the the modified Korteweg-de Vries equation
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6.2.2. Associated Lie algebras. As it follows from the examples given in Subsection 6.2.1, the
characteristic Lie ring determines the dependence of the right hand side 𝑓 = 𝑓(𝑢, 𝜕𝑢

𝜕𝑥
, . . . , 𝜕

𝑛𝑢
𝜕𝑥𝑛 )

of equation (6.257) on the variable 𝑢. Here we are going to introduce the definition of a Lie

ring which would take into account also the dependence of 𝑓 on the derivatives 𝜕𝑢
𝜕𝑥
, 𝜕

2𝑢
𝜕𝑥2 , . . . ,

𝜕𝑛𝑢
𝜕𝑥𝑛 .

In order to do it, we rewrite equation (6.257) as

𝑢1𝑡 = 𝑓 1(𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑛), (6.270)

letting 𝑢1 = 𝑢, 𝑢2 = 𝑢𝑥, 𝑢
3 = 𝑢𝑥𝑥, . . . , 𝑢

𝑛 = 𝜕𝑛𝑢
𝜕𝑥𝑛 .

Then by consequent differentiating w.r.t. 𝑥 we obtain from (6.270) the system of equations

𝑢1𝑡 = 𝑓 1(𝑢1, 𝑢2, . . . , 𝑢𝑛),

𝑢2𝑡 = 𝑓 2(𝑢1, 𝑢2, . . . , 𝑢𝑛, 𝑢𝑛𝑥),

𝑢3𝑡 = 𝑓 3(𝑢1, 𝑢2, . . . , 𝑢𝑛, 𝑢𝑛𝑥, 𝑢
𝑛
𝑥𝑥), (6.271)

. . . ,

𝑢𝑛𝑡 = 𝑓𝑛(𝑢1, 𝑢2, . . . , 𝑢𝑛, 𝑢𝑛𝑥, 𝑢
𝑛
𝑥𝑥, . . . ,

𝜕𝑛−1𝑢𝑛

𝜕𝑥𝑛−1
).

Thus, from equation (6.257) we pass to evolution system of equations (6.271) w.r.t. unknown
functions 𝑢1, 𝑢2, . . . , 𝑢𝑛. Now, as in Subsection 6.2.1, to define the characteristic Lie ring of
system (6.271), we consider the system

𝑢𝑖𝑥𝑡 = 𝐹 𝑖, 𝐹 𝑖 = 𝐷𝑓 𝑖, 𝑖 = 1, 2, . . . , 𝑛. (6.272)

The characteristic Lie ring of system (6.271) is defined by the operator 𝐷,

𝐷 =
𝜕𝑢𝑘

𝜕𝑡
· 𝜕

𝜕𝑢𝑘
+ 𝐹 𝑘 𝜕

𝜕𝑢𝑘1
+𝐷𝐹 𝑘 𝜕

𝜕𝑢𝑘2
+ . . . ,

namely, by the vector fields

𝑋1 =
𝜕

𝜕𝑢1
, 𝑋2 =

𝜕

𝜕𝑢2
, . . . , 𝑋𝑛 =

𝜕

𝜕𝑢𝑛
,

𝑋𝑛+1 = 𝐹 𝑘 𝜕

𝜕𝑢𝑘1
+𝐷𝐹 𝑘 𝜕

𝜕𝑢𝑘2
+ . . . .

And, finally, we shall call the characteristic Lie ring of system (6.271) an associated Lie ring
of evolution equation (6.257).

For example, for the Burgers equation

𝑢𝑡 = 𝑢𝑥𝑥 + 2𝑢𝑢𝑥

we have 𝑢𝑥 = 𝑣, 𝑢𝑥𝑥 = 𝑤. Then system (6.271) and (6.272) become

𝑢𝑡 = 𝑤 + 2𝑢𝑣,

𝑣𝑡 = 𝑤𝑥 + 2𝑢𝑥𝑣 + 2𝑢𝑣𝑥,

𝑤𝑡 = 𝑤𝑥𝑥 + 4𝑢𝑥𝑣𝑥 + 2𝑢𝑥𝑥𝑣 + 2𝑢𝑣𝑥𝑥,

and

𝑢𝑥𝑡 = 𝑤𝑥 + 2𝑢𝑣𝑥 + 2𝑢𝑥𝑣,

𝑣𝑥𝑡 = 𝑤𝑥𝑥 + 2𝑢𝑥𝑥𝑣 + 2𝑢𝑣𝑥𝑥 + 4𝑢𝑥𝑣𝑥,

𝑤𝑥𝑡 = 𝑤𝑥𝑥𝑥 + 6𝑢𝑥𝑥𝑣𝑥 + 6𝑢𝑥𝑣𝑥𝑥 + 2𝑢𝑥𝑥𝑥𝑣,

respectively.
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6.3. Systems of ordinary differential equations. Here we consider the system of ordinary
differential equations

𝑑𝑢𝑖

𝑑𝑦
= 𝑓𝑖(𝑥, 𝑦, 𝑢

1, 𝑢2, . . . , 𝑢𝑛), 𝑖 = 1, 2, . . . , 𝑛. (6.273)

In order to define the notion of the characteristic Lie ring for equations (6.273), we shall
assume that the solution 𝑢1, 𝑢2, . . . , 𝑢𝑛 depend on the parameter 𝑥. Then by differentiation
equations (6.273) w.r.t. the variable 𝑥, we obtain the system of equations

𝜕2𝑢𝑖

𝜕𝑦𝜕𝑥
=
𝜕𝑓𝑖
𝜕𝑥

+
𝑛∑︁

𝑘=1

𝜕𝑓𝑖
𝜕𝑢𝑘

· 𝜕𝑢
𝑘

𝜕𝑥
. (6.274)

It is known (see, for instance, [56]) that hyperbolic system (6.274) possesses a pair of char-
acteristic Lie ring, namely, the 𝑥-characteristic Lie ring 𝑋 is generated by the vector field

𝑋1 =
𝜕

𝜕𝑢1
, 𝑋2 =

𝜕

𝜕𝑢2
, . . . , 𝑋𝑛 =

𝜕

𝜕𝑢𝑛
,

𝑋𝑛+1 =
𝜕

𝜕𝑦
+ 𝐹𝑖

𝜕

𝜕𝑢𝑖1
+𝐷𝐹𝑖

𝜕

𝜕𝑢𝑖2
+𝐷2𝐹𝑖

𝜕

𝜕𝑢𝑖3
+ . . . ,

and the 𝑦-characteristic Lie ring 𝑌 by the fields

𝑌1 =
𝜕

𝜕𝑢11
, 𝑌2 =

𝜕

𝜕𝑢21
, . . . , 𝑌𝑛 =

𝜕

𝜕𝑢𝑛1
,

𝑌𝑛+1 =
𝜕

𝜕𝑥
+ 𝑢𝑖1

𝜕

𝜕𝑢𝑖
+ 𝐹𝑖

𝜕

𝜕𝑢𝑖1
+𝐷𝐹𝑖

𝜕

𝜕𝑢𝑖2
+ . . . ,

where 𝐷(𝐷) is the operator of total differentation w.r.t. the variable 𝑥(𝑦), 𝑢𝑖𝑘 = 𝐷𝑘𝑢𝑖,

𝑢𝑖𝑘 = 𝐷
𝑘
𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . ..

We call now the 𝑥- and 𝑦-characteristic Lie rings of system (6.274) Lie rings for system of
differential equations (6.273).

The study of system (6.273) is based on considering of the ring 𝑋.
We note that if dim𝑋 < ∞, then the right hand sides 𝑓𝑖 of system (6.273) are quasipoyno-

mials w.r.t. the variables 𝑢1, 𝑢2, . . . , 𝑢𝑛.
As an example we consider the ordinary differential equation

𝑢𝑦 = 𝑓(𝑦, 𝑢). (6.275)

It is easy to show that if the characteristic Lie ring of equation (6.275) is finite-dimensional,
then the right hand side 𝑓(𝑦, 𝑢) is a quasipolynom w.r.t. the variable 𝑢.

For instance, the dimension of the Lie ring of the equation

𝑢𝑦 = 𝛼0(𝑦) + 𝛼1(𝑦)𝑢+ 𝛼2𝑢
2 (6.276)

equals 4, and if 𝑢 is a solution to equation (6.276) depending on the parameter 𝑥, then the

expression 𝑢𝑥𝑥𝑥

𝑢𝑥
− 3

2
𝑢2
𝑥𝑥

𝑢2
𝑥

is independent of 𝑦, i.e.,

𝑢𝑥𝑥𝑥
𝑢𝑥

− 3

2

𝑢2𝑥𝑥
𝑢2𝑥

= 𝑓(𝑥).

Let us adduce an example of the Riccatti equation (6.276) with the Lie ring of dimension 3.
Such an example is the equation

𝑢𝑦 = 𝛼1(𝑦)𝑢+ 𝑢2. (6.277)

A solution of Riccatti equation (6.277) depending on the parameter 𝑥 satisfies the relation
𝑢𝑥𝑥
𝑢𝑥

− 2
𝑢𝑥
𝑢

= 𝑓(𝑥).
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Remark 6.2. Another approach of determining the characteristic Lie ring of system (6.273)
is based on the change

𝑢𝑖 =
𝜕𝑣𝑖

𝜕𝑥
, 𝑖 = 1, 2, . . . , 𝑛.

Then system (6.273) becomes

𝜕2𝑣𝑖

𝜕𝑥𝜕𝑦
= 𝑓𝑖

(︂
𝑥, 𝑦,

𝜕𝑣1

𝜕𝑥
, . . . ,

𝜕𝑣𝑛

𝜕𝑥

)︂
. (6.278)

We call the 𝑥- and 𝑦-characteristic Lie rings for system of hyperbolic equations (6.278) Lie
rings of original system of ordinary differential equations (6.273).
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