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CHARACTERISTIC LIE RINGS
AND INTEGRABLE MODELS IN MATHEMATICAL PHYSICS

A.V. ZHIBER, R.D. MURTAZINA, 1.T. HABIBULLIN, A.B. SHABAT

Abstract. The survey is devoted to a systematic exposition of the algebraic approach
based on the concept of the characteristic vector field to the study of nonlinear integrable
partial differential equations and their discrete analogues. A special attention is paid to
Darboux integrable equations and to soliton equations. The problem of constructing gen-
eralized symmetries for the equations as well as of their particular and general solutions is
discussed. In particular, it is shown that a hyperbolic partial differential equation is inte-
grated by quadrature if and only if its characteristic Lie rings in both directions are of finite
dimension. For the hyperbolic type equations integrable by the inverse scattering method,
the characteristic rings are of minimal growth. We suggest the ways of applying the concept
of characteristic Lie rings to the systems of hyperbolic differential equations with more than
two characteristic directions, to evolution equations, and to ordinary differential equations.
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1. INTORDUCTION

The basic ideas of studying of the problem on the integration of hyperbolic partial differential
equations go back to classical works by Laplace, Liouville, Lie, Darboux, Goursat, Vessiot,
et al. And the meaning of the integration as obtaining an explicit formula for the general
solution was almost immediately supplanted by others less exacting definitions. For instance,
the Darboux method of integration of a hyperbolic equation consists in finding the integrals
in each characteristic direction and the consequent reducing it to two ordinary differential
equations. It is clear that in a general case it is quite complicated to end up with explicit
formulas expressing a simultaneous solution of these equations.

For finding the integrals (as well as for identification the integrability of a given equation)
Darboux employed the Laplace cascade method. In later studies (see ,), an algebraic
approach using characteristic vector fields became the main tool of finding integrals (exactly
in the framework of such approach the first lists of the equations possessing the integrals in
both directions were likely obtained [49]). Another approach to the integrating of nonlinear
equation is related with one-parametric transformation groups, i.e., with symmetries. The
notion of symmetry introduced more than one hundred years ago in the works of S. Lie and
E. Noether, serves as the base for the modern integrability theory. The discover of the inverse
scattering method and appearance of the class of soliton equations gave a powerful incentive to
the developing of the symmetry approach in the integrability theory. It became clear that the
equations integrable by the method of inverse scattering problem possess an infinite hierarchy
of generalized symmetries.

During last three decades in the framework of symmetry approach effective algorithms for
solving classification problems were created and the complete lists for very important classes of
nonlinear partial differential equations and their discrete analogues were made up ( ,,

3334138 59]). In so doing, the greatest successes were related with the classification

of the evolution equations. However, in certain cases like the classification of the integrable
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equations of dimension 1 + 2 and higher, and also the classification of hyperbolic equations
with two independent variables and their discrete analogues the symmetry approach is not so
effective. In the last years new methods for classification of integrable equations appeared,
like Painlevé test, the method of algebraic entropy [55], the 3D compatibility condition [45],
etc. The monograph [24] devoted to a detailed description of some aspects of the theory of
integration for partial differential equations is also of interest for the experts.

In the present paper we consider an alternative approach to the problem on the classification
of integrable equations going back to the classical works of Goursat. Am important milestone
in forming of this approach was the work [44], where the system of hyperbolic equations

uiy =exp(agu' + apu® + ... Fapu™), i=1,2,...,n, (1.1)

was studied. In this work the notion of characteristic Lie algebra of vector fields was introduced
and it was shown that the characteristic Lie algebra for the system has a finite dimension
if and only if the matrix A = (a;;) is the Cartan matrix of a simple Lie algebra. Then in the
work [30] for a system of hyperbolic equations of a more general form

ul, = Fi(u',u? .o u™), i=1,2,...,n, (1.2)

Ty
it was shown that the condition of integrability by quadrature is the finite dimension of its
characteristic Lie algebra.

The characteristic algebra for the hyperbolic systems

u;:c}kuﬂvk+c§€uk, v’y“:dflujvl—l—dfuj, 1=1,2,....,n, k=1,2,...,n (1.3)

were studied in the work [13]. In particular, there was given a complete description for the
basis of the characteristic algebra for the equation u,, = sinu.

Below in the first, third, and fourth section we shall give the definition and detailed de-
scription of the notion of the characteristic Lie ring for hyperbolic partial differential equations
(and the system of equations) and their discrete analogues. Here we just briefly dwell on main
aspects of the content. For a scalar hyperbolic equation (both continuous and discrete) the
characteristic Lie ring on each characteristic direction is generated by two operators; denote
them by X; and X,. We indicate by V; the linear space over the field of locally analytic func-
tions spanned on X, X5, and all multiple commutators of the operators X; and X5 of order
less or equal to 7, so that

% - {X17X2}7 ‘/1 - {X17X27 [XlaXQ]}7

We introduce the function A(k) = dim Vi1 — dim V4.

A deep connection between the properties of the characteristic Lie ring and the integrability
property of an equation was realized in the work [18]. In this work it was found that the
spaces of multiple commutators forming characteristic rings for such integrable equations like
Sine-Gordon equations, Tzitzeica equation, etc. grow very slowly in the first steps, saying more
precisely, A(1) = A(2) = A(3) = A(4) = 1. It was conjectured that such behavior of the
function A(k) is intrinsic for all integrable equations. Later the idea was specified and justified
by numerous examples of integrable continuous and discrete models (see [35,/53]). Then in the
works [42,51] it was formulated the following

Conjecture 1.1. (algebraic test). Each integrable scalar (continuous or discrete) hyperbolic

equation satisfies the condition that there exists a sequence of natural numbers {ty}?2, for which
A(ty) < 1.

Definition 1.1. The characteristic Lie ring for which there exists such sequence of natural
numbers s called a ring of minimal growth.

The property of minimal growth of a ring began to be considered as a classification criterion
for the integrable equations. For special classes of equations a series of model classification
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problem was solved ( [18,42,/51]). These results convince that the property of minimal growth
of Lie ring is as universal property of integrable equation as the existence of an infinite hierarchy
of generalized symmetries.

The paper presents a survey of the authors’ results devoted to applications of the algebraic
method based on the notion of characteristic vector field to nonlinear integrable models.

The paper is organized as follows. In the second section we make the classification of scalar
hyperbolic equations of special form with infinite-dimensional characteristic Lie ring of minimal
growth. It is shown that the system of equations u, = f(u,v), v, = ¢(u,v), for which first
three D and D-conditions of the existence of generalized symmetries are satisfied, possesses -
and y-characteristic rings of minimal growth. We describe the classes of the equations with
finite-dimensional Lie ring. By using the generators of the characteristic Lie rings we con-
struct generalized symmetries of Liouville, Sine-Gordon, Tzitzeica, and modified Sine-Gordon
equations.

In the third section we provide a short review of the authors’ results (see [13,44,56]) devoted
to the classification of integrable hyperbolic systems of equations basing on the notions of
characteristic Lie rings and algebras.

In the forth section we introduce characteristic rings for a differential-difference equation. We
illustrate the application of characteristic vector fields in the classification problem of Liouville
type equations. We provide classification results. We study in details the characteristic ring of
an differential-difference analogue of Sine-Gordon equation. It is notable that in this case the
ring has a minimal growth.

In the fifth section we consider fully discrete equations. We give a general definition of the
integral, introduce the notion of characteristic Lie ring, and discuss possible ways of applying
these notions in the problems of classification integrable discrete equations.

The sixth section is devoted to the discussion of open questions and perspectives of algebraic
approach presented in the paper. For instance, we suggest the scheme for studying the charac-
teristic ring of the system of hyperbolic equations with more than two characteristic directions.
A typical example of such system is that of n-waves. We discuss briefly the possibility of ex-
tending the presented approach to other classes of nonlinear equations like of evolution type,
ordinary differential equations (see [§]).

2. SCALAR INTEGRABLE EQUATIONS
2.1. Definition of characteristic Lie ring. To study the integrability of the equations
Upy = [(2, Y, U, Uy, Uy) (2.4)

we use an approach based on the notion of “characteristic ring”.
On the space of locally analytic functions depending on a finite number of variables

x,Yy, Uy, u, ur, Us, . . ., the operator of total differentiation w.r.t. y reads as
0 0 0 0
D=— —+D
oy T "o, T Mo +f8u1+ Ngay T
while the operator of total differentiation w.r.t. x is
0 0 0 0
D=—+D — —
8$+ (f) +f +U1a +U281+

where u; = Uy, Uy = Uy, Ug = Ugy, Uz = Uyy, . - ..
We represent
D =uy X5 + Xy, (2.5)

where 3 5 3 9 9
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In accordance with (2.5)), the characteristic equation
DW (z,y,u, Uy, ..., Uy) =0 (2.6)

is equivalent to the system
XiW =0, XoW=0. (2.7)

We note that the solution to equation ([2.6) is called a z-integral of equation ([2.4)).
2.7

In a natural way with equations ([2.7) one associates a Lie ring generated by the vec-
tor fields X; and X,. In a similar way, while considering the characteristic equation
DW (x,y,u,T, ..., Uy) = 0, one introduces the Lie ring generated by the elements Y; and
Y.

Let L, be the linear space of the commutators of generators of the length n — 1,
n =2, 3,.... For instance, Ly is the linear span of the vector fields X, X5, and Lj is generated
by the element X3=[X;, Xs], Ly is generated by the commutators X4=[X>, X3], X5=[X1, X3],
etc. Then the z-characteristic Lie ring A can be represented as

A - i Li,
1=2

and the y-characteristic Lie ring A of equation ([2.4)) is

(e}

A

<L

We introduce the notation £} = Zf:Q L
The classification of integrable equations is based on the following statement.

Lemma 2.1. Assume u is a solution to equation ([2.4) and the vector fields Z and Z read
as follows

[e's)
Z 0 _
Z = Q; , O = ai(u7u17u17u27' o 7um)7
1 auz
3

= 0
Z = E ala—ﬂ, az :ai(u,ul,ﬂl,ﬂg,...,ﬂm), 1= 1,2,....
- i

If [D,Z] =0, then Z = 0. In the same way, if [D,Z] =0, then Z = 0.
Proof. Since the operator of total differentation w.r.t. x on the set of locally analytic
functions depending on a finite number of variables @y, u, uy, us, . ..
f -+ AN
You T oy
then
(D, Z] = (D(en) 52 + D( 2) 5 + D(Oé3)3u3 +..)—
—(a1fu 52 + 012 +0z28u +azz=+..).
By the assumption [D, Z] = 0, and hence
ozle, D(CJ,/Z')—OZZ'+1:O, Z:LQ,
and, therefore, a; = 0 as i = 1,2,3,.... In the same way, if [D, Z] = 0 and
0 0 0

gu, T Wy T gy T

then Z = 0. The lemma is proven.
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2.2. Classification of integrable hyperbolic equation with an infinite-dimensional
characteristic Lie ring. In the case of f = f(u) on the set of locally analytic functions

depending on the variables u, uq, us, . .., U,
D=1 ﬁ+fi+D(f) 0 +...o =1 X + X,
Lou ouy Ouy
2.2.1.  Klein-Gordon equation. In this subsection we consider the equations (see [15,/16])
Uzy = f(u). (2.8)
We have
[D, X1] = —fXs, [D,X5]=0. (2.9)

We note that the operators X, X, are linearly independent as f(u) # 0.
Let X3 = [X3, X;]. Employing Jacobi identity and (2.9), we get

[D, X5] = —fuXo. (2.10)
Lemma 2.2. The dimension of the linear space £3 = Zl o Li equals to two if and only if
X3 —cX;=0.
And here the right hand side of equation becomes
f(u) = ae™

where «, ¢ are constants, o # 0.
Proof. Let dim £3 = 2. Then due to
0
f = + fum— 9 2
then X3 = ¢(u)Xj, in accordance with Lemma 2.1 and formulas (2.9) and (2.10) we get
D, X5 —cXi] = —f'Xy — D(c) X, +cfX2 =0.
The last relation is equivalent to the following system of equations,
f'—ecf =0, D(c)=0.

Therefore, ¢ — const and f = ae®. The lemma is proven.
Thus, nonlinear equation with a two-dimensional characteristic Lie algebra A is reduced
to the Liouville equation
Ugy = €. (2.11)
Let Xy = [Xo, X3], X5 = [X1, X5]. Employing Jacobi identity and relations (2.9)), (2.10)), we
obtain
D, X,]=—f"Xy, [D,X5]=fX3— X4 (2.12)
In what follows we assume that the dimension of the linear space £3 equals to three
(X1, Xo, X3 are linear independent), and we shall show that the case dim £, = 3 is not re-
alized.

Indeed, if dim £4 = 3, then
X4 = 01X1 + CQXg and X5 = Ele + EQXg, (213)

where ¢; = ¢;(u, uy, ug, . . . un) ¢ = ¢i(u,uy, ug, . .. un) z'— 1,2.

In accordance with Lemma and the formulas - the first relation in is

equivalent to the system
D(Cl) = 0, le — f// + Cgf, = 0, D(Cg) = 0.
This is why ¢, ¢ are constants and

f,/ — Cgf, - le =0.
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The second relation in ([2.13)) is equivalent to the system
D@)+eaf=0, af+cf =0, D@E)+cf—f=0.

The last equation implies that ¢, is constant and f/ = c¢of. Then, as it was shown above,

Lemma 2.3. The dimension of the space £4 generated by the operators X, Xo, X3, Xy,
and X5 equals 4 if and only if the function f satisfies the equation

f"=pf —af =0, (2.14)
where p,q are constants and f' # Bf. At that X4 = pX3 + ¢X;.
Proof. Employing Lemma and formulas f, we obtain that either
Xy =1 Xy + 2 X3+ c3X5,

and, therefore,
D(c1) — ciesf =0, f"—=af—caf =0,

2.15
D(Cg) + Cgf/ — CQCgf = 0, ( )
or
X5 =1 X1 + X3 + 35Xy,
and then
D(c) =0, cf+cf +ef’ =0,
(¢1) f +ef +esf (2.16)

D(e) — f'=0, D)+ f=0.

According to the first and third equations in , 1, ¢ are constants, ¢ = 0 (otherwise
f' = cof and then dim £3 = 2), and the function f satisfies equation . If holds
true, then f = 0.

Vice-versa, if the function f satisfies equation , then

(D, Xy] = =(pf' + qf) X2 = p[D, X3] + ¢q[D, X1] = [D, pX3 + ¢X1].
Thus, X, = pX3+ ¢X; and dim £4 = 4. The lemma is proven.

Remark 2.1. If X, = 0, then p = ¢ = 0, and equation (2.8) is reduced to the equation
Ugy = U.

In what follows we assume that the assumption of Lemma holds. We introduce the
operators of length 4,

X = [X2, X5] and X7 =[Xy, X5].
Employing Jacobi identity
[(Xo, [ X1, X3]] + [ X3, [ X, X4]] + [ X1, [X3, X3]] =0,
it is easy to show that Xg = pX;. This is why dim £5 < 5.
Remark 2.2. If Xg =0, then p =0, and identity becomes
f"=af =0
Then equation is reduced to the Sine-Gordon equation
Ugy = €* + e " (2.17)
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By formulas — we obtain that
[D, X7] = (f' = 2pf) Xs. (2.18)
Let us check that dim £5 = 5. Suppose the opposite, dim £5 = 4 and X7 = 1 X7 + 2 X35 +
c3X5. Then
D(e) — csqf =0,
af+af =0,
D(E) +esf —cspf =0,
D(e;) +2pf — f'=0.
It is clear that ¢; are constants, ¢ = 1,2,3. From the last equation in (2.19) one can see that

f'=2pf, e, X3 =2pX; (Lemma 2.2).
We introduce now the operators of length 5,

X = [Xo, X7], Xo=[X1,X7], [X3, X5l
It is easy to check that [ X3, X5] = —pX7 + Xs, and thus dim £¢ < 7.
Employing 7, , we obtain that
(D, Xs] = (¢ —2p") [ X5, [D, Xo] = —fXs+ (f' — 2pf) X. (2.20)
If dim £4 = 5, the following relations
Xg =01 X1 + X3+ 3X5 + ¢4, X7,

(2.19)

Xg =1 X1 4+ 0 X3+ c3X5 + 4 X5
hold true. We rewrite the former in accordance with Lemma and the formulas 7,
D(c1) —qeaf =0, af +cof =0, D(es)+eaf —pesf =0,
D(cs3) +cuf —2pesf =0, D(cy) — f'+2pf =0.
It follows from the last equation that ¢4 = 0 and f' = 2pf. Hence, X3 = 2p X7, then dim £3 = 2.

Thus, dim £4 > 6.
The following statement holds true.

Lemma 2.4. Let dim £; = i, 1 = 3,4,5. Then the dimension of the space £¢ equals 6 if
and only if
Xz =0.
Proof. Let dim £4 = 6. Then either
Xg =01 X1 + 0 X3 + c3X5 + 4 X7 + 5 X3
and therefore
D(c1) —qesf =0, cf +cof =0, D(ca) +esf —pesf =0,
D(cs) +caf' = 2pesf + e f" — cspf’ — 205p2f =0, (2.21)
D(cy) — f'+2pf =0, D(cs)+ f=0,
or
Xg =01X1 + X35+ ¢3X5 + ¢4 X7 + ¢5Xo,

and then )
D(¢y) —¢sqf —aicsf =0, &af+cf =0,

D(¢y) + s f' —Capf —CaCsf = 0,
D(@) — (¢ —2p°)f +ca(f' — 2pf) —Es65f = 0,
D(¢,) —eesf =0, D(es) —caf =0.

(2.22)
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One can see that the last equation in (2.21)) yields f = 0. We rewrite the system ([2.22)) as

G3q=0, af+ecf =0, c(f —pf)=0,
—(q = 2p*)f +a(f' —2pf) =0,
where ¢y, s, €3, ¢4 — const, ¢5=0.

If ¢35 # 0, the function f satisfies the equation f’ = pf, then dim £3 = 2. If é3 = 0, then
¢4 = 0 (otherwise dim £3 = 2), and the fourth equation implies ¢ = 2p*. Hence, Xg = 0. Thus,
the necessary condition is proven.

Let us prove the sufficient condition. Suppose Xg = 0, since [X3, X;5] = —pX7, then dim £ <
6. If dim £ = 5, then the operator Xy should be expressed as a linear combination of the
operators X1, X3, X5, and X7, but as it is shown above in this case dim £3 = 2. The lemma is
proven.

Remark 2.3. Thus, if Xg = 0, then ¢ = 2p?, and equation (2.8)), ([2.14]) is reduced to the
Tutzeica equation
Uyy = € + e 2 (2.23)

2.2.2.  Hyperbolic equations g, = f(u,u,,u,). We consider a nonlinear equation

Ugy = fU, Uy, uy). (2.24)

In this subsection we obtain the conditions for the right hand side of the equation ([2.24)
(see [16,18,35]), for which
dim £; =i, i=2,3,4,5,6.
We exclude the equations (2.24]) which are linear w.r.t. the variable u, or u,.

We let 5 5 5 5
Xy =+ DY) X, = 2
1=t g T DT gt 2= 5a,
then o
D =X, +0Xe. (2.25)
We have
[D>X1] = _(alfu+ffu1)X27 [DvXQ] = _fﬂlXZ- (226)
Employing Jacobi identity
(D, X3] = [D, [ Xy, Xi]] = —[X4,[D, Xo]] — [Xa, [Xy, D]]
and the relations ([2.26)), we get
[D>X3] = _(fu+fulfﬂl)X2 _fﬂlX3' (227)

The operators Xy, X5 satisfy the relations

[D7 X4] - _fmfﬂlﬂlX? - fmmXﬁ% - 2fﬂ1X47
[D, XS] = (fu + fu1fﬂl - ﬂlfum - ffmﬂl)(meQ + X3>_ (228)
_(Elfu + ffu1)X4 - fﬂ1X5‘

Theorem 2.1. Suppose the dimension of the space £4 generated by the operators of length
1, 2, and 3 equals four. Then
X4 + Cl(Xl — ﬂng) + 02X5 = O,
and we have one of the following relations for the right hand side of the equation (2.24)),

either - B
f=2(w [%du +B), &+ =)
B = B(u,u), ¢=7¢(u,1u),

1
where ¢ ==, ¢=0, 0,\— const;
C

(2.29)
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or the function f satisfies the relations

Jut fuJu — W fuw, — ffum — o =0,

D(C> - Cf% - (ﬂlfu + ffu1) =0, c= C(uaﬂl>7 (230)

1
where ¢ =0, co=—, c9#0.
c

Considering the y-characteristic ring, we obtain a “symmetric” version of Theorem [2.1]
Theorem 2.2. If the dimension of the space £4 equals four, then
Yi+a (Vi —wYs) + &Y =0,
and we have one of the following relations for the right hand side of the equation ,

either ~
f=c(@ [%dui+B), ¢y +% =), (2.31)
B = B(u,u), c¢=c(u,uy),
1 _
where ¢ = —, T =0, 0,A— const;
c
or the function f satisfies the relations
_fu+fu1fﬂl _ulfuul _ffmﬂl _Efulul :O, (2 32)
D(E)_Efu1_<u1fu+ffﬁ1):0a E:E(U,Uq), ‘
1
where c1 = 0, Co = —) Co 7£ 0.

We observe that the relations (2.31)), (2.32)) can be obtained from the equations (2.29)), (2.30))
by replacing u; by u; and u; by wuy.

Lemma 2.5. Let the right hand side of the equation (2.24) satisfies the identities (2.29)),
(2.31). Then

!/

Ugy = K(u)L(us)B(u,), L'+n(%)=X B +45(%) =)\
A, A, m,0 — const.
We note that for the equation (2.33)) the operators X, and Y} read as
4}

Ui

(2.33)

We introduce the operators of length 4,
X6 = [X27X5]7 X7 = [X17X5]'
It is easy to show that Xg = %}X5.
We let

a:_(ﬂlfu—i_ffu1)7 ﬁ:_fﬂu 7:_<fu+fU1fﬂl)v p:_fﬁlﬂu
q:fu1p7 r:fu+fu1fﬂl_ﬂlfuﬂ1_ffu1ﬂ1v S:fm?".

Employing Jacobi identity and the relations (2.26)), (2.27)) (2.28)), we have

[D7 X7] = _%<a1au + foiul)(Xl - H1)(3) + (ﬂﬂ”u + frul_
_8)(fu1X2 + X3) + (205%% + ﬂlﬂu + fﬁm + T)XS + BX7

(2.34)

One can see that the dimension of the space £5 increases at most by one, i.e., dim £5 < 5.
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Let for the equation (2.33) the dimension of the space £35 equals five, i.e., the opera-
tors Xy, X9, X3, X5, X7 are linear independent. Then we introduce the operators of length
5, Xs = [Xo, X7], Xo = [X1, X7], [X3,X5]. Employing Jacobi identity, we have

ou
(X5, X5] = —E—QIX7 + Xs,

ie., dim £ < 7.
According to (2.26), (2.27)), (2.28), and (2.34]), we obtain
[D’ XS] = (ﬂﬂ"u + frul - S)ﬂl (fU1X2 + X3) - (%(ﬂlru + f’/“ul - 3)+
+ <i2(ﬂlau + fam))f + %_iﬂl(ﬂlau + fa/ul))(Xl - H1)(3)—}_
ul

B

_ _ _ 2.35
+( (250% By + fBuy + 7’)7 + 0T (2005 + (2:35)
+E15u + fﬁm + T)>X5 + BﬂlX’? + 26X87
[D7 X9] = (ﬂl(alru + frul - S)u + f(ﬂlru + frul - 3)u1_
— fu (Wiry + fr'lil = 8))(fu, X2 + X3) + (2Urry + 2fry, — s+
+H1 (Sé%au + ﬂlﬂuu + fuﬁul) + 2ﬂ1fﬂuu1+
(2.36)

+F (30Zba, + furBuy + fBurus )) X5 + (20Tra+ 2,8, +
+2fﬁul + T>X7 + CYXg + ﬂXg — %(2%1]00@“14‘
+ﬂ1(ﬂ1auu + fuam) + f(fulam + fau1u1))(X1 - EIX3)'
Lemma 2.6. If the dimension of the space £¢ for the equation (2.33) equals siz, then the
functions K (u), L(u,), and B(u,) satisfy the relations

K" = ANB2K3 + 2 \K K, L' = ky(1+ 2/@%), B =1+ QA%). (2.37)

At that
Xg + dl(Xl - qug) + d3X7 = O,

where

U 1 U
di = 20ko(1 + A=2) (Mo K2 + K, dy = 22 =(1 + \=2).
1 2( B)( 2 ) 3 B( B)

Remark 2.4. For the equation 1) 1) the constant X is non-zero, otherwise B =o.

Remark 2.5. The equation (2.33)), (2.37)) by the point change

1 ~ ~ _ ~
K=—K, L=kL, B=MB
)\k)g ) 2144,

18 reduced to the equation

Uy = KLB, K" =A4K%+2KK, Z’:1+2%, E’:1+2%,

which is related with the Tzitzeica equation vy, = €’ + e 2" by the differential substitution
(see [4,20])
1 ~ 1 ~
v = —§ln(ux —L)— §(uy — B) + P(u),

where the function P is determined by the ordinary differential equation

P? _2KP —3K' —2K?*=0.
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For the equation (2.33) (A = X = 0)
ey = K(w)/1 - uby/1 - (2.38)

the dimension of the linear space Lg equals 2, i.e., the space £¢ is generated by the elements
Xl; X27 X37 X57 X77 X87 X9 (dlm £6 = 7)
We introduce the operators of length 6,

Xio = [Xo, Xs] = 2 X5, Xy = [X3, X5,

Xio = [Xo, Xo], Xi3 =[X1, Xo].

Theorem 2.3. Let the dimension of the space £ for equation ([2.38|) equals nine. Then
Uy
1—u2

X1 = —3KK't (X1 — 0 X3) + (3K? + p)uy X5 + X

And the function K satisfies the relation
K" —2K* —uK =0, u— const. (2.39)

The equation ([2.38), (2.39)) in a much more cumbersome form appeared for the first time in
the work [3]. The latter by the change (see [20])

v = arcsinu, + arcsinu, + P(u), P?=2K'—2K? -\
is reduced to Sine-Gordon equation v,, = e’ +e™".
2.3. System of equations u, = f(u,v), v, = p(u,v). In this subsection we consider the
system of the equations
Uy = f(ua ’U), Vy = (,D(U, U)' (240)
In work [21] for classification of integrable > equations the symmetry approach was employed
and it was shown that if first three D and D-conditions of generalized symmetries existence
hold true, then system ([2.40)) is reduced to one of the following
Uy =V, v, =sinu,
Uy =v, v, =e"+e
Uy, =sinv, v, =sinu,
u, = a(v), v, =e", (2.41)
ux:%, vy = uv + 1,
Uy =v, v, =e'v+ e,
Uy =uv+1, v, =wuv+1.

On the set of locally-analytic functions depending on a finite number of the variables
u, v, Uy, V1, Us, Vg, Uz, Vs, . . ., the operator of total differentation w.r.t. x reads as

9 9 — 9 —»
D=v? 9 pr % 9
Vigs t gy ¥ P g TP fag e

ov
where Uy = Uy, V1 = Vg, Uz = Uyy, V2 = Vg, - - -
Then
D= ’U1X1 + XQ, (242)
where
0

0 —,0 —,0
Xi=—, Xo=f—+Df—+D f—+....
1= gy e T g TR A Pt
Thus, in a natural way one can associate the Lie ring generated by the vector fields X; and
X, with the system of equations ([2.40)).



CHARACTERISTIC LIE RINGS ... 29

Let dim £3 < 3, dim £4 < 4. Then one of the following relations

(1) Xz=0c1X1+ X, c1=c1(v), ca=co(v);

(11) Xu=caXi+ Xy +c3X3, Xs =1 X1+ 6Xo + 63X,
Ci = Ci(v)a EZ = a(v)a 1= 17253a

(ZZZ) X4 = Cle + CQXQ + Cng + C5X5, (243)
¢ =c¢(v),1=1,2,3,5;

(ZU) X5 = Cle + CQXQ + 03X3 + C4X4,
¢ =¢v),1=1,2,3,4,

hold true.
The operator D= cp% +ﬂ18% +ﬂ28%1 + ... coincides with that of total differentiation w.r.t.
y on the set of the functions depending on the variables v, u, Uy, uo, Us, . . ..

Lemma 2.7. Let u and v be solutions to the system of equations (2.40) (¢!, # 0) and a
vector field Z reads as

0
7 = ao(u,v)% + ay (u, v,ﬂl)a—ﬂl + as(u, v,ﬂl,ﬂg)a_Tz +....
If [D,Z] = 0, then Z = 0.
We have
[57 Xl] = _QOUXla [Ev XQ] = _fQOqu (244)
Employing Jacobi identity and relations (2.44)), we also obtain
[Ea X3] = [57 [XlaX2H - _[X27 [Ea Xl]] - [X17 [XQ’EH =
_: [XQa Sov_Xl] - [Xla fSOUXl] = _fvﬁpqu - QOng,
(D, X4] = [D, [X1, X3]] = — fouuX1 — Qoo X3 — 200, X4, (2.45)

] = [Dv [X2>X3H = @y (fufv - ffuv) X+
+ (fv%Ou - f‘:puv) X3 — fouXy — 0, Xs5.

Let the dimension of the characteristic ring equal two. Then X35 = ¢; X7 + ¢ X5. In according

with Lemma [2.7| and relations (2.44]) and (2.45) we have

c1=0, (fo—caf)pu=0, D(c2)+ cap, =0. (2.46)

If the operators X7, X5, and X3 are linearly independent and the dimension of the character-
istic ring equals three, then X, = ¢1 X7 4+ o Xs 4+ ¢3X3, X5 = 1. X1 + &2 X5 + ¢3X3. Employing
Lemma 2.7 and relations (2.44) and (2.45)), we rewrite the last identities in an equivalent form,

01:51:()’ <02f+c3fv_fvv) qu:07
Copp + 262901) = 07 C30P + Py + C30y = O, (2 47)
52f+53fv+fufv_ffuv:07 EZU(P‘FgQSOv‘}'CQfSOu:O, )
531)90 + C3f90u - fv@u + f@uv = 0.

Let us consider now the cases when the characteristic ring is of minimal growth, i.e., dim £4 =
4. If the operators Xy, X5, X3, and X, are linearly independent, and X5 = ;X7 + o Xo+
+c3X3 + ¢4 X4, then

Cl:gl:oa <C2f+c3fv+c4fvv+fufv_ffuv)qu:Oy
C2Ug0 + CQSO’U = 07 037.1()0 - C4QD7J’U - f’USOu + fsou'u — 07 (248)
Canp — Cay + fipu = 0.
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If the operators X, X5, X3, and X5 are linearly independent, and Xy = ¢; X1 +coXo +c3X3+
c5 X5, then

01:51207 (02f+c3ffu_fvv_c5(fufv_ffuv))(pu:07
Coup + 2020y — 205 f 0y, = 0, (2.49)
Ca0p + C3y + Puw + 5 (foou — [Puww) — 3¢5 fpu = 0,
C50 P + CsPy — CngOu =0.

In the same we introduce the y-characteristic Lie ring of system of equations (2.40). The
condition of “slow” growth yields that one of the following relations

(') Yz =PFY1+ BoYa, B = Bi(u), P2 = 5{@)3 N

(i) Yi= OiY1 + BoYo + B3Y3, Ys = iY1 + faYo + f3Ys5,
Bi = Bi(u), Bi = Bi(u), i =1,2,3;

(4ii") Yy = B1Y1 + BoYo + B3Ys 4 [5Y5, (2.50)
Bi = Bl(u), 1= ].,2,3, 5,

(iv") Y5 = BiY1 + BoYa + B5Ys + [aYa,
Bi - Bl(u)7 1= 17273747

hold true.

For system of equations one of conditions and holds true. Namely, for
the first, second, sixth, and seventh system (2.41)) X, = 0. And also for the first system we
have Y, = —Yj, for the second Y; = 2Y; — Y3, for the sixth Y, = —2Y, 4 3Y53, for the seventh
Y, =0.

For the third system X, = — X, and Y, = —Y5.

The y-characteristic Lie ring of the forth system of equations u, = «(v), v, = €" is three-
dimensional (Y3 = Y53), and the z-characteristic ring for each of the cases (i)—(iv) determines
the function «a(v) as follows. As X3 = ¢ Xy, it reads av = ye®? (cq,y are constants); in the case
(77) the function « satisfies the relations

coa+c3a) —a”" =0, Ga+ca =0,
d+cea=0, dt+cga—a =0, ¢ =0c¢=0,

where ¢y, c3 are constants, ¢o = Co(v), ¢3 = ¢3(v).
In the case (7i7) the function « satisfies the relations

ca+cza —a’ =0, dy—cocsa =0,
/ / _ / 2 _ _ N
sl —cgesae =0, s —cca=0, ¢ =c¢(v),i=2,305.

At that X4 = CQXQ + 63X3 + C5X5.
In the case (iv) X5 = X5 + ¢3X3 + ¢4 X, the function « is so that

o+ c3dd + g’ =0, g =d,

cdy=—a, cg—const, ¢ =c(v),i=34.
Remark 2.6. Nontrivial symmetries exist only as & = const (see [21]).

The fifth system of equations u, = %, vy =uv+1 (Y, = 0) by the change v = e~ is reduced
to
Uy, =€, wy=u+e".
For the last system of equations X, = 0.
Thus, it is shown that systems of equations (2.41)) have the rings of minimal growth, i.e.,

they satisfy (2.43]) and (2.50).
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2.4. Nonlinear integrable equations with a finite dimensional characteristic ring.
In this subsection we consider the equations (2.24)) with the characteristic ring A of the dimen-
sion 2 and 3 (see [16,|18}35]) and the equatio as dim A = 4.

One can see that the operators X; and X, are linearly independent, i.e., dim Ly = 2.

The following statement holds true.

Lemma 2.8. The dimension of the characteristic ring A equals two if and only if the right
hand side f of the equation (2.24]) has the form
f=A(u, uy)uy,.
At that X5 = in.

Let the dimension of the ring A equals three. In this case the relations
Xy+celX) —mX3) =0, Xs5+¢(X;—10X3) =0,
¢ = c(u, Uy, uy,ug,...), ¢=7c(u,ty,u,ug,...)
hold true. Then
[D, X4+ (X1 —wX3)] =0, [D,X5+¢(X;,—uX3)]=0.

In accordance with (2.26)), (2.27)), and (2.28]), the last relations are equivalent to the following
system of equations
D(C) + 2Cf§1 = 07 fmﬂl + C(f - ﬂlfﬂl) = 07
D(@) + c(urfu+ ffu) +Tfay =0, (2.51)
fu + fu1fﬂ1 - Elfum - ffuﬁl - E(f - ﬂlfm) = 0.
It is clear that ¢ = ¢(u,uy), € = ¢(u, uy).
The statement holds true.

Lemma 2.9. the equations ([2.24)) with the characteristic Lie ring A of the dimension 3 by
the point change is reduced to one of the following

1

Uy = 3 (Byuy,+1), B=B(u,u;), c=t=0;
or
Upy = €"V(uy), c¢=0, ¢=72(u,uy);
or .
= = Uy ;o Uz
Ty — T x 9 - = )\, - — )\,
g = (), TN
1 1
where A —const, A#0, c¢=—=, CT=——;
T u
or ., .
Uy = q(W)p(ua)T(wy), (ng)"=¢* 7 +—==0, p'+ f =0,
1 /
where  ¢= =, E:q—;
r q
or
Uzy = F(ua uy)um
1, - B _
where ¢ = u—y(ln(F—uyFuy));y, ¢ = (hl(F—uyFuy));,

the function F satisfies the relation

Uyeﬂ'a + (F - Spluy) / e Pdu = (I)(F - @’uy), ¥ = gp(u)
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Here B, W, ® are arbitrary functions of their arguments. And
X4 = —C(Xl - Ung), X5 = —E(Xl - Ung).
Let us consider now the equation ([2.33)) for which dim £, = 4.

Lemma 2.10. Let the dimension of the space pounds, equals for. For the equation ([2.33))
dim £5 = 4 if and only if the function K satisfies the relation

K"
(?) = rkK? Kk — const. (2.52)

We observe that the dimensions of the x- and y-characteristic Lie rings A and A of the
equation (2.33), (2.52)) equal four (see [20]). This is a Liouville type equation.

2.5. Equation u,, = f(u,u,,u,) with second order z- and y-integrals. In the work [36]
the method for classification nonlinear hyperbolic equations with second order x- and
y-integrals based on studying characteristic Lie rings was suggested. The characteristic rings
of such equations are three-dimensional.

Theorem 2.4. Let the characteristic rings A and A of the equation (2.24) be three-
dimensional. The the following relations

Ay, =0, Ayuy + Az f = —2fz, A, (2.53)
B.,, =0, Buui+ By, f=—(fuu1+ ffu)A— fa, B, (2.54)
hold true, where A = —ffﬂﬂllﬂflil’ B = ﬂlfuﬂﬁf]{ilﬁﬂllf;fu*fulfm7 and
Ay, =0, Ag + Ay f = —2fu, A, (2.55)
By, =0, By + By f=—(four + ffa,)A— fu.B, (2.56)
where A — ffz;llu;ul : B = U1 fuuy +fj{zilzzlf;fu—fu1fﬁl .

Relations ([2.53)—(2.56) allow one to make the complete list of the equations with second
order integrals (see, for instance, [6]).

2.6. Linearized equation. For classification of nonlinear integrable equations instead of the
Lie ring one can uses the characteristic ring of its linearization.
Consider the linearization

(DD = fu,D — fu,D — fu)v =0 (2.57)
of equation (2.4]). For this equation we can define the sequence of Laplace invariants (see [20]).

Definition 2.1. Fquation (2.4) is called Darbouz integrable if there exist functions w, @
depending on a finite number of the variables

x,y,u,ul,ug,u;;,...,El,ﬂg,ﬂg,... (258)
such that on the solutions of the equation (2.4) the function w is independent on the variable
y, and the function w is independent of x.

Let us adduce the criterion for Darboux integrability (see [19}32}41}/49]).

Theorem 2.5. The nonlinear equation (2.4) is Darbouz integrable if and only if the sequence
of the Laplace invariants for the linearized equation (2.57) breaks on both sides.

Employing the notion of Characteristic Lie ring, in the works [14,[17] it was shown that the
sequence the Laplace invariants for the linearized equation ([2.57)) breaks on both sides only in
the case when the characteristic Lie rings are finite-dimensional.
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2.7. Generalized symmetries of integrable equations. In the present section we provide
the description of generalized symmetries for integrable equations on the basis of the generators
of the characteristic Lie ring (see [10,32,37]).

The right hand side of the nonlinear equation u,, = f(u) possessing nontrivial Lie-Bécklund
group is reduced to one of the forms e, e* + e~%, e* + e 2%,

2.7.1. Symmetries of Liouville equation. The xz-characteristic Lie ring is generated by the
operators

L0 LD 0
X1—€ 8—u1+D(€)a—u2+, XQ—%
Let
- 0
_ —u k—1/ u )
X=e ZD (e)a—uk—e Xl,

k=1

and obtain the operator X by the change uy, <> g, D < D.
It is known (see [22]) that a symmetry can be represented as

F= @(ulau% s Jun) +@(H17ﬂ27 cee Jﬂm)u

where , p are symmetries.
Now the generating equation

DDy = e“p
becomes
(D +up)Xp =g (2.59)
Applying the operator operator X to the equation ([2.59)), we obtain
(D 4 uy) X?p = 0.

Therefore, h = X € KerD, in the same way h = X% € KerD, and it follows from the formula
(2.59) that each symmetry of the Liouville equation can be represented as

f=(D+u)h+ (D +u)h, (2.60)
where h(h) is an arbitrary element of KerD(D). Thus, the following statement holds true.
Theorem 2.6. The symmetries of Liouville equation are calculated by the formula
f=(D+u)h(w,wy,...)+ (D+u)h(w,w,...),
where w = uy — %% (W =Ty — %%), h(h) is an arbitrary function of its arguments.

2.7.2. The symmetries of Sine-Gordon equation. The vector field of the z-characteristic ring
for the Sine-Gordon equation

0 9]
X = (e"+ e‘“)a—u1 + D(e" + e_“)a—u2 +...

can be represented as (see [11])
Xi=e"X+e"Y.
Then the generating equation DDF = (e* — e™*)F is equivalent to the system
(D+u)XF=F, (D-w)YF=F (2.61)
Since the commutator [D, D] = 0, then the relations

(D+u)X =XD, (D—w)Y =YD (2.62)
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hold true. Applying the operator of differentiation X and Y to the equations (2.61)) and
employing (2.62)), we arrive at the formulas

DYXF = (Y — X)F, (D+u)XYXF=YXF,
(D —u)Y2XF = —YXF.

It follows from (2.61]) — (2.63)) that if F'is a symmetry of order n, then Y X F' is a symmetry of
order n — 2. Indeed, since

(2.63)

(V = X)F = =2 (wi s + gl o+ (ot + )52 ) (unt
+cup_1 + g(ula cee ,Un_Q)),

then ord (Y — X)F = n — 1, and therefore we obtain by the first relation in (2.63) that
ord Y XF' = n — 2. Hence, if the original equation possesses a symmetry of an even order, then
it should possess a second order symmetry. But no second order symmetry exists.

By the formulas we get that
2F = (D —uy D'y ) (X = Y)F.
The latter due to (2.63) is written as
2F = (-D* +wy D 'uyD)YXF = ~LYXF.
Thus, the algebra of symmetries of Sine-Gordon equation is calculated by the recurrent formula
FO+D) — (D2 — 2 4 uy D7) F® . FO =y, n=1,3,5,.... (2.64)
2.7.3.  Symmetries of Tzitzeica equation. We define the differentiations X and Y by the rela-
tion e*X + e~ 2*Y = X, where

0 0
X1 = (6“ + 6_2u)a—m -+ D(@u -+ 6_2u>a—u2

Then for the functions F'(uq,...,u,) the generating equation

DDF = (e* — 2e *)F

+ ..

is equivalent to the sytstem
(D+u)XF=F, (D-2u)YF =-=2F. (2.65)

A consequent applying of the operators X and Y to the equations leads one to the
formulas
(D—u))YXF=(Y—-X)F, DXYXF =3YXF,
(D+u)X?YXF =3XYXF, (D+2u))X3YXF=2X?YXF,
(D—u))YX?’YXF = -X?*YXF,
DYX3YXF =2(YX?’YX - X3YX)F,
(D+u)X(YX3YXF)=YXYXF,
(D —2u))Y(YX3YXF)=-2YX3YXF.
Let F' be the symmetry of order n. Then it follows from the formulas , that
YX3Y XF is the symmetry of the original equations of order n — 6. Then we rewrite the

equations ([2.65) as
DX +Y)F +2u (X —Y)F =0, D(X —Y)F +uy(X +2Y)F = 3F,

(2.66)

By the latter one can obtain the formula
3F = (D —uy —2uy D ug ) (X — Y)F. (2.67)
Employing now ([2.66|), we obtain a new representation for the symmetry
27F = (D — u; — 2u1 D'y ) (D — up)D(D + uy ) XY X F. (2.68)
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We write the forth and fifth identities in (2.66) as

(D, (X3Y X 4+ 2Y X2V X) + 2uy (X3Y X — Y X2V X)|F =0,
[D(X3YX - YX2YX) +u(2X3Y X + YX2Y X) — 3X2Y X]F = 0.

It follows from the last relations that
3X’YXF = ((D+u — 2D ') (X°YX - YX?Y X)) F. (2.69)
And finally, employing the sixth identity in (2.66|) and (2.69), we can write the formula ({2.68])

as

162F = LY X®Y XF,

where the recurrence operator L is defined by the formula

L= (D —u; —2u;D ') (D — uy)D(D + up) (D + uy — 2us D uy) D. (2.70)
The last relation gives the recurrent formula for the symmetries
Fto) — [ p), (2.71)

Letting F") = u; and F©®) = us+5(uy — u?)us — 5uyu?+u, we obtain from (2.71)) two sequences
of symmetries
{FOFRLand  {FGFWY 0k =0,1,2,...

for the Tzitzeica equation.

2.7.4. Symmetries of modified Sine-Gordon equation. The modified Sine-Gordon equation
(2.38), (2.39) (mSG) can be represented as

Ugy = s(u)b(ur)b(wy), where s"—2s*—pus=0 b = —%, b= —%, p—const. (2.72)
On the set of locally-analytic functions in &

DF(u,uy,ug,...) = m% + sbl_)a%1 + D(sbg)a%2 +...=

= U 2 + sbby + (s'urbb — s"™52b — $*0°W ) 52 + . ...

Ous
This is why the generators of the x-characteristic Lie algebra A of equation ([2.72)) read as
(9 0 a U1U9 E)
X=——su—+..., Y =sb— "u1h — — 4+ ... 2.73
5 S u18u2 + ..., s o + (s'urb — s b >8u2 + ( )

Then D =u; X + bY.
Theorem 2.7. The differential operator
Y? 4 s

maps the generalized symmetries of order n into the symmetries of order n— 2. The recurrence
operator

2
UUg _1,U3 UUs
b2 D — UlD (ﬁD + b4

+3s5'ui — 85" + Auy) + 8% + \uj
determines the algebra of the symmetries for the equation mSG (see [37]).

D?+2 D + 3s*u; D+

We observe that the recurrence operator was obtained in the work [28] by using Bécklund
transformation.

If u=0,ie., s?

— 55" 4+ s* = 0, then the function s is determined as

VA

§=———#——— )\ c— const.

cos(vV A u —¢)’
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It happens that there exists an operator which maps the symmetries of the equation

Uy = — V1-uy /1 -, (2.74)

CosS U

into a y-integral.
Theorem 2.8. The operator
SY + uq
maps a symmetry F' into an integral W of the equation . And the operator

s’ n uy\ D_ s D b
s b? b s
maps an integral into a symmetry.

3. SYSTEM OF HYPERBOLIC EQUATIONS

3.1. Symmetries. Characteristic ring.

3.1.1.  Ezponential systems of kind I and Cartan matrices. The integrability of the systems of
equations u,z = F'(u) is determined by the properties of the characteristic Lie algebra defined
by the vector field F'(u) (see [30]). In this connection the problem on classification of finite-
dimensional (kind I) and possessing finite-dimensional representation (kind II) characteristic
algebras appear. We consider exponential systems of equations. The exponential system with
matrix of coefficients A = (a;;) is written as

% v 7 1 T .
Uz =€", v =apqu +...+au’, i=1,...,r (3.75)

If A is the Cartan matrix of a simple Lie algebra, then this system is integrated by qudrature
(see [29,57]).

For systems of equations with arbitrary matrix A in the work [30] they made a conjec-
ture on coinciding the characteristic algebra X'(A) with a generated by positive roots subalgebra
G4 (A) of a countergraded Lie algebra canonically associated with the matrix A. It is known
(see [25]) that a countergraded Lie algebra is finite-dimensional if and only if the matrix A is
equivalent to one of Cartan matrices of a simple Lie algebra.

Or aim is the description of finite-dimensional characteristic algebras X' (A) correspond-
ing to non-degenerate matrices A. The elements of the algebra X(A) are the operators

> i fl-j(ul,ug,...)% in the space of variables u; = (uj,...,u}), j > 1. The generators
Xy, ..., X, of Lie algebra X'(A) are determined by the relations
X;D = (D +a;) X;, Xjuj =0", (3.76)

where D : uj — ujy1, a; = ajiuj + ...+ a;u;. Regarded as a vector space, the characteristic
algebra is generated by the multiple commutator of special form

KXoy van = adgy ... ady,  X,,, ad;:Y — [X; Y] (3.77)

It is convenient to replace the non-degeneracy condition for the matrix A of system of equa-
tions (3.75)) by the conditions
Qi = 2, Qaij = 0 < Q= O,
aij:(),—l,—2,... (Z,jzl,,T,Z%j)
We call the matrix satisfying these conditions (possible degenerate) a generalized Cartan matrix.

Let us show that relations (3.78]) are implications of the finite dimension of the algebra X'(A)
and the condition det A # 0.

n

(3.78)
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The finite dimension of the characteristic algebra means vanishing of commutators (3.77]) of
sufficiently high order n. It follows from the expansion

XA=X=XpXod.. X, ...,

where & is the linear subspace spanned over commutators of order j. &; N A), = {0}, since
the coefficients X,u!, of the operator X, € X, are generalized homogenous polynomials of
order m — n. For the operators Xi,..., X, € &} it holds true due to formula (3.76)), and for
commutators (3.77) it does due to the general formula
XoD = (D +aq, + ...+ aaq,) Xoa + X
n—1 n
Xlo] = —Ga,_10nXaja, + Zj:l ¢jXaja;, €= Zk:j-i—l Qoo+
where a/c; is the multi-index obtained from « by crossing out the component with index j.
Formula (3.79)) implies in particular the relation

Xal...oznun = X[a]un—h n =2, (380)

(3.79)

which yields that asn > 1
(ad?Xp) ulyy =n (ar]fj + nTilajj)_f/d‘?ileujl =...=
| :ZQJIIp:Q(akij’EE'am)74 (3.81)
Xy = n T, (ar; + P57 ;) (ar;df — audf) .

Letting aj; = 0, we obtain ad} Xju;,, = n! (ar;)""". Thus, for a finite-dimensional algebra
it follows from a;; = 0 that a,; = as; = ... = a,; = 0, and it contradicts to the non-degeneracy
of the matrix A. Hence, one can let aj; = 2,Vj = 1,...,r. Formula as i = j implies
aji(ar; + 1) (ar; +2) ... (ag; +n) =0, n>> 1. Relations are proven.

The matrix A of order r is called expansible if for some partition of the index set {1,...,r} =
I UI,, I NI, = @ the elements of the matrix A satisfy the conditions a;; = aj; = 0, Vi €
I;,j € I,. System of equations with an expansible matrxi A splits into two independent
subsystems. The matrices of systems distinguishing only by the variables numeration
are called equivalent.

Theorem 3.1. Description of finite-dimensional characteristic algebras Non-
expansible generalized Cartan matrices with a finite-dimensional characteristic algebra is equiv-
alent to the Cartan matriz of a simple Lie algebra (table 1).

Table 1.
r=2 r=2
A, B B oe—e —a——=——e
1 2 -1 ¥ 1 2 ¥-1 ¥
r 2
D r=4 r=678
 ——————— ————o E o—oe — ..o — @
1 2 r—2 r— 1 3 4 5 r—-1 ¥
Fo— e —=—9 @ 0 -%én
*1 2 3 4 21 2
r=2
Cr-—'r— . —e——=——e
1 2 r—1 ¥

In Table 1 we give the graphs (Dynkin schemes) of Cartan matrix. The vertices of the graph
are numbered. The edge {7, j} connects the vertices with the indexes 4, j if a;;a;; # 0. The
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graphs given in the table determine uniquely the Cartan matrices (see [5]). The multiplicity
of the edge {7, j} indicates the value of the product a;;a;; = 1,2,3. The arrow determines the
position of an element not equalling to —1. We note that the transition ¢ <> j of the graph
vertices corresponds to the transition u! < u’.

Remark 3.1. The finite dimension of the characteristic algebra corresponding to one of the
Cartan matrices follows from relations (see (3.81)))

ad, "X, =0, j#k.

Indeed, similar relations determine completely the generated by positive roots subalgebra G,
of the countergraded Lie algebra, which is finite-dimensional in the case of the Cartan matrices
(see [25]).

The equation

Zw(uy, ... u,) =0 (3.82)
is called the characteristic equation of the system ' = Fi(u',... ,u"), i=1,2,...,r. The
operator

I = F(u)3% + F.(u)5% + Fo(u) g% + . .. (3.83)

determines the characteristic Lie algebra X'(F') of this system. The generators of the algebra
X (F) are operators associated with different values of the parameter u = (u',..., u").
It is easy to see that in the case of exponential system corresponding to the generalized
Cartan matrix, the characteristic Lie algebra defined in this way coincides with the Lie algebra

generated by operators (3.76]).

Lemma 3.1. Characteristic equation (3.82)) of the system with a finite-dimensional algebra
X(F), F=(F',...,F") has r solutions
W =P (uy, ), k=100
satisfying the independence in general condition
Ow! Ow"
det . 0.
) {aum? ’aunr] 7

The main property of finite dimensional characteristic algebras X = X, @ Ao @ .. ..

Lemma 3.2. Let A be a generalized Cartan matriz, dim X(A) < co. Then any finite set
{Xa = Xay..on, } C X satisfies the condition

anX[a} =0 = an <i“ak> Xaufn =0, 1<t<r
a a k=1

Let us show that for any matrix A not containing in Table 1 (non-expansible and satisfying
conditions (3.78))) either for some n < 4 dim X, 41(A4) > dim X,(a) and Lemma [3.2] is appli-
cable or the characteristic algebra X'(A) has a finite dimensional subalgebra associated with a
degenerate matrix.

Let A be a non-expansible generalized Cartan matrix of order r = 2. Due to formula ,

Xy =2 (1 +an) Xi2, Xpig = 2(1+ az) X
Lemma [3.2] implies

(1 + a12) (2@1 + (lz) X112U3 — (1 + (121) (a1 + 2@2) X212U3 =
= (1 + a12) a1 X12u3 — (1 + G21) as Xo1ouz = 0.

By formula ([3.80)
Xipus = 2 (1 + agy) Xious,  Xopus = 2(1 4 a12) Xious.
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Hence,
(1 + CL12) (1 + (121) (0,1 — az) X12U2 =0.

Since the non-expansibility of the matrix A means Xjous # 0, then
(14 aza) (1 +ag) =0.
Assuming for definiteness a;o = —1, we obtain X515 = X119 = 0 and
Xz =43+ aaiXinz),  Xpig = —Xpu-

Lemma [3.2] yields
(1 + 0,21) (2 + agl) (3 + agl) =0.

The obtained result can be generalized. Considering the subalgebras with two generators,
we make sure that the following holds true.

Remark 3.2. The elements of the generalized Cartan matric A = (a;;) with a finite-
dimensional characteristic algebra satisfy the condition

A 7éj Ai5Q45; = 07 ]., 2, 3.

The proven statement exhausts the statement on the classification of second order matrix
(see Table 1).

Remark 3.3. The elements of a non-expansible generalized Cartan matric A = (a;;)
(r > 2, dim X(A) < oo) satisfy the condition a;;a;; # 3.

Remark 3.4. Let A = (a;;) be a non-expansible generalized Cartan of order r >
3, dimX(A) < oo. Then

aijaj; =2 = Qpag, Grag; 7 2,k #1,7.

The proof of the classification theorem is reduced to finding infinite subalgebras. In the
process of proving it is found out that any infinite characteristic algebra satisfying the conditions
given Remarks - contains the subalgebra corresponding to one of the matrices in Tables
2,3.

The matrices are formally divided into two tables. The infiniteness of the algebras in Table 2
is proven by Lemma [3.2 The matrices for which applying of Lemma is complicated are
moved to Table 3 of degenerating matrices (the infinite dimension of the corresponding algebras
is checked independently).

Bearing in mind Table 2, let us write down the relations ) ¢, X[o) = 0 indicating the appli-
cability of Lemma While using Lemma , some coefficients are inessential (see the proof
of Remark ; they are not written down explicitly.
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Table 2. Table 3.
1 r=3 1,2
M, i’—c— — N~ o—e—»
r=1 r 1 2 3
r r—1 2
ME D—I—Q- O—I—ri ° N> b—l:.
r—dr—-3r-2=2 1 4 3
3 ‘ =2 Nﬁ’ﬁ' *——a—0—o
M -1:- 1 3 5 4 2
o
& 7
FED ‘
M4o—.—+__.4—¢:- N? *~—e - -
1 2 3 r—Zr-1r 1 2 2 4 5
IS
Mj 6’—.— -.:i Nie o o *——o
2 r-=-1r 1 2 3 4 5 f
19
ME‘_t «—>» N o—e..o —e
1 2 3 4 1 2 5 & 7 8
r—1
M Xpy 4> X =0,
k=1
— 1
M?: Z [k—1,kk+1] T B (X[123] + X321 — X[lQr]) —
1
2 (X[r 1,r—3,r—2] +X[r 1,r—3,r—4] — X[r74,r73,r72}) =0, r=> 67
M? - X312] + Xs12) + X[a23) — X[p24) = 0,
r—2
M2 Xpog + Xpsa + Xz + 2 ZX[k—l,k,k+1]+
k=4
+ ClX[r—Q,r—l,r} + C2 (X[’r‘—l,’r—l,r] + X[r,r,r—l]) = 07
r—2
Mf D — (34 2ay)7! (X[112] + X[221]) + 2X 123 + 2a2; Zx[k—l,k,k+l]+
k=3

+ ClX[r72,r71,r} + c2 (X[rfl,rfl,r] + X[r,r,rfl}) =0,
r—2

1
M, : X1y + —X[r 1,17 + ZXk Lkk+1)F
k=2
+ ch[rf2,r71,r] + C2 (X[rfl,rfl,r} + X[r,r,rfl]) = 07 r > 47

as4
M — — (X X X X
4 6 + day, ( [112) + [221}) + a34X[123) T Q21X [234)

+ ¢ (Xpgaq + Xuaz) = 0.
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3.1.2.  Quadratic systems The systems of equations

will be called quadratic. Here Pt = pi(z,y),¢" = F(x,y), i =1,2,...,n, k=1,2,...,m are

unknown functions; ¢, cx, d]l, d; are constants.

For instance, the Liouville equation can be written as

Pe=pe @ =p (P=e"q=1u) (3.85)
the Sine-Gordon equation can be written as
P =pq, Pi=-0q ¢ =p +p° (' =P =e"q=1u) (3.86)

Denote by a the algebra of smooth functions depending on a finite number of the variables

pLat ol gt phaE, i =12 . n, k=1,2... m, where
Piyi = Dpj, 4w =Daf, o =1, @ =4d"

By a, we indicate the algebra of smooth functions depending on the variables ¢,
E=1,2...,m, | =0,1,2,.... In the same fashion we define the algebra a,. If f € a,,
then Df = fo + Z;.L:lpjfj, where f; € a;, j = 1,2,...,n. The mapping Y; determined by the
identities Y; f = f; are the differentiations of the algebra a,. Exactly in the same way we define
the differentiations X; of the algebra a,,.

Definition 3.1. A generated by the elements Y; subalgebra L, of the algebra Dera, is called
a characteristic algebra of system (3.84) along x.

In the same way we define the characteristic Lie algebra L,. In order to define the complete
algebra of system (|3.84]) we consider the relations

[X(]? ] Zl ldiXb [YZJVO] Z;ﬂ lcl'_ (387)
[X07Y0] - 07 [le ] ZJ 1 Y + Z Xka
where1=1,2,....,n, [=1,2,....m

Deﬁnition 3.2. Let the Lie algebra L generated by the elements XY,
[ =0,1,.. = 0,1,2,...,n, regarded as a vector space be the direct sum L = L, ® f
of its subalgebms generated by the elements Y, and X, respectively. If the correspondences
X, = X; (Y; = Y,) generate isomorphisms of Lie algebras L, — L, (L, — L), then the
algebra L is called a complete algebra of quadratic system 3.84.

We note that relations (3.87)) are equivalent to the identity
D+ Xo+¢" X1, D+Y+p'Y;] =0 (3.88)
if p’, ¢* are solutions to system (3.84)). On the other hand, relations ([3.87)) ‘and (3.88) generate

system (|3.84]) under the condition of linear independence of the elements X;, Y;. In this case

equation ([3.88)) is called the zero curvature representation (L — A—pair) for system of equations
(3.84).

Definition 3.3. The set of the functions f,g* € a is called a symmetry of equation
if the equations
=fl =gk i=1,2... 0 k=12 _..,m
are compatible with it.

Having differentiated system (|3.84)) w.r.t. the parameter 7, we obtain the system of equations
for determining the symmetries,

Dft = (¢" 7 + 17 g") + ¥,

Dg* = dy(¢'f! +p'g") + d5 7, (359
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where 1 =1,2,...,n, [=1,2,...,m.
Let S be a the linear space of symmetries and S, (S,) be the subset of the symmetries
f=r+n0 & (f, 9"=g9+9d),
for which f},¢* € a. (f', g} € ay).
The space of symmetries of the equations S seems to be the direct sum of its subspaces S,
and Sy.

For the symmetries of system of equations (3.84]) in the space S, determining system ([3.89)
casts into the form

Dfi+cid"fi = cid" f + cig®,  Dfi + cd" fi = cipd" f] + cipd,

. ; iy . ; (3.90)
Yogt = djd' f§ + dj f, Yagh =d5iq'f} + diyg' + d5 ff
1=1,2,....n, I=1,2,....n, k=1,2,...,m.
With the notations p! = e?*, p? = e“v, ¢! = u,, ¢> = w the system of equations
Ugy = ae® + etow, v, = e'w, wy = €e"v
casts into a quadratic representation
pr=2p'q", pi=pP"+0'¢  q,=ap' +p°¢, q =p (3.91)
For system (3.91)) as a = § in the work [31] it was obtained the zero curvature representation
in Virasoro algebra. More precisely, the system (3.91)) for a = % is the consequence of a

incompletely defined system of equations followed by the zero curvature representation. In the
paper another zero curvature representation is provided which is equivalent to this system.
The relations

(D, Y] = quijv [D, Yo] = CichY;ﬁ (3.92)

D, X;] =dl,p' X1, [D,Xo]=dpXi, (3.93)
implied by [D,D] = 0, D = Y, + p'Y;, D = X, + ¢'X; are useful for the description of the
characteristic algebra.

The following statement holds true.

Lemma 3.3. If Q € Dera,, [D,Q] = fQ and Q(¢*) =0,k =1,2,...,m, then Q = 0.

Proof. We have
Q1) = QD(d") = (DQ — fQ)(¢") = 0.
Then by the induction w.r.t. i we get Q(¢¥) = 0. Thus, Q = 0. The lemma is proven.
System of equations (3.91)).
We restrict ourselves by treating the most interesting case o = 3.

Equations (3.92)), (3.93) for system ({3.91)) are as follows,

[Ea XO] = %ple +p2X27 [Ea Xl] = O? [57 Xl] = p2X17

[D,Y1] = —=2¢'Y1 — ¢*Ya, [D,Ya] = —¢'Ys, Y;=0.

While describing the algebra L,, we shall use the values of its generators X on the functions

r,

Nl

(3.94)

Xo(p') =0,
Xo(p*) =0, Xi(p*) =p* X2(p*)=p

From the identity [D,[X1, X5]] = p®X; by formulas (3.94), (3.95) and Lemma we get

that [X, X5] = X,. Completely in the same way, employing the relation [D,[X7, Xo]] =
= %ple + 2p* X5, we establish that [X;, Xo] = 2Xj.
In what follows we let

UO = Xl, U1 = XQ, U2 = —X(), Ui+2 = (CldXQ)iUg, 1= 1, 2, e (396)

1y 1 1y
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Lemma 3.4. The formulas
3i(i — 1)

TR

[(Xo,Uil, i=3.4,... (3.97)

hold true.
It follows from the identities (3.96)—(3.97) that the elements Uy, Uy, Us, ... form a basis of

the characteristic algebra L,,. For description of the algebra L, we introduce the elements

Vi=Ys, Vo=V, Vigp=(adYs)Va, i=1,2,... (3.98)
Lemma 3.5. The formulas
3i(1 —1) 4
Vieo = ———=[Y1, Vi, =3,4,... 3.99

hold true.

Formulas (3.98) and (3.99) imply that the elements V;, i = 1,2,... form a basis of the
characteristic algebra L,.

Relations (3.87)) for system of equations (3.91)) as o = % read
[Xo. Y] =§X1, [Xo, Yol = X5, [X1,Y1] =-2V;
[XI;YQ] - _Y27 [X27Y1] - _Y27 [X27Y2] :Xl'
Then the structure of the algebras L, and L, point out that the representations for the gen-

erators Xo, X1, X9,Y1,Y5 should be sought in the Virasoro algebra ([ei,ej] = (j — Deiyy,
i=0,+1,+2,...),

— 2 — - — 1 — 1
Xo = 5)\262, X1=¢ey, Xa=Ae, YYo= —5671, Y, = —@672-
The elements U;, V; calculated by formulas (3.96) and (3.98) are as follows,
— 2 o= 11\ ‘
U,L': 5(2—2)')\16“ Vl:—g (5) (2—2)')\Z€,1, 222,3,

It is easy to check that they satisfy relations (3.97) and (3.99). Hence, the elements
Uo,U;, Vi i =1,2,... form a basis of the complete algebra of system (3.91) as o = g. This
algebra is isomorphic to Virasoro algebra.

Zero curvature representation (3.88]) for this systems is

2 — 1 1
[D + §A2eg +qleg + ¢*hey, D — ﬁer,l — @plefz] =0.

Symmetries of sysmtem (3.91]).

Let fi,g", 1 = 1,2 is a symmetry of system of equations (3.91)) in the space S,. Then
employing formulas (3.94)), it is easy to obtain from relations (3.90)) that

=Yg, f2=0'Yi+pY2)g? g¢' = DYag?, (3.100)
where the function ¢? is a solution to the system of equations

(Y1 —Y3)g* =0, ((D+2¢")Y1Ys —2aYs)¢* =0,
(D4 ¢" Vi —gYs—1)g*> =0.

Applying differentiation Y5 to latter equation , we obtain
(D +2¢")Y5 — 2Y3) g* = 0. (3.102)
It follows from (3.101)) and (3.102) that
(Y5 — Y1Ya)g® = 0. (3.103)

(3.101)




44 A.V. ZHIBER, R.D. MURTAZINA, I.T. HABIBULLIN, A.B. SHABAT

Then we apply twice differentiation X5 to the equation . We get
(D +4¢")Y3 + 5¢°Y5') ¢° = 0. (3.104)
The following statement holds.
Lemma 3.6. Let the function ¥ € a, be a solution to the equation
(D +4¢")Y3 4 5¢°Y2) ¢ = 0. (3.105)
Then Yo = 0.

Employing formulas (3.100)~(3.102)), we obtain that the symmetries of system (3.91) in the
space S, are calculated by the formulas

ff=p"(D+2¢"Yy, fP=p q2w+ (D+2q1)¢,

9'=3D(D+2¢")¢, ¢*=(D+2¢")q ¢ ¢ (D +2¢") ¢ (3.106)

3.2. Characteristic Lie rings and Darboux integrability criterion for nonlinear
hyperbolic systems of equations. We this section we consider the system of equations

Upy = F(u,ug,uy) (W, =F' i=1,2,...,n), (3.107)

ry

possessing the complete set of z- and y-integrals.
It is known (see [7]) that the maximal number of independent z—integrals is equal to the
order n of the original system.

Definition 3.4. The system of equations (3.107)) is called Darboux integrable if it possesses
the maximal number of independent x- and y-integrals.

Let us define z- and y-characteristic Lie rings for the system of equation (3.107)). The operator
D on the functions in the space of locally-analytic functions depending on a finite number of
the variables wy, u, uy, us, ..., u; ... acts as follows

D= UQX + Xn+17

where
Xi 272_1,2,...,,
o
0 0 ;) 0
X, Fi— FH— + DFY(F?
=gt gy + DG+ gt

The z-characteristic Lie ring of the equation is the ring A generated by the vector fields
X1,X5, ..., X1 In the same way the y—characteristic Lie ring A is defined.

In the paper [27] the examples of the systems with the characteristic Lie ring A and
A of dimension 5 are given. In the papers [30,144] it was shown that the system u}, =
F'(u), 1,2,...,n possesses the complete set z—integrals if any only if the characteristic ring
is finite-dimensional.

Theorem 3.2. The system of equations (3.107) is Darboux integrable if and only if the
characteristic Lie rings A and A are finite-dimensional. At that, if ny is the number of k-th
order x-integrals, k = 1,2,...,m, then

dim A =n+> in; (3.108)

=1
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Remark 3.5. For the system of equations

ul, = F'(z,y,u,up,uy), i=1,2,...,n (3.109)
the x-characteristic Lie ring is genemted by the operators
X; = a*“ 1=1,2,.
Xnt1 = a + g + Flgr +D(FZ) -+Dk_1(Fi)%+

Then the system of equations (3.109) is Darboux integmble if and only if the characteristic Lie
rings A and A are finite-dimensional. At that, if s; is the order of ith x-integrali=1,2,...,n,
then

dimA:n—|—1+Zsi.
i=1
3.3. Nonlinear hyperbolic systems of equations with first order integrals.
Consider the system of equations (3.107) with the complete set of x- and y-integrals
wiu,uy), @W(u,w), i = 1,2,...,n, i.e., with the z- and y-characteristic Lie rings A and A
of dimension 2n.
It follows from the equations

D(w;)) =0, D(@;)=0,i=1,2,...,n
that the right hand side of the system (3.107)) is
F'(u,up, i) = — fw(u)ulfﬂ{, i=1,2,...,n, (3.110)
where I} ;(u) are Cristoffel symbols. The following statement holds.

Theorem 3.3. The system of equations (3.107), (3.110)) possesses the maximal number of
first order x- and y-integrals if and only if the relations

R;qj 83‘7 F;J 86 PZ + F;Jrzsq - Fzy I =0,
5 5 (3.111)
Rfm = 8UpF;q S0 I‘Z + F;SI‘jq — F;UF;(I =0
hold true. Here Rfm 1s the Riemann tensor, and R;qj is the adjoint Riemann tensor.
We observe that the z-integrals of the system m, are given by the formulas

w'(u,ur) = AL(u)ul, i =1,2,...,n

where the functions A%(u) are a solution to the system of equations

d i | At
o s (W) = Tgpdj(u) = 0.
The compatibility condition for the last system of equations is written as R;qj = 0.

Theorem 3.4. Each system of equations (3.107)) (n = 2) with the complete set of first order
x- and y-integrals is reduced by a point transformation u = ¢(v) to

k. k

(%

% 2
. — v

9] :
Uy, = U U Bk In (p(v') +q(v?)), i =1,2. (3.112)

The integrals of the system (3.112)) are calculated by the formulas

1
Y

w1 =vL V2 wy = [e’”lp(vl) + 5(1}1)} vy + [efvlq(zﬂ) - s(vl)} V2,

2

(! = ()] vy + [ aw?) + ()] o2,

- 2 =
wl—vy Uy, Wy = |:€
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where the functions s(v'), r(v?), p(v') and ¢(v?) are related by the identities

’

s'(01) = eV p("), 7 (v7) = e q(0?).

3.4. Two-component systems of equations with first and second order integrals.
It was shown in the work [12] that any non-degenerate system of equations (3.107)) as n = 2
with the integrals

wh(u,ur), w?(u,ur,ug), @ (u,u1), @*(u,u) (3.113)

is reduced by a point transformation to one of the following types,

ul, = =T}, (u wukal, i =1,2 (3.114)
or
Uy, = uglis, ui, = r(u' g, 05 )uy. (3.115)

Here we consider the classification problem for system of equations (3.114]) and (3.115]) with

integrals (3.113)).

Lemma 3.7. There exist no systems of equations (3.114) with integrals (3.113)). The system
of equations (3.115)) possesses the integrals (3.113) if and only if the function 7 is a solution to
the equation

or  ,o0rF _or _ P(u)

1)-2
Jul + uy ol —i—r&_ﬁ + uy 5 + P(u)uj = 0. (3.116)
At that,
Dw' (w3 1
wh=eul, W =ud—u? Yo % + §P(u1)€2u2(w1)2, (3.117)
w

and the y-integrals @' and &% are determined by the first order partial differential equations
0 , 0 0 0
— 4 U= +T=— |w=0, —w=0. 3.118
<8u1 g ”aa%) ©w=0 5a¥ (3:118)
In what follows we shall provide the conditions under those system of equations (3.107)) as
n = 2 possesses the integrals

wh(u,uy), wu, ur, u), O (u, ), @ (u,d, us). (3.119)

Lemma 3.8. System of equations (3.107)) as n = 2 with the complete set of integrals (3.119))

1s reduced to one of the following systems,

uly, = Ai(u, ur)Ai(u, 1) + P (u)u ﬂjl i=1,2, (3.120)

{ Uiy = Bkl(u ,u1) By (u, 1) + ‘I’k;( wul . (3.121)
Uy = ok () Ba(u, w) + uy i (u) B (u i) +%( w)uyi,
ul, = () Ci(u, ur) + ufdn(u)Cilu, 4r) + S (wule], i =1,2. (3.122)

Next, on the first order integrals we impose the conditions

o (“'\Y (o («\)
(a—( )) : (am (‘)) o
v e (3.123)
e 0 (%
_ 1 — L 0
Ouj \ @ oz Wi 70
which mean that the integrals w' and @' are not reduced to w' = W(p, q,p1), @' = W(p, q, p1)
by the point transformation u' = p(p, q), u* = ¥(p,q).
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Under conditions (3.123)) with employing the equations Dw! = 0, D' = 0 it is possible to
specify the right hand sides of systems (3.120)—(3.122)). Namely, systems (3.120]), (3.121]) are
reduced to

gy =A(u, un) Au, @) + B (w)urad
sy, =p(u) A(u, ur) Au, @) + a5 op(u) A(u, ur) + uir(u) Alu, @)+ (3.124)
+CD ;(u )uluh
and system (3.122) to
b, = () Bl ) + ubel(u) Blu, @) + U2, (w)ula]
Uy =A(w) B(u,ur) Bu, @) + @5 xi (w) B(u, i) + uieg,(w) Blu, i)+ (3.125)
+ 02 (u yubad.

Lemma 3.9. Systems of equations (3.124)), (3.125)) with the complete set of integrals (3.119)
satisfying condition (3.123)) are reduced to the equations

ul, = =T}, (u wka], i=1,2, (3.126)

xy

by point transformations.

For system (3.126]) the z-characteristic Lie ring is generated by the operators

0 _
X = a—aia X3 = UIfY;n
where 5 5
TP
out kit oul ’
According to Theorem if system of equations (3.126|) possesses x-integrals (3.119)), then
dim A = 5, which in its turn is equivalent to the fact that the vector fields Y7,Y, and Y3
(Yz = [V, Y3]) are linearly independent and

Y; = i=1,2.

[Y;,Y:g] = Ai(u,ul,ﬂl)Y;;. (3127)
Identity (3.127)) can be rewritten as
(D, [Y;, 3] = Ai[D, Y3] + D(4;)Ys. (3.128)

Employing the equation [D, D] = 0, we find
[D,Y)] = T2 kY, i=1,2,
(D, Ys] = Riy,ufYy, + (T, + Tig)uy Vs,

Now taking into consideration relations (3.127) and (3.129)), we obtain that identity (3.128) is
equivalent to the system

(3.129)

9 3 5
o 1R£12 + RklZFqi - R’;leZi = Ai(U)Riua
0 0
Ryy+ - ul — (T, + %) — FZ1(F11 + F 2) = %Al(u) — I Ay (u),
0 0
Rk12 + 55 (Fllfl + FiQ) - FZ2(F11 + F 9) = o kA2( u) — Uy Ag(u).

Ou2

The last relations are necessary conditions for the existence of the z-integrals (3.119)) for
system of equations (3.126)). In the same way one obtains the conditions for the existence of
the y-integrals.
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3.5. Quadratic systems of equations with first and second order integrals. In this
subsection we consider the system of equations (3.126)) (see [56]).

We note that under the transformation u® — p*(u',u?), i = 1,2 system of equations
does not change the form, and the functions p* can be chosen so that I's; = I'}; = 0. In
addition, we shall assume that 'Y, = '3, = 0. Hence, we consider the system of equations

=TLuw], ul,=Thuia] (3.130)

with the complete set of integrals
wl(ula UQ, u%a U%), (,UQ(UI, u27 UL U%, u%a Ug), (3131)
ot (ut,u? al, a?), o (ut,u? al, ud, s, us). (3.132)

The following statement holds.

Theorem 3.5. System of equations m possesses the set of x-integrals if and

only if the relations

9°r%,  or%, 9lnF

_ . 1
ouloul — oul  oul (3.133)
9°T3, 9T, OlnF

- ' 3.134
outou? out  ou? ’ ( )
or2, 0*InF
—2oE = 3.135
oul  Oulou?’ ( )
0 8lnF or?
(a P - ) (aulf + Ftha) =0, (3.136)
OlnF 0 [(OlnF
Tz ( iz F§2) T o2 (W t F%z) ) (3.137)
o3 0 Oln F or2
2 22 2 1 19 1 : B
'y (F T out ) - <w — 15+ 15 — 52 > . ( 50l +F11F12) =0, (3.138)
9 Oln F Oln F
(W * Fb) < g TIut Ff?) + Tl (W + Fiz) - F=0, (3.139)
0 OlnF or2
(% +1 ) ( g TInt F(ﬁ) + o Il =0 (3.140)
hold, where
1oy OTg, 0Ty
Fu, ) - (3.141)

~ oul ou?

Considering the y-characteristic ring of system of equations ([3.130)), we obtain a “symmetric”
version of Theorem 3.5
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Theorem 3.6. System of equations (3.130)) possesses the set of integrals (3.132) if and only

if the relations

9Tl orl, 9mF

ou2ou?  ou:  ou® (3.142)
o°rY,  orl, Ol F
outouz  ou®  oul (3.143)
ory,  9*InF
2 w2 ouldu?’ (8:144)
8 alnF’ ort
Oln F 9 [OlnF
T4, (W + Fil) =51 <W + F}l) : (3.146)
Oln F ort
i, (F+ ) ( —Ti 4+ 12, — o ) : < 8u122 +F§2F}2) =0, (3.147)
Oln F Oln F _
( ) ( - + T, + F§2) + I, (a—zl + F}l) +F =0, (3.148)
) OlnF or!
(a I2 > <8—I12 + T, +r§2) S T, =0, (3.149)
hold, where
_ Ir2 2
J B (3.150)

ool au?

Thus, according to Theorems [3.5] the classification of integrable system of equations
3.130)) is reduced to the study of the compatibility for equations (3.133)—(3.140)), (3.142)—
3.149) w.r.t. unknowns I't;, '}, T2, T'%,.

Theorem 3.7. Assume the condition

ori, ora,
S5 o 0 (3.151)

hold. Then system (3.130|) with the complete set of integrals (3.131)), (3.132)) is reduced to one
of the following types,

1-1 2-9
1 W 1 1 1-2 o Ul 1 1 1-2
Uy = —x + (} + W) U, Uy = + (aX + o2y ) Yt

. (3.152)
X =u'+u®+e, Y:u—2+u2—c,
«
or , )
_u 1 1 _u «Q 1 3
) .
X =uu? +dy, Y =ulu?+ e, ot dy = (o + 1)ca,

where ¢ 1s an arbitrary constant, cy, da, a are non-zero constants.

To solve the complete classification problem for systems of equations (3.130)), it remains to
treat the case when condition ([3.151)) is broken.

Lemma 3.10. Let the condition
ors, ory,
oul  Ou?

=0
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holds true, then there exist no systems of equations (13.130]) with the complete set of integrals

(3.131)), (3.132).
Consider now the problem of constructing x— and y—integrals for systems of equations
(13.152)), (3.153]).
) ) 20/ ) , 1+a°
We note that the change v — u" + c, u° — u- —
1—a? 1—a?

(13.152) as a # 1 to the system with zero constant c.
The following statements hold.

¢ reduce system of equations

Theorem 3.8. The integrals of system of equations (3.152) are given by the formulas,

as a =1,
u? 0k
w=2u" -2 +2 Inz, @ =2u' — =2 —2c Inz, (3.154)
z z
L R (3.155)
2 z

and as a« # 1 (c=10),

1 1
wh = (— + 1> T =i, o = (- + 1) u'z' T =z, (3.156)
a a
I S S (3.157)
2« Z o«
where
XYy T o T oy

Theorem 3.9. The the integrals of systems of equations (3.153) are given by the formulas,
as o = —1,

2\2 .2 711252
wh = (u ; : (dy — ¢2) — couiz, W' = (@ ; © (¢ — d) — dotiy 7, (3.158)
d _
W= 22y =2y %uli, (3.159)
z Co z 2
and as o # —1,
Bt U S N (3.160)
¢ Za
w? =utz — i, 0? =u'z — Z—}, (3.161)
z z
where
z—u—i E—E—% Z —% z —%
XYy o T oy

Theorem 3.10. The general solution of system of equations (3.152)) are given by the for-
mulas,

as a =1,
1 _ _A@)+B(y) .
u'(z,y) = (C(m)+D,(yy))2 te I oryme
_B—(y) + <
D' (y)(C(x)+D(y)) = 2’
Way) = A@BE T 4 (3.162)
Y (C(m)+Dl(y))2 C(z)+D(y)
A () c

T @)(C@)+Dy) 2
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and as a # 1 (¢ =0),

i () = aA(x) +Bly) B'(y)
7 alC@) + D)™ aD'()(C(x) + D) (3.163)
A(z) + aB(y) A (x)

w(z,y) = a(C(z) + D(y))tt ol (z)(C(z) + D(y))*

Theorem 3.11. The general solution to system of equations (3.153|) are given by the for-
mulas,
as = —1 and ca +dy =0,

ul(z,y) = (5:@)

" X@)) e~ A@)-Bw)-X@)Y ()

A'( ) (3.164)
2 _ z A(@)+B(y)+X (2)Y (y)
= — Y
U (ﬂf,y) d2 (X/(l?) + (y)) € )
as o« = —1 and ¢y + dy # 0,
1 _(2dy . X@ W)
u (x,y) - (cz+2dz X(z)Y (y )20 I/T/(y)Y/(y)) X
o QW(y)
2( )_ < 2co | Y (y) _ W(z) ) X ’
U Y) =\ Grds " X@)Y(y ) W)X (z)
X(X (@)Y (y) + o)+ 2L
where
. Co + d2
==
and as o # —1,
ul(z,y) = = (Aly) - (1 Jga)B(y)D(w) ,( +a)E(x)) T x
25 54 (40) = (1 +) B ()D()). 100
u?(z,y) = (Ay) — (1+&)B(y) ( ) — '
(L) E@) T (Bl) + ).

3.6. Linearization of exponential systems of rank 2. We consider the systems of equa-
tions (see [206])

Uy =apne” + ... +ame”, i=1,2,...,n. (3.167)
In the case n = 2

Ugy = Q11" + A12€°, Vyy = G21€" + agoe”. (3.168)
To solve the classification problem, we study the structure of the characteristic ring for the

linearization of system of equations (3.168|).
The linearization of the system of equations (|3.168)) reads as

Pay = A11€"P + a12€"q, oy = A21€"P + a22e"q. (3.169)

In what follows we assume that v and v are given functions and A = ay1a90 — aj2a2; # 0.

Let us define the x— and y—characteristic Lie rings for the system of equations .
The operator D on the space of locally analytic functions depending on a finite number of
independent variables x,y, p, q, p1, g1, P2, Q2 . . . acts as

D = ﬁlyl(o) + C?lyz(o) + Xi,
where

0 vo_ 9

y O _ 2
1 8p7 2 aq?
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X = ape” p aia€’ ase” p a99€’ q
1 9y 11 12€°4 9 D, 21 22 9 @

The z-characteristic Lie ring of system of equations (3.169)) is the ring A generated by the
vector fields Yl(o), YQ(O), X,. In the same was the y-characteristic Lie ring A is defined.

Lemma 3.11. Let
Z = ZOQ +Z ﬂz ,ai,ﬂieF,izl,Q,....

Then the relation D, Z] = O holds true zf and only if Z = 0.

Consider the commutators

0 0 0
}/1(1) = [Y(O) Xl] = e [ana—l + 91— aql + a1 u1=— ap2 + &21’&18—2 +. ]
0 0 0
Y( ) Y(O) X, = —
[ 1] e [alza 01 + a99 —— 8(] + a19UV1 —— ap + (1221118 % +. ]

We introduce the notations
YO Z 70 y© _ 50
YO = iz y O Z oz
Next, we define
zm =1z xy), 20D =z X)), n=1,2,....

We note that the vector fields X, ZF)), Zé_o), Zfl), Z2(1) are linearly independent.
In view of the last notations the operator D becomes

D=p29+q2z" + X,.
It is easy to check that
1D, 2" = [D,Zz"] =0,
129D, X)) = [Z,[D, X,]] =0, i = 1,2, ...

The formulas

(D, X1] = —(ane"p + a2eq) 2" — (azie"p + aze’q) 2y,

D, 2V = —u, 2V — a1, 200 — a9, 2,

D, 2V = —0, ZY — 41,2\ — 4, 2, (3.170)
D, 7] = —u1 2 + a1pe 20 — 4?28V,

D, Z§2)] = —leé ) _ alge“Z( ) 4 a21e“Z( )

hold true.
Lemma 3.12. The operators Z ) and Z sat@'sfy the relation
ez 1 vz = . (3.171)
For the sake of convenience in what follows we introduce the notations
20 - WO, 20 ~ W, 2~ W, 2 ~ Wi
2 =eWw?, 2P = erwi?.

We define
Wt —w X, = 2,3,.
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At that, it is easy to show the validity of the identities
Wi, (D, x,]] =0,
[D7 W1(n+1)] = _[Xh [D’ Wl(n)“

We observe that the vector fields X7, WI(O), WQ(O), Wl(l), WQ(D, Wl(2) are linearly independent
and the operators W2(2) and W1(2) are related by the formula

Wi = —wi?.
Lemma 3.13. The relation
(D, W) = —(uy + o)W+

n—1
+ )R X (ug v w4
> e -

n—1
3 ()X (e + ane) W, n =34,
=2

holds true.

Suppose mnow that the characteristic Lie ring of system of equations (3.169) is
finite-dimensional. It means that there exists n > 2, for which the operators

X1, Wl(o), WQ(O), Wl(l), Wz(l), WI(Q), Wl(g), - Wl(n) form a basis of this ring. Then the op-
erator Wl("+1) is a linear combination of the elements of this basis.

Since 3 3
WI(O) = A WQ(O) = 3
dp dq
and the higher order operators have the structure
0 0
i— — ..., 1=1,2,...,
« o + 8 a4, + i
then

Wi =3 w4+ B,
k=1

where A, B; are functions of the variables u, v, uy, v, uq, 01, .. ..
The last relation is equivalent to the identity

DW= 37 DA + DB + S 4D W) + By, W)
k=1 k=1
By Lemma [3.13| we obtain
D(AYWY + D(BYWSY + Ay (—uy W — apy W — agy W)+
+A2(a12W1(1) - a21W2(1)) + Bl(—UIWQ(l) - ale(O) — a22W2(0)) = 0.
Comparing the coefficients at the vector field WI(O), WQ(O), Wl(l), W2(1) in the left and right hand
sided of the last identity, we get the system
—an Ay —appBy =0,
—ag Ay — anB; =0,
D(A;) 4+ a12As —u1 A; =0,
D(B;) — agn Ay —v1 By = 0.
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It implies A; = By = 0 and Ay = 0. Thus, we have proven the following statement.

Lemma 3.14. The x-characteristic algebra A of system of equations (3.169)) is finite-
P . (3) _
dimensional if and only if either W™ =0 or

n+1) ZAkwl = Ax(u,v,uy,v1,01,01,...), n=3,4,....

At that, either dim A = 6 ordimA=n-+4, n=3,4,..., respectively.

Employing now Lemmas and [3.14] let us right down necessary and sufficient conditions
for the characteristic ring of the system (|3.169) to be finite-dimensional.
As dim A = 6, we obtain
Xl(ul + Ul) + CL126U + a21€u = 0, (3173)
and in the case dim A = n +4 (n > 3) we have
(—1)n_2X{l_2<<(l11 + 2@21)6u + (CL22 + 2@12)60) =

n

=D A1) X ((an + 2az1)e” + (aze + 2a0)e”),
p=3

n k (CZ 2)(n l+1 Ul + Ul) + Cf;%Xf*i(alge“ + CL21€U)> = (3174)

= Z Ap( )p -1 (Cl 2Xp 1<U1—|—’U1) +OZ 2Xp - 1(@12€U‘|‘(I21€U)) +
p=i+1
+D(A;), i1 =3,4,...,n—1,
(n — 1)X1(u1 + ?}1) + alge” + agle“ = D(An)
It can be shown that for system (3.174)) the unknowns A; are the functions of the variables
ﬂla 7717 s 7an—7j+171_)n—i+17 1= 3747 sy — L.

Theorem 3.12. If the characteristic Lie algebra of system of equations (3.169) is finite-
dimensional, then system (3.168)) is reduced to

Uzy = 2€" + agze’, Uy = —e" + 2e". (3.175)
We proceed to systems ([3.175)).
We remind that the Lie algebra A for linearized system of equations (3.169)) is generated by
the vector fields X, W1(0)7 WZ(O), I/V1 W(l) Wl(Q) and thus dim A > 6.
In what follows we study the systems of equations for which dim A < 9

Theorem 3.13. The dimension of the x-characteristic algebra A for linearized system of
equations (3.169)) does not exceed 9 if and only if the coefficient a5 takes one of the values —1,
—2, or —3. At that, dim A =6, 7, 9, respectively.

We have obtained all the equations for which the dimension of the characteristic ring of the
linearization does not exceed 9. It has been shown that the right hand sides of these equations
are determined by the Cartan matrices of a simple Lie algebra.

4. DIFFERENTIAL-DIFFERENCE HYPERBOLIC EQUATIONS

In this section we consider the chains of differential-difference equations

t:(n+1)= f(t(n),t(n +1),t.(n)), (4.176)

where an unknown function ¢ = t(n,z) depends on a discrete variable n and a continuous
variable x. Chain (4.176f) can be regarded as an infinite system of ordinary differential equations
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with the sequence of unknown functions {t(n)}?="%. The function f(¢,t,,t,) is assumed to be

n=—oo"

locally analytic w.r.t. all three arguments, and in a some domain the condition
of
0 4.177
ke (4.177)

holds true. We use the subscript to indicate the shift of the discrete argument t;, = t(n + k, )
(to = t), and also to denote the derivatives w.r.t. z,

2

0
ty = %t(n, x), tyx = @t(n, x).

Denote by D and D, the shift operator and the operator of total derivative w.r.t. x, re-
spectively. For instance, Dh(n,z) = h(n + 1,x) and D h(n,z) = a%h(n, x). As the dynamical
variables we choose the variables {t;}?2 _ and {DI'¢}>°_,. Below we regard the dynamical
variables as independent.

—00

4.1. Liouville type differential-difference equations. The functions I and F' depending
on z and finite number of dynamical variables are called respectively n- and z-integrals of the
equation if the identities DI = I and D, F = 0 hold. The integrals [ = I(x), F' = const
are called trivial integrals.

Definition 4.1. Chain (4.176|) is called Darbouz integrable if it possesses non-trivial x- and

n-integrals.

It should be noted that a Darboux integrable chain is reduced to a pair of equations, an
ordinary difference and an ordinary differential equations. Indeed, it follows from the definition
that an n-integral can depend only on = and an x-integral only on n. This is why each solution
of chain (4.176]) satisfies two equations

Iz, tty ey, .. .) = plx), F(x,t,te1,te9,...) =q(n)

with appropriately chosen functions p(z) and ¢(n).

At present discrete nonlinear models have important applications in physics and are actively
studied. The detailed discussion of the applications and the overview of the literature can be
found in the works [1,23,/58,/62].

In this chapter we suggest an algorithm for classification of Darboux integrable chains (4.170)
based on the notion of the characteristic Lie ring (see [43[50-54]).

We introduce the notion of the characteristic ring L,, of chain in the direction of n.
We observe that p

- Y pir —
D (‘3t1D I1=0 (4.178)
for any n-integral and j > 1. Indeend, the identity DI = I can be rewritten in the expanded
form,

Iz, ty, f, foy fams ) = L(x, t by, tan, . . ). (4.179)
The left hand side of the last identity depends on the variable ¢;, while the right hand side does
not. Therefore,

0
—DI =0
oty
that yields
0
D' —DI=0.
oty
Arguing in this way, it is easy to obtain formula (4.178). We introduce the vector fields
0 .
Y, =D7—D’, j>1 (4.180)

oty
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and

0
X, = ) > 1. 4.181

Thus, we see that each n-integral I lies in the kernel of the operators X; and Y; for each j > 1.
The next theorem contains the definition of the characteristic ring L,, for (4.176|) (see [43]).

Theorem 4.1. If equation possesses a non-trivial n-integral, then the following two
conditions hold,

- the linear span of the operators {Y;}32, has a finite dimension. Denote this dimension by
N.

- the Lie ring L, over field of locally differentiable functions gemerated by the operators
Yi,Yo, ..., YN, X1, Xo, ..., XN, has a finite dimension, We call L, a characteristic Lie ring
i the direction of n.

Let us introduce the notion of a characteristic ring L, for chain (4.176|) in the direction of x.
In order to it, we observe that by condition (4.177) chain (4.176)) can be rewritten as

By definition, the z-integral F(x7 t,t11,teo,...) satisfies the equation D, F' = 0, i.e., KoF = 0,
where

(9 0 0
Ky=— o 4.182
0 83: +f8t1 8t,1+f1 +g- 1(%24‘ ( )
But since F' can not depend on t,, we get X F = 0, where
0
X = 4.183
o ( )

Then it is obvious that F' lies in the kernel of each operator in the Lie ring generated by the
pair of the operators X and K, over field of locally analytic functions.
It is possible to prove the following important statement (see [9]).

Theorem 4.2. Chain (4.176|) possesses a non-trivial x-integral if and only if its character-
istic Lie ring L, has a finite dimension.

4.2. Classification of Darboux integrable chains of special form. Consider the prob-
lem on description of all chains

possessing nontrivial z- and n-integrals. The complete list of chains possessing -
integrals is provided in the next theorem:.

Theorem 4.3. Chain possesses a nontrivial x-integral if and only if d(t,t,) belongs
to one of the classes

(1) d(t, ty) = A(t — t1),

(2) d(t,t1) = co(t — t1)t + ot — t1)* + c3t — 3ty

(3) d(t,t1) = A(t — t1)e™,

(4) d(t,t1) = ca(e®™ —e™) + c5(e7*" —e7),
where A = A(t —t1), ¢; = const,i =0,...,5, cg #0,¢4 #0,c5 # 0 and a — const, a # 0.

At that, the x-integrals read as

(1) F=a+ [" 5 if Au) £ 0 and F =t — t if A(u) =0,

(i) F = —1 ln| (62+C°)Tl+c |+ 1 1n|‘3271 —cy—co| as ca(ca+co) #0, F=Inmy —Inmp+ 2

—co—cCo
as co =0 and F = - lnT +1Inm as cg —Cp,
—au_du__ [T1 _du

(i) F = [Te e AGT

(1V) F . (eatieatQ)( aty _ eat3)

- (eat_eatg)(eatl _eatQ);
whereT:t—tl, T :tl—tg, ngtg—tg.
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Let us discuss some necessary conditions for the existence of z-integral. Denote by F' the class
of locally analytic functions each of those depends on a finite number of dynamical variables.
In particular, we obtain f(¢,t1,t,) € F. In what follows we shall deal with the vector fields
defined as formal series

[e.e] 8
Y = — 4.1
_EOO Y (4.185)

with the coefficients y;, € F'. Let us specify how the linear dependence and linear independence
is understood for vector fields (4.185)). Let Py be the projector defined in the class of formal

series (4.185)),
N
0
Py(Y) =) Ve (4.186)
-N

Consider first the vector fields defined by a finite sum,

Al
7 = sza_tk' (4.187)
-N

Vector fields 74, Zs, ..., Z,, of the form (4.187)) are linearly dependent in a some open domain
Q if there exists a set of function A, Ay, ..., A, defined in Q such that the function |A|* +
|Aa]? 4+ ...+ |\n]? is not identically zero and for all points of the domain €2 the identity

M2+ NZo+ ..+ Ay, =0 (4.188)

holds true.

We call the set of vector fields Y7, Ys, ..., Y,, of the form linearly dependent in the
domain € if for each natural N the set of the vector fields Py (Y1), Py (Y2), ..., Pn(Y;,) defined
by finite sums is linearly dependent in this domain. Otherwise the set Y7,Y5,...,Y,, is called
linearly independent.

In an obvious was the definition of linear dependence of vector fields implies the following
statement.

Remark 4.1. If a vector field Y s a linear combination
Y =M1+ NYo+...+ )\ Y, (4.189)

where the vector fields Y1,Ys, ..., Y, are linearly independent in ), and the coefficients of all vec-
tor fields Y, Y1,Ys, ..., Y, belong to F' and are defined in 2, then the coefficients A1, Aa, ..., A\
also belong to F.

Let us return back to chains . In this case the ring L, splits into the direct sum of
two subrings. Indeed, since f =t, +d and g = t, —d_q, then f = t, +d + Z?Zl d; and
g =ty — Zfill d_i as k > 1, where d = d(t,t1),d; = d(t;,t;41). This is why it is easy to see
that Ko =t,X 4+ Y, where

s 0 0 0 0 0

Xttt et (4.190)

and

0 9, 0
Y=—+d——d d+dy)— — 4.191
oz T o g, T g, o, (4.192)
It follows from the relations [X,X] = 0 and [X,Y] = 0 that X = [X, K] € L, so that

Y € L,. Hence, L, = {X} ® L,1, where L, is the Lie ring generated by the operators X and
Y.

(d_y +d_s)
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Lemma 4.1. If equation (4.184)) has a nontrivial x-integral, then it has x-integral indepen-
dent explicitly on x.

Proof. Suppose there exists a nontrivial z-integral of chain (4.184)). Then the Lie ring L, is
finite-dimensional. We choose its basis as follows,

0 - 0 - )
Th=—+ ap=—, 1= air—, 2<7<N.
ST ;_:OO Yot kz_:oo 7+ Dty J
Moreover, there exists a x-integral F'(z,t,ty,...,ty_1) satisfying the system of equations

OF = OF = 9F
- ) e =0, 2<j<N.
FRILE ot, D s ot, J

Due to the known Jacobi theore (see [30]), there exists a change of variables
0, =0;(t,t1,...,ty_1) reducing the system to

N-1

oF oF oF
e ; “og. = ae, 0 0S
which is equivalent to the equation
oF L oF 0
— a/ _ P
@CC LN 8tN_1

for ' = F(z,0n_1).
Here two cases are possible, (1) a3 ny—1 = 0 and (2) a3 ny—1 # 0. In the case (1) we find
oF

5 =0, and in the second
T

F:I—I—H(QN_l):l‘—f—H(t,tl,...,tN_l)

for some function H. It is obvious that F} = DF = x + H(t1,ts,...,ty) is also an z-integral.

This is why F; — F'is a non-trivial z-integral independent explicitly on x. The lemma is proven.

By Lemma [4.1] one can seek z-integral depending only on the variables t,t41q,t49,.... In

other words, one restrict himself by the study of the Lie ring generated by the vector fields X

and Y,

veal —a v a) L~ +a 4192

= 8_751_ _15t__1+( + 1)0—152—(—1%— —2)8t_2+.... (4.192)

It can be shown that the linear operator acting as Z — DZD™! defines an automorphism

of the characteristic ring L,. This automorphism plays a key role in studying the chains. A
straightforward calculation shows that

DXD'=X, DYD'=—-dX+Y. (4.193)
Lemma 4.2. Let the wvector field Z = Za(j)% with the coefficients a(j) =

a(j,t,tey,tea,...) depending on a finite number of the dynamical variables satisfies the con-
dition DZD™ = \Z and let a(j) = 0 for some j = jo, then Z = 0.

Proof. Applying the shift automorphism to the operator Z, we obtain DZD~! =
ZD(a(j))#il. Now to complete the proof we compare the coefficients at % in the iden-
tity DZD~! = \Z. The lemma is proven.

Let us construct an infinite sequence of multiple commutators of the vector fields X and 37,

Vi =[X,Y], Y,=[XYi4] for k>2 (4.194)
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Lemma 4.3. The identity

DY,D'= - X*d)X +Y;, k>1 (4.195)
holds true.
We prove the lemma by induction. As k& =1, it follows from and that
DY,D'=DI[X,Y|D ' =[DXD ', DYD | = [X,—dX + Y] = - X (d)X + Y;.

Suppose now that the statement holds true for £ — 1, then we get
DY,D™' = [DXD™ ', DY, D' = [X, - X" Yd)X 4+ V_1] = —X*(d)X + Ys.
The lemma is proven. N N
Since the vector fields X, X and Y are linearly independent, then the dimension of the Lie

ring L, is at least three. By (4.195) the case Y, = 0 means X(d) = 0 or d; + d;;, = 0 that
implies d = A(t — t;). Here A(7) is an arbitrary function of one variable.

Suppose chain (4.184]) possesses a nontrivial z-integral and Vi # 0. Consider the sequence

of vector fields {Y7,Y3,Ys,...,}. Since L, is of finite dimension, there exists a natural N such
that

Yii =Y+ +...+ Yy, N2>1, (4.196)
and }71, }72, e ,?N are linearly independent. Therefore,
DYy D' = D(%)quzr1 + D(y)DYaD ™" + ...+ D(yn)DYyD™', N >1.
By Lemma and ) the last equation can be rewritten as

—)?Nﬂ(d)x + Y1+ Vs + Yy = D(n) (=X ()X + Y1)+
FD() (~X2A)K + Vo) + ... + D) (— XN ()X + Vi)

Comparing the coefficients at the linearly independent operators X , Yl, Yg, e ,?N, we obtain
the following system of equations,

XNY(d) = D(n) X (d) + D(12)X*(d) + ... + D(yx) XN(d),
1 =D(mn), v2=D), ., = D).

Since the coefficients at the vector-fields Y; depend only on variables ¢,%41,%49, ..., then the
coefficients ~y; can depend only on these variables (see Remark . Moreover, it follows from
the last system that the coefficients 7, are constant for all 1 < k < N, and the functions
d = d(t,t;) satisfy the differential equation

Xni1(d) = nX(d) + 1 X3(d) + ...+ WXV (d), X(d)=d,+d,. (4.197)
Employing the change of variables s =t and 7 =t — t;, we rewrite equation (4.197)) as
oNt1d od 0?d oNd
DeN+1 Mg +’728 3 +---+’YN—88N- (4.198)

Therefore, the following statement holds.

Theorem 4.4. The needed function d = d(t,t1) reads as

mp—1
d(t, t,) Z(Z/\k]t—h) , (4.199)

where Ay, ;(t —t1) are some functions, oy, are the characteristic roots of the multiplicity my, for
equation (4.198)).
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Let ag = 0,ayq,...,a, are the distinct roots of the characteristic equation. Then equation
(4.197)) can be represented as

AX)d = X™(X — a1)™(X —ag)™ ... (X — a,)™d =0,

m0+m1+...+ms:N+1, m021 <4200)

Starting with formula (4.192)), we introduce the mapping h — Y}, which maps a function
h = h(t,t41,t49,...) into the vector field

9] 0 9] 0
Yo=h— —h_ h+hy)— —(h_1+h_
n=hgn g T gy T (i)
For each polynomial with constant coefficients P(\) = co+c1 A +. .. +¢,, A we have the formula
Pladg)Y =Yy, adxY =[X,V], (4.201)

which makes an isomorphism between the linear space V' of all solutions to equation
and the linear span V of the vector fields )N/, )N/l, . ,EN/N.

We represent function as the sum d(t,t;) = P(t,t1) + Q(t,t;) of a poly-
nomial term P(t,t;) = Zmo "Xoj(t — t1)t7 and an “exponential” one Q(t,t;) =

D k-1 (ka ! i (t — tl)tj) s

Lemma 4.4. Let equation (4.184) possess a nontrivial x-integral. Then at least one of the
functions P(t,t;) and Q(t,ty) is identically zero.

Proof. Suppose the opposite, i.e., none of the functions is identically zero. We first show
that in this case the ring L, contains the vector fields Ty = Yj(;)earr and T1 = Yp(;) with
some functions A(7) and B(7). As T we choose the vector field Ay(ad )Y = Yy € La
where Ag(A) = ( ) . It is obvious that the function A(f,¢;) = Ao(X)d satisfies the equation

(X — ap)A(t, tl) A(X)d = 0, which implies immediately that A(t,¢;) = A(7)e".

In the same way one can construct the field 77 = Yp(;) € L,. We observe that in accordance
with our assumption the functions A(7) and B(7) are not identically zero.

We consider an infinite sequence of the vector fields defined by the rule

15 = [T07T1]7 T3 = [TO,T2], T = [TO,Tn—l], n > 3.
It can be shown that

X, To) = e To,  [X, ) =0, (X, T,] = ap(n— 1T, n>2,
DT()D e A@aktX + To, DTlD_l =—-BX + Tl, coey
DT,D™' =T, — Ma RAHT, 40, X + 5120, 0> 2.

Since the algebra is finite-dimensional and X , 10,11, ..., Ty are linearly independent, there
exists a number N such that
TNy = )\X + polo + p Ty + ...+ punTy. (4202)
We have

DTns1D' = DIVX + Do) (—Aeaktf( n T0> T
+D(/LN) <TN - WQkAeaktTN,l + .. ) .
Comparing the coefficients at the operator T in the last equation, we find

N(N —1)

5 arA(T)e™" = D(uy).

UN —
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It follows that uy is a function depending on ¢ only. Applying the operator adg to both sides

of equation (4.202)), we get
NowTnsr = [X, Twaa] = X (VX + ()?(uo) n uoak) Tot ..o+
+ (X () + pv (N = Do) Ty.

Again comparing the coefficients at T, we find

Nagppuny = X(pn) + (N = Dagpy  or - X(un) = agpn.
Therefore, puy = Aje*', where A; is a non-zero constant and this is why
A(T)e™t = Aje™t — Aje™ 't Ay = const.

We have T = Aye®tX — A,S,, where Sy = S et-2  And also

j=—00 ot;
(X, S0] = arSy, DS,D~' =S,
We consider a new sequence of vector fields
P =Sy, P=[11,S|, P=[T,P, P,=[T\,P.,.1], n>3.
It can be shown that
[X,P,)] =ayP,, DP,D™'=P,—oap(n—1)BP,_1+
b X + anSo + Y5 alV Py, 0> 2.
Since the algebra L, is finite-dimensional, there exists a number M such that
Pror = NX + 5Py + ...+ iy P, (4.203)
where the fields X , P, ..., Py are linearly independent. Then
DPy D™= D)X + D(13)(Po+..) + ...+
+D(uhy)(Py — ap(M — 1)BPy 1+ ...).
Comparing the coefficients at Py, in the last relations, we obtain
pyg — MayB(1) = D(pyy)- (4.204)

Hence, 3, is a function depending on ¢ only.
We apply the operator adg to both sides of equation (4.203)), then we get

o Py = [)NQ Py = )N(()\*))N( + ()N((Mz) + agps) Pt
o (R (ugy) + o) Par

Afresh, comparing the coefficients at Py, and knowing that agph, (1) = X (uh, (6))+ +anp, (1),
we obtain that p}, is constant. It follows from equation that B(7) = 0. This contra-
diction implies that at least one of the functions P(¢,t;) and Q(¢,t;) is identically zero. The
lemma is proven.

Further specification of the function d(¢,t;) and the complete proof of Theorem can be
found in the work [53].

The result of the complete classification of equation is contained in the next statement
(see [52]).

Theorem 4.5. The chain possessing simultaneously nontrivial x- and n-integrals
belongs to one of the types,

(1) d(t,t1) = A(ty — t), where Aty — t) = LP(6), t; —t = P(#), P(0) is a quasipolynomial
w.r.t. 0,
(2) d(t,t1) = CL(t3 — t?) + Ca(t; — t),
(3) d(t, t1> = \/Cg€2at1 + C4€a(t1+t) + C3€2at,
(4) d(t,t1) = Cs(e™ — ™) + Cg(e ™ — e),
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where o # 0, C;, 1 < i < 6 are arbitrary constant. At that the corresponding integrals of

manimal order can be r’educed to

) F=x— ftl - CESS), I = L(D,)t,, where L(D,) is a differential operator vanishing on

4 P(6). At that D0 = 1.
i) F= Ul p— Oy - Oyt

(t3— tz)(tl t)’
t1— e~ g ta—t1 ds 2 2at
i) F = - I =2t,, — otz — aCse
) f \/0382"‘5+C4eo‘5+03 f \/03620‘54-0460‘5—{-03 rx z 3 ’
. at __ oty atq atg
IV)F:(e Nt S) T = ¢, — COse® — Cge .

(eatfeat3)( atq eatg);

4.3. S-integrable differential-difference equations. Employing coordinate representa-
tions (4.182)), (4.183) of the characteristic vector fields, it is possible to construct the char-
acteristic Lie ring L, = {X, Ky} associated with an arbitrary differential-difference equation
(4.176]).

In what follows we study in detail the characteristic Lie ring of the chain
tie =ty + AL(e™ 4+ ™) + Ag(e™ " + 7)), (4.205)

which is a differential-difference analogue of the Sine-Gordon equation. wu,, = sinu. Since

equation (4.205) read as (4.184]), then as the generators of the rings one choose the operators

X,Y (see (4.190)), (4.192)). Then we employ identity (4.201]), in which we let d = A;(e*™ +

™) 4+ Ag(e™ +e7 ). We let By(N) = 5oz (A +a), Pi(A) = —20;42 (A — ).
We introduce two operators S; = FPy(ady )Y and S = Pi(adz)Y,
S* _ ( at1 + eat) 86;9 o (eat_1 4 eat)%_i_

+< at + Qeatl + e()ttz)a? _ ( at + Qeatfl + eat72)ata_2 + R

(4.206)

S* _ ( —atq + e_at)6?1 o (e—cxt 1 e—at)8t61+
_|_( —at + Qe—atl + e—atg)aﬁ o ( —at + Ze—at,1 4 e—at 2)@;’12 4
It follows from the obvious identities [X, 53] = S5, [X, S7] = —aS7, Y = A, S; + 4,57 that
L, = {)Af } @ Lo, where L,s is the Lie ring generated by the operators S§, S}.

Let us construct the basis of the space consisting of the elements of the ring L,o. We replace
the dependent variables as 7; = t; —t;41, then 7; and t = ¢, are new variable and the identities

(4.207)

% = 87'] -+ aa hold true that allows us to rewrite the operators Sg, S as S = —e* Sy,
Sf = —e ™5, where
So=Y_ A(r;)e™ J> 0 ZB - )e-ant) 2 (4.208)
‘ j - j Tj’
J
and also
A(T)=1+¢e %, B(1)=1+¢", (4.209)
—T —=T1 — ... = Tj—1, if jZL
o) =4 0, if j=0; (4.210)

T_1+T_2+...+Tj, if jg—]_
Employing the identity Dp(j) = p(j + 1) + 7, it is easy to check that
DSO.D_1 = eO‘TSO, Dle_l = e_mSl. (4211)

As expected, the characteristic ring L,» has an infinite dimension. The ring L,o (as well as
L1, L;) is the ring of minimal growth. In other words, the dimension of the linear space of
multiple commutators increases by one as the multiplicity increases, and by two subject to the
parity. For instance, if Vj is the linear space of all the commutators of the multiplicity at most
J, then a basis of V; consists of the operators { Sy, S1, Pi, Py, Ps, ..., Por, Q2,Qy, ..., Qox }, and
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a basis of Voiy1 does of the operators {Sy, S1, P, Pa, Ps, ..., Popi1,Q2,Qu, ..., Qo }. Here the
operators P;, (); are defined consequently,

Plz[SQ,Sl]‘i‘OKSO‘i‘OéSl, Q1:P17

PZZ[ShPl]a Q22[507Q1]7

Py = [So, Po] + a P, Q3 = [51, Q2] — aQ2,

P2j = [SlaP2jfl]7 Q2j = [507Q2j71]7

Pyjq = [So, Py + Py, Q2j+1 = [S1, Qo] — aQo;,

for j > 1. The calculations show that

DP,D~!' = P, — 2a(Sy + S1),

DP,D™ = e=97(Py + 2a.P;, — 202(Sy + S1)),
DP;D™! = Py +2aQs — 2P, — 402P; + 403(Sy + S1),
DP4D_1 = e_O‘T(P4 + 204@3 — 4OZ2P2 + 4062(‘22—
—40&3P1 + 40(4(80 + Sl)),

DQQD_l = eO‘T(QQ — 206P1 + 20[2(50 + Sl)), (4212)
DQgDil = Qg + 20(@2 - 204P2 — 40[2P1 + 4063(5’0 + Sl),
DC?;;Di1 = eaT(Q4 —2aP5 + 20(2(P2 — Q2)+
+4a3 P — 40*(Sy + S1)),

Py =Q3, [S1,P]=—aP,, [S,Q:]=0aQs,
[S1, Py] = —aPy,  [So, Q4] = aQy.

0
The coefficient at 5 in all vector fields DP, D=, DQ,D~', 1 < i < 4 is zero.
T

Lemma 4.5. For each j > 1 the identities

(1) DP3j 1 D™ +20e*™"DPy; D71 = Pyjyy + 20Qo;,

(2) eaTDP2j+2D_1 — CYDPQjJrlD_l = p2j+2 + CKQQjJrl,
(3) DQ2j+1D_1 - 20{6_0”—DQ2]'D_1 = Q2j+1 - 204P2j;
(4) e *TDQsj 12D + aDQyj1 D! = Qajir — alaji,
(5) Poji1 = Qaj11,

(6) [S1, Pojra] = —aPaji,

(7) [So, Q2j12] = Q212

0
hold true. Moreover, the coefficient at 9 in all vector fields DP,D~', DQ,D~" is zero.
T

Proof. By the induction in j. By (4.212) it is clear that the statement of the lemma holds
as j = 1. Suppose (1) — (7) are valid for all j, 1 < j < k. Let us show that (1) is valid for
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j=k+1.

DPyyesD ' = D([Sy, Pojss] + aPojra) D~ = [¢°7Sp, DPyjusD Y] + aDPyjoD ' =
= [e*7 Sy, e " DPyj 1 D' + e Pojio + ae " Qoj1] + aDPoj oD =
=—a*(1+e *)DPy 1D + ae " [e*" Sy, DPoj 1 D7 — a(l + e ) Pyji0—
— (14 e °)Qajs1 + Pojrs — aPajio + aQajya + aDPyj s D™ =
=—a*(1+e ™ *)DPy 1 D'+ ae " D[Sy, Qaj1]D " — a(2+ e ) Pyjio—
— (1 +e ) Qajs1 + Pojis + aQajia + aDPojy D! =
= —a?(14 ¢ *)DPy D' + aQsjp0 — &P Pajp1 — 0*DQyj D' —
—a24e ) Pajya — (1 + €7 %)Qaj1 — 20°Qaj41 — 20 Pajyo + Pajyg =
= —20°DPyj 1D + 20Qaj42 — 20° Q211 — 2aPaj o + Pajiz =
=2aPyji0 + 20°Qaj41 — 200" DPyj s D™ 4 20Q2j10 — 20° Q)1 —
—2aPyj 10+ Pyjia = —20e*" DPyj o D" 4 20Qaj 40 + Pajis.

The condition (3) is proven exactly in the same way as (1). Let us show that (5) is valid for
j =k + 1. It is obvious that we have

DP2j+3D71 = —2ae°‘TDP2j+2D71 + 20(ng+2 + P2j+3 =
= —2a(aDPyj 1 D" + Pyjio + aQaji1) + 20Qaj10 + Pajis,

and

DQsjy3D™' = 2067 DQsji2D™ — 20 Paji0 + Qoji3 =
= 20(—aDQaj1 D" + Qajro — aPaj1) — 20Paj 10 + Q)i

By (5) P2j+1 = Q2j+17 and hence
D(Pyji3 — Qoj13) D7 = —2aPyj0 — 20Qs; 12 + 2aQaj 42 + 2Py 0 = 0.

therefore, P2j+3 = Q2j+3-
Let us show that (2) is valid as j = k + 1. We have

eaTDP2j+1D_1 = eO‘TD[Sl, P2j+3]D_l = e"”[e“”Sl, DP2j+3D_1] =
= eO‘T[e*O‘TSl, _QO[eaTDPQj_FQDil + 20[@2j+2 + P2j+3] =

= e“(—2a2(1 + eaT)DPQj_FQDil) — 20(620“-[670”51, DP2j+2D71]+

+ Py + 20Qaj43 + 20° Qa0 = —207(e*7 + €**7) D Py g D'+
+20%€** " DPyj oD + Pojya 4+ 20Q2j13 + 202 Q)10 =
= —20%€*"DPyj s D" + Pyjiy + 20Q2j13 + 207 Qa4 =
= aDPy 3D — aPyjis — 20°Qaj42 + Pajia + 20Q45 13+
+20°Qaj40 = aDPoj 3D~ + aQajis + Pajia.

The proof of (4) is similar to that of (2).
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Let us prove (6) for j =k + 1.

D[Sl, P2j+4]D_1 = [e_mSl, ae_aTDP2j+3D_1 + e_aTP2j+4 + ae_aTQ2j+3] =
= [e_MSl, Oze_aT(—QOzeaTDng+2D_1 + P2j+3 + 2&Q2j+2)—|—
+€7 Pyjya + e Qoji3] = [e7°7S), =20 D Paj o D7+

+20ze_‘”P2j+3 + 20426_()”@2]'4_2 + e_“TP2j+4] = —2052D[Sl, P2j+2]D_1—

—20526_20”—<1 + e“T)P2j+3 — 2@36_2aT<1 + eaT)Q2j+2 + 2ae_2aTP2j+4+
+20626720“-Q2j+3 + 20636720“-622]'4_2 _ 046720”-(]_ + ea‘r>P2j+4+

_’_672017' [Sl, P2j+4] = 2a3DP2j+2D71 — 20(2670”-P2j+3 + Oé(eiZaT—
—e ) Pojia — 20°¢7 T Qa0 + € 27[S), Pajia] =

= Oé2e_m—P2j+3 + 20136_0‘7@2]'4_2 — 042e_O‘TDP2j+3D_1 — 2042e_0‘TP2j+3+

+a(e7T — ™) Pyjyg — 20°€7 Qo + €7 27[Sy, Pyjiy] =
= —aQe_aTP2j+3 -+ oz(e_QW — e_aT)P2j+4 — OéDP2j+4D_1 —+ ae_aTP2j+4+
+a26—aTQ2j+3 + 6—2047'[51’ P2j+4]-

Hence,
D[Sl, P2j+4]D71 = 6720”[5’1, P2j+4] + @eiZaTP2j+4 — OéDPQjJADil
D([Sy, Pyjya] + aPajya) D™ = e 27([Sy, Pyjia] + aPyjya).
Therefore, [S1, Pajia] = —aPyjta.

The proof of (7) is similar to that of (6). The lemma is proven.

Remark 4.2. The identities
_aTDQ D—l +eaTDP2 D1 = Q2j + ng,

k=
Zk =0 ,u2i++11 P2k+1 + Iué ]+1)S + V0(2]+1)S17
DPyD™" = e (P + Z (15 Poy + 057 Qop) +

+ZJ 0N2k+1p2k+1‘|’ﬂ S +’/0 )S ),

Jj—1
DQu D™ = e (Qoy — Y (1 Pox + v Qi) —
k=1
0
Zk 0M2k+1p2k+1 —Mé )5 V(() 3)51)
hold true. Moreover, p( 2+1) = —2aq, I/é?ﬁ_l) = 2a, ,ugj)l = 2.

Suppose L, is finite-dimensional. Then there are three possibilities,

1) So, S1, Pr, Ps,Q2, P3, Py, Qu4, . .., Psj_1 are linearly independent and
So, Sl; Pl> Pg, QQ, Pg, P4, Q4, ce 7P2j—17 ng are linearly dependent,

2) So, Sla P17 Pg, QQ, Pg, P4, Q4, . 7P2j717 p2] are linearly independent and
So, Sl7 P17 PQ, QQ, Pg, P4, Q4, . ,Pgnfl, P2j7 sz are linearly dependent,

3) So, S1, P1, P, Qa, Ps, Py, Q4, . .., Paj, Qo; are linearly independent and
So, Sl, Pl, PQ, Q27 P3, P4, Q4, ces ,ng, ng, P2j+1 are linearly dependent.

In the case 1),
Py = o5 1 Paj1 + 2j—2Pojo + 1aj—2Qj—2 + . ..

and
DPQjDil = D(WQj_l)DPQj_lDil—’_

_ _ 4.213
—I—D(’}/Qj_Q)DPQj_QD 1 —f- D(ngj_g)DQQj_QD 1 + e ( )
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We employ Remark for comparing the coefficients at P5;_; in (4.213]) and obtain the incon-
sistent equation
e " (v2j-1 + 2a) = D(y25-1).
It shows that the case 1) does not realize.
In the case 2),
Q2 = V2 Poj + v2j—1Paj_1 4+ M2j—2Q2j—2 + . ..
and
DQs;D™' = D(y9;)DPy; D'+
+D(72j-1)DPyj 1 D™ + D(12j—2) DQoj 2D~ 4 ... .
We again employ Remark for comparing the coefficients at P»;_; in (4.214) and arrive to
the inconsistent condition

(4.214)

e (12j-1 — 2a0) = D(y2;-1),
which shows that the case 2) is impossible.
In the case 3)

Poji1 = n9jQaj + 72 Poj + ...
and
DPyj D™ = D(n2;) DQojD™" + D(7v2;)DPo; D™" + ... . (4.215)
We employ Remark for comparing the coefficients at P,_; in and and arrive at the

contradiction

(V25 — 2a) = D(725)e™".
This is why the case 3) is impossible. Therefore, the characteristic Lie ring L, has an infinite
dimension.

5. FULLY DISCRETE EQUATIONS

At present the discrete models
ury = f(m,n,u,ui, ) (5.216)

called also the equations on a square graph are studied intensively due to their important
applications in physics, discrete geometry, architecture, biology, etc. In equation the
sought function u = u(m,n) depends on two independent discrete variables. The subscripts
and the bar accent over a letter indicate the shift of the arguments,

up =u(m+k,n), uy=ulmn+k), u,;=ulm+in+j).

The function f is supposed to be smooth and defined in some domain R3. It is also assumed
that equation ([5.216)) can be solvable at least locally w.r.t. each of three variables u, uq,uy, i.e.,
there exist functions f*/ such that

w= f7V" N (m,n,ug g, T, un)),
Uy = fl’_1<m7n7ﬂlaul,l7u)a
Uy = f_Ll(m?n?ubu?ul,l)'

5.1. Liouville type discrete equations. In this subsection we consider the equations of
the form ([5.216)) possessing integrals.

Definition 5.1. As n-integral of equation (5.216|) we call a sequence of the functions
+oo

{Hoy(m,nu_juji, ... up) },20 o depending on m, n, and a finite number of dynamical vari-
ables {u;} such that the relation
El(i)(m, MUy Uejg1y - o5 Ug) = Ly (Mo ueg, u_jpn, oo, ug)

holds, where D is the operator of argument shift such that Dh(m,n) = h(m,n + 1).
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Remark 5.1. In process of proving Theorem (see below) it is found out that a n-integral

can be represented as I = I[(m,n,G), where G = G(u,uq,...,uy) is a some function.
Example 5.1. Consider the equation of the form (5.216)),
1
Ui = —,
Uy

whose n-integral is the sequence of the functions Iy = I;(uy) such that

I Uy, 11Seven;
@~ L, disodd.
ul

Indeed,
DI(Qm) = Dul =1ui1 = = Izm+1)
11
DI(Qm—i—l) Du1 = wma Ul = [(2m+2)

The coordinate representation the equation DI () = L(it1) is

[(z')(m,n,r—j+1>7’—j+2,---Jﬁl,f Jio-oo, fkfl) :I(iJrl)(m T, U—jy U1y v -y Uk) (5217)

where r = f‘l Y(m,n,u,u_1,u;). As dynamical (independent) variables we choose {u;}}>
and {u; } 1 Then the function r_; = D7!(r) can be rewritten as

j=—00
]__OO
_ 11 _ -1 -1 -
roi=f"(m—1nu_q,u9,u_11)=f "(m—1,nu,u [T (mn,uu_,a)).
Here D is the operator of the shift of the variable m, Dy(m,n) = y(m+1,n). In the same way
all the shifts in ((5.217)) can be represented as a superposition of the functions depending only on

the dynamical variables. We note the right hand side of identity ([5.217)) is independent of the
variable w1, and the condition %Dl ) = 0 is thus satisfied, or, which is the same, Y,/ = 0,

where Y] = Efla%lﬁ. In the expanded form the operator Y; reads as

_ 9 af\ o L or )
E_%+D <8u1> 8u1+D <8u1)8u 1+

5.218)
-1 (af ) Or— ) (
+D (a?i) gy T D <aaf> Gus T
We introduce the notations z = D 2L (%i ) — _ ; fll:llgixl ;f__ll))//;z .
Lemma 5.1. The identities
o |
our . poi(2L)’
of " b 1(31{1)
i — Of of i [ Of
a—ai—ﬁl'D<71 R 2 (%)

hold true.

Proof. The second of the relations in the lemma is an obvious implication of the formula for
derivative of a composite function. For instance, for 7 = 1 we have

oh _ 9 u)) = oLy oL
ow,  ouy (ur, uzf(u, w1, ) = D (am) o’

To prove the first relation it is sufficient to differentiated the identity

Uy = f_Ll(ul?uv f(uv ulﬂﬂl)>

w.r.t. the variable u; and to get
~1,1
1=p (2 ). 9L
o, o,

The lemma is proven.
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Employing the lemma, the operator Y; can be rewritten as

0 0 1 0 0 1 0
Y, = — e 5.219
' ou + x@ul + T_1 0u_q + le@uQ + T_1T_9 O0U_o + ( )

We call the operator Y; a characteristic vector field.

It is clear now that n-integral in a solution to the first order partial differential equation
Y11 = 0, whose coefficients are expressed in terms of the variable x and its shifts, and this
is why they depend, generally speaking, on the variable u_;, while the function I(; itself can
not depend on w_y, ie., Xil; = 0, where X; = %. It is notable that in a general case
except these two equations and their differential consequences the n-integral I satisfies also
other equations which is a distinguishing property of a discrete equation. Indeed, the it follows
from the identity DI (i) = L(i+1) that each integer & Ekl (i) = L(i+r)- In the last identity under the
condition k£ > 0 the right hand side is independent of the variable w;, while in the left hand side
u; appears formally; hence, we have Efka%lﬁkl(i) = 0, k > 0. Straightforward calculations
show that

D 0D X v k=2
8u1
where
YJ+1 D (V)= +D (Yjr) g2t
D (Y, /)5 +b‘1(y gl (5.220)
Xj=g— 2L

Denote by N* the dimension of linear space generated by the operators {Y;}°. We shall the
Lie ring over the field of locally analytic functions generated by the operators {Y;}V" U {X,;}"
a characteristic Lie ring L,, of equation (5.216|) in the direction of n.

Theorem 5.1. The equation ((5.216)) possesses a nontrivial n-integral if and only if dim L,, <
00.

Proof. Suppose equation ([5.216]) possesses a nontrivial n-integral I = Ij;y(m,n, u—j, u_ji1, ..., ux),
where %{j £ 0, 2L +£ 0. We introduce the Lie ring M generated by the vector fields

' Ouy

{v;}3° U {X;}1?, where the number N, will be determined below. We let
MUR = (9% — p, (T): T € M},

where P;, is the projector defined as

—1 +o0
0
PLmI ZNCLSa_TS—i‘Zb — ZCLS +Zb
s=—Ns s=—1
,m=1,23,... .
Denote by N; the dimension of the spaceMU»). It is obvious that

Ny < Ny+k+4j+1. Let the set of the operator {Tpy, Too, - . ., Ton, + form a basis in MU+ We in-
dicate by T; = Z;ZI_M as(Tj)a%s%—Zfz bs(T}) 5% the vector field in M such that P;x(T;) = Tp;,
j =1,2,...,N;. Let us show that the set of the operators {11, T5,...,Ty,} forms a basis in
M.

We take an arbitrary vector field T = Z:_M as(T)% + St bs(T)aius in M. Since
Pii(T) € MU® | then Pji(T) = SN, By Tom- Let us check that T = SN 8,75, which
is equivalent to the identity Z = 0, where Z = T — Zm 1 BmTjm. By definition we have
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P;x(Z) = 0. Since [ is an n-integral depending on m,n,u_j, u_;i1,...,uy, then DI is an n-
integral depending on m,n,u_j1,U_ji2,...,uss1. Indeed, D(DI) = D(DI) = DI. Therefore,
0= Z(DI) = Pu(Z)DI + (a1 (T) = N, Buann (T3) ) 52 DI =
= (@k+1( ) — Z 1 Bsarg1 (T )) G DI.

Bupt1

Since

g DI = D( ) # 0, then ap1(T) = Zf;l Bsar+1(Ts), and it means that

Pip1(Z) = O. Applying the operator Z consequently to the integrals D?I, D3I, ..., and
also to the integrals D~'I, D72I, ..., we find that P,,,(Z) = 0 for any natural numbers i, m.
Therefore, Z = 0. It proves that the ring M is of finite dimension for any choice of the number
Nj. Then the linear span of the vector fields {Y;}{° has a finite dimension; denote it by N. Let
us specify now the value of the number N, by choosing No > N. Then we have that the ring
L,, generated by the operators {Y;}" U{X;}" is a subring of a finite-dimensional ring M. This
is why the ring L,, is finite-dimensional.

Suppose the dimension of the characteristic Lie ring L,, is finite; denote it by N;. Let N be
the dimension of the span of the vector fields {Y;}5°. Then the set {Y7,Ys,...,Yn} forms a
basis in it. We let Ny = N; — N. Introduce

D= {7 = PG(T) : T € Ly},

(N)

where the projector Py~ acts according the rule

P<N>< 1 b, >:
No Zs—— a 8u +Zs 0 75 us (5221)

— N- o

= ZS—* asau _'_Z : bsau
Let {Ty;}Y", form a basis in the linear space L) Then we have N equations of the form
To;G = 0 for a function G of Ny + 3 variables m,n,u,uy, ..., un,, U_1,U_9,...,u_y. At that
m and n are involved as parameters in the coefficients of the equation. According to Jacobi
theorem, the considered system of equations has a non-constant solution G. By the equations

X;G = 0 this function is independent on the variables u;, s, . . ., Uy and satisfies the condition
TG = 0 for any T € L,. The function G is not defined uniquely, any other solution of the
system depending on the same variables m,n, u, u;, ..., uy, can be represented as h(m,n, Q)

for some _fur%ctign h. L L
Since D V1D =X, +Ys, D X;D=X;11,5>1,D YyD =Yy, k> 2, for any vector
filed Z in L,, we have D 'ZD =z +AX 41 for some Z* € L, and some function A\. Therefore,

ZDG =D(D ' ZDG) = D(Z* + AXn11)G = 0

for each Z € L,. This is why DG is also a solution to the aforementioned system of partial
differential equations that implies DG = h(m,n, G).

In the same one can show that D G = g(m,n, G) for some function g. To construct the
desired n-integral I, it is sufficient now to let

G(m,n,u,uy,...,un) = I (m,n,u,ui,...,uy),
D'G(m,n,u,uy, ... uy)= Iiy(m,n,u,ug, . .. uy),
E_ZG(m, N, U U, -, uy) = Loy (myn,u,ug, . uy), 42> 1
The constructed in this way sequence of the functions I(;y(m,n,u,uy,...,uy) is an n-integral,

since it satisfies the relation D], @) = L(i+1)-
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5.2. General discrete equations. Employing explicit expressions ((5.218) — (5.220)), one
can determine the characteristic vector fields Z, = X,_1 + Yy, k£ > 2 for an arbitrary equation
of the form . According to Theorem , the ring L, is infinite-dimensional provided
there exists no n-integral. It is obvious that the operators {Z}$° are linearly independent.

Lemma 5.2. The commutation relations
1) [Zk,Z] =0 forall k,j>1;
2) [X,Z)=0 forall k>j

hold true, where Z, :=Y7.
Proof. Let j > k, the identity [8%1, Zj_

Z;, i > 1 are independent of the variable ;. Applying the conjugation operator (it is not an
automorphism of the ring)

] = 0 is valid since the coefficients of the operators

Z D 'ZD (5.222)
k times, we obtain
k0 —
D *=D" D "*z,.,D" =2 7] = .
8u1
The second part of the lemma is implied by the fact that X = , and the coefficients of

the operator Z; are independent of u_j as k > j. The lemma is proven
The key role in the description of the ring L,, is played by the automorphism defined by the
rule

7 — DZD™, (5.223)

where D is the operator of shift of the argument n. Let us show that X; and Y; regarded as
the operators on the set of the functions depending on a finite number of the variables in a

restricted dynamical set Sy = {U_N,T_Ny1,---,U_1,U, Us], Uto, . ..} satisfy the relations
DX\D ' =pX; +p() Xy +...+p(N — 1) Xy, (5.224)
1
DY,D!' =2V, (5.225)
x

where p = DX, f~b71 p(k) = DXlD_kf*L*l, and f~b71 = f~b "y, u_y,u_,). We observe
that the coefficients of the operators Y7, Y5, ..., Yy depend only on the variables in the set Sy .
Identity can be easily checked by applying both sides of the identity to the dynamical
variables. Exactly in the same way one can prove .

We introduce similar identities for generalized characteristic operators Y;, X;, 7 > 1. It is
convenient to begin with the operator Yy = 8%1. We first specify the action of the operator on
the functions depending on all dynamical variables. It is obvious that

8 8 0
DY,D™' = ) — 5.226
where &(k) = DY, D f LIo gLl — f’l’l(u,u_l,ﬂl). The last identity can be checked easily
by applying to the variables u;, Wy, ..., u;, . ... It is also clear that all other dynamical variables

lie in the kernel of operator (5.226). We apply now conjugation operator (5.222)) to 1dent1ty
(5.226)) and obtaln as a result, taking into consideration the identities DD = DD D Y,D =

Y1, D_1 2 D = as k > 2, the relation

DYiD™ = E ()Y + E4(2)Ys + E4(3) 8‘3 n (5.227)

where E.0) = D_lf (7), that proves in particular formula (5.225). It remains to check that
(1) = % Indeed, differentiating the identity u; = f(u_1,u, f~" (u,u_1,u;)) w.r.t. the
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variable Uy, we find D! (%) : afa;ﬂi’l = 1. It yields that £(1) - T; = 1. Hence, 5715(1) =1
Applying now repeatedly operator ([5.222) to identity (5.227)), we find

HEp(R)Y1 + € (B + Yo + &y (k +2)50 + .-,

Ous
where 7, = ElkalEkfl =Y, +Xi_1 as k > 2. On the restricted set of the dynamical variables
Sy identity (5.228|) casts into the form

DZyD™' =€ () 2+ € 1(2) Zkr + ...+ E (). (5.229)

For instance, as k = 2 we have

1 _
DZD™ = ——Zy + E (M1, (5.230)
1

On whole the set of the dynamical variables formula (5.224]) is extended as
DX, D™' =pX; + Zp(i)Xi+1-
i=1
We apply conjugation operator (5.222)) on this identity; bearing in mind the conditions
E_IX]‘E = Xj+1, j > ]_, we get
.D)(]‘.Di1 == ]_Ql—jX] +ﬁ1—](1)X_]+1 + e + pl—j(k)Xk+1 + ey
whose restriction on Sy yields
DX;D™" =7, X; +D_;(D)Xj01 + ... +D_;(N - 1)Xy (5.231)
as j < N.

Lemma 5.3. Suppose that Z = > 2 b(j)5> € Ly satisfies two conditions, DZD™' = cZ
for some function ¢ and b(jo) = 0 for some fized value j = jo. Then Z = 0.

The proof is carried out by simple calculations (see [42]).

Example 5.2. As an example we consider one of the discrete versions of the Liouville equa-

tion
QUL — guitE (5.232)
Let us calculate the functions x and p for equation . We have
Uy o =1In (e — 1) —w (5.233)
Therefore, r = f~Y (u,u_1, 1) = In (€741 — 1) — u. Employing the identity
L=l (uugu
e=D" (afmé;ll,m)) _ _ﬁ (5.234)
uy

we find v =1 — e 7 %1, Then we find D! (l) = %1 =1+ e u-170-1,

xT

To describe p, we employ the identity

Of M u,uy, 1) 1
p=D ( 9, = - 6f1,,;(37ulﬂ_1) . (5.235)
As a result we get p = x. This is why
_ 1
DX, D'=(1—-e™™NX,, DY,D'=——"—V.
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On the operators Ry = [X1,Y1], P1 = [ X1, Ri1], Q1 = [Y1, R1] mapping (5.223) acts by the

rule
DRiD™' = Ry + =Y + (z — 1) X,,
DP,D™ ' =zP + (x — )Ry — =Y — (2 — 1) X, (5.236)
DD = 1@, — IR, — =ty — (@ —1)X).

It follows from formulas (5.236)) that D(Pi+R,)D~" = x(Pi+Ry) and D(Q1+Ry) = 1(Q1+Ry).
The last relations by Lemma imply the identities P = — Ry, Q1 = —R;.

In the same way one can check that

Zy=X1— (14" 2)Ry. (5.237)

For this it is sufficient to compare the identity

1 1
DZ,D™' = —7,+ ( — 1) Y;

Tr_1 .73?,1

with the first of formulas (5.236)) taking into consideration the identity DX, D! = 2 X,.

By Lemma it follows from (5.237) that Yo = — (1 +€“"%2) Ry. Therefore, the char-
acteristic algebra L, for equation :5.232 15 three-dimensional as the linear space spanned on
the vectors X4,Y1, Ry; the n-integral of minimal order depends on three variables, for instance,
I =TI(u,up,u_q).

In order to find I, we solve the linear system Y1I =0, RiI =0, or in the expanded form

Tr(—em )P p (14 e 2 =,

—ui—u—1 0l _ _—u_1-u_1_O0I __
€ ou e ou_1 0

It implies easily that [ = e“-17% 4 17",
Let us find out how the characteristic algebra changes under the change of variables in a

discrete equation. The most general point transformation in the equation (5.216)) is defined by
the function

u(m,n) = ¢(m,n,v(m,n)). (5.238)
Change ([5.238]) reduces ([5.216|) to the equation
V11 = }.V(ma n,v, U17@1)7 (5239)

where f: ¢_1<m7 n, f(m7 n, ¢<m7 n, U)v ¢(m + ]-7 n, Ul)? ¢(m7 n + ]-7 61)))
Let u find out how the characteristic vector fields X;, Z; and X;, Z; of equations ([5.238)

and (5.239) are related.

Lemma 5.4. The identities

8]01,71 8]071,71
r=— ou 1 — __ Ou
afl,—l ) T_q af—l,—l
8u1 - 8u,1

hold true.

Proof. Let us prove the second identity in the statement. Differentiating an obvious identity
U1 = f_L_l (ﬂlv f_Ll(u) u—laﬂl)7 U)

w.r.t. the variable u;, we find

0 _ b af_L_l(uJ U—1, ﬂ*l) + ﬁ af_l’_l(UH u*17ﬂ71) . 8.](._1’1(“7 U,17ﬂ,1>
ou 8u,1 aﬂl ’
It yields
L:__laf—ll 8f6u
Tr_1 0@1 of— 1!
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The first identity in the statement is proven in the same way by differentiating the identity

UL = fl’_l (ﬂl, f(u, Ul,ﬂl), u)

w.r.t. u;. The lemma is proven.
By Lemma [5.4] we have

afli—1 afli—1
r=— Ju = — Py 01 = ¢'(v) €T
aftr— aft— / )
~ fam J:’?Tl"ﬁ’(’vl) ¢'(v1)
T af*atfl B 8f;2’71.¢’(v) & (v) 1
¥ . T er-1,—-1 — T gf-1,—1 — (v T
- o= i) P

This is why & = ¢/(v):%, and also

-~ ~ 0 0

x-x1~...~xjm:qﬁ’(v)m-xln..'xjau—jﬂ (5.240)
and 1 1 1 0 1 1 1 0
%__]_‘%__2‘.‘.‘%__]'81}_]':QS/(U).ZE__]_..CE__Q“.'..CE__jaU_]'. (5.241)
By , explicit expression and the formulas
p=2,z0 10 0, 1 0
v ovy  T_10v_4 OVy  T_1Z_9O0V_o
we find the desired relation N
Y: = ¢'(m,n,v)Y;. (5.242)
It is obvious that X; = aﬂ;il and X; = (%;il are related by the identity
X, =¢(m,n—1,7_1)X]. (5.243)
Applying conjugation operator (5.222)) to (5.242)), (5.243)) and employing the identities
Zi =D 'V\D’, X;;1=D 'X,D,
we get
Zin=d(m,n =30 )21, Xj=d(mn—j—1,0; )X (5.244)

5.3. S-integrable discrete equations. In this section we study the characteristic operators
of S-integrable discrete equations of the form , i.e., of soliton type equations. Let a Lie
ring 7' be generated by the vector fields X and Y. Denote by Vj, j > 0 the linear space over
the field of locally analytic functions spanned on X, Y, and all multiple commutators of the
operators X, Y of order less or equal j so that

‘/OZ{X7Y}7 ‘G:{X7Y7[X7Y]}7
Vo = {X,Y,[X,Y],[X,[X, Y], [Y.[X.Y]]},....

We introduce the function A(k) = dim Vj 1 — dim V.

Definition 5.2. We call T' a ring of minimal growth if there exists a sequence of natural
numbers {t,}32,, for which A(ty) < 1.

Denote by Tj; the Lie rings generated by the operators Xj, Y;. The following conjecture
looks credible.

Proposition 5.1. Suppose equation (5.216)) is S-integrable, then for all k,j > 1 the associ-
ated ring Ty; is a ring of minimal growth.
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As an example we consider the discrete potential KAV equation

1
Uyl = U+

Uy — ﬂl '
We represent (5.245) in two different ways (v — w_y_1)(U_1 — u_q)
(ug —T—1)(ug—1 —u) = 1. It yields

(5.245)
= 1 and
1 1
U =u+———— = uy o =ut ——— = [
U_1 — U Uy — U
Hence,
afLi—1
T = =511 (ul —ﬂ,1>2,
Buf
1 S —
o= e = (g — )
Ou_1
p= afl% = (uy —u_)
ou_1
This is why
0 0 0
Yi=— —U_1)"— 11— U_ 5.246
1 8u+<u1 U-1) u1+(ul ul)au_1+ ( )
It is easy to see that
}/1.T = Yi(ul — H_l)z = 2(U1 — ﬂ_1)3 = 2(['\/5,
Yie_; =Yi(uy — U—l)_2 =2,/1_q,
Xll' = 8@8,1 (Ul — ﬂ_l)Q = -2
Xlx_l =

Uy —TU_1) = —24/7,
%871 (U —u_q)?=—-2(u_q — —22_1,/T_1.
Consider the ring 77, generated by the operators (see (5.246)) Y; and X; = aaa,l' We
construct the sequence of multiple commutators,
Ry =[X, Y], P =[Xy, R,

Ql = [}/17R1]7

RkJrl = [Xth]) Pk: [XlaRk]7 Qk: D/laRk]a
Theorem 5.2. The sequence X1,Y1, Ry, Pi,Q1, Ra, Ps, Qs,
(see [49))-

kE>1.

. forms a basis of the ring T ;
Proof. We employ the identities DX, D™ = 2X; and D(yY;)D~! =Y}, where y = x_;, and

write [DX, D!, D(yY1)D™ '] = [#X,Y1]. We reduce the last identity to

D(Ry — 2/yY1)D™! = Ry — 2\/zX.

(5.247)
The symmetric expression is the most simple and convenient one. We commute ([5.247)),
preserving the symmetricity with DX, D! = 2.X,

[D(Rl - 2\/§E>D_1, DXlD_l] == [Rl - 2\/EX1,IL’X1].
The last identity is reduced to

D(P, — 2\/§R, + 2yY1)D~" = a(P, + 2X)).
Commuting (5.247) with D(yY;)D~! = Y7, we obtain

(5.248)
D(y(Q —2Y1))D ™! = Q1 + 2V R, — 22X,.

We commute DX; D~ = zX; with identity (5.248)), then

(5.249)
D ([Xy1, Pi] — 2/yP, + 4yRy — 4y/yY1) D' = 2%[X,, Pi| — 22/2 P, — 42/ X,.

From the last identity we deduct term by term identity (5.248) multiplied by 2/z, and as a
result we get D[X1, P1| = 2%[X;, P1]. By Lemma [5.3| it implies [X;, P;] = 0. In the same one
can check that [Y7, Q4] = 0.
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It can be checked that the action of automorphism ([5.223)) on the operator Ry, Ps, (Q2 is
written as
D(R2 — 2\/§Ql)D71 = Ry + 2\/§P1,
D(Py +2\/yRy —2yQ,)D~' = (P, — 2P,),
D(y(QQ — 2@1))D_1 = QQ + 2\/ER2 + 2$P1

By induction one can prove that for all j > 1 the relations

D(R; = 2\/yQj1)D7" = R; + 2\/xP; 1,
D(P; +2(=1)) JyR; + 2(—=1)"'yQ;_1)D™" = a(P; — 2P;_1),
D(y(Q; —2Q;-1))D™" = Q; + 2VaR; — 22P; 1 X

hOld, and [XIJ-FJJ] - 07 D/l?Q]] = 07 [YIJ-FJJ] - [XJ Qj]a [Rjapk] - Pk+j7 [Rj7Qk] = _Qk+j7
[R;, Ri] =0, [P}, Qk] = —Ritj+1, [P}, Pl =0, [Q;, Qx] = 0. The theorem is proven.

Corollary 5.1. The ring T} ; is that of minimal growth.

Proof. By construction we have V, = {Xy,Yi}, Vi = VW & {R:},
Vo = Vi @ {P1,@Q1}, ..., Vapor = Voo @ {Ri}, Vo = Vap—1 @ {F, Qr}, ... Hence,
A2k 4+ 1) = dim Vop o — dim Vog g = 2, A(2k) = dim Vog; — dim Vo, = 1 for each k£ > 0.

In works [42,51] the connection between the integrability of equation and the property
of minimal growth for the rings 7j; was studied.

In work [42] the following statement was proven.

Theorem 5.3. Assume the Lie ring T 1 of the discrete equation
U1 =u + ¢(U1 - Ul) (5250)

satisfies the condition that there exists at least one natural number j such that A(k) < 1. Then
by a point change the equation is reduced to one of the following equations,

(1) Uyl =u + c(u1 — ﬂl — 5),
(2) (ug—u—a)(u —u —p) =7,
(3)  (auy + Buy)us 1 + u(yuy — 6uy) = 0.

We note that in this theorem on the Lie ring there imposed a very weak condition, namely,
the existence of a sequence of natural numbers for which A(k) < 1 is replaced the condition
that at least one such number exists. At that a certain list of the equations is obtained and
all of them integrable. The equation (1) is linear, the equation (2) is the discrete potential
Korteweg-de Vries equation, and the equation (3) belongs to the known list of Adler, Bobenko,
Suris (ABS) (see [45]).

In the work |51] the equation

Uy,1 +u= ¢(U1 +ﬂ1) (5251)

is studied under a similar restriction.

Theorem 5.4. Let the ring 111 of discrete equation ((5.251)) satisfies the condition that there
exists at least one natural k such that A(k) < 1. Then equation (5.251)) is reduced by a point
change to one of the following equations,

(1) wg+u=cluy —wm — B),
(2) (wa+u—a)(u+uw —B) =17,
(3) aluﬂlul,l + QUUL 1 + azuiuy + oy = 0.

We observe that the equation (2) is integrable as ov = 3, since it is reduced to the potential
KdV equation, and the equation (3) as aig = Favp is reduced to a known equation from the list
of ABS. In other cases these equations are non-integrable.
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6. PERSPECTIVES OF ALGEBRAIC METHOD

6.1. Characteristic ring of “n-waves” equations. We consider the system of hyperbolic
partial differential equations
0 a. ;
((?t +ain ' = ¢i(ut, . ut), i=1,2,...,n. (6.252)
x

Here a; are arbitrary constants and ¢; are arbitrary functions. As the functions ¢; are quadratic,
we deal with the system of n-waves equations [63]. In order to determine two characteristic
directions, we introduce independent variables £ and 7 as follows,

o, 0 9 o0, 0 0
o "“ox 0 ot "or On

In terms of new variables the system casts into the form

pe = fp,a,7),

@ = 9pqr), (6.253)
7"5 = TWA—Fw(pvqar)a
Where f: ‘(f17f27"' Y ¢ = (¢1 ¢2 "7¢l)? w = (¢17w27"'7¢m)7p: (uil7ui27"'7uis)?
qg = (Wu?,... 0w, r = (u Sukm) A = diag(A1, Az, ..., Am), Vi A # 0, where
p= 0% ..,p%), ¢=(qd' ¢ ... ,q ) = (rl,r%,...,r™). Denote by F (F) the set of locally
analytic functions depending on a finite number of the variables p,q, 7, q1, 71,92, 72, ..., @i, 74, - - -
(paqﬂn plarl7p27r27"'7]5177717'”)' Here qi = an r; = Dir ﬁz - -Dp7 fz — Dir 1= 1 2
D = d§> D = 4. The operator of total differentiation D w.r.t. the variable n on the set F is
defined as
l m
_ , ) 1. 1 . 0
D ! . —r; — —¢° —
Zpla -+ ;¢ (P,a7) 505 + ;[Aim LV nlgs
+ ZDW S +zm:[l7“% Y o Py (6.254)
gy =\ i ory
-1
D"¢ D" ,
+ Z p7q7 a 4 +zzl >\7, n+1 w(p7QJ )]ar% +

Considering the vector fields X; = 1=1,2,...,s and

317

1.1, 9]
s+1 Z¢Z b,q,7r i Z[}\_’Lri - )\_Zwl(]%qar)]% +

=1

} m , 0
+ ZDQbZ(p:q’ +Z )\l %——D@Z) (paQ7 )]87“
=1

l
> D¢ (p,q,r
=1

we obtain that D = Y7 pi X, + Xy 1.

R (6.255)
i 1

i=1
.1 . o)
+Z)\ n+l sz(p7q7r>]a7+7
=1

1 n

Definition 6.1. The Lie ring Re over the field F generated by the wvector fields
X1, Xo, ..., Xsy1 15 called the characteristic Lie ring in the directions of & of the system of
equations (6.252)).
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In the similar way we define the characteristic Lie ring R, in the direction of n. It is generated
by the following vector fields,

0

Yi - A ':172,...,l,
¢ '
—~ 0 Sy i 0
Yipr = Zf(p,q,?“)mﬂLZ[)\irﬁ—@/)(p,q,?”)]%%—..- (6.256)
' i=1
+ ZD"prq +zm: Nt + D™ (p, q,7)] a.—i—....
4, T o n+1 > 877%

In this case the operator of total differentiation D w.r.t. the variable £ on the set F reads as
l .
D= Zi:l q1Y: + Y.

6.2. Evolution equations.

6.2.1. Lie rings of evolution equations. We consider the evolution equations

0u o"u
S (-}

In order to determine the vector ﬁelds generatmg the Lie ring of equation ([6.257]), we shall
study the auxiliary equation

(6.257)

82 0 an+1
L P, ),
otox ox Oxntl
where ' = Df, D is the operator of total differentiation w.r.t. the variable x. We define
the operator D in the space of locally analytic functions depending on a finite number of the

(6.258)

variables w, uy, ug, ..., Uiy ... (Up = 8x") by the rule
_ OJu 0 0 0 0
D=——+F—+DF— + DR e
otou " ou  uy ou, T
We introduce the vector fields
0 0 0 0
Xi=—, Xo=F—+DF— + DM =
YT 0w 277 duy + Ous + ou, +

Definition 6.2. The Lie ring R generated by the vector fields X, and X5 is called a char-
acteristic Lie ring of the equation ([6.257)).

The following statement holds.

8n+1

Lemma 6.1. If dim R < oo, then the right hand side F(u, 3_7;7 .., Gort) of the equation
(6.258])) s a quasipolynom w.r.t. the variable u.

Proof. Since [D, D] = 0, employing [D, D] = [D, 24X, + X5], we have

' ot
D,X)]=0, [D,Xs]=FX,. (6.259)
We let X3 = [X7, X3] and, employing Jacobi identity and relations (6.259)), we obtain
8F

We define the sequence of vector fields X;, i = 4,5, ... as X; = [Xy, X;4]. As above, we get
that

OF
Oui—2 X1,

D, X;] = i=4,5,.... (6.261)
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Let the ring R be finite-dimensional. Then there exists m such that the vector fields
X, X3, ..., X, are linearly independent and

m+1 Z az Iz (6262)

where the coefficients oy, i = 2,3,...,m are the functlons of the variables wu, uy, us, . . ..
By (6.262) we have [D, X,,41] = > 7"y D(0) X;+ > 0%, ;[ D, X;]. In accordance with (6.261)),
we rewrite the latter as

am—lF m az 2F
aum—l X Z al X + Z al z 2
Since the vector fields Xy, X, ..., X, are linearly mdependent, we obtain
D(o;) =0, i=23,...,m, (6.263)

8m71F m ai72F
=2
These equations imply that «; is constant and F' is a quasipolynom w.r.t. the variable u. The

lemma is proven.

Remark 6.1. If the Lie ring R of the evolution equation is finite-dimensional, then according
to (3.141)) the right hand side f(u,us, ..., u,) is the solution to the partial differential equation

o1 (& of m az? n af

i=

Let us give examples of Lie rings of evolution equations.
Example 6.1. We consider the equation
Uy = Uy + u?.

Applying the operator D, we get Uy = Ugy + 20ty .
It follows from the relation

0

DiF(u,uy,ug,...) = (uta— + f— + Df% + .. )F = (uX)+ Xo)F
2
that
Dt = utXl + XQ, (6265)
where f = Uz, + 2uu,.
Lemma 6.2. The vector fieldY = ai(u,uq, ... ,um)a%l—kag(u, Uy, - 7un2>a%2+‘ .. commutles

with the operator D if and only if Y = 0.

The proof is implied by the formula [D,Y] = (Dal8 + Daga + Das-2- uy T - )— —a1% —

9 _ g.0 _
a28_ul as

Gos
Due to (6.265)) and [D, D;] = 0 we have
fX1 + ut[D,Xl] + [D,XQ] = 0.

The last relation splits into to equations [D, X] = 0 and [D, Xs] = —fX;.

We introduce the operators X3 = [ X1, X], Xy = [X1, X;3], X5 = [Xo, X3]. It is easy to show
that [D, X3] = —2u; X; and [D, X4] = 0. It follows from the lemma that X, = 0.

Since the operator X5 = 2u18 + Qug -2 Bug T o then

(D, X5] = (X3f) X1 + [Xo, —2u1 X1 = (dugu + 2u9) Xy + 2u1 X5 — 2f X1,
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or [D,Xg,] = 2U1X3.

Let us prove that a basis of the ring consists of the operators X;, X5, X3, X5. One can see
that [X;, X;5] = 0. Consider X7 = [X,, X5]. By straightforward calculations we obtain that
D, X7] = —4ulX; + 2uy X5 + 2f X3, hence X; = 2u; X3 + 2uX;. Consider now the operator
Xg = [X37X5]. Calculate [D,Xg],

[D,Xg] = —[X5, [D,Xg“ + [Xg, [D,X5]] = 2X5(U1)X1 + 2X3(U1)X3 = 4U1X3.

Comparing the relations [D, Xg] = 4u; X5 and [D, X;5] = 2u1 X3, we get Xg = 2X;. It
yields that the Lie ring of this equation is four-dimensional and the elements X7, X5, X3, X5
are linearly dependent.

Example 6.2. Burgers equation
Up = Ugy + 2UlUy.
The corresponding equation reads as
Uy = U3 + 2uty + 2u?. (6.266)

The characteristic vector fields

X, = a%, Xy = (ug + 2uug + QU%)ai + (ug + 2uug + 6u1u2)8%2 + ...+
+(Up1 + 2un, + . >8un +.
Here
Xy = [X1, Xo] = 2D — 2u, X, (6.267)

whereD—ula —|—u28‘31+ —|—unaua + ...
It follows from the relation [D, D] = O that

[D,utXl + XQ] = (Ug + 2uu2 + QU%)XI + ut[D, Xl] + [D, XQ] =0.

Then
(D, X1] =0 and [D,X5] = —(us+ 2uuy + 2u?)X;. (6.268)

Employing (6.267) and (6.268)), we obtain
X5 = [XQ,Xg] = [X272D — 2U1X1] =
= 2(ug + 2uuy + 2u?) X7 — 2(ug + 2uuy + 2u?) X, + 2uy X;.
It yields X4 = 0, X5 = 2u1 X3. Thus, a basis of the characteristic ring for Burgers equations
consists of the operators X, Xo, X3.

Example 6.3. Consider the Korteweg-de Vries equation u; = Ugpy + uty,. The equation
(6.258]) becomes
Uy = Uy + Uty + U3 (6.269)

For the equation (6.269)) it is easy to show that X, = [ X1, X3] = 0, X5 = [Xo, X3] = = w1 X5.
Therefore, a basis of the characteristic Lie ring of the Korteweg-de Vries equations consists of
the operators Xy, X9, X3.

Example 6.4. For the modified Korteweg-de Vries equation u; = Ugpy + u?u, the equation
(6.258)) casts into the form

Ugr = Uy + U2y + 2uu%.

The operators Xy, Xo, X3 = [X1, Xs], Xy = [X1, X3] form a basis of the characteristic Lie
ring of the the modified Korteweg-de Vries equation
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6.2.2.  Associated Lie algebras. As it follows from the examples given in Subsection [6.2.1] the
characteristic Lie ring determines the dependence of the right hand side f = f(u, %, ey gZ—ﬁ)
of equation on the variable u. Here we are going to introduce the definition of a Lie
ring which would take into account also the dependence of f on the derivatives 2% Oy 0"u

In order to do it, we rewrite equation (6.257)) as

uy = fHut u? ), (6.270)
letting u!' = u, u? = Uy, U* = Upy, ..., u" = TL.

Then by consequent differentiating w.r.t. = we obtain from (6.270]) the system of equations

uy = fHut,d?, . u),
u? = fAutd?, .t ul),
ul = fFAlutu? Lt ul ), (6.271)
L 9 an—lun
U? = f”(u , U ,...,u",u;’,u?w...,w).

Thus, from equation (6.257]) we pass to evolution system of equations ((6.271)) w.r.t. unknown
functions u!, u?, ..., u". Now, as in Subsection [6.2.1, to define the characteristic Lie ring of
system ((6.271)), we consider the system

ul, =F', F'=Df, i=12,...,n. (6.272)

The characteristic Lie ring of system (6.271)) is defined by the operator D,

— ouF 0 9] 0
D=— —+F'— +DFF — + ...
ot our e TP T
namely, by the vector fields
0 0 0
Xl_wa X2_w7 R Xn_%7
0 0
Xy =FF— +DF*— + ...,
i ouk * oul *

And, finally, we shall call the characteristic Lie ring of system (6.271]) an associated Lie ring
of evolution equation (6.257)).
For example, for the Burgers equation

Up = Ugy + 2Ul,

we have u, = v, u,, = w. Then system ((6.271)) and ((6.272) become

Uy = w + 2uv,
Vp = Wy + 2Uz0 + 2uv,,
W = Way + dUzVp + 2Up¥ + 20UV,

and

Uy = Wy + 2uv, + 2u,v,
Vgt = Wag + 2UzzV + 20UV + 4UvUy,,

Wyt = Wege + 6umsvx + GUxU:L‘a: + 2“:(:;1336'07

respectively.
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6.3. Systems of ordinary differential equations. Here we consider the system of ordinary
differential equations

du’
dy
In order to define the notion of the characteristic Lie ring for equations ([6.273)), we shall

assume that the solution u!,u?,...,u" depend on the parameter . Then by differentiation

equations (|6.273]) w.r.t. the variable x, we obtain the system of equations
o*ut Of; n " Of; ouF

oyoxr Oz — ok Oz (6.274)

= filx,y,ut,u?, . u"), i=1,2,...,n. (6.273)

It is known (see, for instance, [56]) that hyperbolic system (6.274]) possesses a pair of char-
acteristic Lie ring, namely, the z-characteristic Lie ring X is generated by the vector field

0 0 0
8X1:8_gl’ 2:8@’.“, Z):%,
X1 = 3_y+F8u1 B F’iau§+...,
and the y-characteristic Lie ring Y by the fields
leﬁiu%’ }@:%,...,Yn:aiwf,
Yn+1=a%+ 88 £Z+DF8%+

where D(D) is the operator of total differentation w.r.t. the variable z(y), ui = D*u’,
— -k ; .
u,=Du',1=12...,n, k=12 ...

We call now the z- and y-characteristic Lie rings of system ((6.274]) Lie rings for system of

differential equations (6.273]).

The study of system (6.273)) is based on considering of the ring X.

We note that if dim X < oo, then the right hand sides f; of system are quasipoyno-
mials w.r.t. the variables u', u?,..., u".

As an example we consider the ordinary differential equation
= f(y,u). (6.275)

It is easy to show that if the characteristic Lie ring of equation (|6.275)) is finite-dimensional,
then the right hand side f(y,u) is a quasipolynom w.r.t. the variable w.
For instance, the dimension of the Lie ring of the equation

u, = ao(y) + a1 (y)u + agu? (6.276)
equals 4, and if u is a solution to equation (|6.276|) depending on the parameter x, then the
2
expression “zer — 322 is independent of y, i.e.,
Upze  BUZ,

Let us adduce an example of the Riccatti equation (6.276]) with the Lie ring of dimension 3.
Such an example is the equation

u, = a1 (y)u + u®. (6.277)
A solution of Riccatti equation ((6.277) depending on the parameter z satisfies the relation
U/zx
— = 2— = f().

Uy
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Remark 6.2. Another approach of determining the characteristic Lie ring of system (6.273)
1s based on the change

u’:?;;, 1=1,2,...,n
Then system (6.273) becomes
00! vt o™
=filz,y,—,...,— |. 6.278
Jx0y 4 (x Y ox 833) ( )

We call the z- and y-characteristic Lie rings for system of hyperbolic equations (|6.278]|) Lie
rings of original system of ordinary differential equations ((6.273]).

BIBLIOGRAPHY

1. V.E. Adler, S.Ya. Startsev. Discrete analogues of the Liouville equation // Teoret. i matem. fizika.
V. 121. No. 2. 1999. P. 271-284. [Theor. Math. Phys. V. 121. No. 2. 1999. P. 1484-1495.]

2. V.E. Adler, A.B. Shabat, R.I. Yamilov. Symmetry approach to the integrability problem /] Teoret.
i matem. fizika. V. 125. No. 3. 2000. P. 355-424. [Theor. Math. Phys. V. 125. No. 3. 2000. P. 1603-
1661.]

3. A.B. Borisov, R.A. Zykov. The dressing chain of discrete symmetries and proliferation of nonlinear
equations // Teoret. i matem. fizika. V. 115. No. 2. 1998. P. 199-214. [Theor. Math. Phys. V. 115.
No. 2. 1998. P. 530-541.]

4. A.B. Borisov, R.A. Zykov, M.V. Pavlov. Tzitzeica Equation and Proliferation of Nonlinear Inte-
grable Equations // Teoret. i matem. fizika. V. 131. No. 1. 2002. P. 126-134. [Theor. Math. Phys.
V. 131. No. 1. 2002. P. 550-557.]

5. N. Bourbaki. Lie Groups and Lie Algebras. Springer, Berlin-Heidelberg-New York. 2000. 434 pp.

6. N.V. Gareeva, A.V. Zhiber. Second order integrals of hyperbolic equations and evolution equa-
tions // Proceedings of International conference “Algebraic and analytic methods in the theory of
differential equations”. Orel, OSU. 1996. P. 39-42. (in Russian)

7. A.M. Gur’eva, A.V. Zhiber. On characteristic equation for quasilinear hyperbolic system of equa-
tions // Vestnik USATU. V. 6. No. 2(13). 2005. P. 26-33. (in Russian)

8. M. Giirses, A.V. Zhiber, I.T. Habibullin. Characteristic Lie rings of differential equations // Ufim-
skii matem. zhur. 2012. V. 4, No. 1. P. 53-62. [Ufa Math. J. 2012. V. 4, No. 1, P. 49-58]

9. N.A. Zheltukhina, A.U. Sakieva, [.T. Habibullin. Characteristic Lie algebra and Darboux integrable
discrete chains // Ufimskii matem. zhurn. V. 2, No. 4. 2010. P. 39-51.

10. A.V. Zhiber. Quasilinear hyperbolic equations with an infinite-dimensional symmetry algebra //
Izv. RAN. Ser. matem. V. 58, No. 4. 1994. P. 33-54. [Russ AC SC Izv. Math.. V. 45, No. 1. 1995.
P. 33-54.]

11. A.V. Zhiber Symmetries and integrals of nonlinear differential equations // Dissertation for doctor
of phys. and math. sci. degree. Ekateringburg, IMM UrO RAN. 1994. (in Russian).

12. A.V. Zhiber, O.R. Kostrigina. Ezxactly integrable models of wave processes // Herald of USATU.
V. 9, No. 7(25). 2007. P. 83-89. (in Russian)

13. A.v. Zhiber, F. Kh. Mukminov. Quadratic systems, symmetries, characteristic and complete alge-
bras // Problems of mathematical physics and the asymptotics for their solutions. Ufa, BNC UrO
AN SSSR. 1991. P. 14-32. (in Russian)

14. A.V. Zhiber, R.D. Murtazina. Laplace invariants and characteristic Lie algebra // Problems of
theoretical and applied mathematics. Proceedings of 39th Regional youth confefrence. 2008. P. 118—
122. (in Russian)

15. A.V. Zhiber, R.D. Murtazina. On vector fields of integrable Klein-Gordon equations // Interuni-
versities collection of scientific works, USATU. 2004. P. 131-144. (in Russian)

16. A.V. Zhiber, R.D. Murtazina. On nonlinear hyperbolic equation with characteristic algebra of slow
growth // Herald of USATU. V. 7, No. 2. 2006. P. 131-136. (in Russian)



17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

CHARACTERISTIC LIE RINGS ... 83

. A.V. Zhiber, R.D. Murtazina. On Darbouzx integrable nonlinear hyperbolic equations // Proceed-
ings of Institute of Mathematics with Computer Center of USC RAS. Ufa, BSU. No. 1. 2008.
P. 84-92. (in Russian)

A.V. Zhiber, R.D. Murtazina. On the characteristic Lie algebras for equations ugzy = f(u,uy) //
Fund. prikl. mekh. Gamiltonovy i lagrangevy systemy. Algebry Lie. V. 12. No. 7. 2006. P. 65-78.
[J. Math. Sci. V. 151, No. 4. 2008. P. 3112-3122.]

A.V. Zhiber, V.V. Sokolov. Laplace transformations in the classification of integrable quasilinear
equations // Problems of mechanics and control. Ufa, Ufa Scientific Center, RAS. No. 2. 1995.
P. 51-65. (in Russian)

A.V. Zhiber, V.V. Sokolov. Ezactly integrable hyperbolic equations of Liouville type // Uspekhi
matem. nauk. V. 56, No. 1(337). 2001. P. 63-106. [Russ. Math. Surv. 2001. V. 56, No. 1. 2001.
P.61-101.]

A.V. Zhiber, A.B. Shabat. Systems of equations u,; = p(u,v), vy = q(u,v) that possess symmetries
// Dokl. AN SSSR. V. 277. No. 1. 1984. P. 20-33. [Soviet Math. Dokl. V. 30, No. 1. 1984. P. 23-26.)]
A.V. Zhiber, A.B. Shabat. Klein-Gordon equations with a nontrivial group // Dokl. AN SSSR.
1979. V. 247, No. 5. P. 1103-1107. [Sov. Phys. Dokl. 1979. V. 24, No. 8. P. 608-609]

A.V. Zabrodin. Hirota’s difference equations // Teoret. i matem. fizika. V. 113. No. 2. 1997.
P. 179-230. [Theor. Math. Phys. V. 113. No. 2. 1997. P. 1347-1392.]

0.V. Kaptsov. Integration methods for partial differential equations Fizmatlit, Moscow. 2009.
184 pp. (in Russian)

V.G. Kac. Simple irreducible graded lie algebras of finite growth // Izv. AN SSSR. Ser. matem.
V. 32, No. 6. 1968. P. 1323-1367. [Math. USSR Izv. V. 2, No. 6. 1968. P. 1271-1311.]

O.R. Kostrigina. Two-component hyperbolic systems of equations of exponential type with finite-
dimeinsional characteristic Lie algebra // Ufimskii matem. zhurn. V. 1, No. 3. 2009. P. 57-64. (in
Russian)

O.R. Kostrigina. On nonlinear hyperbolic systems of equations with finite-dimeinsional character-
istic Lie algebra // Problems of theoretical and applied mathematics. Proceedings of 38th Regional
youth conference. 2007. IMM UrB RAS. Ekaterinburg. P. 164—-168.

M.N. Kuznetsova. Symmetries of elliptic sine equation // Regional school-conference for students,
post-graduated students, and young scientists on mathematics and physics. V. 1. Ufa, BSU. 2007.
P. 170-179.

A.N. Leznov. On the complete integrability of a nonlinear system of partial differential equations
in two-dimensional space // Teoret. i matem. fizika. V. 42. No. 3. 1980. P. 343-349. [Theor. Math.
Phys. V. 42. No. 3. 1980. P. 225-229.]

A.N. Leznov, V.G. Smirnov, A.B. Shabat. The group of internal symmetries and the conditions
of integrability of two-dimensional dynamical systems // Teoret. i matem. fizika. 1982. V. 51. No.
1. P. 10-22. [Theor. Math. Phys. 1982. V. 51. No. 1. P. 322-330]

A.N. Leznov, M.V. Savel’ev, D.A. Leites. On the complete integrability of some nonlinear equations
of string theories // C. R. Acad. Bulg. Sci. V. 35. No. 4. 1982. P. 435-438.

A.V. Zhiber, V.V. Sokolov. Laplace cascade integration method and Darbouz integrable equations.
Textbook. BSU. 1996. 56 pp. (in Russian).

A.V. Mikhailov, A.B. Shabat, V.V. Sokolov. The symmetry approach to the classification of inte-
grable equations // Integrability and kinetic equations for solitons. “Naukova Dumka”, Kiev. 1990.
P. 213-279. (in Russian)

A.V. Mikhailov, A.B. Shabat, R.I. Yamilov. The symmetry approach to the classification of non-
linear equations. Complete lists of integrable systems // Uspekhi matem. nauk. V. 42. No. 4. 1987.
P. 3-53. [Russ. Math. Surv. V. 42, No. 4. 1987. P. 1-63.]

R.D. Murtazina. Nonlinear hyperbolic equations and characteristic Lie algebras // Proceedings of
Institute of mathematics and mechanics of UrB RAS. V. 13. No. 4. 2007. P. 102-117. (in Russian)
R.D. Murtazina. Equation gy = f(u, uz,uy,) with second order x- and y-integrals // Proceedings
of All-russian scientific conference with international participation “Differential equations and their
applications” Ufa, Gilem. 2011. P. 109-112. (in Russian)

R.D. Murtazina. Characteristic Lie algebras and symmetries for mSG equation // Proceedings of
Institute of Mathematics with Computer Center of USC RAS. BSU. No. 1. 2008. P. 156-164.



84

38

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

95.

56.

57.

58.

59.

60.

61.

62.

A.V. ZHIBER, R.D. MURTAZINA, 1.T. HABIBULLIN, A.B. SHABAT

. S.I. Svinolupov, V.V. Sokolov. Evolution equations with nontrivial conservative laws // Funkts.
anal. i ego prilozh. V. 16, No. .4. 1982. P. 86-87. [Funct. Anal. Appl. V. 16, No. .4. 1982. P. 317-319.]
S.I. Svinolupov, V.V. Sokolov. Second order evolution equations possessing ymmetries // Dep.
VINITI. 1982. P. 3927-82. (in Russian)

S.I. Svinolupov. Jordan algebras and generalized Korteweg-de Vries equations // Teoret. i matem.
fizika. V.87. No. 3. 1991. P. 391-403. [Theor. Math. Phys. V.87. No. 3. 1991. P. 611-620.]

F. Tricomi. On linear partial differential equations of the second order of mixed type. Brown Uni-
versity, Graduate Division of Applied Mathematics. 1948. 372 pp.

L.T. Habibullin, E.V. Gudkova. An algebraic method for classifying S-integrable discrete models //
Teoret. i matem. fizika. V. 167. No. 3. 2011. P. 407-419. [Theor. Math. Phys. V. 167. No. 3. 2011.
P. 751-761]

I.T. Habibullin, A. Pekcan. Characteristic Lie algebra and classification of semidiscrete models //
Teoret. 1 matem. fizika. V. 151. No. 3. 2007. P. 413-423. [Theor. Math. Phys. V. 151. No. 3. 2007.
P. 781-790.]

A.B. Shabat, R.I. Yamilov. Ezponential systems of kind I and Cartan matrices // Preprint of
BBAS USSR, Ufa. 1981. 23 pp. (in Russian)

V.E. Adler, A.I. Bobenko and Yu.B. Suris. Classification of integrable equations on quad-graphs
// The consistency approach, Commun. Math. Phys. V. 233. 2003. P. 513-43.

M.Giirses and A. Karasu. Variable Coefficient Third Order KdV Type of Equations // J. Math.
Phys. V. 36. 1995. 3485.

M.Giirses, A. Karasu, and R. Turhan. Nonautonomous Svinolupov Jordan KdV Systems // J.
Phys. A. V. 34. 2001. P. 5705-5711; arXiv:nlin/0101031v1 [nlin.SI].

M.Giirses and A. Karasu. Integrable KdV Systems: Recursion Operators of Degree Four // Phys.
Lett. A. V. 214. 1996. P. 21-26 (1996); V. 251. 1999. P. 247-249; arXiv:solv-int/9811013v1 (1998).
E. Goursat. Lecons sur l'integration des equations aux derivees partielles du second ordre a deux
variables independantes Paris: Hermann. V. LII. 1896, 1898. 226 p., 345 p.

LT. Habibullin. Characteristic algebras of fully discrete hyperbolic type equations // Symmetry
Integrability Geom.: Methods Appl. V. 1. Paper 023. 2005. 9 pages.

L.T. Habibullin, E.V. Gudkova. Classification of integrable discrete Klein-Gordon models |/ Phys-
ica Scripta. V. 83. 2011. 045003. (arXiv : nlin/1011.3364).

I.T. Habibullin, N. Zheltukhina, A. Pekcan. Complete list of Darbouz integrable chains of the form
tiz =tz +d(t,t1) // J. Math. Phys. V. 50. No. 102710. 2009. (23 pages)

I.T. Habibullin, N. Zheltukhina, A. Pekcan. On the classification of Darboux integrable chains //
J. Math. Phys. V. 49. No. 10. 2008. (40 pages)

I.T. Habibullin, N. Zheltukhina, A. Pekcan. On Some Algebraic Properties of Semi-Discrete Hy-
perbolic Type Equations // Turk. J. Math. V. 32. 2008. P. 1-17.

J. Hietarinta and C. Viallet. Discrete Painleve I and singulatity confinement in projective space
Chaos Solitons Fractals

No. 11. 2000. P. 29-32.

0.S. Kostrigina, A.V. Zhiber. Darbouz-integrable two-component nonlinear hyperbolic system of
equations // J. Math. Phys. 52:033503 suppl. (2011) doi:10.1063/1.3559134 (32 pages).

A.N. Leznov, M.V. Saveliev. Representation of zero curvature for the system of nonlinear partial
differential equations x4 .z = exp(Kz)o and its integrability // Lett. Math. Phys. No. 3. 1973.
P. 489-494.

F.W. Nijhoff, H'W. Capel. The discrete Korteweg-de Vries equation // Acta.Appl.Math. V. 39.
1995. P. 133-158.

S.I. Svinolupov. On the analogues of the Burgers Equation // Phys. Lett. A. V. 135. No. 1. 1989.
P. 32-36.

E. Vessiot. Sur les equations aux derivees partialles du second order, F(x,y,p,q,r,s,t) =0, inte-
qrables par la methode de Darboux // J. Math. Pure Appl. V. 18. No. 9. 1939. P. 1-61.

E. Vessiot. Sur les equations aux derivees partialles du second order, F(x,y,p,q,r,s,t) =0, inte-
grables par la methode de Darboux // J. Math. Pure Appl. V. 21. No. 9. 1942. P. 1-68.

R. Yamilov. Symmetries as integrability criteria for differential difference equations // J. Phys. A:
Math. Gen. V. 39. 2006. R541-R623.



CHARACTERISTIC LIE RINGS ... 85

63. V.E. Zakharov, S.V. Manakov. The theory of resonance interaction of wave packets in nonlinear

media // Soviet Physics JETP. V. 42. 1975. P. 842.

Anatolii Vasilevich Zhiber,

Institute of Mathematics with Computer Center of Ufa Scientific Center, RAS,
Chernyshevskogo str., 112,

450008, Ufa, Russia

E-mail: zhiber@mail.com

Regina Dimovna Murtazina,

Ufa State
Aviation Technical University,
K. Marx st., 12

450000, Ufa, Russia
E-mail: ReginaUFAQyandex.ru

Ismagil Talgatovich Habibullin,

Institute of Mathematics with Computer Center of Ufa Scientific Center, RAS,
Chernyshevskogo str., 112,

450008, Ufa, Russia

E-mail: habibullinismagil@gmail.com

Alexei Borisovich Shabat,

Landau Institute for Theoretical Physics, RAS,
Kosygina str., 2,

119334, Moscow, Russia

E-mail: shabatab@mail.ru



	to1. Intorduction
	to2. Scalar integrable equations
	to2.1. Definition of characteristic Lie ring
	to2.2. Classification of integrable hyperbolic equation with an infinite-dimensional characteristic Lie ring
	to2.2.1. Klein-Gordon equation
	to2.2.2. Hyperbolic equations uxy=f(u,ux,uy)

	to2.3. System of equations ux=f(u,v), vy=(u,v)
	to2.4. Nonlinear integrable equations with a finite dimensional characteristic ring
	to2.5. Equation uxy=f(u,ux,uy) with second order x- and y-integrals
	to2.6. Linearized equation
	to2.7. Generalized symmetries of integrable equations
	to2.7.1. Symmetries of Liouville equation
	to2.7.2. The symmetries of Sine-Gordon equation
	to2.7.3. Symmetries of Tzitzeica equation
	to2.7.4. Symmetries of modified Sine-Gordon equation


	to3. System of hyperbolic equations
	to3.1. Symmetries. Characteristic ring.
	to3.1.1. Exponential systems of kind I and Cartan matrices
	to3.1.2. Quadratic systems

	to3.2. Characteristic Lie rings and Darboux integrability criterion for nonlinear hyperbolic systems of equations 
	to3.3. Nonlinear hyperbolic systems of equations with first order integrals
	to3.4. Two-component systems of equations with first and second order integrals
	to3.5. Quadratic systems of equations with first and second order integrals
	to3.6. Linearization of exponential systems of rank 2

	to4. Differential-difference hyperbolic equations
	to4.1. Liouville type differential-difference equations
	to4.2. Classification of Darboux integrable chains of special form
	to4.3. S-integrable differential-difference equations

	to5. Fully discrete equations
	to5.1. Liouville type discrete equations
	to5.2. General discrete equations
	to5.3. S-integrable discrete equations

	to6. Perspectives of algebraic method
	to6.1. Characteristic ring of ``n-waves'' equations
	to6.2. Evolution equations
	to6.2.1. Lie rings of evolution equations
	to6.2.2. Associated Lie algebras

	to6.3. Systems of ordinary differential equations

	 References

