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CHARACTERISTIC LIE RING OF

ZHIBER-SHABAT-TZITZEICA EQUATION

A.U. SAKIEVA

Abstract. In this work we give a complete description of the characteristic Lie ring for
Zhiber-Shabat-Tzitzeica equation. We construct the basis for the linear space of multiple
commutators of arbitrary order. It is proven that the characteristic Lie ring is a ring of
slow growth.
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1. Introduction

Characteristic Lie rings are an important tool for studying partial differential equations. At
the first time the notion of a characteristic vector field lying in the base of the characteristic
field was introduced by Goursat in [1]. The notion of characteristic algebra was introduced in
the work of A.N. Leznov, V.G. Smirnov, A.B. Shabat [2]. The characteristic algebras and rings
for differential equations were also studied in the works [3–6].

In this paper we deal with the problem of description of the characteristic Lie ring for the
equation

𝑢𝑥𝑦 = 𝑒𝑢 + 𝑒−2𝑢. (1)

Equation (1) was first found in the work of Tzitzeica [7] while studying the geometry of two-
dimensional surfaces in R3. Later it was re-discovered by A.B. Shabst and A.V. Zhiber in [8] as
a result of classification of integrable cases for Klein-Gordon equation. In the same work they
constructed the hierarchy of higher symmetries and conservation laws. The Lax representations
for (1) were found by A.V. Mikhailov (see [9] ). Note that the higher symmetries of equation
(1) have the order equalling 6𝑛 + 1 and 6𝑛− 1, where 𝑛 ∈ N. A surprising fact is that exactly
these numbers are distinguished in the description of the characteristic ring for equation (1).
This fact seems to show a close connection between the algebra of higher symmetries of an
equation and its characteristic ring, since exactly the same situation holds for Sine-Gordon
equation (see [3, 4]).

In the work [4] for the equations
𝑢𝑥𝑦 = 𝑓(𝑢) (2)

there were introduced the operators 𝑋1 and 𝑋2 generating the characteristic Lie ring for equa-
tion (2),

𝑋1 =
∞∑︁
𝑘=1

𝐷𝑘−1(𝑓)
𝜕

𝜕𝑢𝑘

, (3)

𝑋2 =
𝜕

𝜕𝑢
, (4)

where in our case 𝑓 = 𝑒𝑢 + 𝑒−2𝑢. Here 𝐷 is the operator of total differentiation w.r.t. 𝑥. We
observe that the operators 𝑋1 and 𝑋2 are linearly independent as 𝑓(𝑢) ̸= 0.
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Denote by 𝐿𝑖 the linear space spanned on all commutators of length no more than 𝑖−1, where
𝑖 = 2, 3, .... And in this space we take linear combinations with the coefficients depending on
smooth functions of a finite number of dynamical variables, and a set of the elements 𝑍1, 𝑍2,
. . . , 𝑍𝑘 is called linearly independent if there exists a set of the functions 𝑐1, 𝑐2, . . . , 𝑐𝑘 such
that not all of them are zero and the identity 𝑐1𝑍1 + 𝑐2𝑍2 + ...+ 𝑐𝑘𝑍𝑘 = 0 holds. Otherwise the
set is linearly independent. For instance, 𝐿2 = {𝑋1, 𝑋2} is the linear space generated by the
elements 𝑋1, 𝑋2, dim𝐿2 = 2. We suppose that 𝑋1 and 𝑋2 the operators of length 1. Then 𝐿3

consists of the elements of the space 𝐿2 and the element 𝑋3 = [𝑋2, 𝑋1], i.e., 𝐿3 = {𝑋1, 𝑋2, 𝑋3}.
Therefore, 𝐿4 = 𝐿3 + {[𝑋2, 𝑋3] , [𝑋1, 𝑋3]} and so forth.

Define 𝛿(𝑖) = dim(𝐿𝑖) − dim(𝐿𝑖−1). It will be shown that the Lie ring for equation (1) is
infinite-dimensional, and at that 𝛿(𝑖) = 1 if 𝑖 = 6𝑛−1, 𝑖 = 6𝑛, 𝑖 = 6𝑛+1, 𝑖 = 6𝑛+3, 𝑛 = 1, 2, ...
and 𝛿(𝑖) = 2 as 𝑖 = 6𝑛 + 2, 𝑖 = 6𝑛 + 4, 𝑛 = 1, 2, .... Hence, the Lie ring for the equation (1)
is the characteristic ring of slow growth. We observe that the structure of linear spaces 𝐿𝑖 for
𝑖 6 10 was studied in [4].

In what follows we shall make use of the next statement whose proof can found, for instance,
in [4].

Lemma 1. Let a vector field 𝑍 be

𝑍 = 𝛼1
𝜕

𝜕𝑢1
+ 𝛼2

𝜕
𝜕𝑢2

+ 𝛼3
𝜕

𝜕𝑢3
+ ..., 𝛼𝑖 = 𝛼𝑖(𝑢, 𝑢1, 𝑢2, ...), 𝑖 = 1, 2, 3, ...

Then [𝐷𝑥, 𝑍] = 0 if and only if 𝑍 = 0.

2. Characteristic ring for Zhiber-Shabat-Tzitzeica equation

We introduce the following notations for multiple commutators,

𝑋𝑖1,...𝑖𝑛 = 𝑎𝑑𝑋𝑖1
...𝑎𝑑𝑋𝑖𝑛−1

𝑋𝑖𝑛 , where 𝑎𝑑𝑋𝑌 = [𝑋, 𝑌 ] .

Theorem 1. For Zhiber-Shabat-Tzitzeica equation (1) the identities

𝛿(𝑖) = 2, 𝑖 = 6𝑛 + 2, 𝑖 = 6𝑛 + 4, 𝑛 = 1, 2, ...; (5)

𝛿(𝑖) = 1, 𝑖 = 6𝑛− 1, 𝑖 = 6𝑛, 𝑖 = 6𝑛 + 1, 𝑖 = 6𝑛 + 3, 𝑛 = 1, 2, .... (6)

hold. At that the following identities
𝐿6𝑛+2 = 𝐿6𝑛+1 ⊕ {𝑋1...121, 𝑋21...121},
𝐿6𝑛+4 = 𝐿6𝑛+3 ⊕ {𝑋1...121, 𝑋21...121},
𝐿6𝑛−1 = 𝐿6𝑛−2 ⊕ {𝑋1...121},
𝐿6𝑛 = 𝐿6𝑛−1 ⊕ {𝑋1...121},
𝐿6𝑛+1 = 𝐿6𝑛 ⊕ {𝑋1...121},
𝐿6𝑛+3 = 𝐿6𝑛+2 ⊕ {𝑋1...121}
are valid. Id est, the operators 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, �̄�8, 𝑋9, 𝑋10, �̄�10, ...𝑋6𝑛−1,

𝑋6𝑛, 𝑋6𝑛+1, 𝑋6𝑛+2, �̄�6𝑛+2, 𝑋6𝑛+3, 𝑋6𝑛+4, �̄�6𝑛+4, . . . form a basis of the characteristic Lie ring
𝐿 of equation (1), where
𝑋𝑛 = 𝑋𝑖1...𝑖𝑛 at that 𝑖1 = ... = 𝑖𝑛−2 = 𝑖𝑛 = 1, 𝑖𝑛−1 = 2,
�̄�𝑛 = 𝑋𝑖1...𝑖𝑛 at that 𝑖2 = ... = 𝑖𝑛−2 = 𝑖𝑛 = 1, 𝑖1 = 𝑖𝑛−1 = 2.

The operators 𝑋1, 𝑋2 are determined above. For 𝑋1 and 𝑋2 the relations

[𝐷𝑥, 𝑋1] = −(𝑒𝑢 + 𝑒−2𝑢)𝑋2, (7)

[𝐷𝑥, 𝑋2] = 0 (8)

hold true. We introduce an operator of length 2, 𝑋3 = [𝑋2, 𝑋1]. Employing Jacobi identity
and relations (7),(8), we obtain

[𝐷𝑥, 𝑋3] = −(𝑒𝑢 − 2𝑒−2𝑢)𝑋2. (9)

Assume that the operator 𝑋3 is linearly expressed via 𝑋1 and 𝑋2, then we get

𝑋3 = 𝜆1𝑋1 + 𝜆2𝑋2. (10)
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We apply the operator 𝐷𝑥 to both sides of the last identity; employing relations (7),(8),(9), we
obtain

− (𝑒𝑢 − 2𝑒−2𝑢)𝑋2 = 𝐷𝑥(𝜆1)𝑋1 − 𝜆1(𝑒
𝑢 + 𝑒−2𝑢)𝑋2 + 𝐷𝑥(𝜆2)𝑋2. (11)

We compare the coefficients at linearly independent operators 𝑋2 and 𝑋1, then we get

− (𝑒𝑢 − 2𝑒−2𝑢) = −𝜆1(𝑒
𝑢 + 𝑒−2𝑢) + 𝐷𝑥(𝜆2) (12)

and
𝐷𝑥(𝜆1) = 0. (13)

Identity (12) is inconsistent since 𝜆𝑁 = 𝜆𝑁(𝑢, 𝑢𝑥, 𝑢𝑥𝑥, ...), and 𝐷𝑥(𝜆2) contains 𝑢𝑥, 𝑢𝑥𝑥, ....
Therefore, the operator 𝑋3 = 𝑋21 is not linearly expressed via 𝑋1 and 𝑋2. Hence, the lin-
ear space 𝐿3 is three-dimensional, i.e., 𝐿3 = {𝑋1, 𝑋2, 𝑋3}.

We introduce the operators of length 3, 𝑋4 = [𝑋1, 𝑋3] and �̄�4 = [𝑋2, 𝑋3], for which it holds[︀
𝐷𝑥, �̄�4

]︀
= 2 [𝐷𝑥, 𝑋1] − [𝐷𝑥, 𝑋3] (14)

and

[𝐷𝑥, 𝑋4] = (𝑒𝑢 − 2𝑒−2𝑢)𝑋3 − (𝑒𝑢 + 𝑒−2𝑢) [𝑋2, 𝑋3] = (2𝑒𝑢 − 𝑒−2𝑢)𝑋3 − 2(𝑒𝑢 + 𝑒−2𝑢)𝑋1. (15)

Thus,

�̄�4 = 2𝑋1 −𝑋3.

The operator 𝑋4 = 𝑋121 is not linearly expressed via operators of lower order, and we get
𝐿4 = {𝑋1, 𝑋2, 𝑋3, 𝑋4}.

Consider the operators of length 4, 𝑋5 = [𝑋1, 𝑋4] and �̄�5 = [𝑋2, 𝑋4]. Employing Jacobi
identity and relations (7), (8), and (15), we obtain �̄�5 = −𝑋4 and

[𝐷𝑥, 𝑋5] = (2𝑒𝑢 − 𝑒−2𝑢)𝑋4 − (𝑒𝑢 + 𝑒−2𝑢) [𝑋2, 𝑋4] = 3𝑒𝑢𝑋4. (16)

The operator 𝑋5 = 𝑋1121 is not linearly expressed via the operators of lower order, and therefore
𝐿5 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5}.

We introduce the operators of length 5, 𝑋6 = [𝑋1, 𝑋5] , �̄�6 and [𝑋3, 𝑋4]. According to Jacobi
identity, [𝑋3, 𝑋4] = 𝑋5. It is easy to show that for �̄�6 the identity[︀

𝐷𝑥, �̄�6

]︀
= 0 (17)

holds. Therefore, in accordance with Lemma 1, �̄�6 = 0. For 𝑋6 we obtain

[𝐷𝑥, 𝑋6] = [𝑋1, 3𝑒
𝑢𝑋4] − (𝑒𝑢 + 𝑒−2𝑢) [𝑋2, 𝑋5] = 3𝑒𝑢𝑋5. (18)

Hence, the operator 𝑋6 = 𝑋11121 is not linearly expressed via operators of lower order, and we
have 𝐿6 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6}.

Consider the operators of length 6, 𝑋7 = [𝑋1, 𝑋6] , �̄�7 = [𝑋2, 𝑋6] , [𝑋3, 𝑋5] . It is easy to show
that [𝑋3, 𝑋5] = 𝑋6, [𝑋2, 𝑋6] = 𝑋6,

[𝐷𝑥, 𝑋7] = 3𝑒𝑢𝑋6 − (𝑒𝑢 + 𝑒−2𝑢) [𝑋2, 𝑋6] = (2𝑒𝑢 − 𝑒−2𝑢)𝑋6. (19)

Therefore, 𝑋7 = 𝑋111121 is not linearly expressed via operators of lower order 𝐿7 =
{𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7}.

We introduce the operators of length 7, 𝑋8 = [𝑋1, 𝑋7] , �̄�8 = [𝑋2, 𝑋7] , [𝑋3, 𝑋6] , [𝑋4, 𝑋5].
According to Jacobi identity, [𝑋3, 𝑋6] = �̄�8 − 𝑋7, [𝑋4, 𝑋5] = 2𝑋7 − �̄�8. For 𝑋8 and �̄�8 the
relations [︀

𝐷𝑥, �̄�8

]︀
= (4𝑒𝑢 + 𝑒−2𝑢)𝑋6 (20)

and
[𝐷𝑥, 𝑋8] = (2𝑒𝑢 − 𝑒−2𝑢)𝑋7 − (𝑒𝑢 + 𝑒−2𝑢)�̄�8 (21)

hold true. Id est, the space 𝐿8 is obtained from 𝐿7 by adding two linearly independent elements,
𝑋8 = 𝑋1111121 and �̄�8 = 𝑋2111121, i.e., 𝐿8 = 𝐿7 ⊕

{︀
𝑋8, �̄�8

}︀
.

We consider the operators of length 8, 𝑋9 = [𝑋1, 𝑋8], �̄�9 = [𝑋2, 𝑋8],
[︀
𝑋1, �̄�8

]︀
,
[︀
𝑋2, �̄�8

]︀
,

[𝑋3, 𝑋7], [𝑋4, 𝑋6].
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According to Jacobi identity, [𝑋3, 𝑋7] = −𝑋8, [𝑋4, 𝑋6] = 𝑋8.
It is also easy to show that

[︀
𝑋2, �̄�8

]︀
= 2𝑋7 + �̄�8,

[︀
𝑋1, �̄�8

]︀
= 𝑋8.

[︀
𝐷𝑥, �̄�9

]︀
= 0, therefore,

due to Lemma 1, �̄�9 = [𝑋2, 𝑋8] = 0.
For 𝑋9 we obtain

[𝐷𝑥, 𝑋9] = (𝑒𝑢 − 2𝑒−2𝑢)𝑋8 − (𝑒𝑢 + 𝑒−2𝑢) [𝑋2, 𝑋8] = (𝑒𝑢 − 2𝑒−2𝑢)𝑋8. (22)

Hence, 𝑋9 = 𝑋11111121 is not linearly expressed via operators of lower order, and 𝐿9 = 𝐿8⊕{𝑋9}.
We introduce the operators of length 9, 𝑋10 = [𝑋1, 𝑋9], �̄�10 = [𝑋2, 𝑋9],

[︀
𝑋3, �̄�8

]︀
, [𝑋3, 𝑋8],

[𝑋4, 𝑋7], [𝑋5, 𝑋6], for which the relations

[𝑋5, 𝑋6] = 2𝑋9 + �̄�10, [𝑋4, 𝑋7] = −𝑋9 − �̄�10,

[𝑋3, 𝑋8] = �̄�10,
[︀
𝑋3, �̄�8

]︀
= −3𝑋8

hold true. For the operators 𝑋10, �̄�10 we have[︀
𝐷𝑥, �̄�10

]︀
= (𝑒𝑢 + 4𝑒−2𝑢)𝑋8 + (𝑒𝑢 − 2𝑒−2𝑢) [𝑋2, 𝑋8] = (𝑒𝑢 + 4𝑒−2𝑢)𝑋8 (23)

and
[𝐷𝑥, 𝑋10] = (𝑒𝑢 − 2𝑒−2𝑢)𝑋9 − (𝑒𝑢 + 𝑒−2𝑢)�̄�10. (24)

Thus, the operators 𝑋10 = 𝑋111111121 and �̄�10 = 𝑋211111121 are not linearly expressed via
operators of lower order, and 𝐿10 = 𝐿9 ⊕

{︀
𝑋10, �̄�10

}︀
.

It can be shown that the basis of the characteristic ring generated by the elements 𝑋 and 𝑌
can be always chosen among the elements of the form 𝑎𝑑𝑘1𝑋 𝑎𝑑𝑘2𝑌 ...𝑎𝑑𝑘𝑠𝑋𝑌 .

We introduce the notations 𝑋𝑛 = [𝑋1, 𝑋𝑛−1] , �̄�𝑛 = [𝑋2, 𝑋𝑛−1]. We shall prove by the
induction. Suppose that for 𝑖 = 𝑛− 1 the identities[︀

𝐷𝑥, 𝑋6(𝑛−1)−1

]︀
= (2𝑒𝑢 − 𝑒−2𝑢)𝑋6(𝑛−1)−2 − (𝑒𝑢 + 𝑒−2𝑢)

[︀
𝑋2, 𝑋6(𝑛−1)−2

]︀
, (25)[︀

𝐷𝑥, 𝑋6(𝑛−1)

]︀
= 3𝑒𝑢𝑋6(𝑛−1)−1 − (𝑒𝑢 + 𝑒−2𝑢)

[︀
𝑋2, 𝑋6(𝑛−1)−1

]︀
, (26)[︀

𝐷𝑥, 𝑋6(𝑛−1)+1

]︀
= 3𝑒𝑢𝑋6(𝑛−1) − (𝑒𝑢 + 𝑒−2𝑢)

[︀
𝑋2, 𝑋6(𝑛−1)

]︀
, (27)[︀

𝐷𝑥, 𝑋6(𝑛−1)+2

]︀
= (2𝑒𝑢 − 𝑒−2𝑢)𝑋6(𝑛−1)+1 − (𝑒𝑢 + 𝑒−2𝑢)

[︀
𝑋2, 𝑋6(𝑛−1)+1

]︀
, (28)[︀

𝐷𝑥, 𝑋6(𝑛−1)+3

]︀
= (𝑒𝑢 − 2𝑒−2𝑢)𝑋6(𝑛−1)+2 − (𝑒𝑢 + 𝑒−2𝑢)

[︀
𝑋2, 𝑋6(𝑛−1)+2

]︀
, (29)[︀

𝐷𝑥, 𝑋6(𝑛−1)+4

]︀
= (𝑒𝑢 − 2𝑒−2𝑢)𝑋6(𝑛−1)+3 − (𝑒𝑢 + 𝑒−2𝑢)

[︀
𝑋2, 𝑋6(𝑛−1)+3

]︀
, (30)

�̄�6(𝑛−1) = 0, �̄�6(𝑛−1)−1 = −𝑋6(𝑛−1)−2, (31)

�̄�6(𝑛−1)+1 = 𝑋6(𝑛−1), �̄�6(𝑛−1)+3 = 0, (32)[︀
𝑋1, �̄�6(𝑛−1)+2

]︀
= 𝑋6(𝑛−1)+2,

[︀
𝑋2, �̄�6(𝑛−1)+2

]︀
= 2𝑋6(𝑛−1)+1 + �̄�6(𝑛−1)+2, (33)[︀

𝑋1, �̄�6(𝑛−1)+4

]︀
= −𝑋6(𝑛−1)+4,

[︀
𝑋2, �̄�6(𝑛−1)+4

]︀
= 2𝑋6(𝑛−1)+3 − �̄�6(𝑛−1)+4 (34)

are valid. Let us check identities (25) – (34) for 𝑖 = 𝑛.
We introduce the operators of length 6𝑛 − 2, 𝑋6𝑛−1 = 𝑋6(𝑛−1)+5 =

[︀
𝑋1, 𝑋6(𝑛−1)+4

]︀
and

�̄�6𝑛−1 = �̄�6(𝑛−1)+5 =
[︀
𝑋2, 𝑋6(𝑛−1)+4

]︀
. We have[︀

𝐷𝑥, �̄�6𝑛−1

]︀
=

[︀
𝐷𝑥,

[︀
𝑋2, 𝑋6(𝑛−1)+4

]︀]︀
= −

[︀
𝐷𝑥, 𝑋6(𝑛−1)+4

]︀
, (35)

hence, �̄�6𝑛−1 = −𝑋6(𝑛−1)+4. For 𝑋6𝑛−1 it holds

[𝐷𝑥, 𝑋6𝑛−1] = (2𝑒𝑢 − 𝑒−2𝑢)𝑋6𝑛−2 − (𝑒𝑢 + 𝑒−2𝑢) [𝑋2, 𝑋6𝑛−2] = 3𝑒𝑢𝑋6𝑛−2. (36)

It means that the operator 𝑋6𝑛−1 = 𝑋1...121 is not linearly expressed via operators of lower
order, and 𝐿6𝑛−1 = 𝐿6𝑛−2 ⊕ {𝑋6𝑛−1}, so, 𝛿(6𝑛− 1) = 1.

We consider the operators of length 6𝑛− 1, 𝑋6𝑛 = [𝑋1, 𝑋6𝑛−1] , �̄�6𝑛 = [𝑋2, 𝑋6𝑛−1]. We have[︀
𝐷𝑥, �̄�6𝑛

]︀
= 0, (37)

and therefore in accordance with Lemma 1 �̄�6𝑛 = 0. We also have

[𝐷𝑥, 𝑋6𝑛] = [𝑋1, 3𝑒
𝑢𝑋6𝑛−2] − (𝑒𝑢 + 𝑒−2𝑢) [𝑋2, 𝑋6𝑛−1] = 3𝑒𝑢𝑋6𝑛−1. (38)
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Therefore, the operator 𝑋6𝑛 = 𝑋1...121 is not linearly expressed via operators of lower order,
and 𝐿6𝑛 = 𝐿6𝑛−1 ⊕ {𝑋6𝑛}. Thus, 𝛿(6𝑛) = 1.

We introduce the operators of length 6𝑛, 𝑋6𝑛+1 = [𝑋1, 𝑋6𝑛] , �̄�6𝑛+1 = [𝑋2, 𝑋6𝑛] for which[︀
𝐷𝑥, �̄�6𝑛+1

]︀
= 3𝑒𝑢𝑋6𝑛−1; (39)

therefore, �̄�6𝑛+1 = 𝑋6𝑛. It is easy to show that

[𝐷𝑥, 𝑋6𝑛+1] = (2𝑒𝑢 − 𝑒−2𝑢)𝑋6𝑛. (40)

It means that the operator 𝑋6𝑛+1 = 𝑋1...121 is not linearly expressed via operators of lower
order, and 𝐿6𝑛+1 = 𝐿6𝑛 ⊕ {𝑋6𝑛+1}. We get 𝛿(6𝑛 + 1) = 1.

We consider the operators of length 6𝑛 + 1, 𝑋6𝑛+2 = [𝑋1, 𝑋6𝑛+1] , �̄�6𝑛+2 = [𝑋2, 𝑋6𝑛+1]. We
have [︀

𝐷𝑥, �̄�6𝑛+2

]︀
= (4𝑒𝑢 + 𝑒−2𝑢)𝑋6𝑛 (41)

and
[𝐷𝑥, 𝑋6𝑛+2] = (2𝑒𝑢 − 𝑒−2𝑢)𝑋6𝑛+1 − (𝑒𝑢 + 𝑒−2𝑢)�̄�6𝑛+2. (42)

Therefore, the operators 𝑋6𝑛+2 = [𝑋1, 𝑋6𝑛+1] = 𝑋1...121 and �̄�6𝑛+2 = [𝑋2, 𝑋6𝑛+1] = 𝑋21...121 are
not linearly expressed via operators of lower order, 𝐿6𝑛+2 = 𝐿6𝑛+1 ⊕

{︀
𝑋6𝑛+2, �̄�6𝑛+2

}︀
. Thus,

𝛿(6𝑛 + 2) = 2.
We introduce the operators of length 6𝑛 + 2, 𝑋6𝑛+3 = [𝑋1, 𝑋6𝑛+2] , �̄�6𝑛+3 =

[𝑋2, 𝑋6𝑛+2] ,
[︀
𝑋1, �̄�6𝑛+2

]︀
,
[︀
𝑋2, �̄�6𝑛+2

]︀
.

It is easy to show the validity of the identity[︀
𝐷𝑥,

[︀
𝑋2, �̄�6𝑛+2

]︀]︀
= (8𝑒𝑢 − 𝑒−2𝑢)𝑋6𝑛, (43)

hence,
[︀
𝑋2, �̄�6𝑛+2

]︀
= 2𝑋6𝑛+1 + �̄�6𝑛+2.[︀
𝐷𝑥,

[︀
𝑋1, �̄�6𝑛+2

]︀]︀
= (2𝑒𝑢 − 𝑒−2𝑢)𝑋6𝑛+1 − (𝑒𝑢 + 𝑒−2𝑢)�̄�6𝑛+2, (44)

and therefore,
[︀
𝑋1, �̄�6𝑛+2

]︀
= 𝑋6𝑛+2.

For the operators 𝑋6𝑛+3 and �̄�6𝑛+3 we have[︀
𝐷𝑥, �̄�6𝑛+3

]︀
= 0 (45)

and
[𝐷𝑥, 𝑋6𝑛+3] = (𝑒𝑢 − 2𝑒−2𝑢)𝑋6𝑛+2, (46)

Then due to Lemma 1, �̄�6𝑛+3 = 0, and it means that on this step into the basis of the
characteristic one operator 𝑋6𝑛+3 = 𝑋1...121 is added, and therefore 𝐿6𝑛+3 = 𝐿6𝑛+2 ⊕ {𝑋6𝑛+3}.
Thus, 𝛿(6𝑛 + 3) = 1.

We consider the operators of length 6𝑛 + 3, 𝑋6𝑛+4 = [𝑋1, 𝑋6𝑛+3] , �̄�6𝑛+4 = [𝑋2, 𝑋6𝑛+3] , for
which it holds [︀

𝐷𝑥, �̄�6𝑛+4

]︀
= (𝑒𝑢 + 4𝑒−2𝑢)𝑋6𝑛+2, (47)

[𝐷𝑥, 𝑋6𝑛+4] = (𝑒𝑢 − 2𝑒−2𝑢)𝑋6𝑛+3 − (𝑒𝑢 + 𝑒−2𝑢)�̄�6𝑛+4. (48)

Hence, the space 𝐿6𝑛+4 is obtained from 𝐿6𝑛+3 by adding two elements 𝑋6𝑛+4 = 𝑋1...121 and
�̄�6𝑛+4 = 𝑋21...121, i.e., 𝐿6𝑛+4 = 𝐿6𝑛+3 ⊕

{︀
𝑋6𝑛+4, �̄�6𝑛+4

}︀
. Thus, 𝛿(6𝑛 + 4) = 2.

We introduce the operators of length 6𝑛 + 4,
𝑋6(𝑛+1)−1 = [𝑋1, 𝑋6𝑛+4] , �̄�6(𝑛+1)−1 = [𝑋2, 𝑋6𝑛+4] ,

[︀
𝑋1, �̄�6𝑛+4

]︀
,
[︀
𝑋2, �̄�6𝑛+4

]︀
.

The relation [︀
𝐷𝑥,

[︀
𝑋2, �̄�6𝑛+4

]︀]︀
= (𝑒𝑢 − 8𝑒−2𝑢)𝑋6𝑛+2 (49)

holds true, and hence
[︀
𝑋2, �̄�6𝑛+4

]︀
= 2𝑋6𝑛+3 − �̄�6𝑛+4.

We also have [︀
𝐷𝑥,

[︀
𝑋1, �̄�6𝑛+4

]︀]︀
= (−𝑒𝑢 + 2𝑒−2𝑢)𝑋6𝑛+3 + (𝑒𝑢 + 𝑒−2𝑢)�̄�6𝑛+4 (50)

that yields
[︀
𝑋1, �̄�6𝑛+4

]︀
= −𝑋6𝑛+4.
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It follows from the identity[︀
𝐷𝑥, �̄�6(𝑛+1)−1

]︀
= (−𝑒𝑢 + 2𝑒−2𝑢)𝑋6𝑛+3 + (𝑒𝑢 + 𝑒−2𝑢)�̄�6𝑛+4 (51)

that �̄�6(𝑛+1)−1 = −𝑋6𝑛+4.
For 𝑋6(𝑛+1)−1 we have [︀

𝐷𝑥, 𝑋6(𝑛+1)−1

]︀
= 3𝑒𝑢𝑋6𝑛+4. (52)

Hence, the operator 𝑋6(𝑛+1)−1 = 𝑋1...121 is not linearly expressed via operators of lower order,

and 𝐿6(𝑛+1)−1 = 𝐿6𝑛+4 ⊕
{︀
𝑋6(𝑛+1)−1

}︀
. Thus, 𝛿(6(𝑛 + 1) − 1) = 1.

Theorem is proven.
The author expressed her gratitude to I.T. Khabibullin for the formulation of the problem

and a permanent attention to the work.
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