CHARACTERISTIC LIE RING OF ZHIBER-SHABAT-TZITZEICA EQUATION

A.U. SAKIEVA

Abstract

In this work we give a complete description of the characteristic Lie ring for Zhiber-Shabat-Tzitzeica equation. We construct the basis for the linear space of multiple commutators of arbitrary order. It is proven that the characteristic Lie ring is a ring of slow growth.

Keywords: Lie ring, nonlinear hyperbolic equation, integral.

1. Introduction

Characteristic Lie rings are an important tool for studying partial differential equations. At the first time the notion of a characteristic vector field lying in the base of the characteristic field was introduced by Goursat in [1]. The notion of characteristic algebra was introduced in the work of A.N. Leznov, V.G. Smirnov, A.B. Shabat [2]. The characteristic algebras and rings for differential equations were also studied in the works [3-6].

In this paper we deal with the problem of description of the characteristic Lie ring for the equation

$$
\begin{equation*}
u_{x y}=e^{u}+e^{-2 u} . \tag{1}
\end{equation*}
$$

Equation (1) was first found in the work of Tzitzeica (7] while studying the geometry of twodimensional surfaces in \mathbb{R}^{3}. Later it was re-discovered by A.B. Shabst and A.V. Zhiber in [8] as a result of classification of integrable cases for Klein-Gordon equation. In the same work they constructed the hierarchy of higher symmetries and conservation laws. The Lax representations for (1) were found by A.V. Mikhailov (see [9]). Note that the higher symmetries of equation (1) have the order equalling $6 n+1$ and $6 n-1$, where $n \in \mathbb{N}$. A surprising fact is that exactly these numbers are distinguished in the description of the characteristic ring for equation (1). This fact seems to show a close connection between the algebra of higher symmetries of an equation and its characteristic ring, since exactly the same situation holds for Sine-Gordon equation (see [3,4]).

In the work [4] for the equations

$$
\begin{equation*}
u_{x y}=f(u) \tag{2}
\end{equation*}
$$

there were introduced the operators X_{1} and X_{2} generating the characteristic Lie ring for equation (2),

$$
\begin{gather*}
X_{1}=\sum_{k=1}^{\infty} D^{k-1}(f) \frac{\partial}{\partial u_{k}}, \tag{3}\\
X_{2}=\frac{\partial}{\partial u} \tag{4}
\end{gather*}
$$

where in our case $f=e^{u}+e^{-2 u}$. Here D is the operator of total differentiation w.r.t. x. We observe that the operators X_{1} and X_{2} are linearly independent as $f(u) \neq 0$.

[^0]Denote by L_{i} the linear space spanned on all commutators of length no more than $i-1$, where $i=2,3, \ldots$ And in this space we take linear combinations with the coefficients depending on smooth functions of a finite number of dynamical variables, and a set of the elements Z_{1}, Z_{2}, \ldots, Z_{k} is called linearly independent if there exists a set of the functions $c_{1}, c_{2}, \ldots, c_{k}$ such that not all of them are zero and the identity $c_{1} Z_{1}+c_{2} Z_{2}+\ldots+c_{k} Z_{k}=0$ holds. Otherwise the set is linearly independent. For instance, $L_{2}=\left\{X_{1}, X_{2}\right\}$ is the linear space generated by the elements X_{1}, X_{2}, $\operatorname{dim} L_{2}=2$. We suppose that X_{1} and X_{2} the operators of length 1. Then L_{3} consists of the elements of the space L_{2} and the element $X_{3}=\left[X_{2}, X_{1}\right]$, i.e., $L_{3}=\left\{X_{1}, X_{2}, X_{3}\right\}$. Therefore, $L_{4}=L_{3}+\left\{\left[X_{2}, X_{3}\right],\left[X_{1}, X_{3}\right]\right\}$ and so forth.

Define $\delta(i)=\operatorname{dim}\left(L_{i}\right)-\operatorname{dim}\left(L_{i-1}\right)$. It will be shown that the Lie ring for equation (11) is infinite-dimensional, and at that $\delta(i)=1$ if $i=6 n-1, i=6 n, i=6 n+1, i=6 n+3, n=1,2, \ldots$ and $\delta(i)=2$ as $i=6 n+2, i=6 n+4, n=1,2, \ldots$. Hence, the Lie ring for the equation (1) is the characteristic ring of slow growth. We observe that the structure of linear spaces L_{i} for $i \leqslant 10$ was studied in [4].

In what follows we shall make use of the next statement whose proof can found, for instance, in (4].

Lemma 1. Let a vector field Z be

$$
Z=\alpha_{1} \frac{\partial}{\partial u_{1}}+\alpha_{2} \frac{\partial}{\partial u_{2}}+\alpha_{3} \frac{\partial}{\partial u_{3}}+\ldots, \alpha_{i}=\alpha_{i}\left(u, u_{1}, u_{2}, \ldots\right), i=1,2,3, \ldots
$$

Then $\left[D_{x}, Z\right]=0$ if and only if $Z=0$.

2. Characteristic Ring for Zhiber-Shabat-Tzitzeica equation

We introduce the following notations for multiple commutators,

$$
X_{i_{1}, \ldots i_{n}}=a d_{X_{i_{1}}} \ldots a d_{X_{i_{n-1}}} X_{i_{n}}, \text { where } a d_{X} Y=[X, Y] .
$$

Theorem 1. For Zhiber-Shabat-Tzitzeica equation (1) the identities

$$
\begin{gather*}
\delta(i)=2, i=6 n+2, i=6 n+4, n=1,2, \ldots \tag{5}\\
\delta(i)=1, i=6 n-1, i=6 n, i=6 n+1, i=6 n+3, n=1,2, \ldots \tag{6}
\end{gather*}
$$

hold. At that the following identities
$L_{6 n+2}=L_{6 n+1} \oplus\left\{X_{1 \ldots 121}, X_{21 \ldots 121}\right\}$,
$L_{6 n+4}=L_{6 n+3} \oplus\left\{X_{1 \ldots 121}, X_{21 \ldots 121}\right\}$,
$L_{6 n-1}=L_{6 n-2} \oplus\left\{X_{1 \ldots 121}\right\}$,
$L_{6 n}=L_{6 n-1} \oplus\left\{X_{1 \ldots 121}\right\}$,
$L_{6 n+1}=L_{6 n} \oplus\left\{X_{1 \ldots 121}\right\}$,
$L_{6 n+3}=L_{6 n+2} \oplus\left\{X_{1 \ldots 121}\right\}$
are valid. Id est, the operators $X_{1}, X_{2}, X_{\overline{3}}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, \bar{X}_{8}, X_{9}, X_{10}, \bar{X}_{10}, \ldots X_{6 n-1}$,
$X_{6 n}, X_{6 n+1}, X_{6 n+2}, \bar{X}_{6 n+2}, X_{6 n+3}, X_{6 n+4}, \bar{X}_{6 n+4}, \ldots$ form a basis of the characteristic Lie ring L of equation (1), where
$\bar{X}_{n}=X_{i_{1} \ldots i_{n}}$ at that $i_{1}=\ldots=i_{n-2}=i_{n}=1, i_{n-1}=2$,
$\bar{X}_{n}=X_{i_{1} \ldots i_{n}}$ at that $i_{2}=\ldots=i_{n-2}=i_{n}=1, i_{1}=i_{n-1}=2$.
The operators X_{1}, X_{2} are determined above. For X_{1} and X_{2} the relations

$$
\begin{gather*}
{\left[D_{x}, X_{1}\right]=-\left(e^{u}+e^{-2 u}\right) X_{2}} \tag{7}\\
{\left[D_{x}, X_{2}\right]=0} \tag{8}
\end{gather*}
$$

hold true. We introduce an operator of length $2, X_{3}=\left[X_{2}, X_{1}\right]$. Employing Jacobi identity and relations (7),(8), we obtain

$$
\begin{equation*}
\left[D_{x}, X_{3}\right]=-\left(e^{u}-2 e^{-2 u}\right) X_{2} \tag{9}
\end{equation*}
$$

Assume that the operator X_{3} is linearly expressed via X_{1} and X_{2}, then we get

$$
\begin{equation*}
X_{3}=\lambda_{1} X_{1}+\lambda_{2} X_{2} . \tag{10}
\end{equation*}
$$

We apply the operator D_{x} to both sides of the last identity; employing relations (7), (8),(9), we obtain

$$
\begin{equation*}
-\left(e^{u}-2 e^{-2 u}\right) X_{2}=D_{x}\left(\lambda_{1}\right) X_{1}-\lambda_{1}\left(e^{u}+e^{-2 u}\right) X_{2}+D_{x}\left(\lambda_{2}\right) X_{2} . \tag{11}
\end{equation*}
$$

We compare the coefficients at linearly independent operators X_{2} and X_{1}, then we get

$$
\begin{equation*}
-\left(e^{u}-2 e^{-2 u}\right)=-\lambda_{1}\left(e^{u}+e^{-2 u}\right)+D_{x}\left(\lambda_{2}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{x}\left(\lambda_{1}\right)=0 . \tag{13}
\end{equation*}
$$

Identity (12) is inconsistent since $\lambda_{N}=\lambda_{N}\left(u, u_{x}, u_{x x}, \ldots\right)$, and $D_{x}\left(\lambda_{2}\right)$ contains $u_{x}, u_{x x}, \ldots$ Therefore, the operator $X_{3}=X_{21}$ is not linearly expressed via X_{1} and X_{2}. Hence, the linear space L_{3} is three-dimensional, i.e., $L_{3}=\left\{X_{1}, X_{2}, X_{3}\right\}$.

We introduce the operators of length $3, X_{4}=\left[X_{1}, X_{3}\right]$ and $\bar{X}_{4}=\left[X_{2}, X_{3}\right]$, for which it holds

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{4}\right]=2\left[D_{x}, X_{1}\right]-\left[D_{x}, X_{3}\right] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[D_{x}, X_{4}\right]=\left(e^{u}-2 e^{-2 u}\right) X_{3}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{3}\right]=\left(2 e^{u}-e^{-2 u}\right) X_{3}-2\left(e^{u}+e^{-2 u}\right) X_{1} . \tag{15}
\end{equation*}
$$

Thus,

$$
\bar{X}_{4}=2 X_{1}-X_{3} .
$$

The operator $X_{4}=X_{121}$ is not linearly expressed via operators of lower order, and we get $L_{4}=\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$.

Consider the operators of length $4, X_{5}=\left[X_{1}, X_{4}\right]$ and $\bar{X}_{5}=\left[X_{2}, X_{4}\right]$. Employing Jacobi identity and relations (7), (8), and (15), we obtain $\bar{X}_{5}=-X_{4}$ and

$$
\begin{equation*}
\left[D_{x}, X_{5}\right]=\left(2 e^{u}-e^{-2 u}\right) X_{4}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{4}\right]=3 e^{u} X_{4} . \tag{16}
\end{equation*}
$$

The operator $X_{5}=X_{1121}$ is not linearly expressed via the operators of lower order, and therefore $L_{5}=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$.

We introduce the operators of length $5, X_{6}=\left[X_{1}, X_{5}\right], \bar{X}_{6}$ and $\left[X_{3}, X_{4}\right]$. According to Jacobi identity, $\left[X_{3}, X_{4}\right]=X_{5}$. It is easy to show that for \bar{X}_{6} the identity

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{6}\right]=0 \tag{17}
\end{equation*}
$$

holds. Therefore, in accordance with Lemma 1, $\bar{X}_{6}=0$. For X_{6} we obtain

$$
\begin{equation*}
\left[D_{x}, X_{6}\right]=\left[X_{1}, 3 e^{u} X_{4}\right]-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{5}\right]=3 e^{u} X_{5} \tag{18}
\end{equation*}
$$

Hence, the operator $X_{6}=X_{11121}$ is not linearly expressed via operators of lower order, and we have $L_{6}=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right\}$.

Consider the operators of length $6, X_{7}=\left[X_{1}, X_{6}\right], \bar{X}_{7}=\left[X_{2}, X_{6}\right],\left[X_{3}, X_{5}\right]$. It is easy to show that $\left[X_{3}, X_{5}\right]=X_{6},\left[X_{2}, X_{6}\right]=X_{6}$,

$$
\begin{equation*}
\left[D_{x}, X_{7}\right]=3 e^{u} X_{6}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{6}\right]=\left(2 e^{u}-e^{-2 u}\right) X_{6} . \tag{19}
\end{equation*}
$$

Therefore, $X_{7}=X_{111121}$ is not linearly expressed via operators of lower order $L_{7}=$ $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right\}$.

We introduce the operators of length $7, X_{8}=\left[X_{1}, X_{7}\right], \bar{X}_{8}=\left[X_{2}, X_{7}\right],\left[X_{3}, X_{6}\right],\left[X_{4}, X_{5}\right]$. According to Jacobi identity, $\left[X_{3}, X_{6}\right]=\bar{X}_{8}-X_{7},\left[X_{4}, X_{5}\right]=2 X_{7}-\bar{X}_{8}$. For X_{8} and \bar{X}_{8} the relations

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{8}\right]=\left(4 e^{u}+e^{-2 u}\right) X_{6} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[D_{x}, X_{8}\right]=\left(2 e^{u}-e^{-2 u}\right) X_{7}-\left(e^{u}+e^{-2 u}\right) \bar{X}_{8} \tag{21}
\end{equation*}
$$

hold true. Id est, the space L_{8} is obtained from L_{7} by adding two linearly independent elements, $X_{8}=X_{1111121}$ and $\bar{X}_{8}=X_{2111121}$, i.e., $L_{8}=L_{7} \oplus\left\{X_{8}, \bar{X}_{8}\right\}$.

We consider the operators of length $8, X_{9}=\left[X_{1}, X_{8}\right], \bar{X}_{9}=\left[X_{2}, X_{8}\right],\left[X_{1}, \bar{X}_{8}\right],\left[X_{2}, \bar{X}_{8}\right]$, $\left[X_{3}, X_{7}\right],\left[X_{4}, X_{6}\right]$.

According to Jacobi identity, $\left[X_{3}, X_{7}\right]=-X_{8},\left[X_{4}, X_{6}\right]=X_{8}$.
It is also easy to show that $\left[X_{2}, \bar{X}_{8}\right]=2 X_{7}+\bar{X}_{8},\left[X_{1}, \bar{X}_{8}\right]=X_{8} .\left[D_{x}, \bar{X}_{9}\right]=0$, therefore, due to Lemma 1, $\bar{X}_{9}=\left[X_{2}, X_{8}\right]=0$.

For X_{9} we obtain

$$
\begin{equation*}
\left[D_{x}, X_{9}\right]=\left(e^{u}-2 e^{-2 u}\right) X_{8}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{8}\right]=\left(e^{u}-2 e^{-2 u}\right) X_{8} \tag{22}
\end{equation*}
$$

Hence, $X_{9}=X_{11111121}$ is not linearly expressed via operators of lower order, and $L_{9}=L_{8} \oplus\left\{X_{9}\right\}$.
We introduce the operators of length $9, X_{10}=\left[X_{1}, X_{9}\right], \bar{X}_{10}=\left[X_{2}, X_{9}\right],\left[X_{3}, \bar{X}_{8}\right],\left[X_{3}, X_{8}\right]$, [$\left.X_{4}, X_{7}\right],\left[X_{5}, X_{6}\right]$, for which the relations

$$
\begin{aligned}
{\left[X_{5}, X_{6}\right]=2 X_{9}+\bar{X}_{10},\left[X_{4}, X_{7}\right] } & =-X_{9}-\bar{X}_{10}, \\
{\left[X_{3}, X_{8}\right]=\bar{X}_{10},\left[X_{3}, \bar{X}_{8}\right] } & =-3 X_{8}
\end{aligned}
$$

hold true. For the operators X_{10}, \bar{X}_{10} we have

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{10}\right]=\left(e^{u}+4 e^{-2 u}\right) X_{8}+\left(e^{u}-2 e^{-2 u}\right)\left[X_{2}, X_{8}\right]=\left(e^{u}+4 e^{-2 u}\right) X_{8} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[D_{x}, X_{10}\right]=\left(e^{u}-2 e^{-2 u}\right) X_{9}-\left(e^{u}+e^{-2 u}\right) \bar{X}_{10} . \tag{24}
\end{equation*}
$$

Thus, the operators $X_{10}=X_{11111121}$ and $\bar{X}_{10}=X_{21111121}$ are not linearly expressed via operators of lower order, and $L_{10}=L_{9} \oplus\left\{X_{10}, \bar{X}_{10}\right\}$.

It can be shown that the basis of the characteristic ring generated by the elements X and Y can be always chosen among the elements of the form $a d_{X}^{k_{1}} a d_{Y}^{k_{2}} \ldots a d_{X}^{k_{s}} Y$.

We introduce the notations $X_{n}=\left[X_{1}, X_{n-1}\right], \bar{X}_{n}=\left[X_{2}, X_{n-1}\right]$. We shall prove by the induction. Suppose that for $i=n-1$ the identities

$$
\begin{gather*}
{\left[D_{x}, X_{6(n-1)-1}\right]=\left(2 e^{u}-e^{-2 u}\right) X_{6(n-1)-2}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{6(n-1)-2}\right],} \tag{25}\\
\quad\left[D_{x}, X_{6(n-1)}\right]=3 e^{u} X_{6(n-1)-1}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{6(n-1)-1}\right], \tag{26}\\
{\left[D_{x}, X_{6(n-1)+1}\right]=3 e^{u} X_{6(n-1)}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{6(n-1)}\right]} \tag{27}\\
{\left[D_{x}, X_{6(n-1)+2}\right]=\left(2 e^{u}-e^{-2 u}\right) X_{6(n-1)+1}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{6(n-1)+1}\right],} \tag{28}\\
{\left[D_{x}, X_{6(n-1)+3}\right]=\left(e^{u}-2 e^{-2 u}\right) X_{6(n-1)+2}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{6(n-1)+2}\right],} \tag{29}\\
{\left[D_{x}, X_{6(n-1)+4}\right]=\left(e^{u}-2 e^{-2 u}\right) X_{6(n-1)+3}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{6(n-1)+3}\right],} \tag{30}\\
\bar{X}_{6(n-1)}=0, \bar{X}_{6(n-1)-1}=-X_{6(n-1)-2}, \tag{31}\\
\quad \bar{X}_{6(n-1)+1}=X_{6(n-1)}, \bar{X}_{6(n-1)+3}=0, \tag{32}\\
{\left[X_{1}, \bar{X}_{6(n-1)+2}\right]=X_{6(n-1)+2},\left[X_{2}, \bar{X}_{6(n-1)+2}\right]=2 X_{6(n-1)+1}+\bar{X}_{6(n-1)+2},} \tag{33}\\
{\left[X_{1}, \bar{X}_{6(n-1)+4}\right]=-X_{6(n-1)+4},\left[X_{2}, \bar{X}_{6(n-1)+4}\right]=2 X_{6(n-1)+3}-\bar{X}_{6(n-1)+4}} \tag{34}
\end{gather*}
$$

are valid. Let us check identities (25) - (34) for $i=n$.
We introduce the operators of length $6 n-2, X_{6 n-1}=X_{6(n-1)+5}=\left[X_{1}, X_{6(n-1)+4}\right]$ and $\bar{X}_{6 n-1}=\bar{X}_{6(n-1)+5}=\left[X_{2}, X_{6(n-1)+4}\right]$. We have

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{6 n-1}\right]=\left[D_{x},\left[X_{2}, X_{6(n-1)+4}\right]\right]=-\left[D_{x}, X_{6(n-1)+4}\right], \tag{35}
\end{equation*}
$$

hence, $\bar{X}_{6 n-1}=-X_{6(n-1)+4}$. For $X_{6 n-1}$ it holds

$$
\begin{equation*}
\left[D_{x}, X_{6 n-1}\right]=\left(2 e^{u}-e^{-2 u}\right) X_{6 n-2}-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{6 n-2}\right]=3 e^{u} X_{6 n-2} . \tag{36}
\end{equation*}
$$

It means that the operator $X_{6 n-1}=X_{1 \ldots 121}$ is not linearly expressed via operators of lower order, and $L_{6 n-1}=L_{6 n-2} \oplus\left\{X_{6 n-1}\right\}$, so, $\delta(6 n-1)=1$.

We consider the operators of length $6 n-1, X_{6 n}=\left[X_{1}, X_{6 n-1}\right], \bar{X}_{6 n}=\left[X_{2}, X_{6 n-1}\right]$. We have

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{6 n}\right]=0, \tag{37}
\end{equation*}
$$

and therefore in accordance with Lemma $1 \bar{X}_{6 n}=0$. We also have

$$
\begin{equation*}
\left[D_{x}, X_{6 n}\right]=\left[X_{1}, 3 e^{u} X_{6 n-2}\right]-\left(e^{u}+e^{-2 u}\right)\left[X_{2}, X_{6 n-1}\right]=3 e^{u} X_{6 n-1} \tag{38}
\end{equation*}
$$

Therefore, the operator $X_{6 n}=X_{1 \ldots 121}$ is not linearly expressed via operators of lower order, and $L_{6 n}=L_{6 n-1} \oplus\left\{X_{6 n}\right\}$. Thus, $\delta(6 n)=1$.

We introduce the operators of length $6 n, X_{6 n+1}=\left[X_{1}, X_{6 n}\right], \bar{X}_{6 n+1}=\left[X_{2}, X_{6 n}\right]$ for which

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{6 n+1}\right]=3 e^{u} X_{6 n-1} ; \tag{39}
\end{equation*}
$$

therefore, $\bar{X}_{6 n+1}=X_{6 n}$. It is easy to show that

$$
\begin{equation*}
\left[D_{x}, X_{6 n+1}\right]=\left(2 e^{u}-e^{-2 u}\right) X_{6 n} \tag{40}
\end{equation*}
$$

It means that the operator $X_{6 n+1}=X_{1 \ldots 121}$ is not linearly expressed via operators of lower order, and $L_{6 n+1}=L_{6 n} \oplus\left\{X_{6 n+1}\right\}$. We get $\delta(6 n+1)=1$.

We consider the operators of length $6 n+1, X_{6 n+2}=\left[X_{1}, X_{6 n+1}\right], \bar{X}_{6 n+2}=\left[X_{2}, X_{6 n+1}\right]$. We have

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{6 n+2}\right]=\left(4 e^{u}+e^{-2 u}\right) X_{6 n} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[D_{x}, X_{6 n+2}\right]=\left(2 e^{u}-e^{-2 u}\right) X_{6 n+1}-\left(e^{u}+e^{-2 u}\right) \bar{X}_{6 n+2} . \tag{42}
\end{equation*}
$$

Therefore, the operators $X_{6 n+2}=\left[X_{1}, X_{6 n+1}\right]=X_{1 \ldots 121}$ and $\bar{X}_{6 n+2}=\left[X_{2}, X_{6 n+1}\right]=X_{21 \ldots 121}$ are not linearly expressed via operators of lower order, $L_{6 n+2}=L_{6 n+1} \oplus\left\{X_{6 n+2}, \bar{X}_{6 n+2}\right\}$. Thus, $\delta(6 n+2)=2$.

We introduce the operators of length $6 n+2, X_{6 n+3}=\left[X_{1}, X_{6 n+2}\right], \bar{X}_{6 n+3}=$ $\left[X_{2}, X_{6 n+2}\right],\left[X_{1}, \bar{X}_{6 n+2}\right],\left[X_{2}, \bar{X}_{6 n+2}\right]$.

It is easy to show the validity of the identity

$$
\begin{equation*}
\left[D_{x},\left[X_{2}, \bar{X}_{6 n+2}\right]\right]=\left(8 e^{u}-e^{-2 u}\right) X_{6 n}, \tag{43}
\end{equation*}
$$

hence, $\left[X_{2}, \bar{X}_{6 n+2}\right]=2 X_{6 n+1}+\bar{X}_{6 n+2}$.

$$
\begin{equation*}
\left[D_{x},\left[X_{1}, \bar{X}_{6 n+2}\right]\right]=\left(2 e^{u}-e^{-2 u}\right) X_{6 n+1}-\left(e^{u}+e^{-2 u}\right) \bar{X}_{6 n+2} \tag{44}
\end{equation*}
$$

and therefore, $\left[X_{1}, \bar{X}_{6 n+2}\right]=X_{6 n+2}$.
For the operators $X_{6 n+3}$ and $\bar{X}_{6 n+3}$ we have

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{6 n+3}\right]=0 \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[D_{x}, X_{6 n+3}\right]=\left(e^{u}-2 e^{-2 u}\right) X_{6 n+2}, \tag{46}
\end{equation*}
$$

Then due to Lemma 1, $\bar{X}_{6 n+3}=0$, and it means that on this step into the basis of the characteristic one operator $X_{6 n+3}=X_{1 \ldots 121}$ is added, and therefore $L_{6 n+3}=L_{6 n+2} \oplus\left\{X_{6 n+3}\right\}$. Thus, $\delta(6 n+3)=1$.

We consider the operators of length $6 n+3, X_{6 n+4}=\left[X_{1}, X_{6 n+3}\right], \bar{X}_{6 n+4}=\left[X_{2}, X_{6 n+3}\right]$, for which it holds

$$
\begin{gather*}
{\left[D_{x}, \bar{X}_{6 n+4}\right]=\left(e^{u}+4 e^{-2 u}\right) X_{6 n+2},} \tag{47}\\
{\left[D_{x}, X_{6 n+4}\right]=\left(e^{u}-2 e^{-2 u}\right) X_{6 n+3}-\left(e^{u}+e^{-2 u}\right) \bar{X}_{6 n+4} .} \tag{48}
\end{gather*}
$$

Hence, the space $L_{6 n+4}$ is obtained from $L_{6 n+3}$ by adding two elements $X_{6 n+4}=X_{1 \ldots 121}$ and $\bar{X}_{6 n+4}=X_{21 \ldots 121}$, i.e., $L_{6 n+4}=L_{6 n+3} \oplus\left\{X_{6 n+4}, \bar{X}_{6 n+4}\right\}$. Thus, $\delta(6 n+4)=2$.

We introduce the operators of length $6 n+4$,
$X_{6(n+1)-1}=\left[X_{1}, X_{6 n+4}\right], \bar{X}_{6(n+1)-1}=\left[X_{2}, X_{6 n+4}\right],\left[X_{1}, \bar{X}_{6 n+4}\right],\left[X_{2}, \bar{X}_{6 n+4}\right]$.
The relation

$$
\begin{equation*}
\left[D_{x},\left[X_{2}, \bar{X}_{6 n+4}\right]\right]=\left(e^{u}-8 e^{-2 u}\right) X_{6 n+2} \tag{49}
\end{equation*}
$$

holds true, and hence $\left[X_{2}, \bar{X}_{6 n+4}\right]=2 X_{6 n+3}-\bar{X}_{6 n+4}$.
We also have

$$
\begin{equation*}
\left[D_{x},\left[X_{1}, \bar{X}_{6 n+4}\right]\right]=\left(-e^{u}+2 e^{-2 u}\right) X_{6 n+3}+\left(e^{u}+e^{-2 u}\right) \bar{X}_{6 n+4} \tag{50}
\end{equation*}
$$

that yields $\left[X_{1}, \bar{X}_{6 n+4}\right]=-X_{6 n+4}$.

It follows from the identity

$$
\begin{equation*}
\left[D_{x}, \bar{X}_{6(n+1)-1}\right]=\left(-e^{u}+2 e^{-2 u}\right) X_{6 n+3}+\left(e^{u}+e^{-2 u}\right) \bar{X}_{6 n+4} \tag{51}
\end{equation*}
$$

that $\bar{X}_{6(n+1)-1}=-X_{6 n+4}$.
For $X_{6(n+1)-1}$ we have

$$
\begin{equation*}
\left[D_{x}, X_{6(n+1)-1}\right]=3 e^{u} X_{6 n+4} \tag{52}
\end{equation*}
$$

Hence, the operator $X_{6(n+1)-1}=X_{1 \ldots 121}$ is not linearly expressed via operators of lower order, and $L_{6(n+1)-1}=L_{6 n+4} \oplus\left\{X_{6(n+1)-1}\right\}$. Thus, $\delta(6(n+1)-1)=1$.

Theorem is proven.
The author expressed her gratitude to I.T. Khabibullin for the formulation of the problem and a permanent attention to the work.

BIBLIOGRAPHY

1. Goursat E.Recherches sur quelques équations aux dérivées partielles du second ordre, Annales de la faculté des Sciences de l'Université de Toulouse 2^{e} série, tome 1, $\mathrm{n}^{0} 1$ (1899) P.31-78.
2. Leznov A.N., Smirnov V.G., Shabat A.B. The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems // Teoret. i matem. fizika. 1982. V. 51. No. 1. P. 10-22. [Theor. Math. Phys. 1982. V. 51. No. 1. P. 322-330]
3. Zhiber A.V., Mukminov F.Kh. Quadratic systems, symmetries, characteristic and complete algebras // Problems of mathematical physics and the asymptotics for their solutions. Ufa, BNC UrO AN SSSR. 1991. P. 14-32. (in Russian)
4. Zhiber A.v., Murtazina R.D. On nonlinear hyperbolic equations with characteristic algebra of slow growth // Vestnik USATU. 2006. V. 7, No. 2. P. 131-136. (in Russian)
5. Shabat A.B., Yamilov R.I. Exponential systems of kind I and Cartan matrices // Preprint of BFAN SSSR, Ufa. 1981. 23 pp. (in Russian)
6. Gürses M., Zhiber A.V., Habibullin I.T. Characteristic Lie rings of differential equations // Ufimskii matem. zhurn. 2012. V. 4, No. 1. P. 53-62. [Ufa Math. J. 2012. V. 4, No. 1, P. 49-58]
7. Tzitzéica G. Sur une nouvelle classe de surfaces // Comptes rendus Acad. Sci. V. 150. 1910. P. 955-956.
8. Zhiber A.V., Shabat A.B. Klein-Gordon equations with a nontrivial group // Dokl. AN SSSR. 1979. V. 247, No. 5. P. 1103-1107. [Sov. Phys. Dokl. 1979. V. 24, No. 8. P. 608-609]
9. A.V. Mikhailov Pis'ma Zh.Eksp. // Theor.Fiz. 1979. V. 30, No. 7. P. 443-448.

Al'fiya Uralovna Sakieva,
Institute of Mathematics with Computer Center of Ufa Scientific Center, RAS, Chernyshevkogo str., 112,
450008, Ufa, Russia
E-mail: alfiya85.85@mail.ru

[^0]: A.U. Sakieva, Characteristic Lie ring of the Zhiber-Shabat-Tzitzeica equation.
 (c) Sakieva A.U. 2012.

 The work is supported by RFBR grant (grant 11-01-97005) and FTP "Scientific and pedagogical staff of innovative Russia" for 2009-2013 (agreement No. 8499).

 Submitted April, 25, 2012.

