UDC 517.9

CHARACTERISTIC LIE RING OF ZHIBER-SHABAT-TZITZEICA EQUATION

A.U. SAKIEVA

Abstract. In this work we give a complete description of the characteristic Lie ring for Zhiber-Shabat-Tzitzeica equation. We construct the basis for the linear space of multiple commutators of arbitrary order. It is proven that the characteristic Lie ring is a ring of slow growth.

Keywords: Lie ring, nonlinear hyperbolic equation, integral.

1. INTRODUCTION

Characteristic Lie rings are an important tool for studying partial differential equations. At the first time the notion of a characteristic vector field lying in the base of the characteristic field was introduced by Goursat in [1]. The notion of characteristic algebra was introduced in the work of A.N. Leznov, V.G. Smirnov, A.B. Shabat [2]. The characteristic algebras and rings for differential equations were also studied in the works [3–6].

In this paper we deal with the problem of description of the characteristic Lie ring for the equation

$$u_{xy} = e^u + e^{-2u}.$$
 (1)

Equation (1) was first found in the work of Tzitzeica [7] while studying the geometry of twodimensional surfaces in \mathbb{R}^3 . Later it was re-discovered by A.B. Shabst and A.V. Zhiber in [8] as a result of classification of integrable cases for Klein-Gordon equation. In the same work they constructed the hierarchy of higher symmetries and conservation laws. The Lax representations for (1) were found by A.V. Mikhailov (see [9]). Note that the higher symmetries of equation (1) have the order equalling 6n + 1 and 6n - 1, where $n \in \mathbb{N}$. A surprising fact is that exactly these numbers are distinguished in the description of the characteristic ring for equation (1). This fact seems to show a close connection between the algebra of higher symmetries of an equation and its characteristic ring, since exactly the same situation holds for Sine-Gordon equation (see [3, 4]).

In the work [4] for the equations

$$u_{xy} = f(u) \tag{2}$$

there were introduced the operators X_1 and X_2 generating the characteristic Lie ring for equation (2),

$$X_1 = \sum_{k=1}^{\infty} D^{k-1}(f) \frac{\partial}{\partial u_k},\tag{3}$$

$$X_2 = \frac{\partial}{\partial u},\tag{4}$$

where in our case $f = e^u + e^{-2u}$. Here D is the operator of total differentiation w.r.t. x. We observe that the operators X_1 and X_2 are linearly independent as $f(u) \neq 0$.

Submitted April, 25, 2012.

A.U. SAKIEVA, CHARACTERISTIC LIE RING OF THE ZHIBER-SHABAT-TZITZEICA EQUATION.

[©] Sakieva A.U. 2012.

The work is supported by RFBR grant (grant 11-01-97005) and FTP "Scientific and pedagogical staff of innovative Russia" for 2009-2013 (agreement No. 8499).

A.U. SAKIEVA

Denote by L_i the linear space spanned on all commutators of length no more than i-1, where i = 2, 3, ... And in this space we take linear combinations with the coefficients depending on smooth functions of a finite number of dynamical variables, and a set of the elements $Z_1, Z_2, ..., Z_k$ is called linearly independent if there exists a set of the functions $c_1, c_2, ..., c_k$ such that not all of them are zero and the identity $c_1Z_1 + c_2Z_2 + ... + c_kZ_k = 0$ holds. Otherwise the set is linearly independent. For instance, $L_2 = \{X_1, X_2\}$ is the linear space generated by the elements $X_1, X_2, \dim L_2 = 2$. We suppose that X_1 and X_2 the operators of length 1. Then L_3 consists of the elements of the space L_2 and the element $X_3 = [X_2, X_1]$, i.e., $L_3 = \{X_1, X_2, X_3\}$. Therefore, $L_4 = L_3 + \{[X_2, X_3], [X_1, X_3]\}$ and so forth.

Define $\delta(i) = \dim(L_i) - \dim(L_{i-1})$. It will be shown that the Lie ring for equation (1) is infinite-dimensional, and at that $\delta(i) = 1$ if i = 6n - 1, i = 6n, i = 6n + 1, i = 6n + 3, n = 1, 2, ...and $\delta(i) = 2$ as i = 6n + 2, i = 6n + 4, n = 1, 2, ... Hence, the Lie ring for the equation (1) is the characteristic ring of slow growth. We observe that the structure of linear spaces L_i for $i \leq 10$ was studied in [4].

In what follows we shall make use of the next statement whose proof can found, for instance, in [4].

Lemma 1. Let a vector field Z be

 $Z = \alpha_1 \frac{\partial}{\partial u_1} + \alpha_2 \frac{\partial}{\partial u_2} + \alpha_3 \frac{\partial}{\partial u_3} + \dots, \alpha_i = \alpha_i (u, u_1, u_2, \dots), i = 1, 2, 3, \dots$ Then $[D_x, Z] = 0$ if and only if Z = 0.

2. Characteristic ring for Zhiber-Shabat-Tzitzeica equation

We introduce the following notations for multiple commutators,

$$X_{i_1,...i_n} = ad_{X_{i_1}}...ad_{X_{i_{n-1}}}X_{i_n}$$
, where $ad_XY = [X, Y]$.

Theorem 1. For Zhiber-Shabat-Tzitzeica equation (1) the identities

$$\delta(i) = 2, i = 6n + 2, i = 6n + 4, n = 1, 2, ...;$$
(5)

$$\delta(i) = 1, i = 6n - 1, i = 6n, i = 6n + 1, i = 6n + 3, n = 1, 2, \dots$$
(6)

hold. At that the following identities

 $L_{6n+2} = L_{6n+1} \oplus \{X_{1...121}, X_{21...121}\}, L_{6n+4} = L_{6n+3} \oplus \{X_{1...121}, X_{21...121}\}, L_{6n-1} = L_{6n-2} \oplus \{X_{1...121}\}, L_{6n} = L_{6n-1} \oplus \{X_{1...121}\}, L_{6n+1} = L_{6n} \oplus \{X_{1...121}\}, L_{6n+3} = L_{6n+2} \oplus \{X_{1...121}\}, L_{6n+3} = L_{6n+2} \oplus \{X_{1...121}\}$ are valid. Id est, the operators X_1, Y_1

are valid. Id est, the operators X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , \bar{X}_8 , X_9 , X_{10} , \bar{X}_{10} , ... X_{6n-1} , X_{6n} , X_{6n+1} , X_{6n+2} , \bar{X}_{6n+2} , X_{6n+3} , X_{6n+4} , \bar{X}_{6n+4} , ... form a basis of the characteristic Lie ring L of equation (1), where $X_n = X_{i_1...i_n}$ at that $i_1 = ... = i_{n-2} = i_n = 1, i_{n-1} = 2$,

$$\bar{X}_n = X_{i_1...i_n}$$
 at that $i_2 = ... = i_{n-2} = i_n = 1, i_1 = i_{n-1} = 2$

The operators X_1, X_2 are determined above. For X_1 and X_2 the relations

$$[D_x, X_1] = -(e^u + e^{-2u})X_2, (7)$$

$$[D_x, X_2] = 0 \tag{8}$$

hold true. We introduce an operator of length 2, $X_3 = [X_2, X_1]$. Employing Jacobi identity and relations (7),(8), we obtain

$$[D_x, X_3] = -(e^u - 2e^{-2u})X_2.$$
(9)

Assume that the operator X_3 is linearly expressed via X_1 and X_2 , then we get

$$X_3 = \lambda_1 X_1 + \lambda_2 X_2. \tag{10}$$

We apply the operator D_x to both sides of the last identity; employing relations (7),(8),(9), we obtain

$$-(e^{u}-2e^{-2u})X_{2} = D_{x}(\lambda_{1})X_{1} - \lambda_{1}(e^{u}+e^{-2u})X_{2} + D_{x}(\lambda_{2})X_{2}.$$
(11)

We compare the coefficients at linearly independent operators X_2 and X_1 , then we get

$$-(e^{u} - 2e^{-2u}) = -\lambda_1(e^{u} + e^{-2u}) + D_x(\lambda_2)$$
(12)

and

$$D_x(\lambda_1) = 0. \tag{13}$$

Identity (12) is inconsistent since $\lambda_N = \lambda_N(u, u_x, u_{xx}, ...)$, and $D_x(\lambda_2)$ contains $u_x, u_{xx}, ...$ Therefore, the operator $X_3 = X_{21}$ is not linearly expressed via X_1 and X_2 . Hence, the linear space L_3 is three-dimensional, i.e., $L_3 = \{X_1, X_2, X_3\}$.

We introduce the operators of length 3, $X_4 = [X_1, X_3]$ and $\overline{X}_4 = [X_2, X_3]$, for which it holds

$$[D_x, \bar{X}_4] = 2 [D_x, X_1] - [D_x, X_3]$$
(14)

and

$$[D_x, X_4] = (e^u - 2e^{-2u})X_3 - (e^u + e^{-2u})[X_2, X_3] = (2e^u - e^{-2u})X_3 - 2(e^u + e^{-2u})X_1.$$
 (15) Thus,

$$\bar{X}_4 = 2X_1 - X_3.$$

The operator $X_4 = X_{121}$ is not linearly expressed via operators of lower order, and we get $L_4 = \{X_1, X_2, X_3, X_4\}.$

Consider the operators of length 4, $X_5 = [X_1, X_4]$ and $X_5 = [X_2, X_4]$. Employing Jacobi identity and relations (7), (8), and (15), we obtain $\overline{X}_5 = -X_4$ and

$$[D_x, X_5] = (2e^u - e^{-2u})X_4 - (e^u + e^{-2u})[X_2, X_4] = 3e^u X_4.$$
(16)

The operator $X_5 = X_{1121}$ is not linearly expressed via the operators of lower order, and therefore $L_5 = \{X_1, X_2, X_3, X_4, X_5\}.$

We introduce the operators of length 5, $X_6 = [X_1, X_5]$, \overline{X}_6 and $[X_3, X_4]$. According to Jacobi identity, $[X_3, X_4] = X_5$. It is easy to show that for \overline{X}_6 the identity

$$\left[D_x, \bar{X}_6\right] = 0 \tag{17}$$

holds. Therefore, in accordance with Lemma 1, $\bar{X}_6 = 0$. For X_6 we obtain

$$[D_x, X_6] = [X_1, 3e^u X_4] - (e^u + e^{-2u}) [X_2, X_5] = 3e^u X_5.$$
⁽¹⁸⁾

Hence, the operator $X_6 = X_{11121}$ is not linearly expressed via operators of lower order, and we have $L_6 = \{X_1, X_2, X_3, X_4, X_5, X_6\}$.

Consider the operators of length 6, $X_7 = [X_1, X_6], \bar{X}_7 = [X_2, X_6], [X_3, X_5]$. It is easy to show that $[X_3, X_5] = X_6, [X_2, X_6] = X_6$,

$$[D_x, X_7] = 3e^u X_6 - (e^u + e^{-2u}) [X_2, X_6] = (2e^u - e^{-2u}) X_6.$$
⁽¹⁹⁾

Therefore, $X_7 = X_{111121}$ is not linearly expressed via operators of lower order $L_7 = \{X_1, X_2, X_3, X_4, X_5, X_6, X_7\}$.

We introduce the operators of length 7, $X_8 = [X_1, X_7]$, $\overline{X}_8 = [X_2, X_7]$, $[X_3, X_6]$, $[X_4, X_5]$. According to Jacobi identity, $[X_3, X_6] = \overline{X}_8 - X_7$, $[X_4, X_5] = 2X_7 - \overline{X}_8$. For X_8 and \overline{X}_8 the relations

$$[D_x, \bar{X}_8] = (4e^u + e^{-2u})X_6 \tag{20}$$

and

$$[D_x, X_8] = (2e^u - e^{-2u})X_7 - (e^u + e^{-2u})\bar{X}_8$$
(21)

hold true. Id est, the space L_8 is obtained from L_7 by adding two linearly independent elements, $X_8 = X_{111121}$ and $\bar{X}_8 = X_{2111121}$, i.e., $L_8 = L_7 \oplus \{X_8, \bar{X}_8\}$.

We consider the operators of length 8, $X_9 = [X_1, X_8], \bar{X}_9 = [X_2, X_8], [X_1, \bar{X}_8], [X_2, \bar{X}_8], [X_3, X_7], [X_4, X_6].$

According to Jacobi identity, $[X_3, X_7] = -X_8, [X_4, X_6] = X_8.$

It is also easy to show that $[X_2, \overline{X}_8] = 2X_7 + \overline{X}_8, [X_1, \overline{X}_8] = X_8. [D_x, \overline{X}_9] = 0$, therefore, due to Lemma 1, $\bar{X}_9 = [X_2, X_8] = 0.$

For X_9 we obtain

$$[D_x, X_9] = (e^u - 2e^{-2u})X_8 - (e^u + e^{-2u})[X_2, X_8] = (e^u - 2e^{-2u})X_8.$$
(22)

Hence, $X_9 = X_{11111121}$ is not linearly expressed via operators of lower order, and $L_9 = L_8 \oplus \{X_9\}$. We introduce the operators of length 9, $X_{10} = [X_1, X_9], \ \bar{X}_{10} = [X_2, X_9], \ [X_3, \bar{X}_8], \$

 $[X_4, X_7], [X_5, X_6],$ for which the relations

$$[X_5, X_6] = 2X_9 + \bar{X}_{10}, [X_4, X_7] = -X_9 - \bar{X}_{10}$$
$$[X_3, X_8] = \bar{X}_{10}, [X_3, \bar{X}_8] = -3X_8$$

hold true. For the operators $X_{10}, \overline{X}_{10}$ we have

$$\left[D_x, \bar{X}_{10}\right] = \left(e^u + 4e^{-2u}\right)X_8 + \left(e^u - 2e^{-2u}\right)\left[X_2, X_8\right] = \left(e^u + 4e^{-2u}\right)X_8 \tag{23}$$

and

$$[D_x, X_{10}] = (e^u - 2e^{-2u})X_9 - (e^u + e^{-2u})\bar{X}_{10}.$$
(24)

Thus, the operators $X_{10} = X_{111111121}$ and $X_{10} = X_{211111121}$ are not linearly expressed via operators of lower order, and $L_{10} = L_9 \oplus \{X_{10}, \overline{X}_{10}\}.$

It can be shown that the basis of the characteristic ring generated by the elements X and Ycan be always chosen among the elements of the form $ad_X^{k_1}ad_Y^{k_2}...ad_X^{k_s}Y$. We introduce the notations $X_n = [X_1, X_{n-1}], \overline{X}_n = [X_2, X_{n-1}]$. We shall prove by the

induction. Suppose that for i = n - 1 the identities

$$\begin{bmatrix} D_x, X_{6(n-1)-1} \end{bmatrix} = (2e^u - e^{-2u}) X_{6(n-1)-2} - (e^u + e^{-2u}) \begin{bmatrix} X_2, X_{6(n-1)-2} \end{bmatrix},$$
(25)

$$\begin{bmatrix} D_x, X_{6(n-1)} \end{bmatrix} = 3e^u X_{6(n-1)-1} - (e^u + e^{-2u}) \begin{bmatrix} X_2, X_{6(n-1)-1} \end{bmatrix},$$
(26)

$$\begin{bmatrix} D_x, \Lambda_{6(n-1)+1} \end{bmatrix} = 5e^{-\alpha} \Lambda_{6(n-1)} - (e^{-\alpha} + e^{-\alpha}) \begin{bmatrix} \Lambda_2, \Lambda_{6(n-1)} \end{bmatrix},$$
(21)
$$\begin{bmatrix} D_x, X_{6(n-1)+2} \end{bmatrix} = (2e^u - e^{-2u}) X_{6(n-1)+1} - (e^u + e^{-2u}) \begin{bmatrix} X_2, X_{6(n-1)+1} \end{bmatrix},$$
(28)

$$\begin{bmatrix} D_x, X_{6(n-1)+3} \end{bmatrix} = (e^u - 2e^{-2u})X_{6(n-1)+2} - (e^u + e^{-2u}) \begin{bmatrix} X_2, X_{6(n-1)+2} \end{bmatrix},$$
(29)

$$D_x, X_{6(n-1)+3} = (e^u - 2e^{-2u})X_{6(n-1)+2} - (e^u + e^{-2u}) [X_2, X_{6(n-1)+2}],$$
(29)
$$D_x, X_{6(n-1)+4} = (e^u - 2e^{-2u})X_{6(n-1)+3} - (e^u + e^{-2u}) [X_2, X_{6(n-1)+3}],$$
(30)
$$\bar{X}_{4,2,2} = 0, \bar{X}_{4,2,2} = -X_{4,2,2}$$
(31)

$$X_{6(n-1)} = 0, X_{6(n-1)-1} = -X_{6(n-1)-2},$$
(31)

$$X_{6(n-1)+1} = X_{6(n-1)}, X_{6(n-1)+3} = 0, (32)$$

$$[X_1, \bar{X}_{6(n-1)+2}] = X_{6(n-1)+2}, [X_2, \bar{X}_{6(n-1)+2}] = 2X_{6(n-1)+1} + \bar{X}_{6(n-1)+2},$$
(33)

$$\left[X_{1}, \bar{X}_{6(n-1)+4}\right] = -X_{6(n-1)+4}, \left[X_{2}, \bar{X}_{6(n-1)+4}\right] = 2X_{6(n-1)+3} - \bar{X}_{6(n-1)+4} \tag{34}$$

are valid. Let us check identities (25) - (34) for i = n.

We introduce the operators of length 6n - 2, $X_{6n-1} = X_{6(n-1)+5} = [X_1, X_{6(n-1)+4}]$ and $\bar{X}_{6n-1} = \bar{X}_{6(n-1)+5} = [X_2, X_{6(n-1)+4}].$ We have

$$\begin{bmatrix} D_x, \bar{X}_{6n-1} \end{bmatrix} = \begin{bmatrix} D_x, \begin{bmatrix} X_2, X_{6(n-1)+4} \end{bmatrix} \end{bmatrix} = -\begin{bmatrix} D_x, X_{6(n-1)+4} \end{bmatrix},$$
(35)

hence, $\bar{X}_{6n-1} = -X_{6(n-1)+4}$. For X_{6n-1} it holds

$$[D_x, X_{6n-1}] = (2e^u - e^{-2u})X_{6n-2} - (e^u + e^{-2u})[X_2, X_{6n-2}] = 3e^u X_{6n-2}.$$
(36)

It means that the operator $X_{6n-1} = X_{1...121}$ is not linearly expressed via operators of lower order, and $L_{6n-1} = L_{6n-2} \oplus \{X_{6n-1}\}$, so, $\delta(6n-1) = 1$.

We consider the operators of length
$$6n - 1$$
, $X_{6n} = [X_1, X_{6n-1}]$, $\bar{X}_{6n} = [X_2, X_{6n-1}]$. We have
 $[D_x, \bar{X}_{6n}] = 0,$ (37)

and therefore in accordance with Lemma 1 $X_{6n} = 0$. We also have

$$[D_x, X_{6n}] = [X_1, 3e^u X_{6n-2}] - (e^u + e^{-2u}) [X_2, X_{6n-1}] = 3e^u X_{6n-1}.$$
(38)

Therefore, the operator $X_{6n} = X_{1...121}$ is not linearly expressed via operators of lower order, and $L_{6n} = L_{6n-1} \oplus \{X_{6n}\}$. Thus, $\delta(6n) = 1$.

We introduce the operators of length 6n, $X_{6n+1} = [X_1, X_{6n}]$, $\overline{X}_{6n+1} = [X_2, X_{6n}]$ for which

$$\left[D_x, \bar{X}_{6n+1}\right] = 3e^u X_{6n-1}; \tag{39}$$

therefore, $\bar{X}_{6n+1} = X_{6n}$. It is easy to show that

$$[D_x, X_{6n+1}] = (2e^u - e^{-2u})X_{6n}.$$
(40)

It means that the operator $X_{6n+1} = X_{1...121}$ is not linearly expressed via operators of lower order, and $L_{6n+1} = L_{6n} \oplus \{X_{6n+1}\}$. We get $\delta(6n+1) = 1$.

We consider the operators of length 6n + 1, $X_{6n+2} = [X_1, X_{6n+1}], X_{6n+2} = [X_2, X_{6n+1}]$. We have

$$\left[D_x, \bar{X}_{6n+2}\right] = (4e^u + e^{-2u})X_{6n} \tag{41}$$

and

$$[D_x, X_{6n+2}] = (2e^u - e^{-2u})X_{6n+1} - (e^u + e^{-2u})\bar{X}_{6n+2}.$$
(42)

Therefore, the operators $X_{6n+2} = [X_1, X_{6n+1}] = X_{1...121}$ and $X_{6n+2} = [X_2, X_{6n+1}] = X_{21...121}$ are not linearly expressed via operators of lower order, $L_{6n+2} = L_{6n+1} \oplus \{X_{6n+2}, \bar{X}_{6n+2}\}$. Thus, $\delta(6n+2) = 2$.

We introduce the operators of length 6n + 2, $X_{6n+3} = [X_1, X_{6n+2}], X_{6n+3} = [X_2, X_{6n+2}], [X_1, \bar{X}_{6n+2}], [X_2, \bar{X}_{6n+2}].$

It is easy to show the validity of the identity

$$\left[D_x, \left[X_2, \bar{X}_{6n+2}\right]\right] = (8e^u - e^{-2u})X_{6n}, \tag{43}$$

hence,
$$[X_2, \bar{X}_{6n+2}] = 2X_{6n+1} + \bar{X}_{6n+2}.$$

 $[D_x, [X_1, \bar{X}_{6n+2}]] = 0$

$$D_x, \left[X_1, \bar{X}_{6n+2}\right] = (2e^u - e^{-2u})X_{6n+1} - (e^u + e^{-2u})\bar{X}_{6n+2}, \tag{44}$$

and therefore, $[X_1, \bar{X}_{6n+2}] = X_{6n+2}$.

For the operators X_{6n+3} and X_{6n+3} we have

$$\left[D_x, \bar{X}_{6n+3}\right] = 0 \tag{45}$$

and

$$[D_x, X_{6n+3}] = (e^u - 2e^{-2u})X_{6n+2},$$
(46)

Then due to Lemma 1, $\overline{X}_{6n+3} = 0$, and it means that on this step into the basis of the characteristic one operator $X_{6n+3} = X_{1...121}$ is added, and therefore $L_{6n+3} = L_{6n+2} \oplus \{X_{6n+3}\}$. Thus, $\delta(6n+3) = 1$.

We consider the operators of length 6n + 3, $X_{6n+4} = [X_1, X_{6n+3}]$, $\bar{X}_{6n+4} = [X_2, X_{6n+3}]$, for which it holds

$$\left[D_x, \bar{X}_{6n+4}\right] = (e^u + 4e^{-2u})X_{6n+2},\tag{47}$$

$$[D_x, X_{6n+4}] = (e^u - 2e^{-2u})X_{6n+3} - (e^u + e^{-2u})\bar{X}_{6n+4}.$$
(48)

Hence, the space L_{6n+4} is obtained from L_{6n+3} by adding two elements $X_{6n+4} = X_{1...121}$ and $\bar{X}_{6n+4} = X_{21...121}$, i.e., $L_{6n+4} = L_{6n+3} \oplus \{X_{6n+4}, \bar{X}_{6n+4}\}$. Thus, $\delta(6n+4) = 2$. We introduce the operators of length 6n+4,

 $X_{6(n+1)-1} = [X_1, X_{6n+4}], \bar{X}_{6(n+1)-1} = [X_2, X_{6n+4}], [X_1, \bar{X}_{6n+4}], [X_2, \bar{X}_{6n+4}].$ The relation

$$\begin{bmatrix} D_x, [X_2, \bar{X}_{6n+4}] \end{bmatrix} = (e^u - 8e^{-2u})X_{6n+2}$$
(49)

holds true, and hence $[X_2, \overline{X}_{6n+4}] = 2X_{6n+3} - X_{6n+4}$. We also have

$$\left[D_x, \left[X_1, \bar{X}_{6n+4}\right]\right] = \left(-e^u + 2e^{-2u}\right)X_{6n+3} + \left(e^u + e^{-2u}\right)\bar{X}_{6n+4}$$
(50)

that yields $[X_1, \bar{X}_{6n+4}] = -X_{6n+4}$.

It follows from the identity

$$\left[D_x, \bar{X}_{6(n+1)-1}\right] = \left(-e^u + 2e^{-2u}\right) X_{6n+3} + \left(e^u + e^{-2u}\right) \bar{X}_{6n+4}$$
(51)

that $\bar{X}_{6(n+1)-1} = -X_{6n+4}$. For $X_{6(n+1)-1}$ we have

$$\left[D_x, X_{6(n+1)-1}\right] = 3e^u X_{6n+4}.$$
(52)

Hence, the operator $X_{6(n+1)-1} = X_{1...121}$ is not linearly expressed via operators of lower order, and $L_{6(n+1)-1} = L_{6n+4} \oplus \{X_{6(n+1)-1}\}$. Thus, $\delta(6(n+1)-1) = 1$.

Theorem is proven.

The author expressed her gratitude to I.T. Khabibullin for the formulation of the problem and a permanent attention to the work.

BIBLIOGRAPHY

- 1. Goursat E. Recherches sur quelques équations aux dérivées partielles du second ordre, Annales de la faculté des Sciences de l'Université de Toulouse 2^e série, tome 1, n⁰ 1 (1899) P.31–78.
- Leznov A.N., Smirnov V.G., Shabat A.B. The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems // Teoret. i matem. fizika. 1982. V. 51. No. 1. P. 10–22. [Theor. Math. Phys. 1982. V. 51. No. 1. P. 322-330]
- Zhiber A.V., Mukminov F.Kh. Quadratic systems, symmetries, characteristic and complete algebras // Problems of mathematical physics and the asymptotics for their solutions. Ufa, BNC UrO AN SSSR. 1991. P. 14–32. (in Russian)
- Zhiber A.v., Murtazina R.D. On nonlinear hyperbolic equations with characteristic algebra of slow growth // Vestnik USATU. 2006. V. 7, No. 2. P. 131–136. (in Russian)
- Shabat A.B., Yamilov R.I. Exponential systems of kind I and Cartan matrices // Preprint of BFAN SSSR, Ufa. 1981. 23 pp. (in Russian)
- Gürses M., Zhiber A.V., Habibullin I.T. Characteristic Lie rings of differential equations // Ufimskii matem. zhurn. 2012. V. 4, No. 1. P. 53–62. [Ufa Math. J. 2012. V. 4, No. 1, P. 49-58]
- Tzitzéica G. Sur une nouvelle classe de surfaces // Comptes rendus Acad. Sci. V. 150. 1910. P. 955–956.
- Zhiber A.V., Shabat A.B. Klein-Gordon equations with a nontrivial group // Dokl. AN SSSR. 1979. V. 247, No. 5. P. 1103–1107. [Sov. Phys. Dokl. 1979. V. 24, No. 8. P. 608-609]
- 9. A.V. Mikhailov Pis'ma Zh.Eksp. // Theor.Fiz. 1979. V. 30, No. 7. P. 443–448.

Al'fiya Uralovna Sakieva, Institute of Mathematics with Computer Center of Ufa Scientific Center, RAS, Chernyshevkogo str., 112, 450008, Ufa, Russia E-mail: alfiya85.85@mail.ru