ISSN 2074-1863 Ufa Mathematical Journal. Volume 3. 4 (2011). Pp. 92112

UDC 517.929

ON SPECTRAL PROPERTIES OF A DIFFERENTIAL
OPERATOR WITH SUMMABLE COEFFICIENTS WITH A
RETARDED ARGUMENT

S.I. MITROKHIN

Abstract. The paper considers spectral properties of differential operators of the sixth
order with a retarded argument. It is supposed that coefficients of the operator are sum-
mable functions on a segment. One can study 36 kinds of boundary-valued conditions
simultaneously by one method. The asymptotics of eigenvalues of the differential operator
is also calculated.
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The present article is devoted to investigation of spectral properties of a differential operator,
given by a sixth-order differential equation with a retarded argument of the following form:

y O (@) +r(x) -y (@ =) +p(a) -y (@ = 7) +gx) - y(z —7) = X-a® - y(), (1)
where 0 < z < 7, a > 0, 7 is the retardation, 7 > 0, with the initial conditions of the form
y@—71)=y0) ez —7), =<7, @0)=1 (2)
with the boundary-value conditions (separated, irregular) in the following form:
y"(0) =y (0) =y (0) = y"(0) =y (0) =y (7) =0, (3)

where my < mg < mz < my < ms; mg,ny € {0,1,2,3,4,5}, k=1,2,3,4,5.
Coefficients of the differential equation (I]) are supposed to be summable function on the
interval [0; 7], i.e. conditions of the Riemann-Lebesgue theorem hold for them:

z !/

r(z) € L1][0; 7], p(z) € L1[0;x], q(z) € L1[0,n] < /r(t)dt = r(x),

T / T /

/ p(t)dt | =p(x), / q(t)dt | = q(x) almost everywhere in the interval [0, 7]. (4)
0 x 0 T
Note that it follows form the initial conditions (2]) that

yla—7)=y0)-¢@-7), y'(@-7)=y0) ¢"@@-7), <7, »0)=1 (5
Therefore, we assume that p(z) € D*[—T;0].

In the differential equation ([II), the number A\ is a spectral parameter, p(z) = a® = const
(Vx € [0;7]) is the weight function. The purpose of the present article is to find the asymptotics
of solutions to a differential equation for large values of the spectral parameter A\, as well as
to find the asymptotics of eigenvalues of the differential operator (II)-(2)—(B) in case if the
summability conditions (4l) are satisfied.
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Differential equations of the ([I)-(2) type with a retarded argument (mostly of the second
order) in case of continuous, smooth or infinitely differentiable coefficients have been studied
for a long time (see [1]-[5]).

The Sturm-Liouville boundary-value problem (with obtaining the asymptotics of eigenvalues
in the main approximation) for a differential operator of the second order (with a retarded
argument) with separated boundary-value problems of the general form in case of a smooth
potential ¢(z) has been thoroughly investigated in the monograph [6, Ch 3]. However, the
resulting asymptotics is not enough for calculating the first regularized trace of the considered
operator.

In the work [7], more exact asymptotics of solutions and eigenvalues (as compared to [6,
Ch. 3]) of a second-order differential operator with separated boundary-value conditions in case
of sufficiently smooth (infinitely differentiable) coefficients ¢(z) and ¢(x) were obtained. As a
result, regularized traces of the considered differential operator were calculated.

The work [8] contains the solution of the inverse problem for determining the second-order
differential operator with a retarded argument with separated boundary-value conditions in the
general form with respect to two spectrums in case of an analytic potential ¢(x), if ¢(z) =0
when z < 0.

We suggest a methodology for investigating spectral properties of differential operators of
order higher than two with a retarded argument in the form (I)—(2) with the boundary-value
conditions () in case of summability of coefficients (i.e. satisfaction of the conditions ()
and of the initial function ¢(z), satisfying the condition p(x) € D?*[—7;0]. If the condition
r(z) = 0, p(z) = 0 Vo € [0;7] is satisfied then our methodology is reliable even in the case
o(x) € Lq1[0;7].

In case of ordinary differential operators (of the Sturm-Liouville type of an arbitrary even
order, with non-retarding argument), this methodology is described by the author in the mono-
graph [9, Ch 5]. An example of investigating the fourth-order operator is given in [10].

Let us find the asymptotics of the solution to the differential equation (II) when the summa-
bility conditions () are met.

Let us assume that A = s® (\ is a spectral parameter), s = v/ is one of the six branches of
the root, fixed by the condition v/1 = +1. Let wy, (k= 1,2,...,6) be various roots in the sixth
power of one:

wd =1, wy= 5 (k=1 (k=1,2,...,6);

14 /3
2 )
One can readily prove that the following equations hold for the numbers wy (k =1,2,...,6)

from ([@):

=1 +V3i

wy=—wys =1, wy=—ws= Wy = —Wg 5 (6)

6 6
d wp=0,m=12345 Y wy'=6 m=0 m=6. (7)
k=1 k=1

In view of the property (), we prove the following statement by the method of variation of
the arbitrary constants.

Theorem 1. Solution y(z,s) to the differential equation (d) is a solution of the following
integral Volterra equation:

xT

6 6
aw ST 1 awy, ST —awy st
y(x,s):ZCk-e k _6a5s5'zwk.e k -/e LRt — T, 8) - dta, (8)
k=1 k=1 0
where Cy, (k=1,2,...,6) are arbitrary constants, and the following notation is introduced:

Flz—7.5) =r(x) -y (x—78) +px) - y'(x—78) + q(z) ylx —7,5). (9)
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Meanwhile, by virtue of the properties (A, the following formulae hold:

6
y'(x,s) = E Cy, - awys - e*F5" —

k=1
1 6
N Z Wy, + QWS - €70 . / + ¢1(x, 8), (10)
a’s® / N
(8) - 1 0
where p1(z,s) = 6a5s5 Z wy, - eI e L P —7,8) = e - Fr —7,8) - Y wp =0

by virtue of the properties (IZ) form=1;

6
Vo) = 32 e
k=1
1 < /
B 6&535 ' Zwk . (awk8)2 . gMWRST / e - @2(1’, S)7 (11)
k=1 0 ak
(10) awy, ST —awy ST 1
where  pa(x,s) = = Zwk Cawgs - MRS . eTWRST L P — T,5) = g

6
F(z —7,5)- > w} =0 by virtue of (T) when m = 2.
k=1

The formulae (I0)—(IT]) give us a possibility to give another proof of Theorem 1.
Differentiating the formula () several times with respect to the variable z, we obtain:

AWy ST __

WE

Y™ (z,5) = Cy - (awgs)™ - e

k=1

6 X
1 m awpsx
o o (awy e | [ o) (12)
0

- ak

where ©,,(z, s) ) = Z Wy, - (awgs)™ L MRS L eT ST L B (g — 7 5) = e - F(x —

6
7,8) -y, wi = 0 by virtue of the condition () for m = 3,4, 5.
k=1
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Differentiating the formula (I2]) once more for m = 5, we substitute the resulting expression
and the formulae (8)—(I2) into the differential equation () and obtain:

6
y(G)(.T,S) + F(.T -, 8) _ )\ . aG . y(x’ S) (12),(8) Z Ck . (awk8)6 . eawksm_

k=1
T

1 6
. W - (aw 8)6 . AWEST
6ads® F F

0 ak
6
. OWKST | o —aWEST | F(ZL‘ -7, S) + F(l‘ -7, S E . eOWKST |
k=
1 6 -z 6
4 86 . a6 g § Wy - OWEST o . @OWKST awk3)6—
6a°s Z
k=1 0 ok k=

[sa% — (awys)%)+

1 6
J— 86 . a6] + 55 . wk . eawk5$ .
6a°s Z
k=1 0

v
Q

6
1
+F(a:—r,5)—m-F(az—7,5)-a555-2w2:0
k=1
almost everywhere in the interval [0; 7] (13)

By virtue of the equalities (7)) and the property (@), we have wl =1 (k=1,2,...,6).

The equality (I3)) demonstrates that the function y(z,s) from (8)—(I2) is a solution to the
differential equation () indeed.

Deduction of the formulae for asymptotics of the solution y(z, s) to the differential equation
@) for |s| — +oo (for large values of the spectral parameter A) depends on the value of
retardation 7. Since the number 7 (retardation, 7 > 0) is constant then, there is a natural
number ko + 1 (ko € NU{0}) such that the inequality

0<7<2r<--<hky-7<a<(ko+1)-7 (14)

holds.

Depending on the value of this number kg, solutions y(z, s) to the differential equation ([I])—
@) will be written out differently: If the argument of the function y(t — 7, s) from (8)—(Q) is
less than zero, this function should be substituted by y(0) - ¢(t — 7) by virtue of the initial
condition (), and the functions y'(t—7, s) and y”(t—7, s) should be substituted by the functions
y(0) - ¢'(t —7,8) and y(0) - ¢"(t — 7, s), respectively due to the property (Hl).

Therefore, let us consider the cases kg =0, kg = 1, kg = 2, ko = 3, ko € N sequentially.

Let us consider the first case: let 7 > 7 (ko = 0).

In this case, arguments of functions y(t — 7,s), ¥'(t — 7,s) and y”(t — 7, s) in the formulae
[®)—(@) are negative (0 < x < 7w by virtue of (I), 0 <t <z <7, —7<t—7<71—7<0)
therefore, these functions should be substituted using the formulae (2]) and ([):

QWEST awy ST
E Ci-e 6a5s5 g wy - e

k=1



96 S.I. MITROKHIN

r(t) - e Rt y(0) - " (t — T) - dtgnt+

+ [ p(t) - e y(0) - I (t = 7) - dbaprt

O\& O\H

4 / 4(t) - € y(0) - p(t — )t | - (15)

6
Taking into account that y(0) = >  Cy due to the formula (), we substitute this value y(0)
k=1
into (], regroup the addends and and arrive to the following conclusion.

Theorem 2. The general solution y(xz,s) of the differential equation ([I)-) in the case
T € (m;400) (ko = 0 in () provided that the summability condition () is obtained in the
following explicit form:

6 6
y(x,s) =D Cr-y(e,s); y™(z,s)=> Cp-y"(w.5), m=12345  (16)
k=1 k=1

and the fundamental system of solutions {yx(z,s)}S_, is represented in the form

6 T
1
Yp(z, 8) = MRST — e Z Wy, - 4T /r(t) cem MRSt — 7))
acs P ,
. dtrkl + /p(t) . e*GQUklst . ¢/<t _ 7—) . dtpkl_'_
0
+ /q(t) cemawkist ot — 1) dle, |, k=1,2,...,6; (17)
0
(m) 6
yk (ZE? 5) _m awp, ST 1 m awy., ST
W_wk e _6a535lzwk1.wk1'6 e
ki=1
0 rki 0 pk1 0 qk1
k=1,2,...,6; m=1234,5. (18)

Note that the functions yg(z,s) (k =1,2,...,6) from ([I0)—(I8)) satisfy the following initial-
value problems:

ye(0,8) = 1; ylim)(O, s)=wpg -a™-s™

6 6
y(07 5) = chv y(m)(o’ 5) = Z Ck : wl::n ~a™ - Sma
k=1 k=1

k=1,2,...,6;: m=1,2,34,5. (19)
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Let us point out again that solutions are found in the explicit form in the formulae (I6)—(IS)
unlike differential equations without retardation (see [10], [9, Ch 5]): solutions there are written
out in the form of asymptotic series without a gap.

Let us consider the second case now: 7 € (Z;7] (i.e. ko = 1 in the formula ([4)). In this
case, arguments of the function y(t — 7,s), ¥'(t — 7,s) and y"(t — 7, s) in the formula (8])—(3)
are not always negative, and the formulae (2), (B cannot be used for them so far.

In order to find asymptotic solutions in this case, let us use the Picard method of successive
approximations: find y(t — 7,s) from ), ¢/'(t — 7,s) from (I0), y"(t — 7,s) from (II)) and
substitute them into the formula (8)—(9). We obtain

6 1 6 :
— E :Ck . eawksx _ 6a5$5 X E :wkl 3 eawklsm 3 /T(t) 3 efawklst_
k=1 0

ki=1

6
1 —awg, 8
. (I)1<t, 7') . dtarkl — m . Z Wiy * Wk, ST /p(t) .e kq ST,

ki=1 :
1 / 70/11) S
’ (I)Q(taT) ’ dtapkl - m Z Wiy - e r e /q : k15t
ki=1 0
: (I)3<t7 T) ' dtaqku (20)
where the following notation is introduced:
6 1 6
Oq(t, 1) = Z C - (awgs)? - e@wrkst=) _ o Z k- (awgs)
k=1 k=1
t—1 t—T1 t—T1
eawks(t T) / + / . + / , (21)
0 ark 0 apk 0 agk
6
Oy (t, 7) = Z Oy, - (awys) - e™=0=7)
k=1
1 6
S () e )
k=1
6 6
@3 (tu T) - Z Ck : ea/u)ks(tiq—) - 6&585 ° Z W - ea/u)kS(tiT) : w<t7 T)7 (22)
k=1 k=1
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ark 0 apk 0 agk

H.

= / r : e—awksf : y”(g -7, S) ' dgark+
0

t—1

+ [ p(&) ey (€ 7, 5) - dapnt

T

+ [ q(€) - ey (§ — 7, 5)dugh. (23)

Ot~ T ST

In the integrals involved in the formulae [20)-([23), we have: 0 < z <
0<t<e<<m0<ELt—7 Therefore, 0 <¢E<t—7<nm—7, 7T<E—T7<1—-21<0
(because we are considering the case kg = 1 in (I4), i.e. § < 7 < 7), i.e. we obtain: the
arguments of the function y(§ — 7,s), ¥'(§ — 7,s) and y”(§ — 7,s) in the integrals, involved
in the formulae (20)—(23) are negative and hence, the initial conditions (2]) and (), where

6
y(0) = > C%, can be applied to them by virtue of the formula (8]).
k=1

6
Substituting the expression y(0) = >_ Cj into the formulae (20)—(23) and carrying out the
k=1

necessary calculations and transformations, we arrive to the conclusion, that the following
theorem holds.

Theorem 3. The general solution y(x,s) of the differential equation ([I)—)) in the case
7€ (37| (ko =1 in () is derived in the following explicit form:

6
= ZCk cgr(x, s); (m) (z,s) Z g(m) m=1,2,3,4,5, (24)

and the following formulae hold true for the fundamental system:

awpsx ]' 1 ]_
Yr(w,8) = ™ — 6aiat Py (z,5,7) — 6aisl by (x,8,7) — b
1 1
Dy (z,5,7) + 36055 sz, 8,7) + 360959 o (x, 5, 7)+
1
+ 36@10810 ) wlovk(l‘7 S, T)’ k: = ]'7 25 ey 6, (25)
(m)
y (SL’, S) m AW ST 1 m 1 m
syn Wk o s T) — g @kl 5 7)
1 m - .
T babsd O (w,8,7) + 360555 b (x,8,7) + 36a95° Vo (x, 5, 7)+
1
+W.w%,k(x’s’7—)7 k:172”6ﬂ m:1725374a5 (26)
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where the following notation is introduced:

T
2 —QwW ST awy., ST a(wg —w
Dy (x,8,7) = w;, - e W E Wy, - MM -/r(t)~ (wh=wry)st .t s
0

k=1
6 T
m(z,5,7) = wj - e T Z Wy - wyy - e / . ;
=1 0 rkk1
6 xT
(I)4k(37, s 7_) = wy, - e AWkST | Z Wy, - Wk ST /p(t) . ea(w;c wy, )st dtpk:ku
k=1 0
6 xT
(T, 8, T) = wy - e TR Z Wy, - Wy, - e / . ;
=1 0 pkk1

6 T

—QWg ST aWp, ST a(wg —wg, )st .

Oy (z,5,7) = e T . E Wy, - ¥M -/q(t)-e ok =0kt s
0

ki=1
6 T
B (o5 r) = e S g | )
k1=1 0 bk
6
k1=1 ko=1
' [Rg(.’lf, S, T, QO/I) + Pg(l’, S, T, 901) + Q8(~T, S, T, @)]) 9
T t—1
Rd%&ﬂﬂ%:/rw'ﬁwww”m' /}QVGWW”ﬁwﬂﬁ—ﬂ% - dt;
0 0
T t—1
Py(z,s,7¢") = /T(t) et T /p<§) SeT ML Gl (€ — T)dE | - dt;
0 0

6
. AW ST | oM 0WE, ST
Vg (x, 8,7) E wkl 1 ( g Wy, - Wy, - €47F2

k1=1 ko=1

' [Rg(.’lf, S, T, 80”) + Pg(l’, S, T, SOI) + Q8<x7 S, T, @)]) )

k=1,2.....6, m=1,234,5
1/181%(%377) :w81<x7877—); w§7€<x7877) :’l/}gi<x7877->7
k:LGw& m=1,2,3,4,5

6
w% x,Ss, 7’ E wkl . p—aWgy ST | <§ :wk2 . eMWky ST [Rg(l‘,S,T, 90”)'?‘

k1=1 ko=1

+ Pg(l‘, S, T, 90/) + Q9(x7 8, T, 90)]> )

99
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Ro(e, 5,7, = / plt) et [ () et g e | e

|
St~
’6

o(z,8,7¢") =

oo (Wi —wpy)st /p(£> . e awky SE 90/<§ _ T)df - dt;

-7

0
t

(z,s,7p) /p el T /Q(S)-G_“w’“lsf-w(f—ﬂd& - dt;
0

6
E oWk, 5T E m Wy, ST 1"
ka z,s, T wkl ' M ( Wy - wkz etk [Rg(.l’, S, T, )_'_

k=1 ka=1
+ Po(2,5,7,¢') + Qo(z, 5, T, @)]) » o Yor(x,8,7) = Yor(x, 5, 7);
Yor (@, s T)Ii/igf(fb’ 5,7)
Yo, s, 7) Z wg, - e MR (i Wiy - €792 - [Ryg(z, 8,7, ¢" )+

k1=1 ko=1

+ PlO(:L‘a S, T, QO/) + QIO(:E) S, T, SO)]> ; ¢10,k(x’ S, 7—) = ¢10,1($a S, 7—)’

t—1

g(t) - e /7”(5)'6_“wk155-<ﬂ"(§—7)d§ - dt;

0

t—1

g(t) - eatwm st / P(E) - % (e — r)de | - dt:

RlO(xa S, T, 90”) =

PIO(xu S, T, 80/) =

6 O — ., O —,

o

Qlo T, 8,7, 90 _ /q . a(wklfka)st . /q<£> . e*awklsﬁ . (,0(& _ T)df . dt7
0
6

70/11) ST m
wlOk x, s, 7— Zwkl . ky . (Z ka.wk2.
k1=1 ko=1

- e [Ryg(2,8,7,¢9") + Puo(x,s,7,¢") + Quo(z, s, 7, ‘P)]> ;

wﬁk(:c, $,T) = 1/1’17871(:6, s,7); k=1,2,...,6;, m=1,2345.

(27)
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Note that the following initial conditions hold for the fundamental system {gx(z, s)}%_; from

R4)-@1):

6
gk(0,8) =1;  gi™(0,5) = w - a™ - s™;  y(0,5) @ ZCk,

y™(0, )" ch w-a™-s™, k=1,2,...,6; m=1,234,5. (28)

Let us consider the third case 7 € (3; 2] (i.e. ko = 2 in ().

In this case one should substitute into @20)-(23) the values of functions
y& — 1,9), y(€ — 7,s) and y"(§ — 7,5) from (§)-() correspondingly (for example,

6 §—7

6
Z k- (awgs)? - e®rs €T — o Sy - (awgs)? - @R ETT) l [ r(0) - emwnst.
k=1 k=1 0

yi(e—r.9

E—1 E—1

"0 — 7,8) - dgrr + ( i ) - ( i ) ]), and then use the initial conditions (Z2))
0 apk 0 aqk

and (B):

0—r1,5s) ZCk o@—71), y"™(O-1,5) ch oM@ —-7), m=1,2

for the functions y(0 — 7,s), ¥ (0 — 7,s) and y"(0 — 7,s). (Note that the argument § — 7 in
the case 7 € (’g,g} isnegative: 0 <z < m,0<t<er<<nm, 7<t—7T<Lr—7TLT—T,
7 <E—T7<t—7< 7= 2T] —T<«9—T<£—27’<7r—37'<0.)

Making the necessary Calculatlons, we obtain the following result.

Theorem 4. The general solution y(x,s) of the differential equation (Il) in the case
T € (3, 2] (ko = 2) has the following form:

6 6
= il s); Y™ (2,5) Y Cr- i (x,s), m=1,2,3,456,  (29)
=1 k=

and the following asymptotic formulae hold when |s| — +oo:

awpsx 1 1
hi(x,s) = e — . Oy (z,5,7) — 6aiet Dy (x,8,7)—
1 1
e Psi(x,8,7) + 36065 Do (, s, 7)+
1 1 eltms!
+m-q)?k(%S,T)er'(I’Sk(%SaT)JrQ RECA (30)
h(m) (ZL" S) m aWwp ST 1 m 1 m
W:wk e _6a3$3'(I)?;k(vavT)_W'q)%(xvsﬂ—)_
- m'¢5k($7577)+m"I)Gk(fUaSaT)er"I)m(ﬂ?,S,T)JF

1 m eﬂms
+ Frpc g, (z,5,7)+ O (W) ,

k=1,2...,6; m=1,23,4,5. (31)
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Here the functions ®si(x,s,7), Pu(x,s,7), Psr(x,s,7), ®h(x,s,7), Pz, s,7), P (z,s,7)
are defined in the formulae (21) of Theorem 3, and the following formulae hold for the remaining
expansion coefficients ([B0)—(B1):

6 6
o2 | ,—QWEST | 3 | —awg, ST . AW, ST
Dy (x,8,7) = wi - € E wy, - ek g W, - V2
k1=1 ko=1

z t—7
/T(t) - ek k)t / (&) - e R TURIE Qe Aty ks |
0 0

6 6
m a2 —aw ST 3 —awp, ST m
O (x,8,7) =w;, - e : E wy, - e T E W, - W -
k1=1 ko=1

T

0 rkkirky ko
6 6

(I)7k(l', s, 7_) = wy, - e~ AWEST E wzl . T OWky ST E Wy, - Wk 5T,
k1=1 ko=1
6
2 —QWg ST 2 —aWg, ST
Oy, (2,8, 7) | +wy - e . g w, - e 157
ki=1

6
awy., ST .
. E Wy - €525 - Dy (8, 7) | 5

ko=1
6 6
%(:L‘, s, 7-) = wy, o T AWKST Z wzl . oWk ST Z W, * wz; . @WWhy ST,
ki=1 ko=1
6
. (I>7k1 (l‘, S, 7') + wi . @ OWEST | Z wzl . AWy ST
ki=1

6
m awy,., ST .
E Wy - Wiy - €725 Dy (2,5, 7) |

ko=1
T t—1
a(wg, —w st a(wg —w S .
(I)7k‘1 (SL’, 877—) - /T<t) € iy g} /p<£> e (1w =y )5 df ' dtpkklrklk‘zﬂ
0 0
T t—1
a(wg, —w st a(wg —w S .
(I)7k2 (SU, 877—) = /p<t) € ( 1 k2) : / T(é) € (o kl) ‘. df : dtrkklpklkw
0 0
6 6
(I)8k<x7 S,T) — efawkm- . E w]?g)l . efawkIST . E Wh, - eaw;@sx.
ki=1 ko=1
6
_ 2 _
5 (I)8k1 (fE, S,T) + wg - € AWy ST E wkl .o MWk ST,
ki=1
6

g Wy - €625 . Dy (2,5, 7) | 4w - e~ kST
ko=1
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6 6
§ W, - e~ OWky ST [E Wh, - Why ST (I)8k3 (SL’, S,T)] :

k1=1 ko=1
6
Sk(l‘ S 7_) — e AWkST | Zwkl MWk ST [Z Wy, - wk MWk ST,
k1=1 ko=1
6
- Dy, (T, 8, 7) | +wg - e T Z w,%l e MWELST.
k1=1
6
[Z Wy - Wiy - "5 Dy (2,5, 7) | +
ko=1

6
+ wi . @ TOWEST | E Wy, - @AWk ST,

e

m aw ST .
o s Wy - €2 gy, (2, s, 7‘)] :
ko=

t—1

Dy, (2,5, 7) = e T /q(f) - TR )SE L GE )t ey

0

t—1

6
Wi,
o=1
/ r(t)
0
(I)8k‘2 (SL’, S, T) - /p<t> ’ ea(wkl 7w,€2)3t ' /p(£> ' ea(wkiwkl)sg : df : dtpkklpklkz;
0 0
)= [ at
0
k=1.2

t—1

R / r(€) - e ETIRIE dE |  dtppgh o
0
,2,...,6; m=1,2,3,4,5. (32)

Dy, (2, 8,7) =

The values ®g, (2,5, 7), ..., Pe(z, s, 7) and O} (z,s,7),..., D (x,s,7) in 29)-(31) are im-
portant for calculating the asymptotics of eigenvalues of the necessary order of accuracy in
calculating the first regularized trace of differential operators, connected with the differential
equation (I)—(2).

Estimates of the remaining series in the formulae (30)—(31]) are made similarly to the estimates
provided in the monographs [11, Chapter 1] and [12, Chapter 1].

In the formulae ([B0)—-(31), the values O <e‘ ‘mfg‘ ) represent a sum of double iterated integrals

- Wy —awgsST | Z Wy,
k1=1

_1
36a9s9

independent of the function ¢(x) (for example, Hy(z,s) =

awkIST[ Z W, e Wky ST fq(t) . ea(wlﬂ wk2 . ( f p e wk2 7wk1)5£ . dé) . dtpkquk1k2:|7 etc)’
0

ko=1
and triple iterated integrals depending on the functlon go( ) by virtue of the initial conditions

6 6 6
) and (&) (for example, Hy(z,5) = —grmm - € 57+ >0 wi - [ S owp e kT ( S wy, -
k1=1 ko=1 ks=1
x t—1 t—1
OWk3 ST f . ea(ka—ka)st[ f ’I“(f) . ea(wkl—wk2)s§ X ( f T(e) . e—awklse X S0//(0 _ 7_) . d9> d§:| .

0 0 0

ellms|-z
dtrkgkgrklkgrkup”)] + O( [sT0] )) .
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Thus, let us give the summary of the intermediate results. Asymptotics of solutions of the
differential equation ([II)-(2) in the case 7 € (7; +00) (if kg = 0 in the formula (I4])) is completely
obtained in the formulae (I6)—(3). When 7 € (5;7] (ko = 1), the asymptotics of solutions is
completely obtained in the formulae (24)—(28). Finally, whent € (3; 2] (ko = 2) asymptotics of
solutions to the differential equation (II)—(2]) is completely obtained in the formulae (29)—(32]).

Let us consider the last case: 7 € (0;%] (i.e. ko > 3 in the formula (I4)). In this case, the
following statement holds true.

Theorem 5. The general solution of the differential equation ([I)—2)) in the case T € (O; %]
(ko = 3, ko € N) has the following form:

6
:ZCk-yk(x,s); yk ZC’“ yk (z,s), m=1234,5, (33)
and the following formulae hold:
awy ST 1 (I)4k('r7877-> (I)5k(x7377->
yk(ZL‘,S) = e — 6a3s3 ) (I)?’k(xv 877_) - Gadst o 6a°s°
O (x,8,7)  Pr(x,s,7)  Psi(x,s,7) elms|- (34)
36a0s6 36a7s” 364858 =\ s )
Y™ (z, 5) g s o (2,5,7)  Ph(x,s,7)  Pp(w,s,T)
(as)™ b 6a3s? 6ats* 6ads®
Bles) | V(s ) | Whlrsr) (e )
36a0s6 36a”s” 36a8s® — |s]? )’
while the functions ®,x(z,s,7), ®%(x,s,7) (for n = 3,4,5) are defined in the formu-

lae [(27) of Theorem 3, functions ®,x(x,s,7), ¢ (x,s,7) (n = 6,7,8) are defined in
|Ims|

the formulae (32) of Theorem 4, the value O, (%) of the formulae B3)—-B5) dif-

elIms|

fers from the value O (Tgx) of the formulae (29)-(31]) as follows: double iterated inte-

grals of the Hi(xz,s) type, independent of the function ¢(x), remain unaltered, and triple
iterated integrals of the Hs(x,s) type, depending on the function ¢(x) are rewritten in

6
the following form: Hy(z,s) = _m . p—AWkST Z w} - lz wi e M ST
k1=1 ko=1 ks=1
T t—1 E—1
OWkz ST fT'(t) . ea(kafwkS)st. [f T’(f) ea(wklfwg)sg . (J’ r(@) .ea(wkfwkl)se_
0 0 0

elIms|

d@) df] . dtrkklrklkgrkgkg)] +0, (e“mllu‘) ) etc, and the value O <T121> when 7 € (%; g} (ko =3
in ([I4])) represents a sum of various quadruple iterated integrals of the Hy(z, s) type depending

ellms|-x

on the function ¢(x). Likewise, the value O (\SI—“) when 7 € (£;%] (ko = 4 in (I4)) rep-

resents a sum of quintuple iterated of the Hy(x,s) type depending on the function ¢(z). The
ellms|-z
value O (‘;W) when 7 € (N, i 1] (

iterated integrals of the Hy(x, s) type depending on ¢(x).

Theorems 2-5 give a possibility to determine the asymptotics of the solution y(z, s) to the
differential equation ([l) with a retarded argument 7, with the initial conditions (2]) completely
if the conditions (4]) of summability of coefficients r(z), p(x) to g(x) are satisfied.

The asymptotics of a fundamental system of solutions of an arbitrary accuracy order in
case of a classical differential Sturm-Liouville operator of the second order with a summable
potential was calculated in the works [13]-[14] for the first time.

ko = N — 1 in (I4))) represents a sum of various N-tuple
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In case of a functionally differential operator of the Sturm-Liouville type of the second order
with a summable potential, asymptotics of the fundamental system of solutions was obtained
in [15].

Let us consider the boundary-value conditions (B]). Let us start with the case 7 > 7 (ko = 0).

The general solution of the differential equation (II)-(2)) when 7 > 7 is derived in Theorem 2
and is described by the formulae (I6)—(I8]), and the initial conditions (I9]) hold.

Theorem 6. Equation for eigenvalues of the differential operator () —([2) with the boundary
value conditions [Bl) has the following form:

ot | el | et | e | e | e |
ot | e | e | e | et | e
wi | wg | wi® | e | wp | wfe |

f(s) = o Wl ‘ W ‘ wi™ ‘ wi™ ‘ wi™ ‘: 0.
w{”5 w;n5 ‘ wgﬂs ‘ wzls ‘ wg% ‘ wg% ‘
g™ (7 8) |y (7, 5) ‘yém)(ﬂ, s) ‘ yi"™ (w, s) ‘ " (m, 5) ‘yém)(ﬁ, 5) ‘

Proof. The first five conditions, involved in the boundary value conditions (3), provide
6

m 3) . (16) 1 19

g (0) 20 @S0y (0,5) =0 E

k=1

6
&> Crp-wpr-a™-s™ =0, n=1234]5 (37)
k=1

and a > 0 from (). One can readily verify that the number s = 0 (A = 0) is not an eigenvalue
6
of the differential operator (II)-(2)-(B). Therefore, it follows from (B7) that > Cj - w;"™ =0,

k=1
n=12234>5.
The sixth equation, involved in the boundary-value conditions (3], yields:
6
g () L0 S0y s) =0, my € {0,1,2,3,4,5). (38)
k=1

The system (B7)—(B8)) represents a homogeneous system of six linear equations with six
6

unknowns C17, Cs, ..., Cs. It has nonzero solutions <Z CE+# O) if and only if its determinant
k=1

vanishes. The determinant of the system (B7)—(B8) is written in the formula (36]) of Theorem 6.
Therefore, Theorem 6 is proved. B

Thus, in order to find eigenvalues Ay (A, = s%, k =1,2,3,...) of the differential operator
(@M—@)—@), one has to learn how to obtain the roots s of the equation f(s) = 0 from (Ba]). We
will look for the asymptotics of the roots s, of the equation (B6) by means of the methodology,
described in the monographs [16, Chapter 12].

Equation f(s) = 0 from (35]) can be rewritten in the following form, expanding the operator
in the sixth row and multiplying it by (—1):

£(5) = G61 -y (7, 8) — bz - 45" (1, 8) + o3 - ys™ (7, 5)—
— S -y, 8) + Se5 - Y (7, 8) — Se6 - Y (i, 8) = 0, (39)

where dgr (K =1,2,...,6) are algebraic minors to elements of the sixth row.
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Let us introduce the notation z = wy for calculating the determinants dgr (kK = 1,2,...,6).

The equality (@) provides:

0 2mi
wi=1=2"; wy=z=¢€6,

Ws = 2,

Wy = 2,

Ws = 2,

Using properties of the determinants and the formulae (40), we obtain:

1

mi m1 mi
Wy~ Wy Ws 1

msa m2 m2

w w LW

566 — 1 2 5 =11
e o 1
Wy Wy Wsg 1

= detWandermond's(z"™", 2™2, 23, 2™ 2"%) =

zm
22
2
z

z

mq

ms

22m1

z
z
z
z

2mo
2ms
2my

2ms

237711 Z4m1
szg Z4m2
23m3 Z4m3 —
Z3m4 Z4m4
Z3m5 Z4m5

k>n
k,ne{1,2,3,4,5}

w;”l w;nl wgll Zml Z2m1 z5m1
me mo mo mo 2mo 5mg
561 _ Wy W4 Wg _ z z z _
w;ns wg”% wgls 25 22777,5 25m5
where
5
M=m; +myg+mg+my+ms = E Mg;
k=1
m1 m1 mi
wq W4 Wg
ma m2 m2
w w w,
02 = | ' ’ Cl=01=2"=2"=
ms ms ms
1 Z2m1 Z5m1 Z2m1 Z5m1 ZGml
1 Z2m2 Z5m2 Z2m2 Z5m2 ZGmQ
= = = Z
1 Z2m5 25m5 22m5 Z5m5 26m5

Likewise, it is proved that

3M . _ AM .
063 = 27 0665 Ooa = 2+ Jee;

5M .
065 = 2 - 066}

[I Gm™—=m)#0;

M
2™+ deg,

de6 = 20M de6 7 0.

Using the formulae (d1)—(4H), we can rewrite Equation (B9) in the form

f(s) = ZM - Sge {y@(m s) —

_ M yé(lm)(m s) + SAM

ZM'y

(n1)

' y5 <7T7 S

and divide it by 2 - dgs because zM # 0, dg # 0.

(n1)
2

(7

) _ M yém)(w7 8)} =0,

c8) 4 22M Ly () s)—

(40)

(41)

(42)

(44)

(45)

(46)
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Substituting the formulae (I7)—(I8)) into Equation (46]), we obtain:
At AM
f(s) =1. |:U}?1 . eWIsT M} _ ZM . |:wg1 . eaW2sT _ 5 <7T7 S):|

6a’sd 6a’s®
ni ni
4 22M . |:wn1 . eawgsw o A5 <7T7 S) . 23M . wnl . eaw4s7r . A5 <7T7 S)
3 6a5s? 4 5 a5
a’s 6a’s
ni ni
=+ 24M . wm . eawssw o A5 (7T78) o Z5M . wm . eawgsw o AEB (7T78) =0 (47)
5 6a’s° 6 6a’s® -

where the following notation is introduced:

Anl 7T 8 Z wn1+1 MWk 5T /T(t) . efawklst . @I/(t . 7_) . dtrk1+
ki=1 0

T

i / p(t) - e” ™ G (t = 7) - dtpr, +

0
x

+/61(t)' TRt — 1) - dtg, |
0

ni € {0,1,2,3,4,5}. (48)
It follows from Equation (47)—(48) that
1
f(s) = fols) — 6abat fs(s) =0, (49)
where

fo(s) = 1wt — 2M it + 227wt — 27wt 4 M Pt — M (50)
fs(s) = Apt(m,8) - [1 — 2M 4 22M 3 4 AM _ 5M) (51)

The main approximation of Equation (49]) has the form
fo(s) =0, (52)

where fy(s) is defined in the formula (50).
The indicator diagram (see [16, Chapter 12]) for Equations (9) and (52) has the fol-
lowing form: The indicator diagram (53) represents a regular hexagon with vertices at

2)
3) 3 5 )
_ 11 _
WT=Wy 12 2] INMTWM
0 X
4) N _Ue)
=W - 6™
5)
(53)
the points wy (k = 1,2,...,6), because they divide a unit circle into six equal parts

(wk—eT(’f D k=12, .: w :1).
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It follows from [16, Chapter 12] that eigenvalues can be obtained only in the shaded sectors,
illustrated on Figure (53), of an infinitely small angle, and bisectrices of these sectors are mean
perpendiculars to the sides of the hexagon.

Let us investigate the sixth sector in more detail. It follows from Chapter 12 of the monograph
[16] that roots of the function f(s) from (34), (39), (6)—(=1]) coincide asymptotically with roots
of the function gg(s). We keep only exponentials with the indices w; = w; and wWg = wy (only
these two numbers belong to the sector boundary) in Equation ([49)—(&1]) for the latter function.
Therefore, the following fact holds true: equation in eigenfunctions of the sixth sector has the
following form:

n awi1s8m n awa8T 1
g6(s) = [wll et _ZN'le'e ’ ] T 6adsd [1_ZM} ’
wy - wit - e / . + wq - wyt - 42T / . +o(1)| =0, (54)
0 a 0 as
where we used the formula (48]) for AZ* (7, s), and
(ﬁ) —awi st " —awi st /
o =) e @ (t—T)-dty, + [ p(t)-e @ (t—T1) - dty,+
0 a; O 0
" /g<t> sem st QO(t - T) ) dt(h - /(I)(t) Sem st dta,,
0 0
O(t) =r(t) - ¢"(t —=7) +pt) - &'t = 7) + q(t) - o(t = 7), (55)
/ :/(I)(t)-e_“w25t-dta2: / + / + /
0 ag O 0 r2 0 p2 0 a2
(56)
The main approximation in Equation gg(s) = 0 from (54)) has the following form:
ny M
906<3) _ wlm . pOwIsT _ ZM . w2n1 CEMWST () o ea(wlfwg)gm _ Wo mZ o
wy
T 2 ]
= 5 (MAm) o a(wy —wy)sm = 2mik + %Z (M+mn) e
2i ~  ~ M
@Skﬁmainziz'k}, k:k+ +n1, k:1,2,3,... (57)
w a(w; — wy) 6

On the basis of the formula (57)), taking into account the methodology of the monograph [16,
Chapter 12], we make the conclusion that the following theorem holds.

Theorem 7. Asymptotics of eigenvalues of the differential operator (I)—)-B]) in the sizth
sector of the indicator diagram (53) has the following form:

%k % - d 1 ~ M
o = o ! R L 2 +Q( ) =kt g”l, (58)

wi—Wwa)  a(wy — ws) - k5 k10

and

5
ME S e, omp€{0,1,2,3,4,5), k=1,23,...

k=1
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Proof. The fact that asymptotics of eigenvalues of the differential operator (II)—(2)—(3)
(invoking (53)) should be sought for in the form (58)) follows from [16, Chapter 12] and [17]. In
case of an indicator diagram of the form (53) expansion in fractional k is impossible and there
is no “decomposition” effect of “multiple in the main” eigenvalues demonstrated by the author
in [18].

Therefore, to prove Theorem 7 we have to find a formula for determining the coefficient ds; ¢
from (B8) in the explicit form.

Using the Taylor formulae and (G8) for s ¢, we have:

~ 2idsy,
ea(wlwa)sﬂ _ ea(wl—wg)n~a(w?lfw2) ) ea(ZU1—w2)7T' {ﬁ'ﬁ‘}
Sk,6
1L ke [H midsis | g (~—)] , (59)
k;5 k;lO
1 — 1 1 5 — 5 1
_:Mw(r); T:M+Q<~_)’ (60)
Sk 2ik )6 Sp6 2545 k5 1

™

—2iwy okt
:/q)(t) ce witwy .

0

= / B(t) - e "2t dt
Sk.6 0

1
’ dtpl,pz _'_Q <?) ’

O(t) = r(t) - " (t =7) +p(t) - ¢t =7) +q(t) - ot = 7). (61)
Substituting the formulae (58)—(61) into Equation (54)—(56]), we obtain:

Sk,6
ai,az

w™ - e%-(Mer) —wm .M + 27Ti’fi5k76 . e%-(Mer)_
1 2 T
1 5 _ 5.5 1
A Rl VL FOY G B D)
6a®  25.45. k5. kS
1
. By(m)+0 <’;;_> 0 (62)
where
Bg(w)zw1~w{“~e%'(M+"l)- / + wy - wyt - / : (63)
0 P 0 P2
Coefficient in the formula (62)-(3) vanishes when K0 wit. e’ (Mtm) _yym . ;M —
= 1m . M L (e%> B (e%> = 0, which verifies the asymptotics of eigenvalues

in the form (58)).
Equating coefficients of k75 in (62)—(63]), we have:

271 ] - 5
Oridsyg - 6 M) % L= M) By(nr) =0,

whence, we conclude that the formula

—(w] —w 5 —2mi
ok = (12}—322) ce O L= M) By() (64)

holds.
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In view of the formulae (@), we have:

W —wy=1—¢€% =e% - [e_gi —e%} = (—Qi)-e%sin <%),
T i —Ti us} s} M
1—2M =1 % M= &M [e o M _ e?M} = (—2i)-e% ¥ sin (%) ; (65)

—2iwgkt omi ; 2
O(t) - ewri—v2 - dt,, = e s M. e e M.

o
ml%?
3
5
ot~

67‘;” €%LM ) /(I)(t) : 61“_12—“32'(1”1?”24_1”1;1“2) . dtpl —+
0
+e% M ./q)(t) . ew_f—iz%utg(wlzw_wlgw) “dty, | =
0
=6 M. g% . eT M. 2 / , (66)
0 Vi
where
~ M
/ :/q)(t) e V3R . cos (kt+%—%) ~dty,, (67)
0 \% 0
because % =/3-1i.
Substituting the formulae (65)—(67) into the formula (64)), we obtain: dsps = —15am5 - (—2i)°-
€% (%)5 ceTe ML eTE L (—24) - e% M L sin (=) e M. e e M. 2. (f . ) = —oor
0 %]
sin (%) . (f) , 1.e. we have:
0 1%
1 . M r &7 ~ T M
dske = ~{ozn S (T) . /@(t) LemVER L cos (kt + i T) ~dty,, (68)

5 ~
where M = ki_jlmk, O(t) =r(t) ¢"(t=7)+p(t) ¢ (t=T)+q(t) - p(t—7), 7 > 7, k = k+2F,
k=1,2,3,....
Derivation of the formula (68) completes the proof. of Theorem 7. B
Note that asymptotics of eigenvalues of the differential operator ([II)—(2)—(3) is obtained like-
wise in the remaining sectors of the indicator diagram (53). In this case the following relations

hold:

4mi 2mi 2mi
Sk1 = Sk6 €6, Sg2=S5g1°€6 =Spe-€6 ...,
2wim
Sk,m = Sk,6 " € 6, m = ]-72a 374a 576 (69)

The formulae (58) and (68) allow us to find the asymptotics of eigenfunctions of the differ-
ential operator (I)—(2)—(@)) (if 7 > m) similarly to the works [13]-[15].
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Similarly to the above, one can find asymptotics of eigenvalues of the differential operator
@M—@)—@) in cases if T € (%, ﬂ, TE (%, g} and T € (0; %] as well. Meanwhile, in view of the
formulae (24)-27) when 7 € (5;7] and 29)-(B2) when 7 € (%; 2], asymptotics of eigenvalues

372
is sought for in the form other than the formula (58):

%k % d d d 1
Sk = 1 n 1 ) 3k,6 + 4k,6 + ik’6+Q<~—):|, (70)

a(wy —wy)  alw; —wsy) | k3 4 L5 L6

where k = k+%; then the indicator diagram has the form (53), and the main approximations
of the asymptotics coincide. In the remaining sectors of the indicator diagram, the relations

69) hold.

Finally, we would like to mention that the spectrum of the operator (I)—(2) with boundary
value conditions

y " (0) =y (0) =y (0) = y ™ (0) =y (1) = y") (1) = 0

is investigated likewise, but by means of significantly more complicated calculations.
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