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ESTIMATES OF SOLUTIONS OF AN ANISOTROPIC

DOUBLY NONLINEAR PARABOLIC EQUATION

L.M. KOZHEVNIKOVA, A.A. LEONTIEV

Abstract. The first mixed problem with the Dirihlet homogeneous boundary-value condi-
tion and a finite initial function is considered for a certain class of second-order anisotropic
doubly nonlinear parabolic equations in a cylindrical domain 𝐷 = (0,∞) × Ω. Upper es-
timates characterizing the dependence of the decay rate of the solution to the problem on
geometry of an unbounded domain Ω ⊂ R𝑛, 𝑛 ≥ 3 are established when 𝑡 → ∞. Existence
of strong solutions is proved by the method of Galerkin’s approximations. The method of
their construction for the modelling isotropic equation has been earlier offered by F.Kh.
Mukminov, E.R. Andriyanova. The estimate of the admissible decay rate of the solution
on an unbounded domain has been obtained on the basis of Galerkin’s approximations. It
proves the accuracy of the upper estimate.

Keywords: anisotropic equation, doubly nonlinear parabolic equations, existence of strong
solution, decay rate of solution.

1. Introduction

Let Ω be an unbounded domain of the space R𝑛 = {x = (𝑥1, 𝑥2, ..., 𝑥𝑛)}, 𝑛 ≥ 3. The first
mixed problem

(|𝑢|𝑘−2𝑢)𝑡 =
𝑛∑︁

𝛼=1

(𝑎𝛼(𝑢2𝑥𝛼
)𝑢𝑥𝛼)𝑥𝛼 , 𝑘 ≥ 2, (𝑡,x) ∈ 𝐷; (1)

𝑢(𝑡,x)
⃒⃒⃒
𝑆

= 0, 𝑆 = {𝑡 > 0} × 𝜕Ω; (2)

𝑢(0,x) = 𝜙(x), 𝜙(x) ∈ 𝐿𝑘(Ω), 𝜙𝑥𝛼(x) ∈ 𝐿𝑝𝛼(Ω), 𝛼 = 1, 𝑛 (3)

is considered for an anisotropic quasilinear parabolic second-order equation in a cylindric do-
main 𝐷 = {𝑡 > 0} × Ω. It is assumed that nonnegative functions 𝑎𝛼(𝑠), 𝑠 ≥ 0, 𝛼 = 1, 𝑛 obey
the conditions: 𝑎𝛼(0) = 0, 𝑎𝛼(𝑠) ∈ 𝐶1(0,∞),

𝑎𝑠(𝑝𝛼−2)/2 6 𝑎𝛼(𝑠) 6 ̂︀𝑎𝑠(𝑝𝛼−2)/2, (4)

𝑝1
2
𝑎𝛼(𝑠) 6 𝑎𝛼(𝑠) + 𝑎′𝛼(𝑠)𝑠 6 ̂︀𝑏𝑎𝛼(𝑠), (5)

with the positive constants ̂︀𝑎 ≥ 𝑎, 2̂︀𝑏 ≥ 𝑝1 > 𝑘 (𝑝1 6 𝑝2 6 . . . 6 𝑝𝑛). For example, 𝑎𝛼(𝑠) =

𝑠(𝑝𝛼−2)/2, 𝛼 = 1, 𝑛, ̂︀𝑏 = 𝑝𝑛.
The present paper is devoted to investigation of the stabilization rate of solution to the

problem (1)–(3) with a finite initial function 𝜙(x) when 𝑡→ ∞.
Investigation of the decay rate for large time values of solutions to mixed problems for

parabolic equations in unbounded domains with the initial function limited in one of 𝐿𝑝-norms
was initiated by the works [1], [2]. In a wide class of unbounded domains, A.K. Gushchin
obtained exact estimates of solutions to the second mixed problem for a linear second-order
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parabolic equation in a divergent form in terms of a simple geometric characteristics 𝑣(𝑟) =
mes Ω(𝑟), Ω(𝑟) = {x ∈ Ω | |x| < 𝑟}.

Works of V.I. Ushakov [3], [4], F.Kh. Mukminov [5], [6], A.F. Tedeev [7] – [9], I.M. Bikkulov,
F.Kh. Mukminov [10], L.M. Kojevnikova, F.Kh. Mukminov [11], [12], L.M. Kojevnikova [13],
[14], L.M. Kojevnikova, R.Kh. Karimova [15] and others were devoted to investigation of
behaviour of solutions to mixed problems for linear and quasi-linear parabolic equations of the
second and higher orders when 𝑡 → ∞. Surveys of the corresponding results are available in
[11], [13], [15].

In the isotropic case, i.e. when all 𝑝𝛼 are equal to each other and are qual to 𝑝, 𝑝 ≥ 2, the
problem (1)–(3) when 𝑘 = 2 was investigated in [15]. The anisotropic case for mixed problems
is little investigated. Decay rate estimates for solutions to the cauchy problem for a degenerate
parabolic equation with an anisotropic 𝑝-Laplacian and a double nonlinearity are obtained by
S.P. Degtyarev, A.F. Tedeev in [16].

For the sake of simplicity we limit our consideration by domains located along the distin-
guished axis 𝑂𝑥𝑠, 𝑠 ∈ 2, 𝑛− 1 (the domain Ω lies in the half-space R+

𝑛 [𝑠] = {x ∈ R𝑛 |𝑥𝑠 > 0},
the cut 𝛾𝑟 = {x ∈ Ω | 𝑥𝑠 = 𝑟} is not empty and bounded for any 𝑟 > 0). In what follows, we
use the notation: Ω𝑏

𝑎 = {x ∈ Ω | 𝑎 < 𝑥𝑠 < 𝑏}, while the values 𝑎 = 0, 𝑏 = ∞ are omitted.
To study the decay of solution to the problem (1) – (3) when 𝑥𝑠 → ∞, we will use a geometric

characteristics, which is t be defined as follows. Let us assume that

𝜈𝛼(𝑟) = inf
{︁
‖𝑔𝑥𝛼‖𝐿𝑝𝛼 (𝛾𝑟)

⃒⃒⃒
𝑔(x) ∈ 𝐶∞

0 (Ω), ‖𝑔‖𝐿𝑝𝛼 (𝛾𝑟) = 1
}︁
, 𝑟 > 0, (6)

𝜈(𝑟) = min{𝜈1(𝑟), 𝜈𝑛(𝑟)}. We consider that the domain Ω satisfies the condition
∞∫︁
1

𝜈(𝑟)𝑑𝑟 = ∞. (7)

It is assumed that the initial function has a bounded support so that

supp 𝜙 ⊂ Ω𝑅0 , 𝑅0 > 0. (8)

Theorem 1. Let 𝑘 ≥ 2 and the conditions (7), (8) are satisfied. Then, there are positive
numbers 𝜅(𝑝𝑠, 𝑘), ℳ(𝑝𝑠, 𝑘) such that the generalized solution 𝑢(𝑡,x) to the problem (1)–(3) for
all 𝑡 ≥ 0, 𝑟 ≥ 2𝑅0 satisfies the estimate

‖𝑢(𝑡)‖𝐿𝑘(Ω𝑟) 6ℳ exp

⎛⎝−𝜅
𝑟∫︁

1

𝜈(𝜌)𝑑𝜌

⎞⎠ ‖𝜙‖𝐿𝑘(Ω). (9)

Results on decay of solution to the problem (1)–(3) for 𝑡 → ∞ are obtained on the basis of
the estimate (9).

The admissible stabilization rate of solution to an isotropic quasi-linear parabolic equation
of a higher order for 𝑘 = 2 was investigated by A.F. Tedeev [17] for the first mixed problem and
by N. Alikakos, R. Rostmanian [18] for the Cauchy problem. The lower estimate for solution
to the problem (1)–(3) is obtained in the following theorem.

Theorem 2. Let 2 6 𝑘 < 𝑝1 and the conditions (7), (8) are satisfied. Then, there is a

positive number 𝐶(𝜙, 𝑘, 𝑝1,̂︀𝑎,̂︀𝑏) such that the generalized solution 𝑢(𝑡,x) to the problem (1)–(3)
for all 𝑡 ≥ 0 obeys the estimate

‖𝑢(𝑡)‖𝐿𝑘(Ω) ≥ ‖𝜙‖𝐿𝑘(Ω) (𝐶(𝜙)𝑡+ 1)−1/(𝑝1−𝑘) . (10)

Let us define the function

𝜇1(𝑟) = inf
{︁
‖𝑔𝑥1‖𝐿𝑝1 (Ω

𝑟)

⃒⃒⃒
𝑔(x) ∈ 𝐶∞

0 (Ω), ‖𝑔‖𝐿𝑘(Ω𝑟) = 1
}︁
, 𝑟 > 0. (11)
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We will investigate decay in the domains where the following condition is satisfied:

lim
𝑟→∞

𝜇1(𝑟) = 0. (12)

It is demonstrated that if the condition is not met, the maximum decay rate of solution is
reached, i.e. the estimate

‖𝑢(𝑡)‖𝐿𝑘(Ω) 6𝑀𝑡−1/(𝑝1−𝑘), 𝑡 > 0 (13)

holds (see Corollary 2).
Let 𝑟(𝑡) be an arbitrary positive function, satisfying the inequality

(𝜇𝑝1
1 (𝑟(𝑡))𝑡)−1/(𝑝1−𝑘) exp

⎛⎝𝜅 𝑟(𝑡)∫︁
1

𝜈(𝜌)𝑑𝜌

⎞⎠ ≥ 1, 𝑡 > 0. (14)

Existence of such function follows from (12).

Theorem 3. Let 2 6 𝑘 < 𝑝1 and the conditions (7), (8), (12) are met. Then, there is a
positive number 𝑀(𝑝𝑠, 𝑝1, ‖𝜙‖𝐿𝑘(Ω)) such that the estimate

‖𝑢(𝑡)‖𝐿𝑘(Ω) 6𝑀 (𝑡𝜇𝑝1
1 (𝑟(𝑡)))−1/(𝑝1−𝑘) , 𝑡 > 0 (15)

holds for solution 𝑢(𝑡, x) of the problem (1)–(3)

If the conditions
𝑟∫︁

1

𝜈(𝜌)𝑑𝜌 ≥ 𝑏 ln 𝑟, (16)

𝜇1(𝑟) ≥ 𝐶𝑟−𝑎 (17)

are satisfied for 𝑟 > 1 with positive constants 𝑎, 𝑏, 𝐶, then, one can assume

𝑟(𝑡) = 𝑡1/(𝑎𝑝1+𝜅𝑏(𝑝1−𝑘)), 𝑡 > 0,

and the estimate (15) takes the form

‖𝑢(𝑡)‖𝐿𝑘(Ω) 6𝑀𝑡−𝜅/(𝑎
𝑏
𝑝1+𝜅(𝑝1−𝑘)), 𝑡 > 0. (18)

If the condition

lim
𝑟→∞

1

ln 𝑟

𝑟∫︁
1

𝜈(𝜌)𝑑𝜌 = ∞, (19)

is satisfied instead of the inequality (16) then, one can choose

𝑟(𝑡) = 𝑡𝜀/(𝑎𝑝1), 𝑡 > 0, 𝜀 ∈ (0, 1), (20)

and the estimate (15) takes the form

‖𝑢(𝑡)‖𝐿𝑘(Ω) 6𝑀𝑡−(1−𝜀)/(𝑝1−𝑘), 𝜀 ∈ (0, 1), 𝑡 > 0. (21)

The choice of the function 𝑟(𝑡) by the formula (20) is satisfactory, because the estimate (21)
has the exponent close to the exponent 1/(𝑝1 − 𝑘) of the lower estimate (10).

Let us consider the rotation domain

Ω(𝑓)[𝑠] = {x ∈ R𝑛 |𝑥𝑠 > 0, |x′
𝑠| < 𝑓(𝑥𝑠)} , 𝑠 ∈ 2, 𝑛− 1, (22)

x′
𝑠 = (𝑥1, . . . , 𝑥𝑠−1, 𝑥𝑠+1, . . . , 𝑥𝑛), with a positive function 𝑓(𝑥𝑠) <∞. There is only one require-

ment for the function 𝑓, namely the set Ω(𝑓)[𝑠] should be a domain.
The following correlation holds for such domains:

𝜈(𝑟) =
𝑐

𝑓(𝑟)
, 𝑟 > 0, (23)
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therefore, the condition (19) takes the form

lim
𝑟→∞

1

ln 𝑟

𝑟∫︁
1

𝑑𝜌

𝑓(𝜌)
= ∞. (24)

Let us express the estimates (9), (15) via the function 𝑓(𝑥) for rotation domains of the form
(22). Joining (9), (23), we obtain the following estimate

‖𝑢(𝑡)‖𝐿𝑘(Ω𝑟) 6 ̃︁ℳ exp

⎛⎝−̃︀𝜅 𝑟∫︁
1

𝑑𝜌

𝑓(𝜌)

⎞⎠ ‖𝜙‖𝐿𝑘(Ω), 𝑡 ≥ 0, 𝑟 ≥ 2𝑅0. (25)

The choice of the function 𝑟(𝑡) by the formula (20) is justified for rotation domains, satisfying
the condition (24), and the estimate (21) holds. However, one can obtain finer estimates for
such domains.

The following estimate is a corollary of Theorem 3 for rotation domains of the form (22) (see
Statement 1):

‖𝑢(𝑡)‖𝐿𝑘(Ω(𝑓)) 6 ̃︁𝑀𝑡−1/(𝑝1−𝑘)̃︀𝑔(𝑡), 𝑡 ≥ 1, (26)

where the function ̃︀𝑔(𝑡) grows slower than any power function 𝑡𝛾, 𝛾 > 0.
The estimate (26) takes the form (see Example 1 S5)

‖𝑢(𝑡)‖𝐿𝑘(Ω(𝑓)) 6 ̃︁𝑀𝑎𝑡
−1/(𝑝1−𝑘)(ln 𝑡)𝜒/(1−𝑎), 𝑡 ≥ 𝑒,

𝜒 = 𝑎
𝑝1

𝑝1 − 𝑘
+ 𝑎

𝑛− 1

𝑘
+

1

𝑘

(27)

in the domain Ω(𝑓𝑎)[𝑠] with the function 𝑓𝑎(𝑥) = 𝑥𝑎, 0 6 𝑎 < 1, 𝑥 > 0 for solving the problem
(1)–(3).

For solving the problem (1)–(3), the estimate (26) takes the following form (see Example 2
S5) in the domain Ω(𝑓)[𝑠] with the function 𝑓(𝑥) = 𝑒, 0 < 𝑥 < 𝑒, 𝑓(𝑥) = 𝑥/ ln𝑥, 𝑥 ≥ 𝑒 :

‖𝑢(𝑡)‖𝐿𝑘(Ω(𝑓)) 6 ̃︁𝑀𝑡−1/(𝑝1−𝑘)(ln 𝑡)−𝜎/2 exp
(︀
𝜚(ln 𝑡)1/2

)︀
, 𝑡 ≥ 𝑒,

𝜎 =
𝑝1

𝑝1 − 𝑘
+
𝑛− 1

𝑘
, 𝜚 > 0.

(28)

2. Auxiliary statements

Let us assume that ‖ · ‖𝑝,𝑄 is a norm in 𝐿𝑝(𝑄), 𝑝 > 1, (·, ·)𝑄 is a scalar product in 𝐿2(𝑄),
and the values 𝑝 = 2, 𝑄 = Ω are omitted. Let us denote the cylinder by 𝐷𝑏

𝑎 = (𝑎, 𝑏) × Ω, the
values 𝑎 = 0 and 𝑏 = ∞ can be absent.

Let us define the Banach space
∘
𝑊 1

𝑘,p(Ω) as a complement to the space 𝐶∞
0 (Ω) by the norm

‖𝑢‖𝑊 1
𝑘,p(Ω) =

𝑛∑︁
𝛼=1

‖𝑢𝑥𝛼‖𝑝𝛼 + ‖𝑢‖𝑘.

The Banach spaces
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ),

∘
𝑊

1,1
𝑘,p(𝐷𝑇 ) are to be defined as complements of the space

𝐶∞
0 (𝐷𝑇+1

−1 ) by the norms

‖𝑢‖𝑊 0,1
𝑘,p(𝐷

𝑇 ) = ‖𝑢‖𝑘,𝐷𝑇 +
𝑛∑︁

𝛼=1

‖𝑢𝑥𝛼‖𝑝𝛼,𝐷𝑇 ,

‖𝑢‖𝑊 1,1
𝑘,p(𝐷

𝑇 ) = ‖𝑢‖𝑘,𝐷𝑇 + ‖𝑢𝑡‖𝑘,𝐷𝑇 +
𝑛∑︁

𝛼=1

‖𝑢𝑥𝛼‖𝑝𝛼,𝐷𝑇 ,
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respectively.
Definition 1. A generalized solution to the problem (1)–(3) is a function

𝑢(𝑡,x) ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ), satisfying the integral identity∫︁

𝐷𝑇

(︃
−|𝑢|𝑘−2𝑢𝑣𝑡 +

𝑛∑︁
𝛼=1

𝑎𝛼(𝑢2𝑥𝛼
)𝑢𝑥𝛼𝑣𝑥𝛼

)︃
𝑑x𝑑𝑡 = (29)

= −
∫︁
Ω

|𝑢(𝑇,x)|𝑘−2𝑢(𝑇,x)𝑣(𝑇,x)𝑑x +

∫︁
Ω

|𝜙(x)|𝑘−2𝜙(x)𝑣(0,x)𝑑x

for any function 𝑣(𝑡,x) ∈
∘
𝑊

1,1
𝑘,p(𝐷𝑇 ) with every 𝑇 > 0.

Definition of the generalized solution is correct, since integrals involved in (29) are finite.
Indeed, in view of the Holder inequality, due to (4), we have

𝑛∑︁
𝛼=1

∫︁
𝐷𝑇

|𝑎𝛼(𝑢2𝑥𝛼
)||𝑢𝑥𝛼||𝑣𝑥𝛼 |𝑑x𝑑𝑡 6 ̂︀𝑎 𝑛∑︁

𝛼=1

∫︁
𝐷𝑇

|𝑢𝑥𝛼|𝑝𝛼−1|𝑣𝑥𝛼|𝑑x𝑑𝑡 6

6 ̂︀𝑎 𝑛∑︁
𝛼=1

‖𝑢𝑥𝛼‖
𝑝𝛼−1
𝑝𝛼,𝐷𝑇 ‖𝑣𝑥𝛼‖𝑝𝛼,𝐷𝑇 ,∫︁

𝐷𝑇

|𝑢|𝑘−1|𝑣𝑡|𝑑x𝑑𝑡 6 ‖𝑢‖𝑘−1
𝑘,𝐷𝑇 ‖𝑣𝑡‖𝑘,𝐷𝑇

for the functions 𝑢(𝑡,x) ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ), 𝑣(𝑡,x) ∈

∘
𝑊

1,1
𝑘,p(𝐷𝑇 ).

The conditions (5) entail the inequalities

(𝑝1 − 1)𝑎𝛼(𝑠) 6 𝑎𝛼(𝑠) + 2𝑎′𝛼(𝑠)𝑠 6 ̂︀𝑐𝑎𝛼(𝑠), ̂︀𝑐 = 2̂︀𝑏− 1, 𝑠 ≥ 0, 𝛼 = 1, 𝑛, (30)

which can be written in the form

0 6 (𝑎𝛼(𝑧2)𝑧)′ 6 ̂︀𝑐𝑎𝛼(𝑧2), 𝑧 ∈ R, 𝛼 = 1, 𝑛. (31)

Let us assume that 𝐴𝛼(𝑠) =
𝑠∫︀
0

𝑎𝛼(𝜏)𝑑𝜏 then, using the conditions (5), we deduce the inequal-

ities
𝑝1
2
𝐴𝛼(𝑠) 6 𝑎𝛼(𝑠)𝑠 6 ̂︀𝑏𝐴𝛼(𝑠), 𝑠 ≥ 0, 𝛼 = 1, 𝑛. (32)

Lemma 1. Any bounded set of a reflective Banach space is weakly compact (see [19, Ch.V,
S19.7, Theorem 1]).

Remark 1. The spaces
∘
𝑊 1

𝑘,p(Ω),
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ) are reflexive separable Banach spaces. In-

deed, the space
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ) is a closure of the image of the mapping 𝐼 : 𝑣(𝑡,x) ∈ 𝐶∞

0 (𝐷𝑇+1
−1 ) ↦→

(𝑣, 𝑣𝑥1 , 𝑣𝑥2 , ..., 𝑣𝑥𝑛) ∈
∈ 𝐿𝑘(𝐷𝑇 )⊕𝐿𝑝1(𝐷

𝑇 )⊕...⊕𝐿𝑝𝑛(𝐷𝑇 ). Since the spaces 𝐿𝑘(𝐷𝑇 ), 𝐿𝑝1(𝐷
𝑇 ), ..., 𝐿𝑝𝑛(𝐷𝑇 ) are reflexive,

the subspace
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ) of the reflexive space

𝐿𝑘(𝐷𝑇 ) ⊕ 𝐿𝑝1(𝐷
𝑇 ) ⊕ ...𝐿𝑝𝑛(𝐷𝑇 ) is also reflexive.

Remark 2. In what follows, to avoid cumbersome reasoning, instead of such statement as
“one can single out a subsequence 𝑢𝑀𝑖, converging in 𝐿2(Ω) when 𝑖 → ∞ from the sequence
𝑢𝑀”, we will say only ”the sequence 𝑢𝑀 convergence selectively in 𝐿2(Ω) when 𝑀 → ∞”.
Correspondingly, we use the term ”weakly selectively converges” etc.
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Lemma 2. Let us assume that 𝑔𝑀(𝑡,x), 𝑀 = 1,∞, 𝑔(𝑡,x) are functions from 𝐿𝑝((0, 𝑇 ) ×
𝑄), 1 < 𝑝 <∞ such that

‖𝑔𝑀‖𝑝,(0,𝑇 )×𝑄 6 𝐶, 𝑔𝑀 → 𝑔 for𝑀 → ∞ almost everywhere in (0, 𝑇 ) ×𝑄.

Then, 𝑔𝑀 ⇀ 𝑔 for𝑀 → ∞ weakly in 𝐿𝑝((0, 𝑇 ) ×𝑄) (see [20, Ch. I, S1.4, Lemma 1.3]).

Lemma 3. Let the system of functions 𝜓𝑖(x) ∈ 𝐶∞
0 (Ω), 𝑖 = 1,∞ be linearly independent

and its linear envelope be a dense set everywhere in the space
∘
𝑊 1

𝑘,p(Ω). Denote by 𝑃𝐿 a set of

functions
𝐿∑︀
𝑖=1

𝑑𝑖(𝑡)𝜓𝑖(x), where 𝑑𝑖(𝑡) ∈ 𝐶∞[0, 𝑇 ]. Then, the set 𝑃 =
∞⋃︀

𝐿=1

𝑃𝐿 is dense in the space

∘
𝑊

0,1
𝑘,p(𝐷𝑇 ) (see [21, Ch. II, S4, Lemma 4.12]).

Lemma 4. Let the sequence {𝑢𝑀(𝑡,x)}∞𝑀=1 be bounded in the space
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ), 𝑘 6 𝑝1.

Then, there is a countable dense set {𝑡𝑗}∞𝑗=1 ⊂ [0, 𝑇 ] such that {𝑢𝑀(𝑡𝑗,x)}∞𝑀=1 selectively weakly
converges in the space 𝐿𝑘(𝑄) for any bounded domain 𝑄 ⊂ Ω with a smooth boundary when
𝑀 → ∞ for every fixed 𝑡𝑗, 𝑗 = 1,∞.

Let us carry out the proof by the scheme, suggested by J.-L. Lions [20, Ch. I, S12.2, Theorem
12.1]. The lemma condition provides the inequalities

‖𝑢𝑀‖𝑘𝑘,𝐷𝑇 +
𝑛∑︁

𝛼=1

‖𝑢𝑀𝑥𝛼
‖𝑝𝛼
𝑝𝛼,𝐷𝑇 6 𝐶, 𝑀 = 1,∞. (33)

Let us consider the set 𝐸 of points 𝑡 ∈ [0, 𝑇 ] such that

lim
𝑀→∞

(︃
‖𝑢𝑀(𝑡)‖𝑘𝑘 +

𝑛∑︁
𝛼=1

‖𝑢𝑀𝑥𝛼
(𝑡)‖𝑝𝛼𝑝𝛼

)︃
= ∞.

The measure 𝐸 equals 0, because otherwise

lim
𝑀→∞

𝑇∫︁
0

(︃
‖𝑢𝑀(𝑡)‖𝑘𝑘 +

𝑛∑︁
𝛼=1

‖𝑢𝑀𝑥𝛼
(𝑡)‖𝑝𝛼𝑝𝛼

)︃
𝑑𝑡 ≥

≥ lim
𝑀→∞

∫︁
𝐸

(︃
‖𝑢𝑀(𝑡)‖𝑘𝑘 +

𝑛∑︁
𝛼=1

‖𝑢𝑀𝑥𝛼
(𝑡)‖𝑝𝛼𝑝𝛼

)︃
𝑑𝑡 = ∞,

which contradicts the inequalities (33). Then, for almost every 𝑡 ∈ [0, 𝑇 ], the inequalities

‖𝑢𝑀(𝑡)‖𝑘𝑘 +
𝑛∑︁

𝛼=1

‖𝑢𝑀𝑥𝛼
(𝑡)‖𝑝𝛼𝑝𝛼 6 𝐶1(𝑡), 𝑀 = 1,∞

hold. Whence, in view of the condition 𝑘 6 𝑝1,

‖𝑢𝑀(𝑡)‖𝑊 1
𝑘 (𝑄) 6 𝐶2(𝑡), 𝑀 = 1,∞.

for any bounded domain 𝑄 ⊂ Ω with a smooth boundary. Since the injection 𝑊 1
𝑘 (𝑄) ⊂ 𝐿𝑘(𝑄)

is compact, it follows that for any 𝑡 ∈ [0, 𝑇 ] ∖ 𝐸, the sequence 𝑢𝑀(𝑡,x) selectively strongly
converges to 𝑢(𝑡,x) when 𝑀 → ∞ in 𝐿𝑘(𝑄).

Let the sequence {𝑡𝑗}∞𝑗=1 be dense in the interval [0, 𝑇 ] and 𝑡𝑗 ̸∈ 𝐸. By means of a diagonal

process, one can single out a subsequence 𝑢𝑀𝑖 such that 𝑢𝑀𝑖(𝑡𝑗) → 𝑢(𝑡𝑗) converges strongly
when 𝑖→ ∞ in 𝐿𝑘(𝑄) for any 𝑗.



68 L.M. KOZHEVNIKOVA, A.A. LEONTIEV

Questions of existence and uniqueness of solutions of the doubly nonlinear isotropic parabolic
equation equation were considered in works by P.A. Raviart [22], J.L. Lions [20], A. Bamberger
[23], O. Grange, F. Mignot [24], H.W. Alt, S. Luckhaus [25], F. Bernis [26] and others. Mainly,
problem in limited areas were considered. Strong solution of the problem in a bounded domain
has been established P.A. Raviart by substituting the evolutionary derivative by a difference
ratio. A. Bamberger established the uniqueness of a strong positive solution of the problem.
F. Bernis proved the existence of a weak solution to the problem in an unbounded domain
passing to the limit of solutions built in bounded domains by O. Grange, F. Mignot. A weak
solution of the Cauchy problem for the anisotropic anisotropic equation with 𝑘 = 2 was con-
structed by M. Bendahmane, K.H. Karlsen [27]. However, in order to obtain the lower estimate
for decay rate of the solution for 𝑡→ ∞ its auxiliary smoothness is necessary.

F.H. Mukminov, E.R. Andriyanova[28] suggested an ad hoc method for constructing a strong
solution for a model isotropic parabolic doubly nonlinear equation in an unbounded domain at
once, based on Galerkin’s approximations. Here the method is adapted to a certain class of
anisotropic parabolic equations of the form (1).

Theorem 4. Let 𝜙(x) ∈
∘
𝑊 1

𝑘,p(Ω), 𝑝1 > 1, 𝑘 ≥ 2 then, there is a generalized solution 𝑢(𝑡,x)
to the problem (1)–(3) for any 𝑇 > 0, satisfying the conditions

𝑢 ∈ 𝐿∞((0, 𝑇 ),
∘
𝑊

1
𝑘,p(Ω)); (34)

|𝑢|(𝑘−2)/2𝑢𝑡 ∈ 𝐿2(𝐷
𝑇 ), ‖𝑢(𝑡)‖𝑘 ∈ 𝐶([0, 𝑇 ]); (35)

|𝑢|𝑘−2𝑢𝑡 ∈ 𝐿𝑘′(𝐷
𝑇 ), 𝑘′ =

𝑘

𝑘 − 1
. (36)

Here the inequalities

(𝑘 − 1)‖𝑢(𝑡)‖𝑘𝑘 + 𝑘𝑎
𝑛∑︁

𝛼=1

𝑡∫︁
0

‖𝑢𝑥𝛼(𝜏)‖𝑝𝛼𝑝𝛼𝑑𝜏 6 (𝑘 − 1)‖𝜙‖𝑘𝑘, 𝑡 ≥ 0; (37)

(𝑘 − 1)
𝑑

𝑑𝑡
‖𝑢(𝑡)‖𝑘𝑘 + 𝑘𝑎

𝑛∑︁
𝛼=1

‖𝑢𝑥𝛼(𝑡)‖𝑝𝛼𝑝𝛼 6 0, 𝑡 > 0 (38)

hold.

Proof. Let us choose a linearly independent system of functions 𝜓𝑖(x) ∈ 𝐶∞
0 (Ω), 𝑖 = 1,∞ such

that its linear envelope is a set dense everywhere in the space
∘
𝑊 1

𝑘,p(Ω). Let us consider the
system to be orthonormal in 𝐿2(Ω).

Let us fix an arbitrary 𝑇 > 0. Approximate solutions 𝑢𝑀(𝑡,x) will be sought for in the form

𝑢𝑀(𝑡,x) =
𝑀∑︀
𝑖=1

𝑐𝑀𝑖 (𝑡)𝜓𝑖(x), 𝑀 = 1,∞. Meanwhile, the functions 𝑐𝑀𝑖 (𝑡), 𝑡 ∈ [0, 𝑇 ] are defined

from the system of ordinary differential equations(︂(︂
𝑢𝑀

𝑏𝑀
+ |𝑢𝑀 |𝑘−2𝑢𝑀

)︂
𝑡

, 𝜓𝑗

)︂
+

𝑛∑︁
𝛼=1

(︀
𝑎𝛼((𝑢𝑀𝑥𝛼

)2)𝑢𝑀𝑥𝛼
, (𝜓𝑗)𝑥𝛼

)︀
= 0, 𝑗 = 1,𝑀, (39)

(the numbers 𝑏𝑀 > 0 will be chosen later) and the initial conditions

𝑐𝑀𝑖 (0) = 𝑐𝑀𝑖 , 𝑖 = 1,𝑀, (40)

chosen so that

𝑢𝑀(0,x) =
𝑀∑︁
𝑖=1

𝑐𝑀𝑖 𝜓𝑖(x) → 𝜙(x) in
∘
𝑊

1
𝑘,p(Ω) for 𝑀 → ∞. (41)
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Whence,
‖𝑢𝑀(0)‖𝑊 1

𝑘,p(Ω) 6 𝐸1(‖𝜙‖𝑊 1
𝑘,p(Ω)), 𝑀 = 1,∞. (42)

Let us make sure that Equations (39) are solvable with respect to the variables
𝑑

𝑑𝑡
𝑐𝑀𝑖 (𝑡).

Manifestly, Equations (39) have the form

𝑀∑︁
𝑖=1

𝐴𝑗𝑖(𝑐
𝑀
1 (𝑡), ..., 𝑐𝑀𝑀(𝑡))

𝑑

𝑑𝑡
𝑐𝑀𝑖 (𝑡) = 𝐹𝑗(𝑐

𝑀
1 (𝑡), ..., 𝑐𝑀𝑀(𝑡)), 𝑗 = 1,𝑀, (43)

𝐴𝑗𝑖(𝑐1, . . . , 𝑐𝑀) =

⎛⎝⎛⎝ 1

𝑏𝑀
+ (𝑘 − 1)

⃒⃒⃒⃒
⃒

𝑀∑︁
𝑙=1

𝑐𝑙𝜓𝑙

⃒⃒⃒⃒
⃒
𝑘−2
⎞⎠𝜓𝑖, 𝜓𝑗

⎞⎠ = (𝜓𝑖, 𝜓𝑗)𝑀 , 𝑖, 𝑗 = 1,𝑀,

𝐹𝑗(𝑐1, . . . , 𝑐𝑀) =

= −
𝑛∑︁

𝛼=1

𝑀∑︁
𝑖=1

𝑐𝑖

⎛⎝𝑎𝛼
⎛⎝(︃ 𝑀∑︁

𝑙=1

𝑐𝑀𝑙 (𝜓𝑙)𝑥𝛼

)︃2
⎞⎠ (𝜓𝑖)𝑥𝛼 , (𝜓𝑗)𝑥𝛼

⎞⎠ , 𝑗 = 1,𝑀.

One can readily verify that (𝑔, ℎ)𝑀 , 𝑔, ℎ ∈ 𝐶∞
0 (Ω) is a scalar product. Hence, the matrix

of coefficients 𝐴𝑗𝑖(𝑐
𝑀
1 (𝑡), ..., 𝑐𝑀𝑀(𝑡)) for every 𝑡 is the Gramian matrix of a system of linearly

independent vectors 𝜓𝑖, 𝑖 = 1,𝑀, and has an inverse one. Therefore, the system (39) can be
written in the form

𝑑

𝑑𝑡
𝑐𝑀𝑖 (𝑡) =

𝑀∑︁
𝑗=1

𝐴−1
𝑖𝑗 (𝑐𝑀1 (𝑡), . . . , 𝑐𝑀𝑀(𝑡))𝐹𝑗(𝑐

𝑀
1 (𝑡), . . . , 𝑐𝑀𝑀(𝑡)), 𝑖 = 1,𝑀. (44)

Let us derive estimates for Galerkin’s approximations. Let us multiply the 𝑗-th equation (39)
by 𝑐𝑀𝑗 (𝑡), and then add all equations in 𝑗 from 1 to 𝑀. The resulting equalities(︂(︂

𝑢𝑀

𝑏𝑀
+ |𝑢𝑀 |𝑘−2𝑢𝑀

)︂
𝑡

, 𝑢𝑀
)︂

+
𝑛∑︁

𝛼=1

(︀
𝑎𝛼((𝑢𝑀𝑥𝛼

)2)𝑢𝑀𝑥𝛼
, 𝑢𝑀𝑥𝛼

)︀
= 0, 𝑀 = 1,∞

can be written in the form

𝑑

𝑑𝑡

(︂
𝑘 − 1

𝑘
‖𝑢𝑀(𝑡)‖𝑘𝑘 +

1

2𝑏𝑀
‖𝑢𝑀(𝑡)‖2

)︂
+

𝑛∑︁
𝛼=1

(︀
𝑎𝛼((𝑢𝑀𝑥𝛼

)2)𝑢𝑀𝑥𝛼
, 𝑢𝑀𝑥𝛼

)︀
= 0, 𝑀 = 1,∞. (45)

Integration from 0 to 𝑡 ∈ [0, 𝑇 ] yields

1

2𝑏𝑀
‖𝑢𝑀(𝑡)‖2 +

𝑘 − 1

𝑘
‖𝑢𝑀(𝑡)‖𝑘𝑘 +

𝑛∑︁
𝛼=1

(︀
𝑎𝛼((𝑢𝑀𝑥𝛼

)2)𝑢𝑀𝑥𝛼
, 𝑢𝑀𝑥𝛼

)︀
𝐷𝑡 =

=
1

2𝑏𝑀
‖𝑢𝑀(0)‖2 +

𝑘 − 1

𝑘
‖𝑢𝑀(0)‖𝑘𝑘, 𝑀 = 1,∞. (46)

Invoking (4), assuming that 𝑏𝑀 = 𝑀‖𝑢𝑀(0)‖2, and joining (46) with (42), we deduce the
inequalities

1

𝑏𝑀
max
[0,𝑇 ]

‖𝑢𝑀(𝑡)‖2 + max
[0,𝑇 ]

‖𝑢𝑀(𝑡)‖𝑘𝑘 +
𝑛∑︁

𝛼=1

‖𝑢𝑀𝑥𝛼
‖𝑝𝛼
𝑝𝛼,𝐷𝑇 𝑑𝜏 6 𝐸2, 𝑀 = 1,∞. (47)

Here and in what follows, the constants 𝐸𝑖 depend only on ̂︀𝑎, 𝑎,̂︀𝑏,p, ‖𝜙‖𝑊 1
𝑘,p(Ω).

The inequalities (4), (47) allow us to establish the estimates
𝑛∑︁

𝛼=1

‖𝑎𝛼((𝑢𝑀𝑥𝛼
)2)𝑢𝑀𝑥𝛼

‖𝑝𝛼/(𝑝𝛼−1),𝐷𝑇 ≤ ̂︀𝑎 𝑛∑︁
𝛼=1

‖𝑢𝑀𝑥𝛼
‖𝑝𝛼−1
𝑝𝛼,𝐷𝑇 6 𝐸3, 𝑀 = 1,∞. (48)
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Let us demonstrate that all possible solutions to the problem (40), (44) are uniformly bounded
on [0, 𝑇 ]. Indeed, using (47), we deduce

max
[0,𝑇 ]

|𝑐𝑀𝑖 (𝑡)|2 ≤
𝑀∑︁
𝑗=1

max
[0,𝑇 ]

|𝑐𝑀𝑗 (𝑡)|2 = max
[0,𝑇 ]

‖𝑢𝑀(𝑡)‖2 ≤ 𝐸2𝑏
𝑀 , 𝑖 = 1,𝑀.

In view of continuity of the right-hand side of Equations (44), there are absolutely continuous
functions 𝑐𝑀𝑖 (𝑡), 𝑡 ∈ [0, 𝑇 ], 𝑖 = 1,𝑀 , that satisfy the system (44) almost everywhere as well as
the initial condition (40) (see [29, p. 120]).

Let us multiply the 𝑗-the equation (39) by
𝑑

𝑑𝑡
𝑐𝑀𝑗 (𝑡) and then add all equations with respect

to 𝑗 from 1 to 𝑀. The resulting equalities(︂(︂
𝑢𝑀

𝑏𝑀
+ |𝑢𝑀 |𝑘−2𝑢𝑀

)︂
𝑡

, 𝑢𝑀𝑡

)︂
+

𝑛∑︁
𝛼=1

(︀
𝑎𝛼((𝑢𝑀𝑥𝛼

)2)𝑢𝑀𝑥𝛼
, 𝑢𝑀𝑡𝑥𝛼

)︀
= 0, 𝑀 = 1,∞,

can be written in the form

1

𝑏𝑀
‖𝑢𝑀𝑡 ‖2 + (𝑘 − 1)‖|𝑢𝑀 |(𝑘−2)/2𝑢𝑀𝑡 ‖2 +

1

2

𝑑

𝑑𝑡

𝑛∑︁
𝛼=1

∫︁
Ω

𝐴𝛼((𝑢𝑀𝑥𝛼
(𝑡))2)𝑑x = 0, 𝑀 = 1,∞. (49)

Upon integrating from 0 to 𝑡 ∈ [0, 𝑇 ], using (32), we have

1

𝑏𝑀
‖𝑢𝑀𝑡 ‖2𝐷𝑡 + (𝑘 − 1)‖|𝑢𝑀 |(𝑘−2)/2𝑢𝑀𝑡 ‖2𝐷𝑡 +

1

2̂︀𝑏
𝑛∑︁

𝛼=1

(︀
𝑎𝛼((𝑢𝑀𝑥𝛼

(𝑡))2)𝑢𝑀𝑥𝛼
(𝑡), 𝑢𝑀𝑥𝛼

(𝑡)
)︀
6

6
1

𝑝1

𝑛∑︁
𝛼=1

(︀
𝑎𝛼((𝑢𝑀𝑥𝛼

(0))2)𝑢𝑀𝑥𝛼
(0), 𝑢𝑀𝑥𝛼

(0)
)︀
, 𝑀 = 1,∞.

Applying (4) and using (42), we obtain

‖|𝑢𝑀 |(𝑘−2)/2𝑢𝑀𝑡 ‖2𝐷𝑇 + max
[0,𝑇 ]

𝑛∑︁
𝛼=1

‖𝑢𝑀𝑥𝛼
(𝑡)‖𝑝𝛼𝑝𝛼 6 𝐸3, 𝑀 = 1,∞. (50)

The inequalities (47), (50) entail the boundedness of the sequence {𝑢𝑀}∞𝑀=1 in spaces

𝐶([0, 𝑇 ],
∘
𝑊 1

𝑘,p(Ω)),
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ) and {|𝑢𝑀 |(𝑘−2)/2𝑢𝑀𝑡 }∞𝑀=1 in 𝐿2(𝐷

𝑇 ). Moreover, it fol-

lows from the inequalities (48), that the sequences 𝑎𝛼((𝑢𝑀𝑥𝛼
)2)𝑢𝑀𝑥𝛼

are bounded in spaces

𝐿𝑝𝛼/(𝑝𝛼−1)(𝐷
𝑇 ), 𝛼 = 1, 𝑛. The established facts ensure a selective weak convergence of the

above sequences when 𝑀 → ∞ in the corresponding spaces:

𝑢𝑀 ⇀ 𝑢 in
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ),

𝑎𝛼((𝑢𝑀𝑥𝛼
)2)𝑢𝑀𝑥𝛼

⇀ 𝑏𝛼 in 𝐿𝑝𝛼/(𝑝𝛼−1)(𝐷
𝑇 ), 𝛼 = 1, 𝑛,

𝑣𝑀𝑡 =
(︀
|𝑢𝑀 |(𝑘−2)/2𝑢𝑀

)︀
𝑡

=
𝑘

2
|𝑢𝑀 |(𝑘−2)/2𝑢𝑀𝑡 ⇀ 𝑔 in 𝐿2(𝐷

𝑇 ).

In what follows we prove that 𝑢𝑀 selectively converges to 𝑢 almost everywhere in 𝐷𝑇 . This
allows us to establish that 𝑔 = 𝑣𝑡 = (|𝑢|(𝑘−2)/2𝑢)𝑡.

The sequence 𝑢𝑀 ∈ 𝐶([0, 𝑇 ],
∘
𝑊 1

𝑘,p(Ω)), 𝑀 = 1,∞ is bounded in this space. For every
bounded domain 𝑄 ⊂ Ω with a smooth boundary, we have the compactness of the injection
𝐿1(𝑄) ⊂ 𝑊 1

1 (𝑄). Therefore, one can establish a selective strong convergence 𝑢𝑀(𝑡𝑗,x) →
ℎ(𝑡𝑗,x) in 𝐿1(𝑄) on a countable dense set {𝑡𝑗}∞𝑗=1 ⊂ [0, 𝑇 ] by means of the diagonal process.

One can also assume that 𝑢𝑀(𝑡𝑗,x) → ℎ(𝑡𝑗,x) selectively almost everywhere in 𝑄 for every
𝑡𝑗, 𝑗 = 1,∞. Likewise, when 𝑘 ≤ 𝑝1 one can also assume that the sequence 𝑢𝑀(𝑡𝑗,x) → ℎ(𝑡𝑗,x))
strongly in 𝐿𝑘(𝑄) for every 𝑡𝑗, 𝑗 = 1,∞.
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Following J.L. Lions [20, Ch. I, S12.2], let us prove the selective strong convergence of the
sequence 𝑣𝑀 in the space 𝐶([0, 𝑇 ], 𝐿1(𝑄)). First, we establish the equipower continuity with
respect to 𝑡 for the sequence 𝑣𝑀 = |𝑢𝑀 |(𝑘−2)/2𝑢𝑀 in 𝐿2(Ω):

‖𝑣𝑀(𝑡2) − 𝑣𝑀(𝑡1)‖ =

⃦⃦⃦⃦
⃦⃦

𝑡2∫︁
𝑡1

𝑣𝑀𝑡 (𝑡)𝑑𝑡

⃦⃦⃦⃦
⃦⃦ 6

𝑡2∫︁
𝑡1

‖𝑣𝑀𝑡 (𝑡)‖𝑑𝑡 6

6 |𝑡2 − 𝑡1|1/2
⎛⎝ 𝑡2∫︁

𝑡1

‖𝑣𝑀𝑡 (𝑡)‖2𝑑𝑡

⎞⎠1/2

6 𝐸4|𝑡2 − 𝑡1|1/2, 𝑡1, 𝑡2 ∈ [0, 𝑇 ], 𝑀 = 1,∞. (51)

On the basis of the inequalities (47), we make the conclusion that the sequence 𝑣𝑀(𝑡,x) is
uniformly bounded with respect to 𝑡 ∈ [0, 𝑇 ] in 𝐿2(Ω):

‖𝑣𝑀(𝑡)‖ = ‖𝑢𝑀(𝑡)‖𝑘/2𝑘 6 𝐸5, 𝑀 = 1,∞.

Since the sequence 𝑣𝑀(𝑡,x), 𝑀 = 1,∞ is bounded, it selectively weakly converges in 𝐿2(Ω)
for the same 𝑡𝑗 as above in the space 𝐶([0, 𝑇 ], 𝐿2(Ω)). From the above selective convergence
𝑢𝑀(𝑡𝑗,x) → ℎ(𝑡𝑗,x) almost everywhere in 𝑄 for every 𝑡𝑗 follows the selective convergence
𝑣𝑀(𝑡𝑗,x) → 𝑣(𝑡𝑗,x) = |ℎ(𝑡𝑗,x)|(𝑘−2)/2ℎ(𝑡𝑗,x) almost everywhere in 𝑄. Then, on the basis of
the Egorov theorem for any 𝛿 > 0 we establish the uniform convergence 𝑣𝑀(𝑡𝑗,x) ⇒ 𝑣(𝑡𝑗,x)
on 𝑄𝛿, mes(𝑄∖𝑄𝛿) < 𝛿. Whence, due to validity of the inequalities

‖𝑣𝑀(𝑡𝑗) − 𝑣(𝑡𝑗)‖1,𝑄 6 mes 𝑄max
x∈𝑄𝛿

|𝑣𝑀(𝑡𝑗,x) − 𝑣(𝑡𝑗,x)| + ‖𝑣𝑀(𝑡𝑗) − 𝑣(𝑡𝑗)‖1,𝑄∖𝑄𝛿
6

6 mes 𝑄max
x∈𝑄𝛿

|𝑣𝑀(𝑡𝑗,x) − 𝑣(𝑡𝑗,x)| + 𝛿1/2‖𝑣𝑀(𝑡𝑗) − 𝑣(𝑡𝑗)‖2,𝑄∖𝑄𝛿
,

follows the strong convergence 𝑣𝑀(𝑡𝑗,x) → 𝑣(𝑡𝑗,x) in 𝐿1(𝑄) for every 𝑡𝑗.
For a bounded domain 𝑄 from (51) one can readily establish a uniform mutual convergence

of the sequence 𝑣𝑀(𝑡,x) with respect to the norm 𝐿1(𝑄):

‖𝑣𝑁(𝑡) − 𝑣𝑀(𝑡)‖1,𝑄 = ‖𝑣𝑁(𝑡) − 𝑣𝑁(𝑡𝑗𝑙) + 𝑣𝑁(𝑡𝑗𝑙) − 𝑣𝑀(𝑡𝑗𝑙) + 𝑣𝑀(𝑡𝑗𝑙) − 𝑣𝑀(𝑡)||1,𝑄 6

6 (mes 𝑄)1/2𝐸6|𝑡− 𝑡𝑗𝑙 |1/2 + ‖𝑣𝑁(𝑡𝑗𝑙) − 𝑣𝑀(𝑡𝑗𝑙)‖1,𝑄.

Choosing the finite set of numbers 𝑡𝑗𝑙 with a small step and then increasing 𝑁,𝑀 , we achieve
a uniform smallness of the right-hand side with respect to 𝑡.

Thus, the selective strong convergence 𝑣𝑀 → 𝑣 is established in 𝐶([0, 𝑇 ], 𝐿1(𝑄)). Conver-
gence will also occur in 𝐿1((0, 𝑇 )×𝑄) therefore, 𝑣𝑀 → 𝑣 converges selectively almost everywhere
in (0, 𝑇 )×𝑄. Since 𝑄 is arbitrary, the sequence 𝑣𝑀 selectively converges to 𝑣 almost everywhere
in 𝐷𝑇 . Then the sequence 𝑢𝑀(𝑡,x) selectively converges to ℎ(𝑡,x) almost everywhere in 𝐷𝑇 as
well. According to Lemma 2 𝑢𝑀(𝑡,x) ⇀ ℎ(𝑡,x) in 𝐿𝑘(𝐷𝑇 ) because the limit ℎ(𝑡,x) = 𝑢(𝑡,x)
is unique almost everywhere in 𝐷𝑇 . Thus, 𝑣𝑀 converges selectively to 𝑣 = |𝑢|(𝑘−2)/2𝑢 almost
everywhere in 𝐷𝑇 .

According to Lemma 2, 𝑣𝑀 ⇀ 𝑣 weakly in 𝐿2(𝐷
𝑇 ). Furthermore, (𝑣𝑀𝑡 , 𝑤)𝐷𝑇 = −(𝑣𝑀 , 𝑤𝑡)𝐷𝑇

for any function 𝑤 ∈ 𝐶∞
0 (𝐷𝑇 ), passing to the limit when 𝑀 → ∞, we obtain

(𝑔, 𝑤)𝐷𝑇 = −(𝑣, 𝑤𝑡)𝐷𝑇 .

Whence, it follows that 𝑔 = 𝑣𝑡 = (|𝑢|(𝑘−2)/2𝑢)𝑡. Note that the membership 𝑣, 𝑣𝑡 ∈ 𝐿2(𝐷
𝑇 )

entails 𝑣 ∈ 𝐶([0, 𝑇 ], 𝐿2(Ω)).
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Let us demonstrate that the sequence (|𝑢𝑀 |𝑘−2𝑢𝑀)𝑡 = (𝑘 − 1)|𝑢𝑀 |𝑘−2𝑢𝑀𝑡 , 𝑀 = 1,∞, is
limited in 𝐿𝑘′(𝐷

𝑇 ). Indeed,

‖|𝑢𝑀 |𝑘−2𝑢𝑀𝑡 ‖𝑘′,𝐷𝑇 =

⎛⎝∫︁
𝐷𝑇

|𝑢𝑀 |𝑘(𝑘−2)/(2(𝑘−1))(|𝑢𝑀 |(𝑘−2)/2|𝑢𝑀𝑡 |)𝑘/(𝑘−1)𝑑x𝑑𝑡

⎞⎠(𝑘−1)/𝑘

6

6
2

𝑘
‖𝑢𝑀‖(𝑘−2)/2

𝑘,𝐷𝑇 ‖𝑣𝑀𝑡 ‖2,𝐷𝑇 .

The boundedness ‖|𝑢𝑀 |𝑘−2𝑢𝑀𝑡 ‖𝑘′,𝐷𝑇 entails that (|𝑢𝑀 |𝑘−2𝑢𝑀)𝑡 ⇀ 𝑏 in 𝐿𝑘′(𝐷
𝑇 ). It follows

from Lemma 2 that |𝑢𝑀 |𝑘−2𝑢𝑀 ⇀ |𝑢|𝑘−2𝑢 in 𝐿𝑘′(𝐷
𝑇 ). Whence, ((|𝑢𝑀 |𝑘−2𝑢𝑀)𝑡, 𝑤)𝐷𝑇 =

−(|𝑢𝑀 |𝑘−2𝑢𝑀 , 𝑤𝑡)𝐷𝑇 for any function 𝑤 ∈ 𝐶∞
0 (𝐷𝑇 ), passing to the limit when 𝑀 → ∞, we

obtain
(𝑏, 𝑤)𝐷𝑇 = −(|𝑢|𝑘−2𝑢,𝑤𝑡)𝐷𝑇 .

Hence, 𝑏 = (|𝑢|𝑘−2𝑢)𝑡. Then, we can consider that (|𝑢𝑀 |𝑘−2𝑢𝑀)𝑡 ⇀ (|𝑢|𝑘−2𝑢)𝑡 weakly in
𝐿𝑘′(𝐷

𝑇 ).
Let us prove that the function 𝑢(𝑡,x) satisfies the integral identity (29). The identities(︂(︂

𝑢𝑀

𝑏𝑀
+ |𝑢𝑀 |𝑘−2𝑢𝑀

)︂
𝑡

, 𝑤

)︂
𝐷𝑇

+
𝑛∑︁

𝛼=1

(︀
𝑎𝛼((𝑢𝑀𝑥𝛼

)2)𝑢𝑀𝑥𝛼
, 𝑤𝑥𝛼

)︀
𝐷𝑇 = 0, 𝑀 = 1,∞, (52)

valid for any function 𝑤(𝜏,x) ∈ 𝑃 =
⋃︀∞

𝐿=1 𝑃𝐿 follow from (39).
Note that

1

𝑏𝑀
(︀
𝑢𝑀𝑡 , 𝑤

)︀
𝐷𝑇 =

1

𝑏𝑀
{︀
−(𝑢𝑀 , 𝑤𝑡)𝐷𝑇 + (𝑢𝑀(𝑇 ), 𝑤(𝑇 )) − (𝑢𝑀(0), 𝑤(0))

}︀
→ 0,

because 𝑢𝑀 is bounded in 𝐶([0, 𝑇 ], 𝐿𝑘(Ω)), and 𝑏𝑀 → ∞ when 𝑀 → ∞.
We can pass to the limit in (52) when 𝑀 → ∞, to obtain the identity(︀

(|𝑢|𝑘−2𝑢)𝑡, 𝑤
)︀
𝐷𝑇 +

𝑛∑︁
𝛼=1

(𝑏𝛼, 𝑤𝑥𝛼)𝐷𝑇 = 0, (53)

which holds true for any function 𝑤 ∈ 𝑃 . Since 𝑃 is dense in the space
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ) (Lemma

3), the identity (53) holds for an arbitrary 𝑤 ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ). Here we make use of the fact that

(|𝑢|𝑘−2𝑢)𝑡 ∈ 𝐿𝑘′(𝐷
𝑇 ), 𝑏𝛼 ∈ 𝐿𝑝𝛼/(𝑝𝛼−1)(𝐷

𝑇 ), 𝛼 = 1, 𝑛. In particular, for 𝑤 = 𝑢 we deduce
𝑛∑︁

𝛼=1

(𝑏𝛼, 𝑢𝑥𝛼)𝐷𝑇 + ((|𝑢|𝑘−2𝑢)𝑡, 𝑢)𝐷𝑇 =

=
𝑘 − 1

𝑘

(︀
‖𝑢(𝑇 )‖𝑘𝑘 − ‖𝑢(0)‖𝑘𝑘

)︀
+

𝑛∑︁
𝛼=1

(𝑏𝛼, 𝑢𝑥𝛼)𝐷𝑇 = 0.

(54)

Let us prove that for any function 𝑣 ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ) the equality

𝑛∑︁
𝛼=1

(𝑏𝛼, 𝑣𝑥𝛼)𝐷𝑇 =
𝑛∑︁

𝛼=1

(𝑎𝛼((𝑢𝑥𝛼)2)𝑢𝑥𝛼 , 𝑣𝑥𝛼)𝐷𝑇 (55)

holds. Let us subtract the equalities (52) from (46) when 𝑡 = 𝑇 and obtain the following
relation for 𝑤 ∈ 𝑃 :

−
(︂(︂

𝑢𝑀

𝑏𝑀
+ |𝑢𝑀 |𝑘−2𝑢𝑀

)︂
𝑡

, 𝑤

)︂
𝐷𝑇

+
𝑛∑︁

𝛼=1

(︀
𝑎𝛼((𝑢𝑀𝑥𝛼

)2)𝑢𝑀𝑥𝛼
, (𝑢𝑀 − 𝑤)𝑥𝛼

)︀
𝐷𝑇 +

+
𝑘 − 1

𝑘
‖𝑢𝑀(𝑡)‖𝑘𝑘

⃒⃒⃒⃒𝑡=𝑇

𝑡=0

+
1

2𝑏𝑀
‖𝑢𝑀(𝑡)‖2

⃒⃒⃒⃒𝑡=𝑇

𝑡=0

= 0, 𝑀 = 1,∞.
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Using the condition of monotonous nondecreasing of functions 𝑎𝛼(𝑧2)𝑧, 𝑧 ∈ R, 𝛼 = 1, 𝑛 (see
(31)) from the latter relations, we deduce the inequalities

−
(︂(︂

𝑢𝑀

𝑏𝑀
+ |𝑢𝑀 |𝑘−2𝑢𝑀

)︂
𝑡

, 𝑤

)︂
𝐷𝑇

+
𝑛∑︁

𝛼=1

(︀
𝑎𝛼((𝑤𝑥𝛼)2)𝑤𝑥𝛼 , (𝑢

𝑀 − 𝑤)𝑥𝛼

)︀
𝐷𝑇 +

+
𝑘 − 1

𝑘
‖𝑢𝑀(𝑡)‖𝑘𝑘

⃒⃒⃒⃒𝑡=𝑇

𝑡=0

+
1

2𝑏𝑀
‖𝑢𝑀(𝑡)‖2

⃒⃒⃒⃒𝑡=𝑇

𝑡=0

6 0, 𝑀 = 1,∞.

Let us pass to the limit in 𝑀 → ∞ for a fixed 𝑤 ∈ 𝑃 using the convergence obtained above.
Thus, for an arbitrary 𝑤 ∈ 𝑃 we have the inequality

−
(︀
(|𝑢|𝑘−2𝑢)𝑡, 𝑤

)︀
𝐷𝑇 +

𝑛∑︁
𝛼=1

(︀
𝑎𝛼((𝑤𝑥𝛼)2)𝑤𝑥𝛼 , (𝑢− 𝑤)𝑥𝛼

)︀
𝐷𝑇 +

+
𝑘 − 1

𝑘
‖𝑢(𝑡)‖𝑘𝑘

⃒⃒⃒⃒𝑡=𝑇

𝑡=0

6 0.

(56)

According to Lemma 4, the set 𝑃 is dense in the space
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ). Then, for an arbitrary

function 𝑤 ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ), there is a sequence 𝑤𝑙 ∈ 𝑃 such that ‖𝑤𝑙 − 𝑤‖𝑊 0,1

𝑘,p(𝐷
𝑇 ) → 0 when

𝑙 → ∞. Let us write (56) for 𝑤 = 𝑤𝑙, then pass to the limit when 𝑙 → ∞.
Let us justify passing to the limit when 𝑙 → ∞ in the integrals(︀

𝑎𝛼((𝑤𝑙
𝑥𝛼

)2)𝑤𝑙
𝑥𝛼
, (𝑢− 𝑤𝑙)𝑥𝛼

)︀
𝐷𝑇 →

(︀
𝑎𝛼((𝑤𝑥𝛼)2)𝑤𝑥𝛼 , (𝑢− 𝑤)𝑥𝛼

)︀
𝐷𝑇 , 𝛼 = 1, 𝑛. (57)

For an arbitrary function 𝑣 ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ), there are 𝜃𝑙 ∈ [0, 1] such that

|
(︀
𝑎𝛼((𝑤𝑙

𝑥𝛼
)2)𝑤𝑙

𝑥𝛼
− 𝑎𝛼((𝑤𝑥𝛼)2)𝑤𝑥𝛼 , 𝑣𝑥𝛼

)︀
𝐷𝑇 | 6

6
(︀
|𝑎𝛼((𝑤𝑙

𝑥𝛼
)2)𝑤𝑙

𝑥𝛼
− 𝑎𝛼((𝑤𝑥𝛼)2)𝑤𝑥𝛼 |, |𝑣𝑥𝛼|

)︀
𝐷𝑇 6

6
∫︁
𝐷𝑇

|𝑤𝑙
𝑥𝛼

− 𝑤𝑥𝛼||𝑣𝑥𝛼|(𝑎𝛼(𝑧2)𝑧)′
⃒⃒
𝑧=(𝜃𝑙𝑤𝑙+(1−𝜃𝑙)𝑤)𝑥𝛼

𝑑x𝑑𝑡.

Using the conditions (31), (4), we deduce

|
(︀
𝑎𝛼((𝑤𝑙

𝑥𝛼
)2)𝑤𝑙

𝑥𝛼
− 𝑎𝛼((𝑤𝑥𝛼)2)𝑤𝑥𝛼 , 𝑣𝑥𝛼

)︀
𝐷𝑇 | 6

6 ̂︀𝑐 ∫︁
𝐷𝑇

|𝑤𝑙
𝑥𝛼

− 𝑤𝑥𝛼||𝑣𝑥𝛼|𝑎𝛼(𝑧2)
⃒⃒
𝑧=(𝜃𝑙𝑤𝑙+(1−𝜃𝑙)𝑤)𝑥𝛼

𝑑x𝑑𝑡 6 (58)

6 ̂︀𝑐̂︀𝑎 ∫︁
𝐷𝑇

|𝑤𝑙
𝑥𝛼

− 𝑤𝑥𝛼||𝑣𝑥𝛼 |(|𝑤𝑙
𝑥𝛼
| + |𝑤𝑥𝛼 |)𝑝𝛼−2 6

6 ̂︀𝑐̂︀𝑎‖|𝑤𝑙
𝑥𝛼
| + |𝑤𝑥𝛼|‖

𝑝𝛼−2
𝑝𝛼,𝐷𝑇 ‖𝑤𝑙

𝑥𝛼
− 𝑤𝑥𝛼‖𝑝𝛼,𝐷𝑇 ‖𝑣𝑥𝛼‖𝑝𝛼,𝐷𝑇 → 0

when 𝑙 → ∞ in particular, for 𝑣 = 𝑢 and 𝑣 = 𝑤. Moreover, using (5), we establish

|
(︀
𝑎𝛼((𝑤𝑙

𝑥𝛼
)2)𝑤𝑙

𝑥𝛼
, 𝑤𝑙

𝑥𝛼
− 𝑤𝑥𝛼

)︀
𝐷𝑇 | 6

(︀
𝑎𝛼((𝑤𝑙

𝑥𝛼
)2)|𝑤𝑙

𝑥𝛼
|, |𝑤𝑙

𝑥𝛼
− 𝑤𝑥𝛼|

)︀
𝐷𝑇 6

6 ̂︀𝑎 ∫︁
𝐷𝑇

|𝑤𝑙
𝑥𝛼
|𝑝𝛼−1|𝑤𝑙

𝑥𝛼
− 𝑤𝑥𝛼|𝑑x𝑑𝑡 6 ̂︀𝑎‖𝑤𝑙

𝑥𝛼
− 𝑤𝑥𝛼‖𝑝𝛼,𝐷𝑇 ‖𝑤𝑙

𝑥𝛼
‖𝑝𝛼−1
𝑝𝛼,𝐷𝑇 → 0 (59)

when 𝑙 → ∞.
The inequalities

|
(︀
𝑎𝛼((𝑤𝑙

𝑥𝛼
)2)𝑤𝑙

𝑥𝛼
, 𝑤𝑙

𝑥𝛼

)︀
𝐷𝑇 −

(︀
𝑎𝛼((𝑤𝑥𝛼)2)𝑤𝑥𝛼 , 𝑤𝑥𝛼

)︀
𝐷𝑇 | 6

6 |
(︀
𝑎𝛼((𝑤𝑙

𝑥𝛼
)2)𝑤𝑙

𝑥𝛼
, 𝑤𝑙

𝑥𝛼
− 𝑤𝑥𝛼

)︀
𝐷𝑇 |+
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+|
(︀
𝑎𝛼((𝑤𝑙

𝑥𝛼
)2)𝑤𝑙

𝑥𝛼
− 𝑎𝛼((𝑤𝑥𝛼)2)𝑤𝑥𝛼 , 𝑤𝑥𝛼

)︀
𝐷𝑇 |,

from (58), (59) entail (57). Thus, the identity (56) is established for an arbitrary 𝑤 ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ).

Let us subtract (54) from (56) and add (53). This provides the inequality

𝑛∑︁
𝛼=1

(𝑎𝛼((𝑤𝑥𝛼)2)𝑤𝑥𝛼 − 𝑏𝛼, (𝑢− 𝑤)𝑥𝛼)𝐷𝑇 ≤ 0, (60)

which holds for every 𝑤 ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ). Let us assume that 𝑤 = 𝑢 + 𝜀𝑣, 𝜀 > 0 in (60), where

𝑣 ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ). Then,

𝑛∑︁
𝛼=1

(𝑎𝛼((𝑢𝑥𝛼 + 𝜀𝑣𝑥𝛼)2)(𝑢𝑥𝛼 + 𝜀𝑣𝑥𝛼) − 𝑏𝛼, 𝑣𝑥𝛼)𝐷𝑇 ≥ 0.

When 𝜀→ 0, the latter inequality yields the relation

𝑛∑︁
𝛼=1

(𝑎𝛼((𝑢𝑥𝛼)2)𝑢𝑥𝛼 − 𝑏𝛼, 𝑣𝑥𝛼)𝐷𝑇 ≥ 0,

which provides the equality (55) due to arbitrariness of 𝑣. On the basis of (53) and (55), we
conclude that the identity(︀

(|𝑢|𝑘−2𝑢)𝑡, 𝑣
)︀
𝐷𝑇 +

𝑛∑︁
𝛼=1

(︀
𝑎𝛼((𝑢𝑥𝛼)2)𝑢𝑥𝛼 , 𝑣𝑥𝛼

)︀
𝐷𝑇 = 0 (61)

holds for 𝑣 ∈
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ). Integrating the first addend by parts, we arrive to the equality

−
(︀
|𝑢|𝑘−2𝑢, 𝑣𝑡

)︀
𝐷𝑇 +

𝑛∑︁
𝛼=1

(︀
𝑎𝛼((𝑢𝑥𝛼)2)𝑢𝑥𝛼 , 𝑣𝑥𝛼

)︀
𝐷𝑇 + (|𝑢|𝑘−2𝑢, 𝑣)

⃒⃒⃒⃒𝑡=𝑇

𝑡=0

= 0, 𝑣 ∈
∘
𝑊

1,1
𝑘,p(𝐷𝑇 ).

Thus, we have obtained (29).
Since 𝑇 > 0 is arbitrary, the equality (61) is written in the form(︀

(|𝑢|𝑘−2𝑢)𝜏 , 𝑣
)︀
𝐷𝑡 +

𝑛∑︁
𝛼=1

(︀
𝑎𝛼((𝑢𝑥𝛼)2)𝑢𝑥𝛼 , 𝑣𝑥𝛼

)︀
𝐷𝑡 = 0, 𝑡 > 0. (62)

Assuming that 𝑣 = 𝑢 and using the equality

𝑡∫︁
0

((|𝑢|𝑘−2𝑢)𝜏 , 𝑢)𝑑𝜏 =
𝑘 − 1

𝑘

(︀
‖𝑢(𝑡)‖𝑘𝑘 − ‖𝜙‖𝑘𝑘

)︀
,

we obtain the equality

𝑘 − 1

𝑘
‖𝑢(𝑡)‖𝑘𝑘 +

𝑛∑︁
𝛼=1

𝑡∫︁
0

(𝑎𝛼(𝑢2𝑥𝛼
)𝑢𝑥𝛼 , 𝑢𝑥𝛼)𝑑𝜏 =

𝑘 − 1

𝑘
‖𝜙‖𝑘𝑘, 𝑡 ≥ 0. (63)

Differentiating the latter with respect to 𝑡, we obtain

𝑘 − 1

𝑘

𝑑

𝑑𝑡
‖𝑢(𝑡)‖𝑘𝑘 +

𝑛∑︁
𝛼=1

(𝑎𝛼(𝑢2𝑥𝛼
)𝑢𝑥𝛼 , 𝑢𝑥𝛼) = 0, 𝑡 > 0. (64)

Then, applying (4) from (63), (64) we deduce (37), (38).
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3. Admissible decay rate of solution

Since the uniqueness of solution to the problem (1)–(3) is not proved, we will in fact obtain
the lower estimate only for the constructed solution.
Proof of Theorem 2. First, et us assume that the domain Ω is bounded and prove the estimate
(10) for Galerkin’s approximations.

Let us introduce the notation

𝐺𝑀(𝑡) =
𝑛∑︁

𝛼=1

∫︁
Ω

𝑎𝛼((𝑢𝑀𝑥𝛼
)2)(𝑢𝑀𝑥𝛼

)2𝑑x, 𝐻𝑀(𝑡) =
𝑛∑︁

𝛼=1

∫︁
Ω

𝐴𝛼((𝑢𝑀𝑥𝛼
)2)𝑑x,

𝐸𝑀(𝑡) =
𝑘 − 1

𝑘
‖𝑢𝑀(𝑡)‖𝑘𝑘 +

1

2𝑏𝑀
‖𝑢𝑀(𝑡)‖2,

using (32), we obtain the inequalities
𝑝1
2
𝐻𝑀(𝑡) 6 𝐺𝑀(𝑡) 6 ̂︀𝑏𝐻𝑀(𝑡), 𝑡 ≥ 0. (65)

Let us rewrite the inequalities (45), (49) in the form

𝑑𝐸𝑀(𝑡)

𝑑𝑡
+𝐺𝑀(𝑡) = 0, 𝑡 > 0, (66)

(𝑘 − 1)‖|𝑢𝑀 |(𝑘−2)/2𝑢𝑀𝑡 (𝑡)‖2 +
1

𝑏𝑀
‖𝑢𝑀𝑡 (𝑡)‖2 +

1

2

𝑑𝐻𝑀(𝑡)

𝑑𝑡
= 0, 𝑡 > 0. (67)

Applying the integral Cauchy-Bunyakovsky inequality, we obtain the relations(︂
𝑑𝐸𝑀(𝑡)

𝑑𝑡

)︂2

=

⎛⎝∫︁
Ω

(︂
1

𝑏𝑀
+ (𝑘 − 1)|𝑢𝑀 |𝑘−2

)︂
𝑢𝑀𝑢𝑀𝑡 𝑑x

⎞⎠2

6

6

(︂
1

𝑏𝑀
‖𝑢𝑀(𝑡)‖‖𝑢𝑀𝑡 (𝑡)‖ + (𝑘 − 1)‖𝑢𝑀(𝑡)‖𝑘/2𝑘 ‖|𝑢𝑀 |(𝑘−2)/2𝑢𝑀𝑡 (𝑡)‖

)︂2

.

Using the Cauchy-Bunyakovsky inequality for the sum, according to (67), we deduce(︂
𝑑𝐸𝑀(𝑡)

𝑑𝑡

)︂2

6

6

(︂
1

𝑏𝑀
‖𝑢𝑀(𝑡)‖2 + (𝑘 − 1)‖𝑢𝑀(𝑡)‖𝑘𝑘

)︂(︂
1

𝑏𝑀
‖𝑢𝑀𝑡 (𝑡)‖2 + (𝑘 − 1)‖|𝑢𝑀 |(𝑘−2)/2𝑢𝑀𝑡 (𝑡)‖2

)︂
6

6 −𝑘
2

𝑑𝐻𝑀(𝑡)

𝑑𝑡

(︂
1

2𝑏𝑀
‖𝑢𝑀(𝑡)‖2 +

𝑘 − 1

𝑘
‖𝑢𝑀(𝑡)‖𝑘𝑘

)︂
= −𝑘

2

𝑑𝐻𝑀(𝑡)

𝑑𝑡
𝐸𝑀(𝑡).

(68)

The formulae (68), (66), (65) provide the inequalities

𝑘

2
𝐸𝑀(𝑡)

𝑑𝐻𝑀(𝑡)

𝑑𝑡
6
𝑑𝐸𝑀(𝑡)

𝑑𝑡
𝐺𝑀(𝑡) 6

𝑝1
2

𝑑𝐸𝑀(𝑡)

𝑑𝑡
𝐻𝑀(𝑡),

that can be rewritten in the form

𝑑𝐻𝑀(𝑡)

𝑑𝑡
/𝐻𝑀(𝑡) 6

𝑝1
𝑘

𝑑𝐸𝑀(𝑡)

𝑑𝑡
/𝐸𝑀(𝑡).

Solving the differential inequality, applying (65), we obtain the estimates

1̂︀𝑏𝐺𝑀(𝑡) 6 𝐻𝑀(𝑡) 6 𝐻𝑀(0)(𝐸𝑀(𝑡))𝑝1/𝑘/(𝐸𝑀(0))𝑝1/𝑘, 𝑡 > 0. (69)

Then, joining (66), (69), (65), we deduce the relation

𝑑𝐸𝑀(𝑡)

𝑑𝑡
≥ −̂︀𝑏𝐻𝑀(0)(𝐸𝑀(𝑡))𝑝1/𝑘/(𝐸𝑀(0))𝑝1/𝑘 ≥
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≥ −2̂︀𝑏
𝑝1
𝐺𝑀(0)(𝐸𝑀(𝑡))𝑝1/𝑘/(𝐸𝑀(0))𝑝1/𝑘,

and rewrite it in the form

𝑑𝐸𝑀(𝑡)

𝑑𝑡
/(𝐸𝑀(𝑡))𝑝1/𝑘 ≥ −2̂︀𝑏

𝑝1
𝐺𝑀(0)/(𝐸𝑀(0))𝑝1/𝑘.

Solving the differential inequality, we obtain the estimate

𝐸𝑀(𝑡) ≥ 𝐸𝑀(0)

(︃
𝑡
2(𝑝1 − 𝑘)̂︀𝑏

𝑘𝑝1
𝐺𝑀(0)/𝐸𝑀(0) + 1

)︃−𝑘/(𝑝1−𝑘)

, 𝑡 > 0. (70)

When 𝑡 ∈ [0, 𝑇 ] is fixed and 𝑘 ≤ 𝑝1 in case of a bounded domain Ω, the sequence 𝑢𝑀(𝑡)
selectively strongly converges for 𝑀 → ∞ to 𝑢(𝑡) in the space 𝐿𝑘(Ω). Suppose that 𝑏𝑀 =
𝑀 max{‖𝑢𝑀(0)‖2,mes(𝑘−2)/2Ω}then,

𝐸𝑀(𝑡) 6
𝑘 − 1

𝑘
‖𝑢𝑀(𝑡)‖𝑘𝑘 +

mes(𝑘−2)/2Ω

2𝑏𝑀
‖𝑢𝑀(𝑡)‖2𝑘 6

6
𝑘 − 1

𝑘
‖𝑢𝑀(𝑡)‖𝑘𝑘 +

1

2𝑀
‖𝑢𝑀(𝑡)‖2𝑘, 𝑀 = 1,∞,

and

lim
𝑀→∞

𝐸𝑀(𝑡) 6
𝑘 − 1

𝑘
‖𝑢(𝑡)‖𝑘𝑘.

Moreover, the inequalities

lim
𝑀→∞

𝐸𝑀(0) ≥ 𝑘 − 1

𝑘
lim

𝑀→∞
‖𝑢𝑀(0)‖𝑘𝑘 =

𝑘 − 1

𝑘
‖𝜙‖𝑘𝑘,

lim
𝑀→∞

𝐺𝑀(0) 6 lim
𝑀→∞

̂︀𝑎 𝑛∑︁
𝛼=1

‖𝑢𝑀𝑥𝛼
‖𝑝𝛼𝑝𝛼 = ̂︀𝑎 𝑛∑︁

𝛼=1

‖𝜙𝑥𝛼‖𝑝𝛼𝑝𝛼

hold.
Passing to the limit in (70) when 𝑀 → ∞, we obtain

‖𝑢(𝑡)‖𝑘𝑘 ≥ ‖𝜙‖𝑘𝑘(1 + 𝐶(‖𝜙‖𝑊 1
𝑘,p(Ω))𝑡)

−𝑘/(𝑝1−𝑘). (71)

Now let us obtain the estimate (71) for solution to the problem (1)–(3) in an unbounded

domain Ω. Let Ω(𝑙) ⊂ Ω be bounded subdomains such that Ω(𝑙) ⊂ Ω(𝑙+1), 𝑙 = 1,∞,
∞⋃︀
𝑙=1

Ω(𝑙) = Ω.

Let us denote by 𝑢(𝑙) solutions in Ω(𝑙) with a finite initial function (supp 𝜙 ⊂ Ω(1)), these
solutions can be considered to be an extended zero outside Ω(𝑙). The inequality (37) provides

that the sequence is bounded in the space
∘
𝑊

0,1
𝑘,p(𝐷𝑇 ) for any 𝑇 > 0. Then, according to Lemma

4, there is a countable dense set {𝑡𝑗}∞𝑗=1 ⊂ [0, 𝑇 ] such that 𝑢(𝑙) selectively strongly converges
in 𝐿𝑘(Ω𝑟) for every 𝑡𝑗 and 𝑟 > 0. Due to the estimate (9) for any 𝜀 there is 𝑟 such that the
inequality

‖𝑢(𝑙)(𝑡)‖𝑘𝑘,Ω𝑟
6 𝜀

holds for all 𝑡 ≥ 0. For 𝑢(𝑙), the estimate (71) holds. Then,

‖𝑢(𝑙)(𝑡𝑗)‖𝑘𝑘,Ω𝑟 ≥ ‖𝜙‖𝑘𝑘(1 + 𝐶(‖𝜙‖𝑊 1
𝑘,p(Ω))𝑡)

−𝑘/(𝑝1−𝑘) − 𝜀

when 𝑡𝑗 ∈ (𝑡− 𝛿, 𝑡). Using the strong convergence in 𝐿𝑘(Ω𝑟), we pass to the limit when 𝑙 → ∞
then, according to 𝑟 → ∞ (𝜀→ 0). Using the continuity of the function ‖𝑢(𝑡)‖𝑘, we pass to the
limit when 𝑡𝑗 → 𝑡. Thus, the estimate (10) is established in an unbounded domain Ω.
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4. Upper estimates

Theorems 1,3 of Introduction are proved in this section.
Lemma 5. If the condition 𝑥𝛼 ̸= 𝑦𝛼 is met for x ∈ Ω when a certain 𝛼 ∈ 1, 𝑛 is fixed then,

we have the inequality ⃦⃦⃦⃦
𝑢(x)

|𝑥𝛼 − 𝑦𝛼|

⃦⃦⃦⃦
𝑝𝛼

6
𝑝𝛼

𝑝𝛼 − 1
‖𝑢𝑥𝛼(x)‖𝑝𝛼 (72)

for the function 𝑢(x) ∈ 𝐶∞
0 (Ω)

Proof. Using the equality (︂
𝑥𝛼 − 𝑦𝛼

|𝑥𝛼 − 𝑦𝛼|𝑝𝛼

)︂′

𝑥𝛼

= − 𝑝𝛼 − 1

|𝑥𝛼 − 𝑦𝛼|𝑝𝛼
,

integrating by parts, we obtain∫︁
Ω

|𝑢(x)|𝑝𝛼
|𝑥𝛼 − 𝑦𝛼|𝑝𝛼

𝑑x = − 1

𝑝𝛼 − 1

∫︁
Ω

|𝑢(x)|𝑝𝛼 𝑑

𝑑𝑥𝛼

𝑥𝛼 − 𝑦𝛼
|𝑥𝛼 − 𝑦𝛼|𝑝𝛼

𝑑x =

=
𝑝𝛼

𝑝𝛼 − 1

∫︁
Ω

|𝑢|𝑝𝛼−2𝑢𝑢𝑥𝛼

𝑥𝛼 − 𝑦𝛼
|𝑥𝛼 − 𝑦𝛼|𝑝𝛼

𝑑x 6
𝑝𝛼

𝑝𝛼 − 1

∫︁
Ω

|𝑢|𝑝𝛼−1

|𝑥𝛼 − 𝑦𝛼|𝑝𝛼−1
|𝑢𝑥𝛼|𝑑x.

Applying the Holder inequality, we obtain∫︁
Ω

|𝑢(x)|𝑝𝛼
|𝑥𝛼 − 𝑦𝛼|𝑝𝛼

𝑑x 6
𝑝𝛼

𝑝𝛼 − 1

⎛⎝∫︁
Ω

|𝑢(x)|𝑝𝛼
|𝑥𝛼 − 𝑦𝛼|𝑝𝛼

𝑑x

⎞⎠(𝑝𝛼−1)/𝑝𝛼⎛⎝∫︁
Ω

|𝑢𝑥𝛼(x)|𝑝𝛼𝑑x

⎞⎠1/𝑝𝛼

.

Whence, (72) follows.

Corollary 1. When 0 < 𝑎 < 𝑏, the inequality

1

𝑏
‖𝑢‖𝑝𝑠,Ω𝑏

𝑎
6

𝑝𝑠
𝑝𝑠 − 1

‖𝑢𝑥𝑠‖𝑝𝑠 (73)

holds for the function 𝑢(x) ∈
∘
𝑊1

𝑘,p(Ω), (Ω is the domain located along the axis 𝑂𝑥𝑠).

Proof. Let us consider 𝑦𝑠 = 0 and deduce⎛⎜⎝∫︁
Ω𝑏

𝑎

|𝑢(x)|𝑝𝑠𝑑x

⎞⎟⎠
1/𝑝𝑠

6 𝑏

⎛⎜⎝∫︁
Ω𝑏

𝑎

|𝑢(x)|𝑝𝑠
|𝑥𝑠|𝑝𝑠

𝑑x

⎞⎟⎠
1/𝑝𝑠

6 𝑏
𝑝𝑠

𝑝𝑠 − 1

⎛⎝∫︁
Ω

|𝑢𝑥𝑠(x)|𝑝𝑠𝑑x

⎞⎠1/𝑝𝑠

from the inequality (72) for 𝑢(x) ∈ 𝐶∞
0 (Ω). Whence, it follows that if the sequence 𝑢𝑘(x) ∈

𝐶∞
0 (Ω) converges in norm of the space

∘
𝑊1

𝑘,p(Ω), it converges in 𝐿𝑝𝑠(Ω
𝑏
𝑎) as well. Passing to the

limit, we obtain the inequality (73) for 𝑢 ∈
∘
𝑊1

𝑘,p(Ω).

Proof of Theorem 1. Let 𝜃(𝑥), 𝑥 > 0, be an absolutely continuous function which is equal to
one when 𝑥 ≥ 𝑟, zero when 𝑥 ≤ 𝑅0, linear when 𝑥 ∈ [𝑅0, 2𝑅0], and satisfying the equation

𝜃′(𝑥) = 𝛿𝜈(𝑥)𝜃(𝑥), 𝑥 ∈ (2𝑅0, 𝑟), (74)

(the constant 𝛿 will be defined later). Solving this equation we obtain, in particular, that

𝜃′(𝑥) =
𝜃(2𝑅0)

𝑅0

=
1

𝑅0

exp

⎛⎝−𝛿
𝑟∫︁

2𝑅0

𝜈(𝜌)𝑑𝜌

⎞⎠ , 𝑥 ∈ (𝑅0, 2𝑅0). (75)
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For any function 𝑣(x) ∈ 𝐶∞
0 (Ω), the definition of the function 𝜈(𝜌) entail the inequalities

𝜈(𝜌)‖𝑣‖𝑝𝛼,𝛾𝜌 ≤ ‖𝑣𝑥𝛼‖𝑝𝛼,𝛾𝜌 , 𝜌 > 0, 𝛼 = 1, 𝑛,

whence we obtain the relations
𝑟∫︁

2𝑅0

𝜃𝑝𝑠(𝜌)𝜈𝑝𝛼(𝜌)‖𝑣‖𝑝𝛼𝑝𝛼,𝛾𝜌𝑑𝜌 ≤
𝑟∫︁

2𝑅0

𝜃𝑝𝑠(𝜌)‖𝑣𝑥𝛼‖𝑝𝛼𝑝𝛼,𝛾𝜌𝑑𝜌, 𝛼 = 1, 𝑛. (76)

Applying (76) for any function 𝑣 ∈ 𝐶∞
0 (Ω) when 𝑠 ̸= 1, 𝑛 we deduce

𝑟∫︁
2𝑅0

𝜈𝑝𝑠(𝜌)𝜃𝑝𝑠(𝜌)‖𝑣‖𝑝𝑠𝑝𝑠,𝛾𝜌𝑑𝜌 ≤
𝑟∫︁

2𝑅0

𝜈𝑝1(𝜌)𝜃𝑝𝑠(𝜌)‖𝑣‖𝑝1𝑝1,𝛾𝜌𝑑𝜌+

𝑟∫︁
2𝑅0

𝜈𝑝𝑛(𝜌)𝜃𝑝𝑠(𝜌)‖𝑣‖𝑝𝑛𝑝𝑛,𝛾𝜌𝑑𝜌 6

6

𝑟∫︁
2𝑅0

𝜃𝑝𝑠(𝜌)‖𝑣𝑥1‖𝑝1𝑝1,𝛾𝜌𝑑𝜌+

𝑟∫︁
2𝑅0

𝜃𝑝𝑠(𝜌)‖𝑣𝑥𝑛‖𝑝𝑛𝑝𝑛,𝛾𝜌𝑑𝜌. (77)

Note that the inequalities (1) hold true for any function 𝑣 ∈
∘
𝑊1

𝑘,p(Ω) (see Corollary 1).
Let 𝜉(x) be a Lipschitzian nonnegative patch function. Assuming that 𝑣 = 𝑢𝜉 in (62), we

obtain
𝑘 − 1

𝑘

∫︁
Ω

|𝑢|𝑘𝜉
⃒⃒⃒⃒𝜏=𝑡

𝜏=0

𝑑x +
𝑛∑︁

𝛼=1

∫︁
𝐷𝑡

𝑎𝛼(𝑢2𝑥𝛼
)𝑢𝑥𝛼(𝑢𝜉)𝑥𝛼𝑑x𝑑𝜏 = 0.

Suppose that 𝜉(x) = 𝜃𝑝𝑠(𝑥𝑠). Then, applying (4), (taking into account that 𝜃𝜙 = 0) we arrive
at

𝑘 − 1

𝑘

∫︁
Ω

|𝑢(𝑡,x)|𝑘𝜃𝑝𝑠(𝑥𝑠)𝑑x + 𝑎
𝑛∑︁

𝛼=1

∫︁
𝐷𝑡

𝜃𝑝𝑠|𝑢𝑥𝛼|𝑝𝛼𝑑x𝑑𝜏 6 (78)

6 ̂︀𝑎 ∫︁
𝐷𝑡

|𝑢||𝑢𝑥𝑠|𝑝𝑠−1(𝜃𝑝𝑠(𝑥𝑠))
′𝑑x𝑑𝜏 ≡ ̂︀𝑎𝐼 𝑡.

Let us estimate the integral

𝐼 𝑡 =

𝑡∫︁
0

∫︁
Ω

|𝑢||𝑢𝑥𝑠|𝑝𝑠−1𝑝𝑠𝜃
′(𝑥𝑠)𝜃

𝑝𝑠−1(𝑥𝑠)𝑑x𝑑𝜏.

Using the Young inequality, we obtain

𝐼 𝑡 6 𝜀(𝑝𝑠 − 1)

𝑡∫︁
0

∫︁
Ω

|𝑢𝑥𝑠|𝑝𝑠𝜃𝑝𝑠𝑑x𝑑𝜏 +
1

𝜀𝑝𝑠−1

𝑡∫︁
0

∫︁
Ω

|𝑢|𝑝𝑠(𝜃′(𝑥𝑠))𝑝𝑠𝑑x𝑑𝜏. (79)

Let us choose 𝜀 =
𝑎̂︀𝑎 1

𝑝𝑠 − 1
, joining (78), (79), we deduce the inequality

𝑘 − 1

𝑘

∫︁
Ω

|𝑢(𝑡,x)|𝑘𝜃𝑝𝑠(𝑥𝑠)𝑑x + 𝑎
𝑛∑︁

𝛼=1,𝛼 ̸=𝑠

∫︁
𝐷𝑡

𝜃𝑝𝑠|𝑢𝑥𝛼 |𝑝𝛼𝑑x𝑑𝜏 6 𝐶1

∫︁
𝐷𝑡

|𝑢|𝑝𝑠(𝜃′(𝑥𝑠))𝑝𝑠𝑑x𝑑𝜏. (80)

Using (74), (75), one can readily reduce (80) to the form

𝑘 − 1

𝑘

∫︁
Ω

|𝑢(𝑡,x)|𝑘𝜃𝑝𝑠(𝑥𝑠)𝑑x + 𝑎
𝑛∑︁

𝛼=1,𝛼 ̸=𝑠

∫︁
𝐷𝑡

𝜃𝑝𝑠|𝑢𝑥𝛼 |𝑝𝛼𝑑x𝑑𝜏 6 (81)
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6 𝐶1
1

𝑅𝑝𝑠
0

exp

⎛⎝−𝛿𝑝𝑠

𝑟∫︁
2𝑅0

𝜈(𝜌)𝑑𝜌

⎞⎠ 𝑡∫︁
0

∫︁
Ω

2𝑅0
𝑅0

|𝑢|𝑝𝑠𝑑x𝑑𝜏+

+𝐶1𝛿
𝑝𝑠

𝑡∫︁
0

∫︁
Ω𝑟

2𝑅0

|𝑢|𝑝𝑠𝜈𝑝𝑠(𝑥𝑠)𝜃𝑝𝑠(𝑥𝑠)𝑑x𝑑𝜏 = 𝐼 𝑡1 + 𝐼 𝑡2.

Using the inequalities (73) and (37), we obtain

𝐼 𝑡1 6 𝐶2 exp

⎛⎝−𝛿𝑝𝑠

𝑟∫︁
2𝑅0

𝜈(𝜌)𝑑𝜌

⎞⎠ 𝑡∫︁
0

‖𝑢𝑥𝑠‖𝑝𝑠𝑝𝑠𝑑𝜏 6 𝐶3 exp

⎛⎝−𝛿𝑝𝑠

𝑟∫︁
2𝑅0

𝜈(𝜌)𝑑𝜌

⎞⎠ ‖𝜙‖𝑘𝑘. (82)

Application of (1) provides

𝐼 𝑡2 6 𝐶1𝛿
𝑝𝑠

𝑡∫︁
0

∫︁
Ω𝑟

2𝑅0

(|𝑢𝑥1|𝑝1𝜃𝑝𝑠 + |𝑢𝑥𝑛|𝑝𝑛𝜃𝑝𝑠) 𝑑x𝑑𝜏. (83)

Choosing 𝛿 =

(︂
𝑎

𝐶1

)︂1/𝑝𝑠

, joining (81) – (83), we deduce

𝑘 − 1

𝑘
‖𝑢(𝑡)‖𝑘𝑘,Ω𝑟

+ 𝑎
𝑛−1∑︁

𝛼=2,𝛼 ̸=𝑠

𝑡∫︁
0

‖𝑢𝑥𝛼(𝑡)‖𝑝𝛼Ω𝑟
𝑑𝜏 6 𝐶3 exp

⎛⎝−𝛿𝑝𝑠

𝑟∫︁
1

𝜈(𝜌)𝑑𝜌

⎞⎠ ‖𝜙‖𝑘𝑘.

The inequality (9) is proved.

Corollary 2. if the condition

𝜇1 = inf
{︁
‖𝑔𝑥1‖𝑝1

⃒⃒⃒
𝑔(x) ∈ 𝐶∞

0 (Ω), ‖𝑔‖ = 1
}︁
> 0

is met, the estimate (13) holds for solution 𝑢(𝑡,x) of the problem (1)–(3).

Proof. It follows from (38) that

𝑑

𝑑𝑡
‖𝑢(𝑡)‖𝑘𝑘 6 − 𝑎𝑘

𝑘 − 1

𝑛∑︁
𝛼=1

‖𝑢𝑥𝛼‖𝑝𝛼𝑝𝛼 6 − 𝑎𝑘

𝑘 − 1
‖𝑢𝑥1‖𝑝1𝑝1 6 − 𝑎𝑘

𝑘 − 1
𝜇𝑝1
1 ‖𝑢‖𝑝1𝑘 .

Solving this differential inequality, we obtain the estimate

‖𝑢(𝑡)‖𝑘 6 𝑡−1/(𝑝1−1)

(︂
(𝑝1 − 𝑘)𝑎

𝑘 − 1
𝜇𝑝1
1

)︂−1/(𝑝1−𝑘)

,

whence the inequality (13) follows.

Proof of Theorem 3. Let us choose a positive number 𝑟 ≥ 2𝑅0. According to Theorem 1,

introducing the notation 𝜀(𝑟) = ℳ𝑘 exp

(︂
−𝑘𝜅

𝑟∫︀
1

𝜈(𝜌)𝑑𝜌

)︂
‖𝜙‖𝑘𝑘, we have the relation

‖𝑢(𝑡)‖𝑘𝑘 6 ‖𝑢(𝑡)‖𝑘𝑘,Ω𝑟 + 𝜀(𝑟), 𝑡 ≥ 0.

The definition (11) entails that

‖𝑢(𝑡)‖𝑘𝑘 6
(︀
𝜇−𝑝1
1 (𝑟)‖𝑢𝑥1(𝑡)‖

𝑝1
𝑝1, Ω𝑟

)︀𝑘/𝑝1
+ 𝜀(𝑟), 𝑡 ≥ 0. (84)
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Denote by 𝑡𝑟 a point of the interval [0,∞) such that 𝐸(𝑡) = ‖𝑢(𝑡)‖𝑘𝑘 = 𝜀(𝑟). If 𝐸(𝑡) > 𝜀(𝑟) for
any 𝑡 ≥ 0, then 𝑡𝑟 = ∞. Since the function 𝐸(𝑡) is monotonously nonincreasing, the inequality
𝐸(𝑡) > 𝜀(𝑟) holds for 𝑡 ∈ [0, 𝑡𝑟). Then, the relation (84) can be written in the form

(𝐸(𝑡) − 𝜀(𝑟))𝑝1/𝑘 6 𝜇−𝑝1
1 (𝑟)

𝑛∑︁
𝛼=1

‖ 𝑢𝑥𝛼(𝑡)‖𝑝𝛼𝑝𝛼, Ω𝑟 , 𝑡 ∈ [0, 𝑡𝑟). (85)

Joining (38) with (85), we deduce the correlation

𝑑𝐸(𝑡)

𝑑𝑡
6 − 𝑘𝑎

𝑘 − 1
𝜇𝑝1
1 (𝑟) (𝐸(𝑡) − 𝜀(𝑟))𝑝1/𝑘 , 𝑡 ∈ (0, 𝑡𝑟). (86)

Solving the differential inequality, we obtain

(𝐸(𝑡) − 𝜀(𝑟))(𝑝1−𝑘)/𝑘 6
𝑘 − 1

𝑡𝜇𝑝1
1 (𝑟)(𝑝1 − 𝑘)

, 𝑡 ∈ (0, 𝑡𝑟).

Substituting the value 𝜀(𝑟) into the latter inequality, we obtain

𝐸(𝑡) 6 𝐶1 (𝑡𝜇𝑝1
1 (𝑟))−𝑘/(𝑝1−𝑘) + ℳ𝑘 exp

⎛⎝−𝑘𝜅
𝑟∫︁

1

𝜈(𝜌)𝑑𝜌

⎞⎠ ‖𝜙‖𝑘𝑘 (87)

for 𝑡 ∈ (0, 𝑡𝑟). Note that for 𝑡 ∈ [𝑡𝑟,∞) the inequality 𝐸(𝑡) 6 𝜀(𝑟), as well as the estimate (87),
hold.

Let us assume that 𝑟 = 𝑟(𝑡) in (87) and use the definition (14) of the function 𝑟(𝑡). This
results in

𝐸(𝑡) 6 𝐶1 (𝑡𝜇𝑝1
1 (𝑟(𝑡)))−𝑘/(𝑝1−𝑘) + ℳ𝑘 exp

⎛⎝−𝑘𝜅
𝑟(𝑡)∫︁
1

𝜈(𝜌)𝑑𝜌

⎞⎠ ‖𝜙‖𝑘𝑘 6

6 𝐶2 (𝑡𝜇𝑝1
1 (𝑟(𝑡))−𝑘/(𝑝1−𝑘) , 𝑡 > 0.

Thus, the inequality (15) is proved.

Let us define the function

𝜆1(𝑟) = inf
{︁
‖𝑔𝑥1‖𝑝1,Ω𝑟

⃒⃒⃒
𝑔(x) ∈ 𝐶∞

0 (Ω), ‖𝑔‖𝑝1,Ω𝑟 = 1
}︁
, 𝑟 > 0.

Then the definition of the function 𝜆1(𝑟) entails the inequality

𝜆𝑝11 (𝑟)‖𝑔‖𝑝1𝑝1,Ω𝑟 6 ‖𝑔𝑥1‖
𝑝1
𝑝1,Ω𝑟 , 𝑔(x) ∈ 𝐶∞

0 (Ω), 𝑟 > 0.

Applying the Holder inequality for 𝑔(x) ∈ 𝐶∞
0 (Ω), 𝑟 > 0, we obtain the relations

‖𝑔‖𝑝1𝑘,Ω𝑟 6 ‖𝑔‖𝑝1𝑝1,Ω𝑟 (mes Ω𝑟)(𝑝1−𝑘)/𝑘 6 𝜆−𝑝1
1 (𝑟) (mes Ω𝑟)(𝑝1−𝑘)/𝑘 ‖𝑔𝑥1‖

𝑝1
𝑝1,Ω𝑟 ,

that entail the inequality

𝜆1(𝑟) 6 𝜇1(𝑟) (mes Ω𝑟)(𝑝1−𝑘)/(𝑘𝑝1) , 𝑔(x) ∈ 𝐶∞
0 (Ω), 𝑟 > 0. (88)

5. Upper estimate for rotation domains

Let 𝒫(𝜌, 𝑧) = {(𝑥, 𝑦) ∈ R2 | 𝑧 < 𝑥 < 𝑧 + 𝜌, 0 < 𝑦 < 𝜌} is a square with the side 𝜌 and the
left lower corner at 𝑧 of the abscissa. For the positive function 𝑓(𝑥), 𝑥 > 0, the symbol Γ𝑟(𝑓)
denotes a curvilinear trapezoid

Γ𝑟(𝑓) = {(𝑥, 𝑦) ∈ R2 | 0 < 𝑥 < 𝑟, 0 < 𝑦 < 𝑓(𝑥)}.
Let us denote the side of the largest square 𝒫(𝜌*, 𝑧*), contained in Γ𝑟(𝑓), by 𝜌*(𝑟). The estimate

𝑐1
𝜌*(𝑟)

6 𝜆1(𝑟) 6
𝑐2

𝜌*(𝑟)
, 𝑟 > 0 (89)
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holds (the proof of a similar statement is available in [30]).
Let us define monotonously increasing functions

𝑔(𝑟) = (mes Ω𝑟)1/𝑘𝜌𝑝1/(𝑝1−𝑘)
* (𝑟), 𝑟 > 0; (90)

̃︀𝑟(𝑡) :

̃︀𝑟∫︁
1

𝑑𝑥

𝑓(𝑥)
=

ln 𝑡̃︀𝜅(𝑝1 − 𝑘)
, 𝑡 ≥ 1. (91)

Statement 1. Let us assume that the condition (8) is met then, there is a positive number̃︁𝑀 such that the estimate (26) holds for solution 𝑢(𝑡, x) of the problem (1)–(3) in a cylindric
domain 𝐷(𝑓) = (0, ∞) × Ω(𝑓)[𝑠] with the function 𝑓(𝑥), satisfying the condition (24).
Proof. Joining (88) and (89), we deduce

𝜇1(𝑟) ≥ 𝑐1 (mes Ω𝑟)−(𝑝1−𝑘)/(𝑘𝑝1) 𝜌*
−1(𝑟) = 𝑐1𝑔

−(𝑝1−𝑘)/𝑝1(𝑟), 𝑟 > 0. (92)

Let us fix 𝑡 ≥ 1 and assume 𝑟 = ̃︀𝑟(𝑡). Substituting (92), (23) into (87), using the definition
(91) of the function ̃︀𝑟(𝑡), we obtain the relations

‖𝑢(𝑡)‖𝑘𝑘,Ω(𝑓) 6 𝐶2 exp

⎛⎝−𝑘̃︀𝜅 ̃︀𝑟(𝑡)∫︁
1

𝑑𝑥

𝑓(𝑥)

⎞⎠+ 𝐶2𝑔
𝑘(̃︀𝑟(𝑡))𝑡−𝑘/(𝑝1−𝑘) 6 𝐶3𝑔

𝑘(̃︀𝑟(𝑡))𝑡−𝑘/(𝑝1−𝑘),

whence follows the inequality (26) with the function ̃︀𝑔(𝑡) = 𝑔(̃︀𝑟(𝑡)).
Let us demonstrate that the function ̃︀𝑔(𝑡) grows slower than a power function. It follows

from the condition (24) that for any 𝜀 ∈ (0, 1), there is 𝑟0 such that

𝜀̃︀𝜅(𝑝1 − 𝑘)

𝑟∫︁
1

𝑑𝑥

𝑓(𝑥)
> ln 𝑟, 𝑟 ≥ 𝑟0.

Then, it follows from definition (91) of the function ̃︀𝑟(𝑡) that the inequalitỹ︀𝑟(𝑡) < 𝑡𝜀, 𝑡 ≥ 𝑡0 (93)

holds.
Then, definition (90) and the formula

mes Ω𝑟(𝑓) = 𝑐𝑛

𝑟∫︁
0

𝑓𝑛−1(𝑥)𝑑𝑥, (94)

provide the inequality

𝑔(𝑟) 6 𝐶4𝜌
𝑝1/(𝑝1−𝑘)
* (𝑟)

⎛⎝ 𝑟∫︁
0

𝑓𝑛−1(𝑥)𝑑𝑥

⎞⎠1/𝑘

6 𝐶4𝑟
𝑝1/(𝑝1−𝑘)+1/𝑘 max

[0,𝑟]
𝑓 (𝑛−1)/𝑘(𝑥)

for 𝑟 > 0. Applying the corollary of the inequality (24):

𝑓(𝑥) 6 𝐶𝑥, 𝑥 ≥ 𝑟0,

we obtain

𝑔(𝑟) 6 𝐶5(𝑟0)𝑟
𝑝1/(𝑝1−𝑘)+𝑛/𝑘, 𝑟 ≥ 𝑟0. (95)

Joining (93), (95) we establish that the function ̃︀𝑔(𝑡) grows slower than any power of 𝑡.

Let us assume that there is a constant 𝜔 ≥ 1 such that

sup
{︀
𝑓(𝑧)

⃒⃒
𝑧 ∈ [𝑥− 𝑓(𝑥), 𝑥+ 𝑓(𝑥)]

}︀
6 𝜔𝑓(𝑥), 𝑥 ≥ 1. (96)
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For a monotonously nondecreasing function 𝑓 , satisfying the condition (96), we have the in-
equality

𝜔−1𝑓(𝑟) 6 𝜌*(𝑟) 6 𝑓(𝑟), 𝑟 ≥ 𝑟0 = 1 + 𝑓(1). (97)

Indeed, due to monotonous nondecreasing of the function 𝑓(𝑥), we have the equality 𝑓(𝑧*) =
𝑟 − 𝑧* = 𝜌*(𝑟). According to (96), we have

𝑓(𝑟) = max
[𝑧*−𝑓 (𝑧*),𝑧*+𝑓(𝑧*)]

𝑓(𝑧) 6 𝜔𝑓(𝑧*),

whence the eft inequality (97) follows.
According to (94), (97), the function 𝑔(𝑟) can be defined

𝑔(𝑟) = 𝑓𝑝1/(𝑝1−𝑘)(𝑟)

⎛⎝ 𝑟∫︁
0

𝑓𝑛−1(𝑥)𝑑𝑥

⎞⎠1/𝑘

, 𝑟 ≥ 𝑟0.

Example 1. For the function 𝑓(𝑥) = 𝑥𝑎, 0 6 𝑎 < 1, 𝑥 > 0, one can define the functions̃︀𝑟(𝑡) = (ln 𝑡)1/(1−𝑎), 𝑡 ≥ 𝑡0, 𝑔(𝑟) = 𝑟𝜒, 𝑟 ≥ 𝑟0.

Then the estimate (26) takes the form (27).
Example 2. For the function 𝑓(𝑥) = 𝑒, 0 < 𝑥 < 𝑒, 𝑓(𝑥) = 𝑥/ ln𝑥, 𝑥 ≥ 𝑒, we obtaiñ︀𝑟(𝑡) = exp(𝜍(ln 𝑡)1/2), 𝑡 ≥ 𝑡0, 𝜍 > 0, 𝑔(𝑟) = 𝑟𝜎+1/𝑘(ln 𝑟)−𝜎, 𝑟 ≥ 𝑟0.

Meanwhile the estimate (26) takes the form (28).
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