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COMBINATORIAL COMPLEXITY OF A CERTAIN

1-DIMENSIONAL CUTTING STOCK PROBLEM

V.M.KARTAK, V.V.KARTAK

Abstract. The classical Cutting Stock Problem (1dCSP) is considered. It is known that
1CSP is at least NP-hard. In the present paper a combinatorial algorithm for its solution
based on the Branch and Bound Method is described. We estimate the complexity of this
algorithm presented for a class of problems that is called compact. The most difficult
examples to solve by combinatorial algorithms are identified. This result is consistent with
experimental data and could be used to generate difficult test problems, as well as for
predicting the time of the algorithm.
Keywords: Cutting Stock Problem, Branch and Bound Method, Integer Programming,
Combinatorial complexity.

1. Introduction

The classical problem of a One-Dimensional Cutting Stock Problem (1dCSP) consists in
the following: given a set of nonnegative numbers 𝑙𝑖 ∈ R+, 𝑖 ∈ 𝐼 = {1, . . . ,𝑚} and some pos-
itive number 𝐿 > 0. Find a minimum natural number 𝑛 such that 𝐼 splits into 𝑛 nonin-
tersecting subsets 𝐼 = ∪𝑛

𝑘=1𝐼𝑘 and
∑︀

𝑖∈𝐼𝑘 𝑙𝑖 6 𝐿. Let us denote this problem as follows:
𝐸 = (𝐿,𝑚, (𝑙1, 𝑙2, . . . 𝑙𝑚)). Without loss of generality, we assume that 𝑙𝑖 are arranged in
the descending order 𝑙1 ≥ 𝑙2 ≥ ... ≥ 𝑙𝑚.

This problem is known in literature as container allocation problem, one-dimensional cutting
stock problem. A number of scheduling problems is also reduced to this statement. The given
problem is related to the class of 𝑁𝑃 -hard problems hence, it can not be solved by means of a
pseudo-polynomial algorithm (see [1]).

I.V. Romanovskii interpreted the one-dimensional cutting stock problem as a combinatorial
optimization problem. He suggested the general idea of the iterative method to solve the
problem and specified it in the form of the ”Method of Branch and Bound” (MBB) [2], which was
realized by S.V. Katsev, see [3]. Later on, S.Martello and P.Toth in [4] and E.A. Mukhacheva
with V.M. Kartak in [5] suggested improving a version of MBB by adding additional restrictions.
In 1997, D. Schwerin and G. Wascher classified input data for the one-dimensional cutting stock
problem, see [6]. In their subsequent work [7] they, as well as E.A. Mukhacheva and V.M. Kartak
in [5], singled out most difficult classes for obtaining the optimum (the difficulty of the class
is defined by the number of examples with optimum obtained during a given period time).
”‘Triplets”’ appeared to be most difficult examples, where 𝐿/4 < 𝑙𝑖 6 𝐿.

The given article is devoted to investigation of a computational complexity of combinatorial
algorithms in case of a dense problem.

2. Scheme of the combinatorial algorithm

Let us correlate every subset of the partition 𝐼𝑘 to an 𝑚-dimensional binary vector
a𝑘 = (𝑎𝑘1, . . . , 𝑎

𝑘
𝑚)𝑇 , where 𝑎𝑘𝑖 = 1 if 𝑖 ∈ 𝐼𝑘, or 𝑎𝑖 = 0. Then, any solution of the problem,
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consisting of 𝑛 subsets, can be represented in the form of a binary matrix with the partition
𝒜 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) of the size 𝑚 × 𝑛. Partition when 𝑛 reaches its minimum is said to be
optimal.

To obtain the optimal partition, combinatorial algorithms of the branch and bound type are
forced to look through all possible partition variants sequentially at worst [2], [4], [5]. To avoid
repetition, a lexicographic ordering of partition matrices is introduced.

The vector 𝑎𝑗 is of a higher priority as compared to 𝑎𝑘, provided that
∑︀1

𝑖=𝑚 𝑎𝑗𝑖 · 2𝑖 >
∑︀1

𝑖=𝑚 𝑎𝑘𝑖 · 2𝑖.
Let us impose a requirement that columns in the matrix 𝒜 should be ordered by non-increasing
priorities. A priority matrix between two matrices is the one that contains a vector of a higher
priority. Thus, all matrices can be sorted in a lexicographic ordering by their non-increasing
priorities 𝒜1 ≥ 𝒜2 ≥ . . . ≥ 𝒜𝐾 . The general enumeration scheme looks as follows:

Let Λ(𝒜𝑖) be a number of columns in the matrix 𝒜𝑖.

Step 1. Preparation for solving:
∙ calculate the lower bound 𝐿𝑑;
∙ construct 𝒜1 by means of the first fit algorithm [1]. 𝐿𝑢 = Λ(𝒜1) is the upper bound;
∙ 𝒜𝑏𝑒𝑠𝑡 = 𝒜1 is the best cutting plan.

Step 2. If 𝐿𝑑 = 𝐿𝑢, proceed to Step 4.
Step 3. Look through 𝒜𝑖 sequentially using the lexicographic ordering and reduction ([4],

[5]). If Λ(𝒜𝑖) < 𝐿𝑢 then 𝒜𝑏𝑒𝑠𝑡 = 𝒜𝑖, 𝐿𝑢 = Λ(𝒜𝑖), proceed to Step 2.
Step 4. The optimal solution 𝒜𝑏𝑒𝑠𝑡 is obtained.

Let us estimate the computational complexity of the suggested algorithm. Obviously, the
maximum number of iterations is made by the algorithm when it is impossible to reach the
lower bound, because in this case the algorithm is forced to generate all possible partition
matrices.

3. Estimation of the algorithm complexity in a dense case

A vector 𝑎 is said to be dense, if
∑︀𝑚

𝑖=1 𝑎𝑗𝑙𝑗 < min𝑘 ∈𝐼/{𝑡:𝑎𝑡=1} 𝑙𝑘. A matrix is said to be dense,
if it consists of dense vectors.

Let 𝑛 be an optimal value of the problem 𝐸. The problem 𝐸 is said to be dense if any matrix
of 𝒜 partition, corresponding to the optimal solution, is dense.

One can see from the above scheme that in order to prove that the value 𝑛 is optimal, the
algorithm has to construct all admissible matrices 𝒜 of 𝑚 × 𝑛 dimensions and demonstrate
that an admissible matrix with the number of columns 𝑛 − 1 does not exist. Let us estimate
the maximum possible number of such matrices.

To this end, let us consider a certain sequence of nonrecurrent numbers 𝑄 = (𝑞1, 𝑞2, . . . 𝑞𝑚),
where 𝑞𝑖 ∈ 𝐼 (there can be various 𝑚! such sequences in total). Let us set the matrix 𝒜 to
one-to one correspondence with every such sequence by the following rule.

∙ Let 𝑘1 be a number such that
∑︀𝑘1

𝑖=1 𝑙𝑙𝑞𝑖 6 𝐿 and
∑︀𝑘1+1

𝑖=1 𝑙𝑙𝑞𝑖 > 𝐿. Then the vector 𝑎1 is

constructed by the rule 𝑎1𝑞𝑖 = 1, 𝑖 = 1, 𝑘1, the remaining elements are zeroes.

∙ The number 𝑘2 is such that
∑︀𝑘1+𝑘2

𝑖=𝑘1+1 𝑙𝑙𝑞𝑖 6 𝐿 and
∑︀𝑘1+𝑘2+1

𝑖=𝑘1+𝑘2+1 𝑙𝑙𝑞𝑖 > 𝐿. The vector 𝑎2 is

constructed by the rule 𝑎2𝑞𝑖 = 1, 𝑖 = 𝑘1 + 1, 𝑘1 + 𝑘2, the remaining elements are zeroes, etc.

When the matrix 𝒜 has been constructed, its columns are lexicographically ordered.
Note that one and the same matrix 𝒜 can be obtained from several various sequences. Let

𝐾(𝒜) be a number of sequences generating the matrix 𝒜. Manifestly, if 𝒜 is a dense matrix,
consisting of 𝑛 columns, then 𝐾(𝒜) = 𝑘1!𝑘2!..𝑘𝑛!𝑛!.

Lemma 1. The estimate 𝑘1!𝑘2!..𝑘𝑛! ≥ (𝑘!)𝑛−𝑟 ·((𝑘+1)!)𝑟holds. Here 𝑘 = [𝑚/𝑛] is the integer
part of dividing m by n, r is the residue of dividing m by n.
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▷ Let us find the minimum of the expression 𝑘1!𝑘2!..𝑘𝑛!, using the Ferrer graph ([8], p. 21).
Let us compose a table of 𝑚 rows and 𝑛 columns. In the first column, fill in the 𝑘1 row, counting
from below, in the second column, fill in the 𝑘2 row, etc, in the last 𝑛-th column fill in 𝑘𝑛 rows
and assign weights to the filled cells as it is demonstrated on the picture.

𝑘3
𝑘1 𝑘3 − 1

𝑘1 − 1 𝑘3 − 2 . . . 𝑘𝑛
𝑘1 − 2 𝑘2 𝑘3 − 3 . . . 𝑘𝑛 − 1
𝑘1 − 3 𝑘2 − 1 𝑘3 − 4 . . . 𝑘𝑛 − 2
. . . . . . . . . . . . . . .
1 1 1 . . . 1

The general number of all filled cells equals to 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑛 = 𝑚. We are looking for the
minimum of the product 𝑘1!𝑘2!𝑘3! . . . 𝑘𝑛!, containing exactly 𝑛 multipliers.

It is allowed to carry out the following operation on the graph: ”‘shift”’ the upper filled cell
from one column into the upper position of another column. For example, let us shift the upper
cell from the third column to the second one:

𝑘1 𝑘3 − 1
𝑘1 − 1 𝑘2 + 1 𝑘3 − 2 . . . 𝑘𝑛
𝑘1 − 2 𝑘2 𝑘3 − 3 . . . 𝑘𝑛 − 1
𝑘1 − 3 𝑘2 − 1 𝑘3 − 4 . . . 𝑘𝑛 − 2
. . . . . . . . . . . . . . .
1 1 1 . . . 1

There are only two possibilities

𝑘1!(𝑘2 + 1)!(𝑘3 − 1)! . . . 𝑘𝑛! < 𝑘1!𝑘2!𝑘3! . . . 𝑘𝑛! if 𝑘2 + 1 < 𝑘3,

𝑘1!(𝑘2 + 1)!(𝑘3 − 1)! . . . 𝑘𝑛! = 𝑘1!𝑘2!𝑘3! . . . 𝑘𝑛! if 𝑘2 + 1 = 𝑘3.

As one can see, ”‘shifting”’ the cell lower does not increase the desired product. It reaches
its minimum when the product remains unaltered with any shift of the cell into a lower row.
Then, the operation of ”‘shifting”’ is reduced to permutation of columns as such.

Thus, when 𝑚 and 𝑛 are fixed, the product 𝑘1!𝑘2!𝑘3! . . . 𝑘𝑛! reaches its minimum in the
variables 𝑘1, 𝑘2, . . . , 𝑘𝑛 if:

𝑘1!𝑘2!𝑘3! . . . 𝑘𝑛! = (𝑘!)𝑛−𝑟 · ((𝑘 + 1)!)𝑟 · 𝑛! = (𝑘!)𝑛 · (𝑘 + 1)𝑟 · 𝑛!. ◁

Let 𝐸 be a dense problem and 𝑆(𝑚,𝑛) is the number of various possible dense matrices 𝒜
of dimensions 𝑚× 𝑛. Then, the following estimate holds:

𝑆(𝑚,𝑛)∑︁
𝑖=1

𝐾(𝒜) 6 𝑚!.

Lemma 1 entails that
𝑆(𝑚,𝑛)∑︁
𝑖=1

𝐾(𝒜) =

𝑆(𝑚,𝑛)∑︁
𝑖=1

𝑘𝑖
1!𝑘

𝑖
2!..𝑘

𝑖
𝑛!𝑛! 6 𝑚! ⇒ 𝑆(𝑚,𝑛) · (𝑘!)𝑛−𝑟 · ((𝑘 + 1)!)𝑟𝑛! 6 𝑚! ⇒

𝑆(𝑚,𝑛) 6
𝑚!

(𝑘!)𝑛−𝑟 · ((𝑘 + 1)!)𝑟 · 𝑛!
.
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Note that there are problems 𝐸 such that the equality is reached. For instance: 𝑙1 = 𝑙2 = · · · =
𝑙𝑚 and 𝑚 = 𝑛 ⌊𝐿/𝑙1⌋.

Let us answer the question: what correlation of 𝑚 and 𝑛 allows the function 𝑆(𝑚,𝑛)
to reach its maximum ?(𝑚 is a fixed number.) To this end, let us neglect the integrality
and substitute all factorials by a Gamma function by the rule: Γ(𝑛 + 1) = 𝑛!

Lemma 2. The function 𝑆(𝑚,𝑛) is majorized by the function 𝐹 (𝑚,𝑛)

𝑆(𝑚,𝑛) ≤ 𝐹 (𝑚,𝑛) =
Γ(𝑚 + 1)

Γ𝑛(𝑚
𝑛

+ 1)Γ(𝑛 + 1)
.

▷ Let us prove that the inequality

𝑚!

(𝑘!)𝑛 · (𝑘 + 1)𝑟 · 𝑛!
≤ Γ(𝑚 + 1)

Γ𝑛(𝑚
𝑛

+ 1)Γ(𝑛 + 1)

holds. The problem is equivalent to the proving that

(𝑘!)𝑛 · (𝑘 + 1)𝑟 ≥ Γ𝑛
(︁𝑚
𝑛

+ 1
)︁

= Γ𝑛

(︂
𝑘𝑛 + 𝑟

𝑛
+ 1

)︂
= Γ𝑛

(︁
𝑘 +

𝑟

𝑛
+ 1

)︁
.

Let us introduce the notation 𝑥 = 𝑘 + 1, 𝑠 = 𝑟/𝑛, and 0 ≤ 𝑠 < 1. Then,

Γ(𝑥) · (𝑥)𝑠 ≥ Γ(𝑥 + 𝑠). (1)

The inequality (1) holds by virtue of the known inequality (see [9], [10], [11], [12])

𝑥1−𝑠 <
Γ(𝑥 + 1)

Γ(𝑥 + 𝑠)
, 0 < 𝑠 < 1,

since it takes the following form upon transformation:

𝑥

𝑥𝑠
<

𝑥Γ(𝑥)

Γ(𝑥 + 𝑠)
, 0 < 𝑠 < 1.

If 𝑠 = 1, the inequality (1) turns into an identity ◁.
Let us formulate the following auxiliary lemma .

Lemma 3. If 𝑧 ≥ 3 the digamma function Ψ(𝑧) = Γ′(𝑧)/Γ(𝑧) is estimated as follows:

ln 𝑧 − 𝐶(𝑧) ≤ Ψ(𝑧) ≤ ln 𝑧 + 𝐶(𝑧), where 𝐶(𝑧) is a finite expression.

▷ Let us write the expression

Ψ(𝑧 + 1) = Ψ(𝑧) +
1

𝑧
= Ψ(𝑧 − 1) +

1

𝑧 − 1
+

1

𝑧
= · · · =

in more detail. Let us represent the variable 𝑧 in the form 𝑧 = [𝑧] + {𝑧} = 𝑛 + 𝛼, 0 ≤ 𝛼 < 1
then, the previous equality continues:

= Ψ(𝛼 + 2) +
1

𝛼 + 2
+

1

𝛼 + 3
+ · · · +

1

𝑧
.

The estimate: ∫︁ 𝛼+𝑘+1

𝛼+𝑘

𝑑𝑡

𝑡
≤ 1

𝛼 + 𝑘
≤

∫︁ 𝛼+𝑘

𝛼+𝑘−1

𝑑𝑡

𝑡

holds. Summation over all inequalities provides∫︁ 𝛼+𝑛+1

𝛼+2

𝑑𝑡

𝑡
≤

𝑛∑︁
𝑘=2

1

𝛼 + 𝑘
≤

∫︁ 𝛼+𝑛

𝛼+1

𝑑𝑡

𝑡
.
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The left- and the right-hand sides of the inequality are integrable:

ln(𝑧 + 1) − ln(𝛼 + 2) ≤
𝑛∑︁

𝑘=2

1

𝛼 + 𝑘
≤ ln 𝑧 − ln(𝛼 + 1).

Adding Ψ(𝛼 + 2) to all parts of the inequality, we obtain:

ln(𝑧 + 1) + Ψ(𝛼 + 2) − ln(𝛼 + 2) ≤ Ψ(𝑧 + 1) ≤ ln 𝑧 + Ψ(𝛼 + 2) − ln(𝛼 + 1).

Thus, when 𝑧 ≥ 3, we have the estimate

ln 𝑧 − 𝐶(𝑧) ≤ Ψ(𝑧) ≤ ln 𝑧 + 𝐶(𝑧),

where 𝐶(𝑧) is a finite expression. ◁
Let us introduce a function, having the meaning of the number of workpieces in the cutting

card
Φ(𝑚) =

{︁𝑚

𝑛
: 𝐹 (𝑚,𝑛) → 𝑚𝑎𝑥

}︁
.

Theorem 1. If 𝑚 → ∞, the value Φ(𝑚) ≃ 𝛽 · ln𝑚, where 𝛽 is a constant.

▷ When 𝑚 is fixed, find the denominator minimum:

𝑓(𝑡) = (Γ (𝑡 + 1))
𝑚
𝑡 Γ

(︁𝑚
𝑡

+ 1
)︁

For this purpose, differentiate it with respect to 𝑡:

(Γ (𝑡 + 1))
𝑚
𝑡 𝑚Γ

(︂
𝑚 + 𝑡

𝑡

)︂(︁
− ln (Γ (𝑡 + 1)) + Ψ (𝑡 + 1) 𝑡− Ψ

(︁𝑚
𝑡

+ 1
)︁)︁

𝑡−2

Consider the equation

ln Γ(𝑡 + 1) − 𝑡Ψ(𝑡 + 1) + Ψ
(︁𝑚
𝑡

+ 1
)︁

= 0. (2)

Let us introduce the notation 𝐴(𝑡) = ln Γ(𝑡 + 1) − 𝑡Ψ(𝑡 + 1) and use the known equalities
Γ(𝑧 + 1) = 𝑧Γ(𝑧) and Ψ(𝑧 + 1) = Ψ(𝑧) + 1/𝑧 for calculating 𝐴(𝑡 + 1) :

𝐴(𝑡 + 1) = ln Γ(𝑡 + 2) − (𝑡 + 1)Ψ(𝑡 + 2) = ln((𝑡 + 1)Γ(𝑡 + 1)) −
(︂

Ψ(𝑡 + 1) +
1

𝑡 + 1

)︂
(𝑡 + 1) =

= ln(𝑡 + 1) + ln Γ(𝑡 + 1) − 𝑡Ψ(𝑡 + 1) − Ψ(𝑡 + 1) − 1 = 𝐴(𝑡) + ln(𝑡 + 1) − Ψ(𝑡 + 1) − 1.

Thus,
𝐴(𝑡 + 1) − 𝐴(𝑡) = ln(𝑡 + 1) − Ψ(𝑡 + 1) − 1. (3)

The right-hand side (3) is finite according to Lemma 3. Therefore, we can estimate the rate
of growth 𝐴(𝑡) : 𝐴(𝑡) ≃ 𝛼𝑡, 𝛼 = 𝑐𝑜𝑛𝑠𝑡. Let us assume that a certain 𝑡𝑚 is a solution to Equation

(2). Then, substituting the estimate for 𝐴(𝑡) into it, we obtain Ψ
(︁

𝑚
𝑡𝑚

+ 1
)︁
≃ 𝛼𝑡𝑚.

Let us use Lemma 3 once more: ln (𝑚/𝑡𝑚) ≃ 𝛼𝑡𝑚, whence 𝑡𝑚 ≃ 𝛽 ln𝑚, 𝛽 = 𝑐𝑜𝑛𝑠𝑡. ◁

4. Conclusion

Graph of the function Φ(𝑚) was constructed pointwise for integer values 𝑚 ∈ {1, . . . , 1000},
see Fig.1. The value of the constant 𝛽 ≈ 0.98 is defined by the graph.

The obtained result is consistent with the data of Schwerin P., Wascher G., who singled out
hard classes for solving by sequencial algorithms for 𝑚 ∈ [40..200] experimentally, see [7]. The
result is singled out by a rectangle on Fig.1.

Results of Theorem 1 can also be used for formulating more laborious test problems with a
maximum number of admissible solutions.

The authors are sincerely grateful Professor R.S. Yulmukhametov for valuable remarks and
proof of Theorem 1.



COMBINATORIAL COMPLEXITY OF A CERTAIN 1-DIMENSIONAL CUTTING STOCK PROBLEM 61

Figure 1. Graph Φ(𝑚), obtained numerically
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