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ON DECAY RATE OF SOLUTION TO DEGENERATING

LINEAR PARABOLIC EQUATIONS

V.F. GILIMSHINA, F.KH. MUKMINOV

Abstract. Existence and uniqueness of the solution to a linear degenerating parabolic
equation is established in unbounded domains by the method of Galerkin’s approximations.
The first and the third boundary-value conditions are considered. The upper estimate of
the solution decay rate is established when x → ∞ in view of the influence of higher-order
coefficients of the equation. The upper estimate of the decay rate of the solution t → ∞
depending on the geometry of the unbounded domain is proved as well.

Keywords: degenerating parabolic equation, decay rate of solution, upper estimates, ex-
istence of solution.

1. Introduction

Let Ω be an unbounded domain of the space R
n, x = (x1, x2, ..., xn) ∈ R

n, n ≥ 2. Let us
consider a linear second-order equation

ut =
n∑

i,j=1

(aij(t, x)uxi
)xj

+
n∑

i=1

(biuxi
+ (ciu)xi

)− d(t, x)u (1)

in the cylindric domain D = {t > 0 } × Ω. The following condition is imposed on elements
of the symmetric matrix {aij} : there exist a positive function s(t, x) continuous in D, and a
positive number Υ such that the following inequalities hold for any vector y ∈ R

n and almost
for all (t, x) ∈ D :

s(t, x)|y|2 6
n∑

i,j=1

aij(t, x)yiyj 6 s(t, x)Υ|y|2. (2)

The function s(t, x) can vanish on the boundary of the domain, and the functions s(t, x), d(t, x)
and s−1(t, x) are assumed to be integrable with respect to any bounded subset D. The following
restrictions are imposed on measurable lower coefficients:

n∑

i=1

(bi(t, x)− ci(t, x))
2
6

1

2
s(t, x)d(t, x). (3)

We suppose that there are numbers C and δ0 > 0 such that the inequalities

d(τ, x) 6 Cd(t, x), s(τ, x) 6 Cs(t, x), |τ − t| ≤ δ0, x ∈ Ω (4)

hold for all t > 0.
Boundary conditions of the first and the third type are given on the side boundary of the

cylinder D:

u(t, x)
∣∣∣
Γ1

= 0;
( ∂u
∂N

+

n∑

i=1

niciu
)∣∣∣

Γ2

= 0. (5)
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Here Γ1 ⊂ Γ = (0,∞)× ∂Ω is an arbitrary closed subset of the side boundary of the cylinder

Γ and Γ2 is its complement Γ2 = Γ\Γ1;
∂u
∂N

=
n∑

i,j=1

aijuxi
nj . We will deal with the generalized

solution of the problem (1), (5) with the initial condition

u(0, x) = ϕ(x) ∈ L2(Ω), (6)

defined (see §2 below) without formal participation of the condition (5). Nevertheless, this
generalized solution satisfies the conditions (5) under the condition of sufficient ”regularity” of
the set Γ1, smoothness of the boundary ∂Ω and coefficients of Equation (1).

The present paper is devoted to investigation of dependence of the decay rate of solution
to the problem (1), (5), (6) when t → ∞ on the geometry of an unbounded domain Ω and
behaviour of eigennumbers of the matrix {aij(t, x)} for x→ ∞.

A.K. Gushchin obtain the following result for the second mixed problem for a second-order
parabolic equation in the works [2, 3]. The estimate

|u(t, y)| 6 ‖ϕ‖L1(Q)

v(
√
t)

, y ∈ Q,

where v(r) = mes{y ∈ Q : |y| < r}, is established there for a wide class of domains in order
to solve the second mixed problem. The estimate is also proved to be exact. A more complete
investigation of the dependence of behaviour when the time value is large of solution to the
second mixed problem on the domain geometry and on the initial function has been carried
out by A.V. Lezhnev in [14]. V.I. Ushakov [21] obtained results close to that of A.K. Gushchin
for the third mixed problem in a noncylindric domain. F.Kh. Mukminov proved the decay rate
estimate of solution of the first mixed problem in case of a second-order parabolic equation
and demonstrated that it is exact in a class of unbounded monotonously expanding domains
of rotation in [17]. A series of technical requirements for obtaining the upper estimate as well
as for proving that this estimate is exact is imposed in the works [17, 8] about the decay rate
of solution of the first mixed problem. In particular, these conditions for the domain Ω are as
follows in [17]:

lim
r→∞

r2λ(r) = ∞, lim
r→∞

λ(r) = 0, (7)

where λ(r) is the first eigenvalue of the Dirichlet problem for the Laplace operator in the
intersection of the domain with a ball of the radius r. The following estimate of solution with
a finite nonnegative initial function ϕ 6≡ 0 is established under these conditions:

|u(t, x)| 6M exp(−χr
2(t)

t
)‖ϕ‖L2(Ω) (8)

with positive constants χ, M . Here r(t) is a function inverse to F (r) = r√
λ(r)

, r > 0. In

[1], exact estimates of solution to a parabolic equation of the fourth and sixth orders with
the Rickyies boundary conditions on the side border of an unbounded cylindric domain are
obtained. Decay rate estimates for solutions of pseudo-differential and quasi-linear parabolic
equations are obtained in the works [12] and [13], respectively.

Let us formulate our result. Define the function

λ(τ, r) = inf
g∈C∞

0 (Rn\Γτ
1 )

∫
Ω[r]

(s(τ, x)|∇g|2 + d(τ, x)g2)dx

∫
Ω[r]

g2dx
, (9)

where Ω[r] = {x ∈ Ω | |x| < r}, Γτ
1 = Γ1 ∩ {t = τ}.



44 V.F. GILIMSHINA, F.KH. MUKMINOV

Theorem 1. Let us assume that u(t, x) is a solution to the problem (1), (5), (6) and the
scalar product (x, c) ≥ 0. Then, there are numbers κ > 0, C, T, depending only on n,Υ, R0

(suppϕ ⊂ Ω[R0]), such that the following inequality holds for all t > T :
∫

Ω

u2(t, x)dx 6 C exp (−κMm(t)) ‖ϕ‖2L2(Ω), (10)

where

Mm(t) = sup
r≥R0

min


1

t
(

r∫

R0

dτ√
sc(τ)

)2,

t∫

0

λ(τ, r)dτ


 ,

sc(τ) = sup{s(t, x) | t > 0, |x| = τ}.
In case of a uniformly parabolic equation (s ≡ 1) and the Dirichlet boundary conditions

(Γ1 = Ω), the estimate of the theorem is reduced to the one known from [17].
Note that the function λ(τ, r) may vanish for some values of τ (e.g., if Γτ

1 = ∅). In this case,
methods based on the notion of a λ–sequence [11] are inapplicable. Therefore, in Proposition
1 decrease of solution is established beforehand for x → ∞, which is similar to the decrease
of the fundamental solution of the heat equation, but in view of the behaviour of the function
s(t, x) at infinity.

Section §3 provides examples demonstrating the estimate of the theorem for specific domains
and equations.

2. Existence and uniqueness of the generalized solution of the mixed

problem for a parabolic equation

Let us introduce the following notation: Db
a = (a, b)× Ω, DT = DT

0 , D = D∞
0 ,

(u, w)DT =

∫

DT

uwdxdt, (u, w)A,DT =
n∑

α,β=1

∫

DT

(aαβ(t, x)uxαwxβ
+ duw)dxdt.

The norm in L2(D
T ) is denoted by ‖u‖DT . Let us define the norms

‖u‖2H0,1(DT ) = ‖u‖2DT + (u, u)A,DT ; ‖u‖2H1,1(DT ) = ‖u‖2H0,1(DT ) + ‖ut‖2DT

on the set of restrictions on DT for functions from C∞
0 (Rn+1\Γ1∪{t = T}). The corresponding

complements of this linear normalized spaced are denoted by
◦

H
0,1
A (DT ; Γ1) and

◦

H
1,1
A (DT ; Γ1).

A generalized solution of the problem (1), (5), (6) in DT is a function u(t, x) ∈
◦

H
0,1
A (DT ; Γ1),

satisfying the integral identity:
∫

DT

(
−uvt +

n∑

i,j=1

aij(t, x)uxi
vxj

+

n∑

i=1

(ciuvxi
− biuxi

v) + duv

)
dxdt =

=

∫

Ω

ϕ(x)v(0, x)dx, (11)

for any function v(t, x) ∈
◦

H
1,1
A (DT ; Γ1).

The function u(t, x) is a solution to the problem (1), (5), (6) in D if it is a solution to the
problem (1), (5), (6) for all T > 0 in DT .

The generalized solution to the problem (1), (5), (6) in DT exists and it is unique. In order
to prove this statement we use the method described by V.I. Ushakov in [21] consisting in
construction of the functions un(t, x), converging weakly in to the solution u(t, x).
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Let us choose a set of linearly independent functions wi(t, x) ∈ C∞
0 (Rn+1\Γ1 ∪ {t = T}) so

that their linear envelope is dense in
◦

H
1,1
A (DT ; Γ1).

Galerkin’s approximations will be sought for in the form

ul(t, x) =
n∑

i=1

C l
iwi(t, x). (12)

Equations in the unknown coefficients are derived from the requirement
∫

DT

(ul(ws)t +
n∑

i,j=1

aij(t, x)u
l
xi
(ws)xj

+
n∑

i=1

(ciu
l(ws)xi

− bi(t, x)u
l
xi
ws)+ (13)

+d(t, x)ulws)dxdt =

∫

Ω

ϕ(x)ws(0, x)dx, s = 1, n.

The conditions (13) lead to the system of linear equations
n∑

k=1

AksC
l
k = bs, s = 1, n. (14)

In what follows, a one-valued solvability of the linear system (14) is to be established.
First, let us assume that the system (14) has a solution (e.g., C l

k = 0 when bs = 0). Note
that substituting u = et, one can achieve the inequality

d̃ = d+ 1 ≥ 1. (15)

Let us prove that the set ul of Galerkin’s approximations is bounded in the space
◦

H
0,1
A (DT ; Γ1). Let us multiply the equality (13) by C l

s and make the summation. We obtain

∫

DT

(−ultul +
n∑

i,j=1

aij(t, x)u
l
xi
ulxj

+

n∑

i=1

(ciu
lulxi

− bi(t, x)u
l
xi
ul) + d(t, x)ulul)dxdt =

=

∫

Ω

ϕ(x)ul(0, x)dx. (16)

Integrating the first addend in (16) with respect to t ∈ (0, T ) and making use of the condition
(3), we have

1

2

∫

Ω

(ul(0))2dx+

∫

DT

(
n∑

i,j=1

aij(t, x)u
l
xi
ulxj

+ d(t, x)ulul

)
dxdt 6

6

∫

DT

|c− b||ul∇ul|dxdt+
∫

Ω

ϕ(x)ul(0, x)dx 6

6

∫

DT

√
s(t, x)d(t, x)|ul∇ul|dxdt+

∫

Ω

ϕ2(x)dx+

∫

Ω

ul2(0, x)

4
dx 6

6

∫

DT

(
s(t, x)(∇ul)2

2
+
d(ul)2

2
)dxdt+

∫

Ω

ϕ2(x)dx+

∫

Ω

ul2(0, x)

4
dx.

Using the condition (2), we establish that
∫

Ω

(ul(0))2

2
dx+ ‖ul‖2

H0,1
A (DT ;Γ1)

6 2

∫

Ω

ϕ2(x)dx. (17)
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It follows from this estimate that if ϕ = 0 then ul = 0. Linear independence of the functions
wi(t, x) provides C

l
i = 0. It means that the homogeneous system (14) has only a zero solution.

Hence, the nonhomogeneous system is solvable uniquely.

Whence, one concludes that the set ul is bounded in the space
◦

H
0,1
A (DT ; Γ1). Therefore,

one can single out a subsequence converging weakly in this space to a certain function u ∈
◦

H
0,1
A (DT ,Γ1). In order to avoid the pile of indices, we consider that the sequence itself converges

weakly.
Obviously, (13) takes the form

∫

DT

(
−u(ws)t +

n∑

i,j=1

aij(t, x)uxi
(ws)xj

+ (18)

+
n∑

i=1

(ciu(ws)xi
− biuxi

(ws)) + du(ws)

)
dxdt =

∫

Ω

ϕ(x)ws(0, x)dx

upon turning to the limit when l → ∞. Note that (18) holds not only for the functions v = dsws

with the constants ds, but for sums of such functions as well. It remains only to mention that
one can approximate any function w from C∞

0 (Rn+1\Γ1 ∪ {t = T}) with respect to the norm

of the space
◦

H
1,1
A (DT ; Γ1) by means of functions of the form vm =

m∑
s=1

dsws

Now, let us demonstrate that solution to the problem (1), (5), (6) is unique.
Let us denote by vh(t, x) the Steklov averaging of the function v(t, x):

vh(t, x) =
1

h

∫ t+h

t

v(τ, x)dτ,

having the following properties:
1)(v, u−h) = (vh, u)L2(Rn+1),

2)if v ∈
◦

H
0,1
A (DT

0 ; Γ1) then (vh)xi
= (vxi

)h,
3)if v, vt ∈ L2(R

n+1) then (vt)h = (vh)t,
4) if v ∈ L2(D

T ) then for any δ > 0, the convergence vh → v exists in L2(D
T−δ) when h→ 0

(h < δ).

5) if v ∈
◦

H
0,1
A (DT

0 ; Γ1) then for any δ ∈ (0, δ0) the convergence vh → v takes place in
◦

H
0,1
A (DT−δ

0 ; Γ1) when h→ 0 (h < δ).
Let us prove the property 5). First, et us establish the continuity of the shift operator
Tzf = f(t+ z, x), Tzf → f when z → 0 in the weighted space L2,d(R

n+1) with the norm

‖f‖2L2,d
=

∫

Rn+1

d(t, x)f 2(x)dxdt,

where d(t, x) is a function integrable with respect to any compact. Let us demonstrate that
Tzf is a uniformly bounded operator for z ∈ [z − δ0, z + δ0] using the inequality (4),

‖Tzf‖2L2,d
=

∫

Rn+1

d(t, x)f 2(t + z, x)dxdt 6

6

∫

Rn+1

Cd(t+ z, x)f 2(t + z, x)dxdt 6 C‖f‖2L2,d
.
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Then, let v ∈ C∞
0 (Rn+1) and supp v ⊂ BR, BR be a ball of the radius R. In this case, we have

‖Tzv − v‖2L2,d
=

∫

BR+1

d(t, x)(v(t+ z, x)− v(t, x))2dxdt 6

∫

BR+1

d(t, x)ε2dxdt 6 C1ε

due to the uniform continuity of the function v in the ball BR. Thus, Tzv → v when z → 0.
Since Tz is bounded and C∞

0 (Rn+1) is dense in L2,d(R
n+1), then Tzf → f when z → 0 for an

arbitrary function f ∈ L2,d(R
n+1).

Let us prove now that vh → v when h→ 0 in L2,d(R
n+1) :

(vh − v)2 =



1

h

t+h∫

t

v(τ, x)dτ − v(t, x)




2

6

6
1

h2

t+h∫

t

12dτ

t+h∫

t

(v(τ, x)− v(t, x))2dτ.

Upon substituting τ = t+ z, we have

(vh − v)2 6
1

h
(

h∫

0

(
v(t+ z, x)− v(t, x))2dz

)
.

Let us integrate the latter inequality with respect to t and x :

∫

Rn+1

d(t, x)(vh − v)2dtdx 6

∫

Rn+1

d(t, x)

h
(

h∫

0

(
v(t+ z, x)− v(t, x))2dz

)
dtdx =

=
1

h

h∫

0

‖Tzv − v‖2L2,d
dz.

Whence, due to the convergence Tzv → v for z → 0, we obtain that vh → v when h→ 0.
Likewise, (vh)xi

= (vxi
)h → vxi

in L2,s(R
n+1) when h → 0. In total, one can readily deduce

the property 5) from these two congruencies.
Let us substitute the test function v−h, where v is from the space C∞

0 (DT−δ
0 \Γ1), into the

integral identity (11). This is possible because v−h ∈ C∞
0 (DT

0 ) when 0 < h < δ. Using properties
of the Steklov averaging, we have

∫

DT

[
(uh)tv +

n∑

i,j=1

(aijuxi
)hvxj

+
n∑

i=1

((ciu)hvxi
− (biuxi

)hv) + (du)hv

]
dxdt = 0. (19)

Passing to the limit, one proves that the latter correlation holds not only for the functions

v ∈ C∞
0 (DT−δ

0 \Γ1), but also for functions v ∈
◦

H
0,1
A (DT−δ

0 ; Γ1).
Note that the equalities (19) have the form

∫

DT

(uh)tvdxdt = lh(v), (20)

where lh(v) is a linear functional in the space
◦

H
0,1
A (DT−δ

0 ; Γ1).
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Let us prove the uniform boundedness of the linear functional lh(v) when |h| < δ0 in a unit

sphere of the space
◦

H
0,1
A (DT−δ

0 ; Γ1).

lh(v) = lah(v) + lch(v) + lbh(v) + ldh(v), (21)

where lah(v) = −
∫

DT−δ

n∑
i,j=1

(aijuxi
)hvxj

dxdt, lch(v) = −
∫

DT−δ

n∑
i=1

(ciu)hvxi
dxdt,

lbh(v) =
∫

DT−δ

n∑
i=1

(biuxi
)hv)dxdt, ldh(v) = −

∫

DT−δ

(du)hvdxdt. Consider lah(v), in view of

s(τ, x) 6 Cs(t, x), τ ∈ [t− δ; t+ δ], we have:

|lah(v)| 6 |
∫

DT−δ

n∑

i,j=1

(aijuxi
)hvxj

dxdt| 6

6

∫

DT−δ


Υ

h

t+h∫

t

s(τ, x)|∇u(τ, x)|dτ


 |∇v(t, x)|dxdt 6

6

∫

DT−δ


C1s(t, x)

h

t+h∫

t

|∇u(τ, x)|dτ


 |∇v(t, x)|dxdt 6

6

∫

DT−δ

C1s(t, x)




1

h2




t+h∫

t

1 · |∇u(τ, x)|dτ




2

+ |∇v(t, x)|2

 dxdt.

Upon changing the order of integration, we have

C1

h

∫

DT−δ




t+h∫

t

s(t, x)|∇u(τ, x)|2dτ



 dxdt 6

6
C1

h

∫

Ω

T∫

0

|∇u(τ, x)|2



τ∫

τ−h

s(t, x)dt


 dxdτ 6

6 C2

∫

Ω

T∫

0

s(τ, x)|∇u(τ, x)|2dxdτ = C3

in the first addend.
Thus, |lah(v)| 6 C4.

|lch(v)| = |
∫

DT−δ

n∑

i=1

(ciu)hvxi
dxdt| 6 |

∫

DT−δ

n∑

i=1


1

h

t+h∫

t

ciudτ


 vxi

|dxdt 6

6

∫

DT−δ

n∑

i=1




(
1
h2

t+h∫
t

1 · ciudτ
)2

s(t, x)
+ v2xi

(t, x)s(t, x)


 dxdt 6
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6

∫

DT−δ


1

h

t+h∫

t

nA2s(τ, x)d(τ, x)u2(τ, x)dτ

s(t, x)
+ |∇v|2(t, x)s(t, x)


 dxdt 6

6

∫

DT−δ



nA
2C

h

t+h∫

t

d(τ, x)u2(τ, x)dτ



 dxdt+ C5.

Upon changing the order of integration, we have

|lch(v)| 6
nA2C

h

∫

Ω

T∫

0

τ∫

τ−h

d(τ, x)u2(τ, x)dtdxdτ + C5 =

= nA2C

∫

Ω

T∫

0

d(τ, x)u2(τ, x)dxdτ + C5 6 C6

in the first expression.
Let us consider lbh(v):

|lbh(v)| = |
∫

DT−δ

n∑

i=1

(biuxi
)hvdxdt| 6 |

∫

DT−δ

n∑

i=1


1

h

t+h∫

t

biuxi
dτ


 vdxdt| 6

6

∫

DT−δ

n∑

i=1




(
1
h2

t+h∫
t

1 · biuxi
dτ

)2

d(t, x)
+ v2(t, x)d(t, x)


 dxdt 6

6 nA2C

∫

Ω

T∫

0

s(τ, x)|∇u|2(τ, x)dtdxdτ + C7 6 C8.

Likewise, we obtain that |ldh(v)| 6 C9. Thus, it is proved that the linear functional lh(v) is
bounded.

Let us substitute the function v = (uh1 − uh2)χ(t1, t2) ∈
◦

H
0,1
A (DT−δ

0 ; Γ1), where χ(t1, t2) is a
characteristic function of the interval (t1, t2), into the equality (20)h1–(20)h2 . We have

|
t2∫

t1

∫

Ω

((uh1)t − (uh2)t)(uh1 − uh2)dxdt| =

= |(lh1 − lh2)(χ(uh1 − uh2))| 6 C‖(uh1 − uh2)‖H0,1
A (DT ;Γ1)

6 ε.

The latter inequality follows from the convergence uh → u in the space
◦

H
0,1
A (DT−δ

0 ; Γ1) when
h1, h2 are sufficiently small. Upon integrating with respect to t, we have

∫

Ω

(uh1 − uh2)
2(t1, x)dx 6

∫

Ω

(uh1 − uh2)
2(t2, x)dx+ 2ε.

Let us integrate the latter inequality with respect to t2 ∈ [t1, T − δ]

(T − δ − t1)

∫

Ω

(uh1 − uh2)
2(t1, x)dx 6 ‖(uh1 − uh2)‖2L2(DT−δ) + 2ε(T − δ − t1).
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Since uh → u in L2(D
T−δ) then we have the inequality

∫

Ω

(uh1 − uh2)
2(t1, x)dx 6

ε1
δ
+ 2ε

when t1 < T − 2δ. Whence follows the uniform mutual convergence of the family of functions
uh(t1, x) in L2(Ω) with respect to t1. Therefore, uh(t, x) ⇉ u(t, x) in L2(Ω) when h → 0
uniformly with respect to t ∈ [0, T − 2δ], and the limiting function is continuous with respect
to t in the norm L2(Ω). Let us substitute the function v = uhχ(0, t) into (19)

∫

Dt
0

((uh)tuh +

n∑

i,j=1

(aijuxi
)h(uh)xj

+

n∑

i=1

((ciu)h(uh)xi
−

−(biuxi
)huh) + (du)huh)dxdt = 0.

Upon integration of the first addend with respect to t and passing to the limit h→ 0, we have

1

2

∫

Ω

u2(t, x)dx+

∫

Dt
0

[
n∑

i,j=1

aijuxi
uxj

+
n∑

i=1

((ci − bi)uuxi
+ du2]dxdt = (22)

=
1

2

∫

Ω

u2(0, x)dx.

If we prove that u(0, x) = ϕ(x), the latter correlation corresponds to (11). To this end, let us
substitute into the identity (11) the test function v(t, x) = η( t

ε
)ψ(x), where η(t) = 1 − t for

t ∈ [0, 1] and η(t) is constant in the remaining intervals (−∞, 0], [1,∞).
Since vt = −1

ε
ψ(x), the identity (11) takes the form

ε∫

0

∫

Ω

1

ε
ψ(x)u(t, x)dtdx+ lε(ψ) =

∫

Ω

ϕ(x)ψ(x)dx,

where the linear functional lε(ψ) is tending to zero when ε→ 0. Upon passing to the limit with
ε → 0, we have ∫

Ω

ψ(x)u(0, x)dx =

∫

Ω

ϕ(x)ψ(x)dx

for any ψ ∈ C∞
0 (Ω). This proves the validity of the initial condition u(0, x) = ϕ(x).

3. Upper estimate for solution of a parabolic equation

In what follows, we deduce Theorem 1 from the following statement in case of the function
s(t, x) bounded in D.

Proposition 1. Let us assume that u(t, x) is a solution to the problem (1)-(3) with the initial
function ϕ, equal to zero outside the sphere of the radius R0, and the scalar product (x, c) ≥ 0
in DT . Then, for all t > 0, r ≥ R0 the following inequality holds:

∫

Ω\Ω[r]

u2(t, x)dx 6 A1 exp


−C̃t−1(

r∫

R0

dτ√
sc(τ)

)2


 , (23)

where A1, C̃ are constants depending on Υ.



ON DECAY RATE OF SOLUTION TO DEGENERATING PARABOLIC EQUATIONS . . . 51

Proof.

Let ξ(τ, r, ρ) be a continuous nonnegative function equal to zero when τ 6 r and to one when
τ ≥ r+ρ. In the remaining interval it satisfies the condition ∂ξ

∂τ
= 1

z
√

sc(τ)
, where the parameter

z is derived from the condition ξ(r + ρ, r, ρ) = 1 and sc(τ) = sup
t>0,|x|=τ

s(t, x). Substituting the

test function v(t, x) = η(x; r, ρ)uh η(x) = ξ2(|x|, r, ρ) into the identity (19), we obtain
∫

DT

[
1

2
(u2hη)t +

n∑

i,j=1

(aijuxi
)h(ηuh)xj

+

+

n∑

i=1

((ciu)h(ηuh)xi
− (biuxi

)h(ηuh)) + (du)h(ηuh)

]
dxdt = 0. (24)

Upon passing to the limit in the equality (24) when h→ 0, we have:

∫

Ω

(u2(T, x)− ϕ2(x))ηdx+

+2

∫

DT

[
n∑

i,j=1

aijuxi
(ηu)xj

+

n∑

i=1

ciu(ηu)xi
− biuxi

ηu) + du2η

]
dxdt = 0.

Whence, by virtue of the condition suppϕ ∈ Ω[R0], one can readily obtain the following
inequality for any r ≥ R0 and ρ > 0 :

∫

Ω

ηu2(T, x)dx+ 2

∫

DT

[
n∑

i,j=1

ηaijuxi
uxj

+ du2η

]
dxdt 6

6 2

∫

DT

n∑

i,j=1

aijuxi
u
∂η

∂xj
dxdt+ 2

∫

DT

n∑

i=1

η|ci − bi||uuxi
|dxdt− 2

∫

DT

u2
∂η

∂c
dxdt 6

6 2

∫

DT

(s(t, x)Υ|u∇u||∇η|+
√
sd|u∇u|η)dxdt. (25)

Transformation of the latter provides

∫

Ω

ηu2(T, x)dx+

∫

DT

(sη|∇u|2 + du2η)dxdt 6 2

∫

DT

sΥ|∇u||u||∇η|dxdt.

Making use of the form of the function η, one can readily obtain the inequality

∫

Ω\Ω[r+ρ]

u2(t, x)dx+

t∫

0

∫

Ω\Ω[r+ρ]

(s|∇u|2 + du2)dxdt 6

6
C

z2

t∫

0

∫

Ω[r+ρ]\Ω[r]

u2dxdt.

Introducing the notation

Hr(t) =

∫

Ω\Ω[r]

u2(x, t)dx+

t∫

0

∫

Ω\Ω[r]

(s|∇u|2 + du2)dxdt,
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we establish that

Hr+ρ(t) 6
C

z2

t∫

0

Hr(τ)dτ. (26)

The inequality (26) will be applied inductively for the sequence ri, i = 0, 1, 2, ...k, ri+1 =

ri + ρi, numbers ρi are selected so that z =
ri+1∫

ri

dτ√
sc(τ)

. Invoking that Hr(t) 6 A, we have

Hr0+ρ0(t) =
ACt

z2
. (27)

Further, by means of induction with respect to k we establish the inequality

Hrk(t) 6
ACktk

z2kk!
. (28)

Using the Stirling inequality, we arrive to the correlation, from (28) one can readily obtain

Hrk(t) 6
ACkektk√
2πkz2kkk

6 Ae−k ln z2k
Cet . (29)

We will choose the number k so that Ce2t 6 z2k 6 2Ce2t. Then, (29) provides Hrk(t) 6

Ae−k. Let us form up a sequence ri for the pair of numbers r, R0 so that

zk =

k−1∑

i=0

ri+1∫

ri

dτ√
sc(τ)

=

r∫

R0

dτ√
sc(τ)

= I.

Then, I2 = z2k2 6 2Ce2tk. Let us select the leas integer satisfying this inequality as k. Then,
k ≥ I2

2Ce2t
. Thus, the inequality (23) is determined.

Proof of the theorem.

Let us introduce the notation

ε = A1 exp(−I2/(2Ce2t)).
When r ≥ 2R0 and every t ∈ (0, T ), the inequality

∫

Ω

u2(t, x)dx 6 ε+

∫

Ω[r]

u2(t, x)dx (30)

holds. Since the function u(t, x) is an element of the space
◦

H 1
A(Ω,Γ

τ
1) for almost every t ∈

(0, T ), (9) provides
∫

Ω

u2(t, x)dx 6 ε+ λ−1(t, r)

∫

Ω

(s(t, x)|∇u|2 + du2)dx. (31)

Then, we deduce he inequality

(E(t)− ε)λ(t, r) 6 − d

dt
E(t)

for the function E(t) =
∫
Ω

u2(t, x)dx by means of the correlation

d

dt

∫

Ω

u2(t, x)dx 6 −
∫

Ω

(s(τ, x)|∇u|2 + d(τ, x)u2)dx. (32)

Solving this inequality we obtain

E(t)− ε 6 e−
∫ t

0
λ(τ,r)dτE(0).
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Substituting the expression for ε, we obtain

E(t) 6 E(0)(A1e
−I2/(2Ce2t) + e−

∫ t
0 λ(τ,r)dτ ). (33)

The latter inequality holds for all r ≥ R0. Let us choose the number r = r(t) so that

min

(
1
t
(

r∫
R0

dτ√
sc(τ)

)2,
t∫
0

λ(τ, r)dτ

)
≥ Mm(t). Then,

E(t) 6 E(0) exp

(
− 1

C1t
Mm(t)

)
,

the inequality (10) of the theorem is proved.
Let us consider the example demonstrating the estimate of Theorem 1 in case of the domain

of rotation Ωf . Obviously, to calculate the function Mm(t) approximately, one can substitute
every function of the pair determining it by a smaller one. The inequalities for the function
λ(τ, r) are known when Γτ

1 = ∂Ω

c1
ρ2(r)

6 λ(τ, r) 6
c2

ρ2(r)
, r ≥ R1, (34)

where ρ(r) is the radius of the largest sphere inscribed in Ωr.
Let P ⊂ (0,∞) be an arbitrary measurable subset. Suppose that Γ1 = P × ∂Ω. Using (34),

we obtain that
t∫

0

c1χp(τ)

ρ2(r)
dτ 6

t∫

0

λ(τ, r)dτ,

where χp(τ) is a characteristic function of the set P. Introducing the notation q(t) =
t∫
0

χp(τ)dτ,

we have the inequality

c1
ρ2(r)

q(t) 6

t∫

0

λ(τ, r)dτ. (35)

If s(t, x) ≡ 1, we define r(t) be the equality

r2

t
=

q(t)

ρ2(r)
.

Let us use the estimate from the proof of Theorem 4:

E(t) 6 E(0)(A1e
− r2

C̃t + e
−

c1
ρ2(r)

q(t)
).

Upon selecting r = r(t), we have

E(t) 6 E(0)(A1 + 1)e−Cm
r2(t)

t , Cm = min(c1, 1/C̃).

In particular, if f(r) = rα and q(t) = t/2, then we obtain the estimate
∫

Ω

u2(t, x)dx 6M exp
(
−κt 1−α

1+α

)
, (36)

corresponding in form to the one obtained by F.Kh. Mukminov [17] in case when Γ2 = ∅. But
if the density of distribution of the set P is more sparse, e.g., q(t) =

√
t then,

∫

Ω

u2(t, x)dx 6M exp
(
−κt 1−2α

2+2α

)
, α ∈ (0,

1

2
).



54 V.F. GILIMSHINA, F.KH. MUKMINOV

Let us consider the equation such that s(t, x) = s(|x|) = |x|β, β < 2. Then,

r∫

R0

dτ√
sc(τ)

=

r∫

R0

dτ

τβ/2
=

τ 1−
β
2

1− β
2

|rR0
≥ r1−

β
2

for sufficiently large r. When f(r) = rα, (35) provides
t∫
0

λ(τ, r)dτ ≥ c1t
r2α
. Therefore,

Mm(t) = sup
r

min(t−1r2−β, tr−2α) = t
2−2α−β
2+2α−β .

When β ≥ 2, the estimate of the Theorem does not provide a qualified decrease of solution.
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