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ON SOLUTION OF A TWO KERNEL EQUATION
REPRESENTED BY EXPONENTIALS

A.G. BARSEGHYAN

Abstract. The integral equation with two kernels

𝑓(𝑥) = 𝑔(𝑥) +

∞∫︁
0

𝐾1(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡+

0∫︁
−∞

𝐾2(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡, −∞ < 𝑥 < +∞,

where the kernel functions 𝐾1, 2(𝑥) ∈ 𝐿, is considered on the whole line. The present paper is
devoted to solvability of the equation, investigation of properties of solutions and description
of their structure. It is assumed that the kernel functions 𝐾𝑚 ≥ 0 are even and represented
by exponentials as a mixture of the two-sided Laplace distributions:

𝐾𝑚(𝑥) =

𝑏∫︁
𝑎

𝑒−|𝑥| 𝑠𝑑𝜎𝑚(𝑠) ≥ 0, 𝑚 = 1, 2 .

Here 𝜎1,2 are nondecreasing functions on (𝑎, 𝑏) ⊂ (0,∞) such that

0 < 𝜆1 ≤ 1, 0 < 𝜆2 < 1, where 𝜆𝑖 =

∞∫︁
−∞

𝐾𝑖(𝑥)𝑑𝑥 = 2

𝑏∫︁
𝑎

1

𝑠
𝑑𝜎𝑖(𝑠) , 𝑖 = 1, 2 .

Keywords: the basic solution, Ambartsumian equation, Laplace transform, system of
integral equations.

1. Introduction, formulation of the problem

A prominent place among convolution equations is occupied by the integral equation on the
whole line with two kernels (see [1]-[3]):

𝑓(𝑥) = 𝑔(𝑥) +

∞∫︁
0

𝐾1(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡 +

0∫︁
−∞

𝐾2(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡, −∞ < 𝑥 < +∞, (1)

where the kernel functions 𝐾1, 2(𝑥) ∈ 𝐿 ≡ 𝐿1 (−∞, ∞).
In a nonsingular (elliptic) case, Equation (1) has a unique solution in 𝐿, when 𝑔 ∈ 𝐿 is

arbitrary. The necessary and sufficient condition for elipticity of Equation (1) in terms of the
symbol properties of the equation (see [1]–[2]) is known. The monographs [1]–[3] contain also
results on Equation (1) in some special cases when the symbol index is other than zero. In [1]–
[3], methods of harmonic analysis are mainly used. The method used in [3], gives a possibility
to construct a solution of the nonsingular equation (1) in a closed form in special classes via
several (direct and inverse) Fourier transformations.

In [4]–[5], some singular and nonsingular equations of the form (1) are investigated without
application of the harmonic analysis methods. In [4], the problem was reduced to the equation
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on a semi-line with the kernel depending on the sum of the arguments. The work [5] provides
the proof (applying the method of [4]) of solvability in classes of locally integrable functions of
some homogeneous and nonhomogeneous equations of the form (1) in a twice conservative case

(TCC), when 𝐾1,2 ≥ 0,
∞∫︀

−∞
𝐾1,2 (𝑥) 𝑑𝑥 = 1. The TCC is related to the special case of Equation

(1) with a degenerate symbol.
The present paper is devoted to questions of solvability of Equation (1), investigation of

properties of solutions and description of their structure. It is assumed that the kernel functions
𝐾𝑚 ≥ 0 are even and are represented interms of exponents in the form of a mixture of two-sided
Laplace distributions:

𝐾𝑚(𝑥) =

𝑏∫︁
𝑎

𝑒−|𝑥| 𝑠𝑑𝜎𝑚(𝑠) ≥ 0, 𝑚 = 1, 2 . (2)

Here 𝜎1,2 are nondecreasing functions on (𝑎, 𝑏) ⊂ (0,∞) such that

0 < 𝜆1 ≤ 1, 0 < 𝜆2 < 1, (3)

where

𝜆𝑖 =

∞∫︁
−∞

𝐾𝑖(𝑥)𝑑𝑥 = 2

𝑏∫︁
𝑎

1

𝑠
𝑑𝜎𝑖(𝑠) , 𝑖 = 1, 2 .

Convolution equations with kernels of the form (2) have a number of applications in
mathematical physics. They describe a certain range of problems of random walk in the space
consisting of two homogeneous half-spaces.

One can easily verify that in the dissipative case 𝜆1,2 < 1, Equation (1) is an equation with
a contraction operator in 𝐿 (with the contraction coefficient 𝑞 = max (𝜆1, 𝜆2)) and (1) solvable
uniquely in 𝐿. A half-conservative case when (HCC), when 𝜆1 = 1, 𝜆2 < 1, relates to special
cases of Equation (1) (with a degenerate symbol).

Following [4],[5], let us write Equation (1) in the form of the following system with a sum-
and-difference kernel with respect to 𝑓1,2:

𝑓1(𝑥) = 𝑔1(𝑥) +

∞∫︁
0

𝐾1(𝑥− 𝑡)𝑓1(𝑡)𝑑𝑡 +

∞∫︁
0

𝐾2(𝑥 + 𝑡)𝑓2(𝑡)𝑑𝑡 ,

𝑓2(𝑥) = 𝑔2(𝑥) +

∞∫︁
0

𝐾1(𝑥 + 𝑡)𝑓1(𝑡)𝑑𝑡 +

∞∫︁
0

𝐾2(𝑥− 𝑡)𝑓2(𝑡)𝑑𝑡 .

(4)

Here 𝑓1,2 are new unknown functions on a positive semi-axis defined by

𝑓1(𝑥) = 𝑓(𝑥), 𝑓2(𝑥) = 𝑓(−𝑥), 𝑥 > 0, (5)

The functions 𝑔1,2 are defined likewise:

𝑔1(𝑥) = 𝑔(𝑥), 𝑔2(𝑥) = 𝑔(−𝑥), 𝑥 > 0.

Without loss of generality one can consider that the functions 𝑔1,2 ar nonnegative, it is also
assumed that 𝑔 ∈ 𝐿 and thus:

0 ≤ 𝑔𝑚 ∈ 𝐿+ ≡ 𝐿1 (0,∞) , 𝑚 = 1, 2. (6)

In the dissipative case a nonnegative solution of the system (4) in 𝐿+ × 𝐿+ will be constructed
under the conditions (2).
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In the half-conservative case 𝜆1 = 1, an additional condition of finiteness of the first
momentum is imposed on the function 𝑔1 :

∞∫︁
0

𝑔1 (𝑥)𝑥𝑑𝑥 =

∞∫︁
0

𝑔 (𝑥)𝑥𝑑𝑥 < +∞. (7)

A solution to the system (4) will be constructed so that 0 ≤ 𝑓2 ∈ 𝐿+, and 𝑓1 ≥ 0 is a function
locally integrable on [0,∞) , having the asymptotics

𝑥∫︁
0

𝑓1 (𝑡) 𝑑𝑡 = 𝑜
(︀
𝑥2
)︀
, 𝑥 → ∞.

2. Auxiliary facts

2.1. The Wiener-Hopf equation. Let us consider the following Wiener-Hopf equation:

𝑓(𝑥) = 𝑔(𝑥) +

∞∫︁
0

𝐾(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡 , 𝑥 > 0, (8)

where 𝐾 (𝑥) ≥ 0, 𝜆 =
∞∫︀

−∞
𝐾(𝑥)𝑑𝑥 ≤ 1.

Let 𝐾̂ be an integral operator occurring in (8):

(︁
𝐾̂ 𝑓

)︁
(𝑥) =

∞∫︁
0

𝐾 (𝑥− 𝑡) 𝑓 (𝑡) 𝑑𝑡. (9)

This operator acts boundedly in the space 𝐸+, which coincides with one of Banach spaces
𝐿𝑝(0,∞) , 1 ≤ 𝑝 ≤ ∞ and 𝐶0[0,∞).

In the dissipative case 𝜆 < 1, Equation (8) is an equation with a contracting operator and
possessing a unique solution 𝑓 ∈ 𝐸+ when 𝑔 ∈ 𝐸+. In the conservative case 𝜆 = 1, with
arbitrary 𝑔 ∈ 𝐿+, there is the so-called basic solution 𝑓 (BS) of Equation (8). BS is a limit of
simple iterations with a zero initial approximation. It has the asymptotics

𝑥∫︁
0

|𝑓 (𝑡)| 𝑑𝑡 = 𝑜
(︀
𝑥2
)︀
, 𝑥 → ∞. (10)

If a free term has a finite first momentum, i.e.

∞∫︁
0

|𝑔 (𝑡)| 𝑡 𝑑𝑡 < +∞, (11)

then there is an asymptotics

𝑥∫︁
0

|𝑓 (𝑡)| 𝑑𝑡 = 𝑜 (𝑥) , 𝑥 → ∞. (12)
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2.2. The Ambartsumian equation. Let us consider the equation (8) in case, when

𝐾(𝑥) =

𝑏∫︁
𝑎

𝑒−|𝑥| 𝑠𝑑𝜎(𝑠). (13)

Here 𝜎 is a nondecreasing function on (𝑎, 𝑏) ⊂ (0,∞), and

𝜆 =

∞∫︁
−∞

𝐾(𝑥)𝑑𝑥 = 2

𝑏∫︁
𝑎

1

𝑠
𝑑𝜎(𝑠) ≤ 1. (14)

Equation (8), (13) will be used in cases when the kernel 𝐾 coincides with one of the kernels
𝐾𝑚, given by means of (2).

The theory of the Wiener-Hopf equation with kernels, represented in terms of exponentials, is
well developed (see, e.g. [7]). Many statements and constructions of this theory can be expanded
to the two kernel equation (1) under the condition (2), (3). One step in this direction was done
in the work [6] in connection with solving the translation equation in adjacent semispaces.

The Ambartsumian equation (AE) (see [7])

𝜙 (𝑠) = 1 + 𝜙 (𝑠)

𝑏∫︁
𝑎

1

𝑠 + 𝑝
𝜙 (𝑝) 𝑑𝜎 (𝑝) (15)

plays an important part in the theory of integral Wiener-Hopf equations (and a number of other
convolution equations) with the kernel (13).

Let 𝐿
(︀
1
𝑠
𝑑𝜎 (𝑠)

)︀
be a space of functions integrable with respect to the measure 1

𝑠
𝑑𝜎 (𝑠) with the

norm ‖𝜙‖ =
𝑏∫︀
𝑎

|𝜙 (𝑠)| 1
𝑠
𝑑𝜎 (𝑠) < +∞. Similarly to the dissipative case 𝜆 < 1, in the conservative

case 𝜆 = 1, there is a basic solution 𝜙 ∈ 𝐿
(︀
1
𝑠
𝑑𝜎 (𝑠)

)︀
to Equation (15), which is a limit of simple

iterations with a zero initial approximation in 𝐿
(︀
1
𝑠
𝑑𝜎 (𝑠)

)︀
. The function 𝜙 has the properties:

𝜙 (𝑠) ↓ by > 𝑠, 𝜙 (0) = (1 − 𝜆)−1 (≤ +∞) , 𝜙 (+∞) = 1,

𝑏∫︁
𝑎

𝜙 (𝑠)

𝑠
𝑑𝜎 (𝑠) = 1 −

√
1 − 𝜆.

In DC, one has 𝜙 ∈ 𝐶 [𝑎 , 𝑏] ⊂ 𝐿
(︀
1
𝑠
𝑑𝜎 (𝑠)

)︀
. When 𝑏 = ∞ the continuity of the function 𝜙 at

the point 𝑏 is understood in the sense of existence of its finite limit in infinity. In the CC the
function 𝜙 is continuous on (0 , 𝑏].

Let us assume that I is an identity operator, and the operator 𝐾̂ is given by (9). Let us
describe the connection of the function 𝜙 with factorization of the Wiener-Hopf operator I−𝐾̂.
Consider the function

𝑉 (𝑥) =

𝑏∫︁
𝑎

𝑒−𝑥 𝑠𝜙 (𝑠) 𝑑𝜎 (𝑠) ∈ 𝐿+. (16)

It is nonnegative and completely monotonous on (0 , ∞). One has the identity
∞∫︁
0

𝑉 (𝑥) 𝑑𝑥 = 1 −
√

1 − 𝜆, (17)

the Wiener-Hopf factorization is constructed via the function 𝑉 (see [7]):

I − 𝐾̂ =
(︁

I − 𝑉 −
)︁ (︁

I − 𝑉 +
)︁
, (18)
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where 𝑉 ± are the following formally Volterra operators:

(︁
𝑉 + 𝑓

)︁
(𝑥) =

𝑥∫︁
0

𝑉 (𝑥− 𝑡)𝑓(𝑡) 𝑑𝑡 ,
(︁
𝑉 −𝑓

)︁
(𝑥) =

∞∫︁
𝑥

𝑉 (𝑡− 𝑥)𝑓(𝑡) 𝑑𝑡 . (19)

Factorization (18) takes place as identity of operators, acting in 𝐸+ and in a series of other
spaces. Note that in the CC one has the expansion (18), though I − 𝐾̂ is irreversible in spaces
𝐸+.

2.3. Resolvent function. Inversion of operators occurring in the factorization (18) is
connected with construction of the resolvent kernel Φ. It is determined from the following
renewal type equation:

Φ (𝑥) = 𝑉 (𝑥) +

𝑥∫︁
0

𝑉 (𝑥− 𝑡) Φ (𝑡) 𝑑𝑡. (20)

There is a unique solution Φ ∈ 𝐿𝑙𝑜𝑐 [0,∞) of Equation (20). The form (16) of the function 𝑉
entails (see [8]) that the resolvent function admits the representation

Φ(𝑥) =

𝑏∫︁
0

𝑒−𝑥 𝑝 𝑑𝜔(𝑝) ≥ 0, (21)

where 𝜔 is a nondecreasing function.
In the dissipative case 𝜆 < 1, one has Φ ∈ 𝐿1 (0,∞) and(︁

I − 𝑉 ±
)︁−1

= I + Φ̂±, (22)

where the operators Φ̂± are determined by means of

(︁
Φ̂+𝑓

)︁
(𝑥) =

𝑥∫︁
0

Φ (𝑥− 𝑡) 𝑓 (𝑡) 𝑑𝑡 ,
(︁

Φ̂−𝑓
)︁

(𝑥) =

∞∫︁
𝑥

Φ (𝑡− 𝑥) 𝑓 (𝑡) 𝑑𝑡 . (23)

In the conservative case, the operators I − 𝑉± are irreversible. Then Φ /∈ 𝐿+, the following
asymptotics takes place:

𝑥∫︁
0

Φ (𝑡) 𝑑𝑡 = 𝑂 (𝑥) , 𝑥 → ∞, (24)

and the equalities (22) hold true in the sense of equality of the operators translating the space
𝐿+ into the corresponding space of locally integrable functions. In the conservative case, as well
as in the dissipative case, the basic solution 𝑓 of Equation (8) with 𝑔 ∈ 𝐿+ has the form

𝑓 =
(︁
𝐼 + Φ̂+

)︁(︁
𝐼 + Φ̂−

)︁
𝑔. (25)

i.e. 𝑓 (𝑥) = 𝐹 (𝑥) +
𝑥∫︀
0

Φ (𝑥− 𝑡)𝐹 (𝑡) 𝑑𝑡, where 𝐹 (𝑥) = 𝑔 (𝑥) +
∞∫︀
𝑥

Φ (𝑡− 𝑥) 𝑔 (𝑡) 𝑑𝑡.
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3. Transformation of Equation (1)

Let us consider the problem of existence and construction of the basic solution of the system
(4), which is its minimal positive solution.

The applied approach is connected with using the Laplace transformations 𝛼1,2 from the
desired functions 𝑓1,2:

𝛼𝑚 (𝑠) =

∞∫︁
0

𝑒−𝑡 𝑠𝑓𝑚(𝑡)𝑑𝑡 , 𝑚 = 1, 2. (26)

The solution (4) will initially be constructed in the class of functions 𝑓1,2 ≥ 0 such that the
corresponding functions 𝛼𝑚 satisfy the conditions

𝛼𝑚 (𝑠) =

∞∫︁
0

𝑒−𝑡 𝑠𝑓𝑚(𝑡)𝑑𝑡 ∈ 𝐿

(︂
1

𝑠
𝑑𝜎𝑚 (𝑠)

)︂
, 𝑚 = 1, 2. (27)

In what follows properties of 𝑓1,2 will be specified. Note that if 𝑓𝑚 ∈ 𝐿+, then

𝛼𝑚 ∈ 𝐶 [𝑎, 𝑏] ⊂ 𝐿

(︂
1

𝑠
𝑑𝜎𝑚 (𝑠)

)︂
. (28)

Integrating both parts of (27) with respect to the measure 1
𝑠
𝑑𝜎𝑚 (𝑠), one arrives to the equalities

𝑏∫︁
𝑎

𝛼𝑚 (𝑠)
1

𝑠
𝑑𝜎𝑚 (𝑠) =

∞∫︁
0

𝑓𝑚 (𝑡) 𝑑𝑡

𝑏∫︁
𝑎

𝑒−𝑡𝑠1

𝑠
𝑑𝜎𝑚 (𝑠) =

∞∫︁
0

𝑓𝑚 (𝑡) 𝜌𝑚 (𝑡) 𝑑𝑡,

where 𝜌𝑚 (𝑥) =
𝑏∫︀
𝑎

𝑒−𝑥𝑠 1
𝑠
𝑑𝜎𝑚 (𝑠) =

∞∫︀
𝑥

𝐾𝑚 (𝑡) 𝑑𝑡 > 0. Therefore, the condition (28) is equivalent

to integrability of functions 𝑓1 and 𝑓2 with the weights 𝜌1 and 𝜌2, respectively.
In what follows the important property of the system (4) that variables separate under off-

diagonal integrals will be used. Using the representations (2), from (4) one obtains

(︁
𝐼 − 𝐾̂1

)︁
𝑓1(𝑥) = 𝑔1(𝑥) +

𝑏∫︁
𝑎

𝑒−𝑥 𝑠𝛼2 (𝑠) 𝑑𝜎2 (𝑠) ,

(︁
𝐼 − 𝐾̂2

)︁
𝑓2(𝑥) = 𝑔2(𝑥) +

𝑏∫︁
𝑎

𝑒−𝑥 𝑠𝛼1 (𝑠) 𝑑𝜎1 (𝑠) ,

(29)

where 𝐾̂1,2 are the following Wiener-Hopf operators:(︁
𝐾̂𝑚 𝑓

)︁
(𝑥) =

∞∫︁
0

𝐾𝑚 (𝑥− 𝑡) 𝑓 (𝑡) 𝑑𝑡, 𝑚 = 1, 2 , (30)

and the functions 𝛼1,2 are given by the formulae (26).
The functions 𝜙, 𝑉, Φ introduced in Section 2 will be used. These functions, corresponding to

the kernel 𝐾 = 𝐾𝑚, 𝑚 = 1, 2, will be supplied by the index 𝑚 (and denoted by 𝜙𝑚, 𝑉𝑚, Φ𝑚).
Let the functions 𝑃𝑚 (𝑥, 𝑠), 𝑚 = 1, 2 be basic solutions of the following Wiener-Hopf equations

(𝑠 > 0 -parameter)

𝑃𝑚(𝑥, 𝑠) = 𝑒−𝑥𝑠 +

∞∫︁
0

𝐾𝑚(𝑥− 𝑡)𝑃𝑚(𝑡, 𝑠)𝑑𝑡 , 𝑚 = 1, 2 . (31)
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The following formulae hold (see [7]):

𝑃𝑚(𝑥, 𝑠) = 𝜙𝑚 (𝑠) 𝑒−𝑥 𝑠

⎛⎝1 +

𝑥∫︁
0

Φ𝑚 (𝑡) 𝑒𝑡 𝑠𝑑𝑡

⎞⎠ , 𝑚 = 1, 2 . (32)

The Ambartsumian functions 𝜙𝑚 are determined from (15) when 𝜎 = 𝜎𝑚:

𝜙𝑚 (𝑠) = 1 + 𝜙𝑚 (𝑠)

𝑏∫︁
𝑎

1

𝑠 + 𝑝
𝜙𝑚 (𝑝) 𝑑𝜎𝑚 (𝑝) , 𝑚 = 1, 2 , (33)

and the functions Φ𝑚 are determined from Equation (20) when 𝑉 = 𝑉𝑚.
Equations (29) can be considered as the Wiener-Hopf equations with respect to 𝑓1, 𝑓2.

Meanwhile, the right-hand sides of these equations play the part of free terms. Comparing
the free terms of Equations (29) and (31) (with the use of superposition property for basic
solutions), one arrives at the following relations:

𝑓1(𝑥) = 𝑔1(𝑥) +

𝑏∫︁
𝑎

𝑃1 (𝑥, 𝑠)𝛼2 (𝑠) 𝑑𝜎2 (𝑠) ,

𝑓2(𝑥) = 𝑔2(𝑥) +

𝑏∫︁
𝑎

𝑃2 (𝑥, 𝑠)𝛼1 (𝑠) 𝑑𝜎1 (𝑠) .

(34)

The functions 𝑔𝑚 represent basic solutions of the following Wiener-Hopf equations:

𝑔𝑚(𝑥) = 𝑔𝑚 (𝑥) +

∞∫︁
0

𝐾𝑚(𝑥− 𝑡)𝑔𝑚(𝑡)𝑑𝑡 , 𝑚 = 1, 2 . (35)

According the formula (25), one has:

𝑔𝑚 =
(︁
𝐼 + Φ̂+

𝑚

)︁(︁
𝐼 + Φ̂−

𝑚

)︁
𝑔𝑚. (36)

One can obtain from (34) a system of integral equations with respect to the functions 𝛼1,2.
To begin with consider the functions

𝛼̃𝑚 (𝑠) =

∞∫︁
0

𝑒−𝑥 𝑠𝑔𝑚(𝑡)𝑑𝑡 , 𝑚 = 1, 2. (37)

Using the formula (36) and the Laplace transformation formula for convolution, one obtains

𝛼̃𝑚 (𝑠) =

⎛⎝1 +

∞∫︁
0

Φ𝑚 (𝑥) 𝑒−𝑠𝑥𝑑𝑥

⎞⎠ 𝛽𝑚 (𝑠) , 𝑚 = 1, 2, (38)

from (37). Here

𝛽𝑚 (𝑠) =

∞∫︁
0

𝑒−𝑥𝑠

⎡⎣𝑔𝑚 (𝑥) +

∞∫︁
0

Φ𝑚 (𝑡) 𝑔𝑚 (𝑥 + 𝑡) 𝑑𝑡

⎤⎦ 𝑑𝑥 , 𝑚 = 1, 2. (39)

It is known that (see [7])

1 +

∞∫︁
0

Φ𝑚 (𝑥) 𝑒−𝑠𝑥𝑑𝑥 = 𝜙𝑚 (𝑠) , 𝑚 = 1, 2 . (40)
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Therefore, there is the formula

𝛼̃𝑚 (𝑠) = 𝜙𝑚 (𝑠) 𝛽𝑚 (𝑠) , 𝑚 = 1, 2. (41)

Lemma 1. If Conditions (6) are satisfied, and in the semiconservative case the auxiliary
condition (7) is satisfied as well, then

𝛼̃𝑚 ∈ 𝐿

(︂
1

𝑠
𝑑𝜎𝑚 (𝑠)

)︂
, 𝑚 = 1, 2. (42)

Доказательство. In the dissipative case, one has 𝑔1,2 ∈ 𝐿+. Therefore, according to the
formula (37), one obtains 𝛼̃1,2 ∈ 𝐶 [𝑎, 𝑏] ⊂ 𝐿

(︀
1
𝑠
𝑑𝜎𝑚 (𝑠)

)︀
. By virtue of 𝑔2 ∈ 𝐿+ one has

𝛼̃2 ∈ 𝐶 [𝑎, 𝑏] in the semi-conservative case. It remains to consider the function 𝛼̃1 in the
semi-conservative case. Let us use the formula (41). It follows from (7) that the function

𝑔1 (𝑥) +
∞∫︀
0

Φ1 (𝑡) 𝑔1 (𝑥 + 𝑡) 𝑑𝑡 ∈ 𝐿+. The formula (39) entails that 𝛽1 ∈ 𝐶 [𝑎, 𝑏]. The function

𝜙1 ∈ 𝐿
(︀
1
𝑠
𝑑𝜎1 (𝑠)

)︀
(see Section 2) therefore, the product 𝛼̃1 = 𝜙1𝛽1 ∈ 𝐿

(︀
1
𝑠
𝑑𝜎1 (𝑠)

)︀
. The lemma

is proved.

Let us consider the functions

𝑈𝑚 (𝑝, 𝑠) =

∞∫︁
0

𝑃𝑚 (𝑥, 𝑠) 𝑒−𝑥 𝑝𝑑𝑥, 𝑚 = 1, 2. (43)

Application of the Laplace transform to to the formula (32) in view of (40) leads to the following
known expressions for the functions 𝑈𝑚:

𝑈𝑚 (𝑝, 𝑠) =

∞∫︁
0

𝑃𝑚 (𝑥, 𝑠) 𝑒−𝑥 𝑝𝑑𝑥 =
𝜙𝑚 (𝑠)𝜙𝑚 (𝑝)

𝑠 + 𝑝
, 𝑚 = 1, 2. (44)

Taking into account (37) and (43), applying the Laplace transform to the equalities (34), one
obtains the following system of integral equations with respect to 𝛼1,2:

𝛼1(𝑝) = 𝛼̃1(𝑝) +

𝑏∫︁
𝑎

𝑈1 (𝑝, 𝑠)𝛼2 (𝑠) 𝑑𝜎2 (𝑠) ,

𝛼2(𝑝) = 𝛼̃2(𝑝) +

𝑏∫︁
𝑎

𝑈2 (𝑝, 𝑠)𝛼1 (𝑠) 𝑑𝜎1 (𝑠) .

(45)

We have proved the following.

Lemma 2. If the system (4) has a solution 𝑓1 , 𝑓2 ≥ 0, satisfying Condition (27) (or the

equivalent condition
∞∫︀
0

𝑓𝑚 (𝑡) 𝜌𝑚 (𝑡) 𝑑𝑡 < ∞) then, the functions 𝛼𝑚 ∈ 𝐶 [𝑎, 𝑏] ⊂ 𝐿
(︀
1
𝑠
𝑑𝜎𝑚 (𝑠)

)︀
,

𝑚 = 1, 2 satisfy the system of integral equations (45).

4. On solvability of the system (45)

Investigating the system (45), let us use the following estimates for solutions of Equations
уравнений (31):

𝑏∫︁
𝑎

𝑃𝑚 (𝑥, 𝑠)
1

𝑠
𝑑𝜎𝑚 (𝑠) ≤ 𝜆𝑚, 𝑚 = 1, 2. (46)
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These inequalities have a simple physical (and probability) meaning and are connected with a
complete probability of outcome of the wandering particle from a half-space. When 𝜆1 = 1, the
first inequality (46) turns to an equality.

Note that the estimate (46) was used in [7] however, there is a misprint there (which was
mentioned in [9]).

Multiplying both parts (43) by 1
𝑠
, and integrating with respect to the measure 𝜎𝑘 (𝑠) on (𝑎, 𝑏)

one obtains the inequality (see the inequality (9.11) from [7])
𝑏∫︁

𝑎

𝑈𝑚 (𝑝, 𝑠)
1

𝑠
𝑑𝜎𝑚 (𝑠) ≤ 𝜆𝑚

𝑝
, 𝑚 = 1, 2. (47)

Using the symmetry of the kernels 𝑈𝑘 (see (44)), one obtains the following formula from (47):
𝑏∫︁

𝑎

𝑈𝑚 (𝑝, 𝑠)
1

𝑝
𝑑𝜎𝑚 (𝑝) ≤ 𝜆𝑚

𝑠
, 𝑚 = 1, 2. (48)

Let us rewrite the system (45) in the operator form:

𝛼1 = 𝛼̃1 + 𝑈̂1𝛼2 ,

𝛼2 = 𝛼̃2 + 𝑈̂2𝛼1 ,
(49)

where 𝑈̂1,2 are the following integral operators:(︁
𝑈̂1𝛼

)︁
(𝑝) =

𝑏∫︁
𝑎

𝑈1 (𝑝, 𝑠)𝛼 (𝑠) 𝑑𝜎2 (𝑠) ,

(︁
𝑈̂2𝛼

)︁
(𝑝) =

𝑏∫︁
𝑎

𝑈2 (𝑝, 𝑠)𝛼 (𝑠) 𝑑𝜎1 (𝑠) .

(50)

It follows from the estimates (48) that the operator 𝑈̂1 transforms the space 𝐿
(︀
1
𝑠
𝑑𝜎2 (𝑠)

)︀
into

𝐿
(︀
1
𝑠
𝑑𝜎1 (𝑠)

)︀
, and the operator 𝑈̂2 transforms 𝐿

(︀
1
𝑠
𝑑𝜎1 (𝑠)

)︀
into 𝐿

(︀
1
𝑠
𝑑𝜎2 (𝑠)

)︀
, and the estimates⃦⃦⃦

𝑈̂𝑘

⃦⃦⃦
≤ 𝜆𝑘 hold. Whence, it follows that the operator 𝑈̂1𝑈̂2 acts in 𝐿

(︀
1
𝑠
𝑑𝜎1 (𝑠)

)︀
, and the operator

𝑈̂2𝑈̂1 in 𝐿
(︀
1
𝑠
𝑑𝜎2 (𝑠)

)︀
and the following estimates exist:⃦⃦⃦

𝑈̂1𝑈̂2

⃦⃦⃦
≤ 𝑞,

⃦⃦⃦
𝑈̂2𝑈̂1

⃦⃦⃦
≤ 𝑞; 𝑞 = 𝜆1𝜆2 < 1. (51)

These estimates readily provide solvability of the system (49). For example, one can eliminate 𝛼2

from the system (49), which leads to the following equation in 𝛼1 with the operator, contracting
in 𝐿

(︀
1
𝑠
𝑑𝜎1 (𝑠)

)︀
:

𝛼1 =
(︁
𝛼̃1 + 𝑈̂1𝛼̃2

)︁
+
(︁
𝑈̂1𝑈̂2

)︁
𝛼1.

It is possible to consider the following successive approximations:

𝛼
(𝑛)
1 = 𝛼̃1 + 𝑈̂1𝛼

(𝑛)
2

𝛼
(𝑛+1)
2 = 𝛼̃2 + 𝑈̂2𝛼

(𝑛)
1 , 𝑛 = 0, 1.2, · · ·

𝛼
(0)
2 = 0,

that converge at a geometric rate with the denominator
𝑞 = 𝜆1𝜆2 < 1.
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This leads to the following theorem.

Theorem 1. Let us assume that the condition (6) holds in the dissipative case, and the
auxiliary condition (7) is satisfied in the conservative case (conditions of Lemma 1). Then, the
system (49) has a unique solution in 𝐿

(︀
1
𝑠
𝑑𝜎1 (𝑠)

)︀
× 𝐿

(︀
1
𝑠
𝑑𝜎2 (𝑠)

)︀
.

5. On solvability of the system (4) under the conditions (2), (3)

Let us assume that the pair (𝛼1, 𝛼2) ∈ 𝐿
(︀
1
𝑠
𝑑𝜎1 (𝑠)

)︀
×𝐿

(︀
1
𝑠
𝑑𝜎2 (𝑠)

)︀
is a solution of the system

(45). Let us demonstrate that one can determine the solution to the system (4) by the formulae
(34). Using the representations (37) and (43) for the functions 𝛼̃𝑚, 𝑈𝑚, one obtains from (45)
the correlations (27), where the functions 𝑓1,2 are determined by the formulae (34). It follows
directly from (27) and (34) that 𝑓1,2 satisfy the initial requirements on solution of the system
(4): nonnegativeness and integrability with the weights 𝜌1,2. Eliminating the functions 𝛼1,2 from
(34),(27) one arrives to the equations (4) with respect to 𝑓1,2 and thus makes the considered
problem solvable.

Let us clarify properties of the functions 𝑓1,2. Assuming that 𝑠 = 0 in the relations (27), one
obtains

∞∫︁
0

𝑓𝑚 (𝑥) 𝑑𝑥 = 𝛼𝑚(0) = 𝛼̃𝑚(0) +

𝑏∫︁
𝑎

𝑈𝑚 (0, 𝑠)𝛼3−𝑚 (𝑠) 𝑑𝜎3−𝑚 (𝑠) , 𝑚 = 1, 2. (52)

Using the formula (52), in view of the equality (44) and monotony of the Ambartsumian function
one has

∞∫︁
0

𝑓𝑚 (𝑥) 𝑑𝑥 = 𝛼𝑚(0) = 𝛼̃𝑚(0) +

𝑏∫︁
𝑎

𝜙𝑚 (𝑠)𝜙𝑚 (0)

𝑠
𝛼3−𝑚 (𝑠) 𝑑𝜎3−𝑚 (𝑠) ≤ (53)

≤ 𝛼̃𝑚(0) + 𝜙2
𝑚 (0) ‖𝛼3−𝑚‖ (≤ ∞) .

In the dissipative case 𝜆1 < 1 the numbers 𝜙𝑚 (0) and 𝛼̃𝑚 (0) are finite. Therefore, inequalities
(53) entail integrability of functions 𝑓1,2. Let us consider a semiconservative case now 𝜆1 = 1.
Then, (53) provides integrability of the function 𝑓2 only. It follows from (4) that the function
𝑓1 satisfies the equation

𝑓1(𝑥) = 𝑞1(𝑥) +

∞∫︁
0

𝐾1(𝑥− 𝑡)𝑓1(𝑡)𝑑𝑡 , (54)

where 𝑞1(𝑥) = 𝑔1(𝑥) +
∞∫︀
0

𝐾2(𝑥 + 𝑡)𝑓2(𝑡)𝑑𝑡 .

It follows from 𝑓2 ∈ 𝐿+ that 𝑞1 ∈ 𝐿+. According to (10), the basic solution of Equation (54)
has the asymptotics

𝑥∫︁
0

𝑓1 (𝑡) 𝑑𝑡 =

𝑥∫︁
0

𝑓 (𝑡) 𝑑𝑡 = 𝑜
(︀
𝑥2
)︀
, 𝑥 → ∞. (55)

The following theorem is proved.

Theorem 2.
a) In a semi-conservative case, 𝜆1 = 1 there is a basic solution 𝑓 ∈ 𝐿𝑙𝑜𝑐 [−∞,∞), 𝑓 ≥ 0 to
Equation (1) under the conditions (2),(3),(6),(7). It possesses the asymptotics

𝑥∫︁
−∞

𝑓 (𝑡) 𝑑𝑡 = 𝑜
(︀
𝑥2
)︀
, 𝑥 → ∞.
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b) For the basic solution 𝑓 in the semi-conservative case, as well as for a solution, unique in
𝐿, to the dissipative equation (1), the formulae (34) hold, where (𝛼1, 𝛼2) is a solution to the
system (45), that is unique in 𝐿

(︀
1
𝑠
𝑑𝜎1 (𝑠)

)︀
× 𝐿

(︀
1
𝑠
𝑑𝜎2 (𝑠)

)︀
, and the functions 𝑔1,2 are defined

according to (36).

Results of the present paper can be used for approximate numerical analytical solution of the
considered equation, with the error estimate. A separate work is to be devoted to this question.

The author is grateful to Prof. N.B. Engibaryan for useful discussions.
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