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THE MATRIX ANALOGS OF THE FIRST PAINLEVÉ
EQUATION.

S.P. BALANDIN, I.YU. CHERDANTZEV

Abstract. Earlier, Balandin and Sokolov obtained matrix analogs of the first and the
second transcendent Painlevé equations and studied them for possession of the Painlevé
property. In the present paper the integrability of the generalizations of the first Painlevé
equation are studied using Painlevé–Kowalevskaya test. The main result obtained is
integrability sufficient conditions for the generalized matrix analogs of the first Painlevé
equation. An important role in finding these criteria is played by decomposition of the
matrix into blocks. The obtained results are in agreement with the earlier investigations of
special cases of our equations.
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1. Introduction

At the end of the XIX century, the Painlevé school investigated second-order ordinary
differential equation for the absence of movable critical points in their general solutions. A
long list of such equations was compiled and included six essentially new ones, for example,

𝑢′′ = 6𝑢2 + 𝑧,

𝑢′′ = 2𝑢3 + 𝑧𝑢+ 𝛼,

where the primes denote differentiation with respect to the variable 𝑧, and 𝛼 is an arbitrary
parameter. They are usually termed as the first and the second transcendental Painlevé
equations. These equations are a matter of intensive investigations, which is facilitated by
their applications in mathematical physics to a great extend. In physical applications, matrix
analogs of the Painlevé equations naturally arise as well [1].

In what follows, we say that a differential equation is integrable in the Painlevé (Painlevé-
Kovalevskaya) sense if it has a general solution in the form of a formal Laurent series:

𝑢 =
∞∑︁
𝑘=0

𝑢𝑘 (𝑧 − 𝑧0)
𝑘−𝑛, (1)

where 𝑛 is a certain natural number and 𝑧0 is arbitrary.
The work [2] gives matrix analogs of the above equations and investigates them for

integrability by the Painlevé-Kovalevskaya test:

𝑈 ′′ = 6𝑈2 + 𝑧𝐵 + 𝐴, (2)
𝑈 ′′ = 2𝑈3 + 𝑧𝑈 + 𝐶

in the algebra 𝑛 × 𝑛 of matrices, where 𝐴, 𝐵, 𝐶 are constant matrices. It appears that the
integrability test is the condition 𝐵 = 𝐸, 𝐶 = 𝛼𝐸, i.e. two matrices out of three differ from the
unit matrix 𝐸 only by a scalar coefficient. Note that, unlike the scalar case, the matrix equation
(2) contains an arbitrary parameter 𝐴 and is not reduced to the equation 𝑈 ′′ = 6𝑈2 + 𝑧𝐸

S.P. Balandin, I.Yu. Cherdantzev, The matrix analogs of the first Painlevé equations.
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mentioned, e.g., in the paper [3]. Later on, Equation (2) was generalized by means of the
commutator of the matrices

𝑉 ′′ = 6𝑉 2 + [𝐺, 𝑉 ] + 𝑧𝐵 + 𝐴

and investigated by the authors [4] in algebras of quadratic matrices. In the present paper, new
integrable generalizations of the matrix equation (2) are considered in the same algebra 𝑛× 𝑛
of matrices of the form

𝑢′′ = 6𝑢2 + 60
𝑙∑︁

𝑘=0

(𝛼𝑘𝑢+ 𝛽𝑘)𝑧
𝑘, (3)

where the Greek symbols indicate arbitrary constants 𝑛× 𝑛 of the matrix, and equations of a
more general form

𝑢′′ = 6𝑢2 + 60(𝛼(𝑧)𝑢+ 𝛽(𝑧), (4)
where 𝛼(𝑧), 𝛽(𝑧) are arbitrary matrix functions analytical on the whole complex plane.

Following the Painlevé-Kovalevskaya test, we arrive at the sequence of relations for matrix
coefficients of the Laurent series, into which the desired solutions of the equations (3),(4) are
expanded. Meanwhile, for an equation to be integrable in the Painlevé sense it is necessary that
the resulting Laurent series should depend on 2𝑛2 arbitrary constants.

2. Restrictions on coefficients 𝛼𝑘 and 𝛽𝑘

The matrix integrable analog of the first scalar Painlevé equation considered in [2] has the
form (2) provided that B=E. Let us investigate a generalization of the form (3) for integrability
in the Painlevé sense. A more general equation containing the addends 𝑢𝛾𝑘𝑧

𝑘 is reduced to it
by a transformation of the form 𝑢 → 𝑢+ 𝛿(𝑍).

One can readily observe that the formal solution in the form of the Laurent series (1) for
Equation (3) has the form:

𝑢 = 𝑢0(𝑧 − 𝑧0)
−2 + 𝑢1(𝑧 − 𝑧0)

−1 + 𝑢2 + . . . (5)

First, let us consider the case 𝑧0 = 0, i.e., the series

𝑢 = 𝑢0𝑧
−2 + 𝑢1𝑧

−1 + 𝑢2 + · · ·+ 𝑢𝑘𝑧
𝑘−2 + . . . (6)

Substituting Equation (3) to this series, we obtain
∞∑︁
𝑘=0

(𝑘 − 2)(𝑘 − 3)𝑢𝑘𝑧
𝑘−4 = 6

∞∑︁
𝑘=0

(
𝑘∑︁

𝑖=0

𝑢𝑖𝑢𝑘−𝑖)𝑧
𝑘−4 + (7)

+60
∞∑︁
𝑘=2

(
𝑘−2∑︁
𝑖=0

𝛼𝑖𝑢𝑘−2−𝑖)𝑧
𝑘−4 + 60

𝑙+4∑︁
𝑘=4

𝛽𝑘−4𝑧
𝑘−4,

which leads to the chain of relations on matrix coefficients 𝑢𝑘. In particular, comparing the
coefficients of 𝑧−4, we obtain

𝑢2
0 = 𝑢0, (8)

i.e. 𝑢0 is an idempotent (projector). As it is suggested in [2], it is convenient to write the
remaining relations by means of the linear operator

𝐿(𝑋) = 𝑢0𝑋 +𝑋𝑢0 :

(3𝐿− 𝐸)𝑢1 = 0 (9)
𝐿(𝑢2) = −𝑢2

1 − 10𝛼0𝑢0 (10)
𝐿(𝑢3) = −(𝑢1𝑢2 + 𝑢2𝑢1)− 10𝛼0𝑢1 − 10𝛼1𝑢0 (11)

(6𝐿− 𝜆𝑗𝐸)𝑢𝑗 = 𝑓𝑗[𝑢0, . . . .𝑢𝑗−1], 𝑗 > 3, (12)
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where
𝜆𝑗 = (𝑗 − 2)(𝑗 − 3).

Since
𝐿2(𝑋) = 𝑢2

0𝑋 + 2𝑢0𝑋𝑢0 +𝑋𝑢2
0

and
𝐿3(𝑋) = 𝑢3

0𝑋 + 3𝑢2
0𝑋𝑢0 + 3𝑢0𝑋𝑢2

0 +𝑋𝑢3
0,

simple calculations, in view of the relation (8), demonstrate that the operator 𝐿 satisfies the
equation 𝐿3− 3𝐿2+2𝐿 = 0. Hence, its spectrum consists of the eigen-numbers 0, 1 and 2, and
the coefficients 𝑢0, 𝑢2, 𝑢3, 𝑢5, 𝑢6 are defined with the accuracy to arbitrary constants, whose
number is to be equal to 2𝑛2−1, because for Equation (3) to possess the Painlevé property it is
necessary that its solution (5) in the form of the Laurent series should depend on 2𝑛2 arbitrary
constants, and 𝑧0 should be another arbitrary constant of the solution (5). Let us explain in
more details.

It follows from the condition (8) (see, e.g., [5, § 25, Theorem 1] ), that the lower coefficient
is reducible the Jordan form

𝑢0 = 𝑇

(︂
𝐸𝑘 0
0 0

)︂
𝑇−1, (13)

where 𝑇 is a nondegenerate matrix and 𝐸𝑘 is a unit matrix of the order 𝑘. Let us consider
temporally that 𝑢0 has a block form:

𝑢0 =

(︂
𝐸𝑘 0
0 0

)︂
. (14)

As a matter of fact, we lose the arbitrariness of arbitrary constants in 2𝑘(𝑛 − 𝑘) (see (22) in
what follows). However, this arbitrary constants can be chosen so that 𝑢0 has the form (13)
and then for Equation (3) to possess the Painlevé property it is necessary that the series (6)
should have other 2𝑛2 − 2𝑘(𝑛− 𝑘)− 1 arbitrary constants.

For further consideration it is convenient to represent all matrices in the same block form.
Then, any matrix 𝑋 splits into blocks of a similar size:

𝑋 =

(︂
𝑥𝑠 𝑥𝑙

𝑥𝑟 𝑥𝑚

)︂
,

where 𝑥𝑠, 𝑥𝑙, 𝑥𝑟 and 𝑥𝑚 are blocks of the size 𝑘 × 𝑘, 𝑘 × (𝑛 − 𝑘), (𝑛 − 𝑘) × 𝑘 and
(𝑛− 𝑘)× (𝑛− 𝑘), respectively. In this notation, the operator 𝐿 acts by the formula

𝐿(𝑋) =

(︂
2𝑥𝑠 𝑥𝑙

𝑥𝑟 0

)︂
.

Thus, the relations (9)–(12) take the form:(︂
(𝑗 + 1)(𝑗 − 6)𝑢𝑠

𝑗 𝑗(𝑗 − 5)𝑢𝑙
𝑗

𝑗(𝑗 − 5)𝑢𝑟
𝑗 (𝑗 − 2)(𝑗 − 3)𝑢𝑚

𝑗

)︂
= 𝐹𝑗[𝑢0, . . . .𝑢𝑗−1], 𝑗 > 0. (15)

Here

𝐹1(𝑢0) = 0, 𝐹2(𝑢0, 𝑢1) = 6(𝑢2
1 + 10𝛼0𝑢0), 𝐹3(𝑢0, 𝑢1, 𝑢2) = 6((𝑢1𝑢2 + 𝑢2𝑢1) + 10𝛼0𝑢1 + 10𝛼1𝑢0).

One can readily see from (15) that when 𝑗 takes the values 2, 3, 5 and 6, zeroes appear in the
corresponding blocks of the left-hand side of this equation and hence, the corresponding block
of the matrix 𝑢𝑗 becomes arbitrary. Zeroes should also appear in the right-hand side in the
same blocks. This imposes restrictions on matrix coefficients of the initial equation (3). The
matrices 𝑢𝑗 are defined uniquely with respect to the right-hand side when 𝑗 takes other values.

The condition (9) provides vanishing of all elements 𝑢1, because 1
3

does not belong to the
spectrum of the operator 𝐿(𝑋).



THE MATRIX ANALOGS OF THE FIRST PAINLEVÉ EQUATION 23

We obtain the same block structure for the matrices 𝑢2, 𝑢3 :

𝑢𝑠
2 = −5𝛼𝑠

0, 𝑢
𝑟
2 = −10𝛼𝑟

0, 𝑢
𝑙
2 = 0, 𝑢𝑚

2 = 𝑝, (16)
𝑢𝑠
3 = −5𝛼𝑠

1, 𝑢
𝑟
3 = −10𝛼𝑟

1, 𝑢
𝑙
3 = 0, 𝑢𝑚

3 = 𝑝, (17)

where 𝑝 and 𝑝 are arbitrary blocks. Thus, 𝑢2, 𝑢3 contain arbitrary matrices 𝑝 and 𝑝 in the left
lower block, respectively.

Equation (15) is solved uniquely for 𝑢4 because when 𝑗 = 4, all coefficients of the left-hand
side (15) are other than zero and the equation itself takes the form:(︂

−10𝑢𝑠
4 −4𝑢𝑙

4

−4𝑢𝑟
4 2𝑢𝑚

4

)︂
= 6(𝑢1𝑢3 + 𝑢2

2 + 𝑢3𝑢1) + 60(𝛼0𝑢2 + 𝛼1𝑢1 + 𝛼2𝑢0) + 60𝛽0,

Invoking that 𝑢1 = 0, we obtain:

𝑢𝑠
4 = −6𝛼𝑠

2 + 15(𝛼𝑠
0)

2 + 60𝛼𝑙
0𝛼

𝑟
0 − 6𝛽𝑠

0

𝑢𝑙
4 = −15𝛼𝑙

0𝑝− 15𝛽𝑙
0

𝑢𝑟
4 = −15𝛼𝑟

2 + 150𝛼𝑚
0 𝛼

𝑟
0 + 15𝑝𝛼𝑟

0 − 15𝛽𝑟
0

𝑢𝑚
4 = 30𝛼𝑚

0 𝑝+ 3𝑝2 + 30𝛽𝑚
0 ,

where 𝑝 = 𝑢𝑚
2 . Turning to the next relation for the matrix 𝑢5 in Equation (15), taking into

account that 𝑢1 = 0, we have(︂
−6𝑢𝑠

5 0
0 6𝑢𝑚

5

)︂
= 6(+𝑢2𝑢3 + 𝑢3𝑢2) + 60(𝛼0𝑢3 + 𝛼1𝑢2 + 𝛼3𝑢0) + 60𝛽1. (18)

Thus, we conclude that the blocks 𝑢𝑟
5 and 𝑢𝑙

5 are arbitrary. The agreement of the left-and the
right–hand sides of (18) in these blocks leads to the following restrictions on matrix coefficients
of Equation (3):

𝛼𝑙
1𝑝+ 𝛼𝑙

0𝑝+ 𝛽𝑙
1 = 0,

−𝛼𝑟
3 + 10𝛼𝑚

1 𝛼
𝑟
0 + 10𝛼𝑚

0 𝛼
𝑟
1 + 𝑝𝛼𝑟

0 + 𝑝𝛼𝑟
1 − 𝛽𝑟

1 = 0.

Since the blocks 𝑝 and 𝑝 are arbitrary, it follows from these restrictions that

𝛼𝑙
0 = 𝛼𝑙

1 = 𝛽𝑙
1 = 0, 𝛼𝑟

0 = 𝛼𝑟
1 = 0, 𝛼𝑟

3 = −𝛽𝑟
1 . (19)

In what follows the blocks 𝑢𝑠
5, 𝑢𝑚

5 are not necessary therefore, we do not calculate them. The
last arbitrary block appears in the matrix 𝑢6, as one can see from (15) namely, the block 𝑢𝑠

6.
Then, taking into account that 𝑢1 = 0, we can write Equation (15) in the form(︂

0 6𝑢𝑙
6

6𝑢𝑟
6 6𝑢𝑚

6

)︂
= 6(𝑢2

3 + 𝑢2𝑢4 + 𝑢4𝑢2) + 60(𝛼0𝑢4 + 𝛼1𝑢3 + 𝛼2𝑢2 + 𝛼4𝑢0) + 60𝛽2. (20)

In view of the equalities (19), the agreement of the left and right-hand sides of the relation in
the block 𝑠 leads to the following restriction on matrix coefficients of the equation (3):

− 2𝛼𝑠
4 + 4𝛼𝑠

2𝛼
𝑠
0 + 5(𝛼𝑠

1)
2 + 6𝛼𝑠

0𝛼
𝑠
2 + 6𝛼𝑠

0𝛽
𝑠
0 − 6𝛽𝑠

0𝛼
𝑠
0 − 2𝛽𝑠

2 = 0. (21)

When 𝑗 > 0, one can see from (15) that the remaining matrices 𝑢𝑗 of the solution (6) are
defined recurrently via the previous ones.

Now let us demonstrate that the size 𝑘 of the block 𝑠 equals to one. To this end, note that
the general amount of arbitrary constants in the formal solution (6) (with the arbitrary number
𝑘 and 𝑢0 of the form (14)) equals to 2(𝑛 − 𝑘)2 + 2𝑘(𝑛 − 𝑘) + 𝑘2, since it has arbitrary blocks
𝑢𝑚
2 , 𝑢

𝑚
3 , 𝑢

𝑙
5, 𝑢

𝑟
5, and 𝑢𝑠

6. Meanwhile, as it has been mentioned (see (13)), the matrix 𝑢0 has the
following form in the general case:

𝑢0 = 𝑇

(︂
𝐸𝑘 0
0 0

)︂
𝑇−1,
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where 𝑇 is an arbitrary non-degenerate matrix, i.e. 𝑇 ∈ 𝐺𝐿(𝑛). Since the matrix

𝑃 =

(︂
𝐸𝑘 0
0 0

)︂
.

is invariant with respect to conjugation by the block-diagonal matrices

𝑆 =

(︂
𝑆𝑘 0
0 𝑆𝑛−𝑘

)︂
,

generating a closed subgroup 𝐻 of the dimension 𝑘2 + (𝑛− 𝑘)2 in the group 𝐺𝐿(𝑛) then, this
subgroup becomes the stabilizer of the matrix 𝑃 [6, § 2.5]. Hence, 𝑢0 belongs to the orbit of the
matrix 𝑃 with respect to its conjugation by elements from 𝐺𝐿(𝑛), which is diffeomorphic to
the set of left cosets 𝐺𝐿(𝑛)/𝐻. Hence, (see, e.g., [6, Theorem 2.1]), we obtain that 𝑢0 depends
on

𝑛2 − (𝑘2 + (𝑛− 𝑘)2) = 2𝑘(𝑛− 𝑘) (22)
arbitrary constants. Adding them, we obtain that our solution has

2(𝑛− 𝑘)2 + 4𝑘(𝑛− 𝑘) + 𝑘2 = 2𝑛2 − 𝑘2

arbitrary constants. Since, solution in the form of the Laurent series should also involve 𝑧0, i.e.
the series has the form (5), we obtain that 𝑘 = 1. Thus, we have proved that the block 𝑠 should
be of the size 1 × 1. Note that in this case, all the blocks 𝑠 commute and hence, (21) reduces
and takes the from

𝛽𝑠
2 = −𝛼𝑠

4 + 5𝛼𝑠
0𝛼

𝑠
2 +

5

2
(𝛼𝑠

1)
2. (23)

Let us consider solution in the form of the Laurent series in powers 𝑧 − 𝑧0. To this end, we
expand the matrix polynomials once more in the right-hand side in powers 𝑧 − 𝑧0:

𝐴(𝑧) =
𝑙∑︁

𝑘=0

𝛼𝑘𝑧
𝑘 = 𝐴(𝑧0) + 𝐴′(𝑧0)(𝑧 − 𝑧0) +

1

2
𝐴′′(𝑧0)(𝑧 − 𝑧0)

2 + · · ·+ 1

𝑙!
𝐴(𝑙)(𝑧0)(𝑧 − 𝑧0)

𝑙

and likewise for 𝐵(𝑧) =
∑︀𝑙

𝑘=0 𝛽𝑘𝑧
𝑘. Then, (3) is written in the form

𝑢′′ = 6𝑢2 + 60
𝑙∑︁

𝑘=0

(𝑎𝑘𝑢+ 𝑏𝑘)(𝑧 − 𝑧0)
𝑘, (24)

where 𝑎𝑘 = 1
𝑘!
𝐴(𝑘)(𝑧0), 𝑏𝑘 = 1

𝑘!
𝐵(𝑘)(𝑧0). Applying the above analysis, we obtain the same

restrictions for the new matrices 𝑎𝑘, 𝑏𝑘. In particular,

𝑎𝑙0 = 𝑏𝑙1 = 0, 𝑎𝑟0 = 0 𝑎𝑟3 = −𝑏𝑟1 = 0.

However, since

𝑎0 = 𝐴(𝑧0) =
𝑙∑︁

𝑘=0

𝛼𝑘(𝑧 − 𝑧0)
𝑘, 𝑏1 = 𝐵(𝑧0)

′
= (

𝑙∑︁
𝑘=0

𝛽𝑘(𝑧 − 𝑧0)
𝑘)′

then, due to arbitrariness of 𝑧0, we obtain that all matrices 𝛼0, . . . , 𝛼𝑙, 𝛽1, . . . , 𝛽𝑙 should have
zero elements in blocks marked by the indices 𝑙 and 𝑟, i.e. (recall that the block 𝑠 is of the size
1) the first row and the first column consist of zeroes, except for their common element. The
structure of coefficients of the series is preserved as well. The matrix 𝛽0 is still arbitrary. Thus,
for the time being we have obtained that all the above matrix coefficients, except for 𝛽0, have
a block-diagonal form and satisfy the relation

𝑏𝑠2 = −𝑎𝑠4 + 5𝑎𝑠0𝑎
𝑠
2 +

5

2
(𝑎𝑠1)

2. (25)

Thus, these conditions are necessary and sufficient for existence of solution in the form of the
formal Laurent series (5), with 𝑢0 = 𝑃 . The solution has 2𝑛2 − 2(𝑛 − 1) arbitrary constants,
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since the size 𝑘 of the block 𝑠 equals to one. The missing 2(𝑛 − 1) arbitrary constants for the
Painlevé property are gained by considering solutions in the form (5) with the arbitrary matrix
𝑢0, satisfying the equation 𝑢2

0 = 𝑢0 and of the rank 1, because the block 𝑠 has the size 1.
Indeed, as it follows from (22) when 𝑘 = 1, the set of such matrices depends on 2(𝑛 − 1)

arbitrary parameters. If instead of the solution 𝑢, beginning from 𝑢0 = 𝑃 , we consider the
solution �̃�, where �̃�0 is an arbitrary matrix satisfying the equality �̃�2

0 = �̃�0 then, there is a
nondegenerate matrix 𝑇 , whose conjugation reduces the matrix 𝑢0 to the form 𝑃. However, in
this case, the same transformation turns the equation

�̃�′′ = 6�̃�2 + 60
𝑙∑︁

𝑘=0

(𝛼𝑘�̃�+ 𝛽𝑘)𝑧
𝑘

into the equation

𝑢′′ = 6𝑢2 + 60
𝑙∑︁

𝑘=0

(𝑇𝛼𝑘𝑇
−1𝑢+ 𝑇𝛽𝑘𝑇

−1)𝑧𝑘,

where the solution 𝑢 begins from 𝑢0 = 𝑃 . Then, we can repeat all the above reasoning and
then, zero blocks remain in the same places. Hence, the matrices 𝑇𝛼𝑘𝑇

−1, when 𝑘 ≥ 0 and
𝑇𝛽𝑘𝑇

−1, for 𝑘 ≥ 1 should be block-diagonal. Since 𝑇 is arbitrary, this is possible only if the
above matrices are scalar, i.e. they differ from the unit matrix only by a scalar factor.

Since we have just established that 𝑎𝑘 = 1
𝑘!
𝐴(𝑘)(𝑧0), 𝑏𝑘 = 1

𝑘!
𝐵(𝑘)(𝑧0) are scalar matrices, but

for 𝑏0, then (25) takes the form
1

2
𝐵

′′
= − 1

24
𝐴(4) +

5

2
𝐴𝐴

′′
+

5

2
(𝐴

′
)2. (26)

One can readily see that Equation (3) integrable in the Painlevé sense takes the following form
upon substituting the variables

𝑢 → 𝑢− 5(
𝑙∑︁

𝑘=0

𝛼𝑘𝑧
𝑘)𝐸 :

𝑢′′ = 6𝑢2 + 𝛽0 + 𝛽1𝑧𝐸,

where 𝛽0 is an arbitrary matrix and 𝛽1 is an arbitrary constant. Note that similar reasoning
are also suitable in the case when instead of matrix polynomials 𝐴(𝑧) and 𝐵(𝑧), we consider
matrix functions 𝛼(𝑧) and 𝛽(𝑧) analytical on the whole plane, i.e. Equation (4).

3. Conclusion

We have investigated generalizations of matrix analogues of the first Painlevé equation for
integrability and established the corresponding necessary and sufficient integrability conditions.
The following theorem is proved.

Theorem 1. Equation
𝑢′′ = 6𝑢2 + 60(𝛼(𝑧)𝑢+ 𝛽(𝑧),

where 𝛼(𝑧) and 𝛽(𝑧) are matrix functions analytical on the whole plane, has a solution in the
form of the formal Laurent series

𝑢 = 𝑢0(𝑧 − 𝑧0)
−2 + 𝑢1(𝑧 − 𝑧0)

−1 + 𝑢2 + . . .

depending on 2𝑛2 arbitrary constants if and only if 𝛼(𝑧) and 𝛽(𝑧) − 𝛽(0) are scalar matrices,
connected by the relation

𝛽
′′
(𝑧) = − 1

12
𝛼(4)(𝑧) +

1

5
(𝛼(𝑧)2)′′,
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and 𝛽(0) is an arbitrary matrix. The substitution

𝑢 → 𝑢− 5𝛼(𝑧)𝐸

reduces the equation to the form

𝑢′′ = 6𝑢2 + 𝛽0 + 𝛽1𝑧𝐸,

where 𝛽0 is an arbitrary matrix, and 𝛽1 is an arbitrary constant.

The results are in complete agreement with the previous ones given in [2] and [4] investigating
particular cases of the considered equations.
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