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SPECTRAL ASYMPTOTICS OF NONSELFADJOINT
DEGENERATE ELLIPTIC OPERATORS WITH SINGULAR

MATRIX COEFFICIENTS ON AN INTERVAL

M.G. GADOEV

Abstract. Some spectral asymptotic properties of the nonselfadjoint operator 𝐴 associated
with a noncoercive bilinear form in the space ℋ𝑙 = 𝐿2(0, 1)

𝑙 are investigated in the article.
Such problems as summability of the Fourier series of elements 𝑓 ∈ ℋ𝑙 with respect to
the system of root vector-functions of the operator 𝐴 by the Abel method with brackets,
estimate for the resolvent of the operator 𝐴 are considered.

Keywords: Elliptic differential operators, resolvent of operator, summability by the Abel
method with brackets, system of root vector-functions.

Introduction

The paper is devoted to investigation of some spectral properties of a nonselfadjoint elliptic
operator 𝐴 in the space ℋ𝑙 = 𝐿2(0, 1)𝑙, associated with a noncoercive bilinear form.

Such questions as summability of Fourier series of elements 𝑓 ∈ ℋ𝑙 with respect to the
system of root vector functions of the operator 𝐴 by means of the Abel method with the
brackets, resolvent estimate of the operator 𝐴 are considered.

Spectral asymptotics of degenerate elliptic operators, degenerate elliptic operators, that are
far from self-adjoint ones, was investigated in [1–6] in the case when, eigenvalues of the operator
are devided into two series, one of which lies outside the angle | 𝑎𝑟𝑔 𝑧| 6 𝜙, 𝜙 < 𝜋, and the
other one is localizing to the line 𝑅+ = (0,∞). This article is adjacent to the works [1, 2,
6], among which [6] contains most general results and the assumption that the highest-order
coefficient of the operator 𝐴

𝑎(𝑡) ∈ 𝐶𝑚([0, 1];𝐸𝑛𝑑C𝑙) (0.1)

has different simple eigenvalues for every 𝑡 ∈ [0, 1].
Instead of (0.1) we require only that 𝑎(𝑡) ∈ 𝐶([0, 1]; 𝐸𝑛𝑑C𝑙). The results §2–§5 join the work

[7], where conditions similar to [6] are imposed on 𝑎(𝑡). We generalize results of the work [7]
with minimal restrictions on 𝑎(𝑡) ∈ 𝐶([0, 1]; 𝐸𝑛𝑑C𝑙).

Results §2–§5 are qualitatively new even with weaker restrictions on 𝑎(𝑡). Spectral problems
of a closed expansion, given by boundary-value conditions different from the Dirichlet boundary-
value conditions, are investigated here.

The method applied is based on approximating 𝑎(𝑡) by smooth matrix functions 𝑎𝛿(𝑡).
However, resolvent estimates determined in [6] are inapplicable to the corresponding operator
𝒜𝛿, because 𝑎𝛿(𝑡) may have nonsimple eigenvalues. Therefore, the work is partially devoted to
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the resolvent estimate for the operator 𝒜𝛿. This method is also used in investigation of the
spectrum asymptotics.

Results of the present paper are partially described in [9–11].

§1. Formulation of basic results

1. An operator 𝐴, given in the Hilbert space 𝐻, is said to be far from self-adjoint unless it is
reduced to the form

𝐴 = 𝐵(𝐸 + 𝑆), 𝐵 = 𝐵*, 𝑆 ∈ 𝜎∞(𝐻). (1.1)

Here and in what follows the symbol 𝜎∞(𝐻) denotes the class of linear completely continuous
operators in 𝐻; 𝐵* is the operator adjoint to 𝐵.

Spectral properties of elliptic differential and pseudo-differential operators close to self-adjoint
ones, i.e. reducible to the form (1.1), are investigated in sufficient details (see [12, 13]). Spectral
properties of elliptic differential operators and pseudo-differential operators, which are far from
self-adjoint ones, are investigated also in detail in case if they are given on a compact manifold
without a boundary (see [6, 14–16], with the bibliography). In case of domains with boundaries,
differential operators and pseudo-differential operators far from self-adjoint are investigated in
[2, 3, 17, 18, 19–22]; among which [2, 3, 17] are devoted to degenerate elliptic problems.

2. The present paper investigates spectral properties of a nonselfadjoint operator in 𝐿2(0, 1)𝑙,
generated by a bilinear from

𝒜[𝑢, 𝑣] =
𝑚∑︁

𝑖,𝑗=0

1∫︁
0

< 𝑝𝑖(𝑡)𝑎𝑖𝑗(𝑡)𝑢
(𝑖)(𝑡), 𝑝𝑗(𝑡)𝑣

(𝑗)(𝑡) >C𝑙 𝑑𝑡. (1.2)

Here
𝑝𝑖(𝑡) = {𝑡(1 − 𝑡)}𝜃+𝑖−𝑚 (𝑖 = 0,𝑚), 𝜃 < 𝑚, 𝑢(𝑖)(𝑡) =

𝑑𝑖𝑢(𝑡)

𝑑𝑡𝑖
,

𝑎𝑖𝑗 ∈ 𝐿∞(𝐽 ; 𝐸𝑛𝑑C𝑙) (𝑖, 𝑗 = 0,𝑚),

where 𝐽 = (0, 1). The symbol < , >C𝑙 stands for the scalar product in C𝑙.

Let us denote by ℋ+ the closure of the linear manifold 𝐶∞
0 (𝐽) by the norm

|𝜙|+ = (

∫︁
𝐽

𝑝2𝑚(𝑡)|𝜙(𝑚)(𝑡)|2𝑑𝑡+

∫︁
𝐽

|𝜙(𝑡)|2𝑑𝑡)1/2.

Suppose that
ℋ = 𝐿2(𝐽), ℋ𝑙 = ℋ⊕ · · · ⊕ ℋ (𝑙 − times),

ℋ𝑙
+ = ℋ+ ⊕ · · · ⊕ ℋ+ (𝑙 − times).

In what follows the scalar product in the spaces ℋ,ℋ𝑙 will be designated by one and the same
symbol ( , ). Likewise, norms in the spaces ℋ+,ℋ𝑙

+ and ℋ,ℋ𝑙,C𝑙 will be denoted by | |+, | |,
respectively. The symbol ‖𝑇‖ will denote the norm of the bounded operator 𝑇 , given in ℋ or
ℋ𝑙.

Let us take the space ℋ𝑙
+ as the domain of definition of the bilinear form 𝒜[𝑢, 𝑣] (1.2).

Let us assume that the following conditions are satisfied:

|𝑎𝑖𝑗(𝑡)| 6𝑀𝑡𝛿(1 − 𝑡)𝛿 (𝑖+ 𝑗 < 2𝑚), 𝛿 > 0, (1.3)

𝜇𝑗(𝑡) ̸∈ 𝑆 (𝑗 = 1, 𝑙, 𝑡 ∈ 𝐽), (1.3′)

where 𝑆 ⊂ C is a certain closed angle with the origin at zero, and 𝜇𝑗(𝑡) is the eigenvalue of the
matrix 𝑎(𝑡).

The following theorem holds if the above conditions are satisfied.
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Theorem 1.1. There exists a single closed operator 𝐴 in ℋ𝑙, possessing the following
properties:

(𝑖) 𝐷(𝐴) ⊂ ℋ𝑙
+, (𝐴𝑢, 𝑣) = 𝒜[𝑢, 𝑣] (∀𝑢 ∈ 𝐷(𝐴), 𝑣 ∈ ℋ𝑙

+),
(𝑖𝑖) for a certain 𝑧0 ∈ C there is a continuous inverse

(𝐴− 𝑧0𝐸)−1 : ℋ𝑙 → ℋ𝑙.

3. Let us denote by ℋ− completion of the space ℋ by the norm

|𝑢|− = sup
0̸=𝜙∈ℋ+

|(𝑢, 𝜙)|
|𝜙|+

.

Suppose that ℋ𝑙
− = ℋ−⊕· · ·⊕ℋ− (𝑙 - times). The element 𝐹 = (𝐹1, . . . , 𝐹𝑙) ∈ ℋ𝑙

− generates
an anti-linear continuous functional over ℋ𝑙

+ by the formula

< 𝐹, 𝑣 >= lim
𝑖→+∞

(𝑢𝑖, 𝑣), 𝑣 ∈ ℋ𝑙
+,

where the sequence of vector-functions 𝑢1, 𝑢2, . . . ∈ ℋ𝑙 is chosen so that 𝑢𝑖 → 𝐹 (𝑖→ +∞) in
ℋ𝑙

−.
Note that if 𝑣 = (𝑣1, . . . , 𝑣𝑙) ∈ ℋ𝑙

+, then

< 𝐹, 𝑣 >=
𝑙∑︁

𝑖=1

< 𝐹𝑖, 𝑣𝑖 >, |𝐹 |− = (
𝑙∑︁

𝑖=1

|𝐹𝑖|2−)1/2.

Here and in what follows the same notation is accepted for 𝑙 = 1, as well as for an arbitrary
𝑙 ∈ 𝑁 : | |−, < , >.

Conversely, for any anti-linear continuous functional 𝑔(𝑣) (𝑣 ∈ ℋ𝑙
+) there exists a single

element 𝐹 ∈ ℋ𝑙
− such that 𝑔(𝑣) =< 𝐹, 𝑣 >, ∀𝑣 ∈ ℋ𝑙

+. Meanwhile, the norm of the functional
𝑔 equals to |𝐹 |−.

In what follows anti-linear continuous functionals over ℋ𝑙
+ are identified with elements of the

space ℋ𝑙
−.

4. If the condition (1.3) is satisfied, one has

|𝒜[𝑢, 𝑣]| 6𝑀 |𝑢|+|𝑣|+ (∀𝑢, 𝑣 ∈ ℋ𝑙
+)

according to the Hardy inequality. Therefore, we can introduce the operator 𝒜 : ℋ𝑙
+ → ℋ𝑙

−,
acting by the formula

< 𝒜𝑢, 𝑣 >= 𝒜[𝑢, 𝑣] (∀𝑢, 𝑣 ∈ ℋ𝑙
+).

§2. A lemma on matrix functions

1. Let us formulate and prove an analogue of the Schur lemma for matrix functions in the
present section.

Let us consider a matrix function 𝑎(𝑡) ∈ 𝐶𝑚(𝐽 ;𝐸𝑛𝑑C𝑙).
Suppose that the matrix 𝑎(𝑡), for every 𝑡 ∈ 𝐽 , has 𝑙 different eigenvalues 𝜇1(𝑡), ..., 𝜇𝑙(𝑡). Then

eigenvalues of the matrix 𝑎(𝑡) (𝑡 ∈ 𝐽) can be enumerated so that 𝜇𝑗(𝑡) ∈ 𝐶(𝐽), (𝑗 = 1, 𝑙).
The following lemma holds.

Lemma 2.1. There is a matrix function

𝑈(𝑡) ∈ 𝐶𝑚(𝐽 ;𝐸𝑛𝑑C𝑙)

such that

𝑈−1(𝑡) ∈ 𝐶𝑚(𝐽 ;𝐸𝑛𝑑C𝑙)

and
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𝑎(𝑡) = 𝑈(𝑡)Λ(𝑡)𝑈−1(𝑡), (2.1)

where Λ(𝑡) is a diagonal matrix:

Λ(𝑡) = 𝑑𝑖𝑎g{𝜇1(𝑡), ..., 𝜇𝑙(𝑡)}, 𝜇𝑗(𝑡) ∈ 𝐶𝑚(𝐽).

The proof is given at items 2 and 3.
2. Let 𝑡0 ∈ 𝐽 . Let 𝑟 ∈ {1, ..., 𝑙} be a fixed index.
Let us introduce the matrix

𝑃 (𝑡) =
1

2𝜋𝑖

∫︁
𝛾𝜀

(𝑎(𝑡) − 𝑧𝐼)−1𝑑𝑧, (|𝑡− 𝑡0| < 𝜀′) (2.1′),

where 𝐼 is a unit matrix, 𝛾𝜀 = {𝑧 ∈ 𝐶 : |𝑧−𝜇𝑟(𝑡0)| = 𝜀} is the outline oriented counterclockwise.
Let us introduce the notation 𝐷𝜀 = {𝑧 ∈ 𝐶 : |𝑧 − 𝜇𝑟(𝑡0)| < 𝜀},

∆(𝜀′) = {𝑡 ∈ 𝐽 :]𝑡− 𝑡0| < 𝜀′}, 𝜇𝑗(∆(𝜀′)) = {𝜇𝑖(𝑡) : 𝑡 ∈ ∆(𝜀′)}.
When 𝜀, 𝜀′ are sufficiently small, one has

𝜇𝑖(∆(𝜀′)) ∩ 𝜇𝑗(∆(𝜀′)) = ∅ (𝑖 ̸= 𝑗),

𝜇𝑖(∆(𝜀′)) ∩𝐷𝜀 = ∅ (𝑖 ̸= 𝑟),

𝜇𝑟(∆(𝜀′)) ⊂ 𝐷𝜀.

Invoking that

𝑡𝑟

∫︁
𝛾𝜀

𝑧(𝑎(𝑡) − 𝑧𝐼)−1𝑑𝑧 =
𝑙∑︁

𝑖=1

∫︁
𝛾𝜀

𝑧(𝜇𝑗(𝑡) − 𝑧)−1𝑑𝑧,

where 𝐼 ∈ 𝐸𝑛𝑑C𝑙 is a unit matrix, one obtains

𝜇𝑟(𝑡) =
1

2𝜋𝑖
𝑡𝑟

∫︁
𝛾𝜀

𝑧(𝑎(𝑡) − 𝑧𝐼)−1𝑑𝑧. (2.2)

Since 𝑎(𝑡) ∈ 𝐶𝑚(𝐽 ;𝐸𝑛𝑑C𝑙) then, 𝜇𝑗(𝑡) ∈ 𝐶𝑚(𝐽)(𝑗 = 1, 𝑙).
Let 𝑦𝜈(𝑡) = (𝑦1𝜈(𝑡), ..., 𝑦𝑙𝜈(𝑡)) be an eigenvector of the matrix 𝑎(𝑡) = (𝑎𝑖𝑗(𝑡))

𝑙
𝑖,𝑗=1,

corresponding to eigenvalues 𝜇𝜈(𝑡), i.e.

𝑙∑︁
𝜈=1

𝑎𝑖𝑗(𝑡)𝑦𝑗𝜈(𝑡) = 𝜇𝜈(𝑡)𝑦𝑖𝜈(𝑡) (𝑖 = 1, 𝑙).

One can readily verify that the matrix 𝑈(𝑡) = (𝑦𝑖𝑗(𝑡))
𝑙
𝑖,𝑗=1 satisfies the equalities

(𝑎(𝑡)𝑈(𝑡))𝑝𝑞 =
𝑙∑︁

𝜈=1

𝑎𝑝𝑞(𝑡)𝑦𝜈𝑞(𝑡) = 𝜇𝑞(𝑡)𝑦𝑝𝑞(𝑡),

(𝑈(𝑡)Λ(𝑡))𝑝𝑞 =
𝑙∑︁

𝜈=1

𝑦𝑝𝑞(𝑡)𝛿𝜈𝑞𝜇𝜈(𝑡) = 𝜇𝑞(𝑡)𝑦𝑝𝑞(𝑡),
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where 𝛿𝜈𝑞 denotes the Kronecker-Capelli symbol. Hence, 𝑎(𝑡)𝑈(𝑡) = 𝑈(𝑡)Λ(𝑡). Since the columns
of the matrix 𝑈(𝑡) are composed of linearly independent eigenvectors of the matrix 𝑎(𝑡), one
has

det𝑈(𝑡) ̸= 0 (𝑡 ∈ ∆(𝜀′)). (2.3)

Invoking that

(𝑎(𝑡) − 𝑧𝐼)−1 = 𝑈(𝑡)(Λ(𝑡) − 𝑧𝐼)−1𝑈−1(𝑡), (𝑡 ∈ ∆(𝜀′)),

one obtains

𝑃 (𝑡) =
1

2𝜋𝑖
𝑈(𝑡)(

∫︁
𝛾𝜀

(Λ(𝑡) − 𝑧𝐼)−1𝑑𝑧)𝑈−1(𝑡) = 𝑈(𝑡)𝑇𝑟𝑈
−1(𝑡),

𝑇𝑟 = 𝑑𝑖𝑎g{𝛿1𝑟, ..., 𝛿𝑙𝑟}. (2.4)

One can readily deduce from these equalities that the domain range of the operator 𝑃 (𝑡) :
𝐶 𝑙 → 𝐶 𝑙 is one-dimensional and contains an eigenvector 𝑦𝑟(𝑡), (𝑡 ∈ ∆(𝜀′)). Therefore, the matrix
𝑃 (𝑡) acts by the formula

𝑃 (𝑡)ℎ =< ℎ,𝜙𝑟(𝑡) >𝐶𝑙 𝑦𝑟(𝑡), (∀ℎ ∈ 𝐶 𝑙, 𝑡 ∈ ∆(𝜀′)), (2.5)

where 𝜙𝑟(𝑡) ∈ 𝐶 𝑙,∀𝑡 ∈ ∆(𝜀′). Assuming that ℎ = 𝑎(𝑡)ℎ1 (ℎ1 ∈ 𝐶 𝑙) and invoking the equalities

𝑃 (𝑡)𝑎(𝑡)ℎ1 = 𝑎(𝑡)𝑃 (𝑡)ℎ1 =< 𝑎(𝑡)ℎ1, 𝜙𝑟(𝑡) >𝐶𝑙 𝑦𝑟(𝑡) =

=< ℎ1, 𝑎
*(𝑡)𝜙𝑟(𝑡) >𝐶𝑙 𝑦𝑟(𝑡) = 𝜇𝑟(𝑡) < ℎ1, 𝜙𝑟(𝑡) >𝐶𝑙 𝑦𝑟(𝑡),

one obtains

𝑎*(𝑡)𝜙𝑟(𝑡) = 𝜇𝑟(𝑡)𝜙𝑟(𝑡)

due to arbitrariness of ℎ1 ∈ 𝐶 𝑙.
According to (2.4), 𝑡𝑟𝑃 (𝑡) = 𝑡𝑟𝑇𝑟 = 1. Therefore, < 𝑦𝑟(𝑡), 𝜙𝑟(𝑡) >𝐶𝑙= 1.
Applying (2.5), one can readily find elements of the matrix 𝑃 (𝑡):

(𝑃 (𝑡))𝑖𝑗 = 𝑦𝑖𝑟(𝑡)𝜙𝑗𝑟(𝑡),

where 𝜙𝑗𝑟(𝑡) (𝑗 = 1, 𝑙) are components of the vector 𝜙𝑟(𝑡).
Whence and from (2.1′), it follows that

𝑦𝑖𝑟(𝑡)𝜙𝑗𝑟(𝑡) ∈ 𝐶𝑚(∆(𝜀′)) (𝑖, 𝑗 = 1, 𝑙). (2.6)

Substituting the number 𝜀′ by a smaller positive number if necessary, one can find the index
𝑤 ∈ {1, ..., 𝑙} such that 𝜙𝑤𝑟(𝑡) ̸= 0 (∀𝑡 ∈ ∆(𝜀′)). Further substituting if necessary 𝑦𝑟(𝑡), 𝜙𝑟(𝑡)
by 𝜙−1

𝑤𝑟(𝑡)𝑦𝑟(𝑡), 𝜙
−1
𝑤𝑟(𝑡)𝜙𝑟(𝑡), respectively one can assume without loss of generality that 𝜙𝑤𝑟(𝑡) ≡

1 (𝑡 ∈ ∆(𝜀′)).
Assuming that 𝑗 = 𝑤 in (2.6), one obtains 𝑦𝑖𝑟(𝑡) ∈ 𝐶𝑚(∆(𝜀′)), 𝑖 = 1, ..., 𝑙.
By virtue of (2.5), one has

𝑈−1(𝑡) ∈ 𝐶𝑚(∆(𝜀′);𝐸𝑛𝑑C𝑙).

3. Let ∆1,∆2 ⊂ 𝐽 be closed intervals, 𝑚𝑒𝑠∆ ̸= 0, ∆ = ∆1 ∩ ∆2.
Likewise, let us assume that the matrix functions

𝑈𝑗(𝑡) ∈ 𝐶𝑚(∆𝑗;𝐸𝑛𝑑C
𝑙) (𝑗 = 1, 2)



SPECTRAL ASYMPTOTICS OF NONSELFADJOINT DEGENERATE. . . 31

are constructed so that

𝑈−1
𝑗 (𝑡) ∈ 𝐶𝑚(∆𝑗;𝐸𝑛𝑑C

𝑙) (𝑗 = 1, 2),

𝑎(𝑡) = 𝑈𝑗(𝑡)Λ(𝑡)𝑈−1
𝑗 (𝑡) (𝑡 ∈ ∆𝑗), (𝑗 = 1, 2).

Let us construct a matrix function

𝑈(𝑡) ∈ 𝐶𝑚(∆1 ∪ ∆2);𝐸𝑛𝑑C
𝑙)

such that

𝑈−1(𝑡) ∈ 𝐶𝑚(∆1 ∪ ∆2);𝐸𝑛𝑑C
𝑙),

𝑎(𝑡) = 𝑈(𝑡)Λ(𝑡)𝑈−1(𝑡) (𝑡 ∈ ∆1 ∪ ∆2).

The columns of the matrices 𝑈1(𝑡), 𝑈2(𝑡) (𝑡 ∈ ∆) are composed of eigenvectors of the matrix
𝑎(𝑡) and therefore they are collinear. Hence,

𝑈1(𝑡) = 𝑈2(𝑡)Ω(𝑡), Ω(𝑡) = 𝑑𝑖𝑎g{𝑤1(𝑡), ..., 𝑤𝑙(𝑡)}, 𝑡 ∈ ∆,

where 𝑤𝑗(𝑡), 𝑤
−1
𝑗 (𝑡) ∈ 𝐶𝑚(∆) (𝑗 = 1, 𝑙). Let us extend the functions 𝑤𝑗(𝑡) (𝑡 ∈ ∆),𝑗 = 1, 𝑙 up

to functions 𝑤̃𝑗(𝑡) ∈ 𝐶𝑚(∆2) so that 𝑤̃−1
𝑗 (𝑡) ∈ 𝐶𝑚(∆2) (𝑗 = 1, 𝑙).

Let us assume that

Ω̃(𝑡) = 𝑑𝑖𝑎g{𝑤̃1(𝑡), ..., 𝑤̃𝑙(𝑡)} (𝑡 ∈ ∆2).

One can readily verify that the matrix function

𝑈(𝑡) =

{︂
𝑈1(𝑡), 𝑡 ∈ ∆1

𝑈2(𝑡)Ω̃(𝑡), 𝑡 ∈ ∆2

satisfies the above conditions. The proof of the lemma is completed by applying the factor
method.

§ 3. Differential operators with matrix coefficients

1. Let us consider the following bilinear form in the space ℋ𝑟 = 𝐿2(𝐽)𝑟, 𝑟 ∈ {1, . . . , 𝑙} :

𝑄′[𝑢, 𝑣] =

∫︁
𝐽

𝜌2𝜃(𝑡) < 𝑄(𝑡)𝑢(𝑚)(𝑡), 𝑣(𝑚)(𝑡) >C𝑟 𝑑𝑡, 𝐷[𝑄′] = ℋ𝑟
+,

where 𝜌(𝑡) = 𝑡(1 − 𝑡), 𝜃 < 𝑚. The space ℋ𝑟
+ is the same as in §1, the matrix function 𝑄(𝑡) has

the form

𝑄(𝑡) =

⎛⎜⎜⎜⎜⎝
𝑞(𝑡) 1 0 . . . 0

0 𝑞(𝑡) 1 . . . 0
0 0 𝑞(𝑡) . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 𝑞(𝑡)

⎞⎟⎟⎟⎟⎠ ,

𝑄(𝑡) ∈ 𝐶𝑚(𝐽 ;𝐸𝑛𝑑C𝑟), 𝑞(𝑡) ∈ 𝐶𝑚(𝐽), 𝑞(𝑡)∈̄𝑆 (∀𝑡 ∈ 𝐽), where 𝑆 ⊂ C is a certain closed sector
with the vertex at zero, located in the left semi-plane.

Let us denote by ℋ𝑟
𝜈 , 𝜈 > 0 the space of functions 𝑢 ∈ ℋ𝑟

+ with the norm

|𝑢|𝜈 =

⎛⎝∫︁
𝐽

𝜌2𝜃(𝑡)|𝑢(𝑚)(𝑡)|2𝑑𝑡+ 𝜈

∫︁
𝐽

|𝑢(𝑡)|2𝑑𝑡

⎞⎠1/2

.
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Obviously, ℋ𝑟
𝜈 = ℋ𝑟

+, ∀𝜈 > 0, and the norms in the spaces are equivalent. Let ℋ𝑟
−𝜈 , 𝜈 > 0

denotes the space of elements 𝐹 ∈ ℋ𝑟
− with the norm

|𝐹 |−𝜈,𝑟 = sup
𝑣∈ℋ𝑟

+
|𝑣|𝜈61

| < 𝐹, 𝑣 > |.

Let us introduce the operator 𝑄𝜈,𝑟 : ℋ𝑟
𝜈 → ℋ𝑟

−𝜈 , 𝜈 > 0 according to the formula

< 𝑄𝜈,𝑟𝑢, 𝑣 >= 𝑄′[𝑢, 𝑣], ∀𝑢, 𝑣 ∈ ℋ𝑟
𝜈 .

The following lemma holds.
Lemma 3.1. There exists a sufficiently large number 𝑐′ > 0 such that for 𝜆 ∈ 𝑆, |𝜆| > 𝑐′

and 𝜈 ∈ [1, 2|𝜆|] there is a continuous inverse

(𝑄𝜈,𝑟 − 𝜆𝐸)−1 : ℋ𝑟
−𝜈 → ℋ𝑟

𝜈

with the norm not exceeding a certain number 𝑀 , independent of 𝜆, 𝜈.
Proof. For the sake of simplicity let us consider that the sector 𝑆 is located in the left

semi-plane, is symmetric with respect to 𝑅−, and has an angle of spread less than 𝜋/2.
Since 𝑞(𝑡) is a continuous function, there is a sector 𝑆 which is also located in the left semi-

plane and is symmetric with respect to 𝑅− = (−∞, 0), and has an angle of spread less than
𝜋/2, so that 𝑆 ⊂ 𝐼𝑛𝑡 𝑆, and 𝑞(𝑡)∈̄𝑆.

Let 𝑏+ be a bisectrix of the angle composed by sides of the sectors 𝑆 and 𝑆 from the upper
semi-plane, and 𝛽+ be the angle from the bisectrix to the imaginary axis.

Obviously, 𝛽+ < 𝜋/2 and the inequity 𝑅𝑒𝜆𝑒−𝑖𝛽+ 6 0 holds for every 𝜆 ∈ 𝑆 (|𝜆| > 1) and
𝑅𝑒𝜆𝑒−𝑖𝛽+𝑞(𝑡) > 0 for all 𝑡 such that 𝐼𝑚 𝑞(𝑡) ≥ −𝛽+

4
. Likewise, for 𝐼𝑚 𝑞(𝑡) < 𝛽+

4
we find the

number 𝛽− such that the inequalities

𝑅𝑒𝜆𝑒−𝑖𝛽− 6
𝛽−
4
, ∀𝜆 ∈ 𝑆 (|𝜆| > 1); 𝑅𝑒 𝑒−𝑖𝛽−𝑞(𝑡) > 0

hold.
Let us cover now the segment [0, 1] by intervals 𝐼1, . . . , 𝐼𝑘 so that the right-hand end 𝐼𝑖

intersects the left-hand end 𝐼𝑖+1, and

𝑚𝑒𝑠 (𝐼𝑖 ∩ 𝐼𝑖+1) ̸= 0, 𝑖 = 1, 𝑘 − 1,

the multiplicity of covering equals to 2, and for every fixed 𝑖 one has

either 𝐼𝑚 𝑞(𝑡) ≥ −𝛽+
2
, ∀𝑡 ∈ 𝐼𝑖, or 𝐼𝑚 𝑞(𝑡) 6

𝛽+
2
, ∀𝑡 ∈ 𝐼𝑖.

Let us construct nonnegative functions 𝜙1(𝑡), 𝜙2(𝑡), . . . , 𝜙𝑘(𝑡), 𝜓1(𝑡),
𝜓2(𝑡), . . . , 𝜓𝑘(𝑡) ∈ 𝐶∞(𝐽) such that

𝑘∑︁
𝑗=1

𝜙𝑗(𝑡) ≡ 1 (𝑡 ∈ 𝐽)

and
𝜓𝑗(𝑡) = 1, ∀𝑡 ∈ 𝑠𝑢𝑝𝑝𝜙𝑗, 𝑠𝑢𝑝𝑝𝜓𝑗 ⊂ 𝐼𝑗.

Therefore,
𝑅𝑒𝜆𝑒𝑖𝛼𝑗 < 0, 𝑅𝑒 𝑞(𝑡)𝑒𝑖𝛼𝑗 > 0, ∀𝑡 ∈ 𝑠𝑢𝑝𝑝𝜓𝑗,

where 𝛼𝑗 equals to −𝛽+ or −𝛽−.
Since 𝑞(𝑡) is a continuous function on [0, 1], and 𝑠𝑢𝑝𝑝𝜓𝑗 is a compact, one has

𝑅𝑒 𝑒𝑖𝛼𝑗𝑞(𝑡) > 𝑐𝑗 > 0, ∀𝑡 ∈ 𝑠𝑢𝑝𝑝𝜓𝑗,

and therefore,
𝑅𝑒 𝑒𝑖𝛼𝑗𝑞(𝑡) > 𝑐 > 0, where 𝑐 = 𝑚𝑖𝑛 𝑐𝑗, 𝑗 = 1, 𝑘.
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Multiplying the initial bilinear form by the number 8
𝑐

if necessary, one can obtain the following
inequality

𝑅𝑒 𝑒𝑖𝛼𝑗𝑞(𝑡) ≥ 8.

Several statements are necessary to complete the proof. Therefore, the remaining part of the
proof will be given in item 6 of the present section.

The following lemma holds.
Lemma 3.2. Let the above conditions hold and

𝑅𝑒 𝑒𝑖𝛼𝑗𝑞(𝑡) ≥ 8. Then, for any vector ℎ ∈ C𝑟 the inequality

𝑅𝑒 < 𝑒𝑖𝛼𝑗𝑄(𝑡)ℎ, ℎ >C𝑟≥ 7|ℎ|2C𝑟

holds.
Proof. One has

< 𝑒𝑖𝛼𝑗𝑄(𝑡)ℎ, ℎ >C𝑟=
𝑟−1∑︁
𝑘=1

(
𝑒𝑖𝛼𝑗𝑞(𝑡)

2
|ℎ𝑘|2 + 𝑒𝑖𝛼𝑗 ℎ̄𝑘ℎ𝑘+1 +

𝑒𝑖𝛼𝑗𝑞(𝑡)

2
|ℎ𝑘+1|2)+

+
𝑒𝑖𝛼𝑗𝑞(𝑡)

2
|ℎ1|2 +

𝑒𝑖𝛼𝑗𝑞(𝑡)

2
|ℎ𝑟|2.

Whence, in view of the inequality 𝑅𝑒 𝑒𝑖𝛼𝑗𝑞(𝑡) ≥ 8, one obtains

𝑅𝑒 < 𝑒𝑖𝛼𝑗𝑄(𝑡)ℎ, ℎ >C𝑟≥
𝑟−1∑︁
𝑘=1

(4|ℎ𝑘|2 − |ℎ𝑘||ℎ𝑘+1| + 4|ℎ𝑘+1|2)+

+4(|ℎ1|2 + |ℎ𝑟|2) ≥
𝑟−1∑︁
𝑘=1

(4|ℎ𝑘|2 −
1

2
|ℎ𝑘|2 −

1

2
|ℎ𝑘+1|2 + 4|ℎ𝑘+1|2)+

+4(|ℎ1|2 + |ℎ𝑟|2) =
7

2
[
𝑟−1∑︁
𝑘=1

(|ℎ𝑘|2 + |ℎ𝑘+1|2)]+

+4(|ℎ1|2 + |ℎ𝑟|2) = 7(
𝑟∑︁

𝑘=1

|ℎ𝑘|2) +
13

2
(|ℎ1|2 + |ℎ𝑟|2) ≥ 7|ℎ|2C𝑟 .

Lemma 3.2 is proved.
2. Let us formulate Theorem 2.0.1 from [23] in the necessary form.
Consider the following bilinear form in the space ℋ𝑟

𝜈 :

𝐵[𝑢, 𝑣] =
𝑚∑︁

𝑖,𝑗=0

(𝑎𝑖𝑗𝑝𝑖𝑢
(𝑖), 𝑝𝑗𝑣

(𝑗))𝐿2(𝐽)𝑟 ,

where 𝑎𝑖𝑗, 𝑝𝑖 are the same objects as in §1, 𝑟 ∈ {1, . . . , 𝑙}.
Statement 3.1. (see Proposition 2.0.1 in [23]) Let the bilinear from 𝐵[𝑢, 𝑣] satisfy the

inequalities
|𝐵[𝑢, 𝑣]| 6𝑀 |𝑢|ℋ𝑟

+
|𝑣|ℋ𝑟

+
, (3.1)

𝑅𝑒𝐵[𝑢, 𝑢] + 𝜆0(𝑢, 𝑣) ≥ 𝛿|𝑢|2ℋ𝑟
𝜈
. (3.2)

Then:
1) there is a linear operator Λ, realizing the homomorphism of the spaces ℋ𝑟

𝜈 and ℋ𝑟
−𝜈 , such

that
< Λ𝑢, 𝑣 >= 𝐵[𝑢, 𝑣] + 𝜆0(𝑢, 𝑣), ∀𝑢, 𝑣 ∈ ℋ𝑟

𝜈 ,

where the symbol < 𝑓, 𝑣 > denote the action of the functional 𝑓 upon the element 𝑣;
2) any anti-linear continuous functional 𝑙(𝑣) over ℋ𝑟

𝜈 admits a representation

𝑙(𝑣) = 𝐵[𝑢0, 𝑣] + 𝜆0(𝑢0, 𝑣) =< Λ𝑢0, 𝑣 >, ∀𝑢 ∈ ℋ𝑟
−𝜈 ,
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where 𝑢0 is a certain element from ℋ𝑟
+.

The latter means that the operator Λ−1 exists and has a finite form

|Λ−1|ℋ𝑟
−𝜈→ℋ𝑟

𝜈
< +∞.

The following lemma complements Statement 3.1.
Lemma 3.3. Let Conditions 1) and 2) be satisfied. Then, the following inequality holds:

|Λ−1|ℋ−𝜈→ℋ+𝜈 6
1

𝛿
, 𝛿 > 0. (3.3)

Proof. The latter inequality means that

𝛿|Λ−1𝑣|ℋ𝜈 6 |𝑣|ℋ−𝜈 ∀𝑣 ∈ ℋ−𝜈 . (3.4)

Since < Λ𝑢, 𝑣 >= 𝐵[𝑢, 𝑣] + 𝜆0(𝑢, 𝑣)ℋ then,

𝑅𝑒 < Λ𝑢, 𝑢 >≥ 𝛿|𝑢|2ℋ+𝜈
, ∀𝑢 ∈ ℋ+.

However, according to definition of the functional norm

|𝑅𝑒 < Λ𝑢, 𝑢 > | 6 | < Λ𝑢, 𝑢 > | 6 |Λ𝑢|ℋ−𝜈 |𝑢|ℋ+𝜈 .

Therefore,
|Λ𝑢|ℋ−𝜈 |𝑢|ℋ+𝜈 ≥ 𝛿|𝑢|2ℋ+𝜈

and
|Λ𝑢|ℋ−𝜈 ≥ 𝛿|𝑢|ℋ+𝜈 , ∀𝑢 ∈ ℋ+.

Substituting 𝑣 = Λ𝑢, one obtains (3.4). Lemma 3.3 is proved.
Let us introduce a function 𝑞𝑗(𝑡) coinciding with 𝑞(𝑡) on the interval 𝐼𝑗, and varying smoothly

outside 𝐼𝑗, 𝑗 = 1, 𝑘.
Obviously, the following inequality holds (see Lemma 3.2)

𝑅𝑒 < 𝑒𝑖𝛼𝑗𝑄̃𝑗(𝑡)ℎ, ℎ >C𝑟≥ 𝑐0|ℎ|2C𝑟 , ∀𝑡 ∈ [0, 1], (3.5)

where 0 < 𝑐0 < 7, and the matrix function 𝑄̃𝑗(𝑡) is derived from 𝑄(𝑡) via substituting 𝑞(𝑡) by
𝑞𝑗(𝑡).

Let us introduce the bilinear form

𝑄0
𝑗 [𝑢, 𝑣] =

∫︁
𝐽

𝜌2𝜃(𝑡) < 𝑄̃𝑗(𝑡)𝑢
(𝑚)(𝑡), 𝑣(𝑚)(𝑡) >C𝑟 𝑑𝑡, 𝑢, 𝑣 ∈ ℋ𝑟

𝜈 .

The following lemma holds true.
Lemma 3.4. For any 𝑢 ∈ ℋ𝑟

𝜈 the inequality

𝑅𝑒 𝑒𝑖𝛼𝑗𝑄0
𝑗 [𝑢, 𝑢] ≥ 𝑐0|𝑢(𝑚)|2𝐿2(𝐽)𝑟

, 0 < 𝑐0 < 7 (3.6)

holds.
Proof. Substituting ℎ = 𝜌𝜃(𝑡)𝑢(𝑚)(𝑡) to inequality (3.5), one obtains

𝑅𝑒 < 𝑒𝑖𝛼𝑗𝑄𝑗(𝑡)𝜌
𝜃𝑢(𝑚)(𝑡), 𝜌𝜃𝑢(𝑚)(𝑡) >C𝑟≥

≥ 𝑐0|𝜌𝜃𝑢(𝑚)(𝑡)|2C𝑟 , 0 6 𝑡 6 1.

Integrating with respect to 𝑡 from zero to 1, one obtains (3.6), which proves the lemma.
Since 𝑅𝑒𝜆𝑒𝑖𝛼𝑗 6 −𝑐|𝜆|, Lemma 3.4 entails that

𝑅𝑒 [𝑒𝑖𝛼𝑗𝑄0
𝑗 [𝑢, 𝑢] − 𝜆𝑒𝑖𝛼𝑗(𝑢, 𝑢)] ≥

≥ 𝑐′|𝑢|2ℋ𝑟
𝜈

= 𝑐′|𝑢|2ℋ𝑟
+

+ 𝜈𝑐′|𝑢|2𝐿2(𝐽)𝑟
, (1 6 𝜈 < 2|𝜆|, |𝜆| ≥ 1).
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Let us introduce the operator 𝐿𝑗,𝜈 : ℋ𝑟
𝜈 → ℋ𝑟

−𝜈 according to the formula

< 𝐿𝑗,𝜈𝑢, 𝑣 >= 𝑄0
𝑗 [𝑢, 𝑣], ∀𝑢, 𝑣 ∈ ℋ𝑟

𝜈 .

Applying the Cauchy-Bunyakovsky inequality, one can readily demonstrate that the bilinear
from 𝑄0

𝑗 [𝑢, 𝑣] satisfies the inequality

|𝑄0
𝑗 [𝑢, 𝑣]| 6𝑀 |𝑢|ℋ𝑟

𝜈
|𝑣|ℋ𝑟

𝜈
.

Then, on the basis of Lemma 3.4 we conclude that all the conditions of Statement 3.1 are
satisfied. Hence, there exists a continuous inverse

ℛ𝑗,𝜈(𝜆) = (𝑒𝑖𝛼𝑗𝐿𝑗,𝜈 − 𝜆𝑒𝑖𝛼𝑗𝐸)−1 : ℋ𝑟
−𝜈 → ℋ𝑟

𝜈 ,

(𝜆 ∈ 𝑆, |𝜆| ≥ 1, 𝜈 ∈ [1; 2|𝜆|),
and

|ℛ𝑗,𝜈(𝜆)| 6 𝛿−1,

0 < 𝛿 is a certain number independent of 𝜆, 𝜈.
For 𝐹 ∈ ℋ𝑟

−𝜈 , 𝑣 ∈ ℋ𝑟
𝜈 one has

< 𝜓𝑗𝐹, 𝜙𝑗𝑣 >= (𝜌𝜃(𝑡)𝑄(𝑡)𝑒𝑖𝛼𝑗𝜕𝑚𝑡 ℛ𝑗,𝜈(𝜆)𝜓𝑗𝐹, 𝜌
𝜃𝜕𝑚𝑡 (𝑣𝜙𝑗))−

−𝜆𝑒𝑖𝛼𝑗(ℛ𝑗,𝜈(𝜆)𝜓𝑗𝐹, 𝜙𝑗𝑣), (3.7)

aaa 𝜕𝑡 = 𝑑
𝑑𝑡

. Here and in what follows in the present item ( , ) indicates the scalar product in
𝐿2(𝐽)𝑟.

Let us introduce the operator

ℛ𝜈(𝜆) =
𝑘∑︁

𝑗=1

𝜙𝑗𝑒
𝑖𝛼𝑗ℛ𝑗,𝜈𝜓𝑗 : ℋ𝑟

−𝜈 → ℋ𝑟
𝜈 , (𝜆 ∈ 𝑆, |𝜆| ≥ 1, 𝜈 ∈ [1, 2|𝜆|]). (3.7′)

Obviously,

< (𝑄𝜈 − 𝜆𝐸)ℛ𝜈(𝜆)𝐹, 𝑣 >=
𝑘∑︁

𝑗=1

𝑒𝑖𝛼𝑗(𝑄(𝑡)𝜌𝜃(𝑡)𝜕𝑚𝑡 𝜙𝑗ℛ𝑗,𝜈(𝜆)𝜓𝑗𝐹, 𝜌
𝜃(𝑡)𝑣(𝑚)(𝑡))−

−𝜆
𝑘∑︁

𝑗=1

𝑒𝑖𝛼𝑗(𝜙𝑗ℛ𝑗,𝜈(𝜆)𝜓𝑗𝐹, 𝑣).

In view of (3.7) and the equality
𝑘∑︁

𝑗=1

< 𝜓𝑗𝐹, 𝜙𝑗𝑣 >=< 𝐹, 𝑣 >,

one obtains
< (𝑄𝜈 − 𝜆𝐸)ℛ𝜈(𝜆)𝐹, 𝑣 >=< 𝐹, 𝑣 > +𝑋𝜆(𝐹, 𝑣) + 𝑌𝜆(𝐹, 𝑣), (3.8)

where

𝑋𝜆(𝐹, 𝑣) =
𝑘∑︁

𝑗=1

𝑒𝑖𝛼𝑗{
∑︁

𝑚1+𝑚2=𝑚
𝑚2 ̸=0

𝐶𝑚1,𝑚2(𝜌
𝜃𝑄𝜕𝑚𝑡 ℛ𝑗,𝜈(𝜆)𝜓𝑗𝐹, 𝜌

𝜃𝑣(𝑚1)𝜙
(𝑚2)
𝑗 )}, (3.8′)

𝑌𝜆(𝐹, 𝑣) =
𝑘∑︁

𝑗=1

𝑒𝑖𝛼𝑗{
∑︁

𝑚1+𝑚2=𝑚
𝑚2 ̸=0

𝐶 ′
𝑚1,𝑚2

(𝜌𝜃𝑄𝜙
(𝑚2)
𝑗 𝜕𝑚𝑡 ℛ𝑗,𝜈(𝜆)𝜓𝑗𝐹, 𝜌

𝜃𝑣(𝑚))}. (3.9)
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Here 𝐶𝑚1,𝑚2 , 𝐶
′
𝑚1,𝑚2

are some constant numbers depending only on 𝑚1,𝑚2. Integrating by parts
once, one obtains

𝑋𝜆(𝐹, 𝑣) = −
𝑘∑︁

𝑗=1

𝑒𝑖𝛼𝑗{
∑︁

𝑚1+𝑚2=𝑚
𝑚2 ̸=0

𝐶𝑚1,𝑚2(𝜌
𝜃𝜕𝑚−1

𝑡 (ℛ𝑗,𝜈(𝜆)𝜓𝑗𝐹 ),

𝜌−𝜃𝜕𝑡(𝑄
*(𝑡)𝜌2𝜃𝑣(𝑚1)𝜙

(𝑚2)
𝑗 ))}. (3.10)

3. Let 𝑃 be a selfadjoint operator in ℋ associated with the bilinear from

𝑃 ′[𝑢, 𝑣] = (𝜌𝜃𝑢(𝑚), 𝜌𝜃𝑣(𝑚)), 𝐷[𝑃 ′] = ℋ+.

In what follows the following lemma will be of use.
Lemma 3.5. There exists a continuous inverse operator 𝑇𝜔 : ℋ− → ℋ, 𝜔 ≥ 1 such that

𝑇𝜔𝑢 = (𝑃 + 𝜔𝐸)−1/2𝑢,∀𝑢 ∈ ℋ, and

|𝑇𝜔𝐹 | 6𝑀 |𝐹 |−𝜈 (∀𝜔 ≥ 1, 𝜈 ∈ [1, 2𝜔),∀𝐹 ∈ ℋ−𝜈),

where the number 𝑀 > 0 is independent of 𝜔, 𝜈.
Proof. Let 𝐹 ∈ ℋ−𝜈 . By virtue of density of the space ℋ in ℋ−, there are elements

𝑢1, 𝑢2, . . . ∈ ℋ such that 𝑢𝑗→ℋ−𝜈𝐹 (𝑗 → +∞). Then,

|((𝑃 + 𝜔𝐸)−1/2(𝑢𝑗 − 𝑢𝑘), 𝑣)| = |(𝑢𝑗 − 𝑢𝑘, (𝑃 + 𝜔𝐸)−1/2𝑣)| 6

6 |𝑢𝑗 − 𝑢𝑘|−𝜈 |(𝑃 + 𝜔𝐸)−1/2𝑣|𝜈 6𝑀 |𝑣||𝑢𝑗 − 𝑢𝑘|−𝜈

for all 𝑣 ∈ ℋ+. Since ℋ+ is dense in ℋ, then

|(𝑃 + 𝜔𝐸)−1/2(𝑢𝑗 − 𝑢𝑘)| 6𝑀 |𝑢𝑗 − 𝑢𝑘|−𝜈 .

Therefore, the sequence (𝑃 + 𝜔𝐸)−1/2𝑢𝑗, 𝑗 = 1, 2, . . . is fundamental in ℋ and one has

(𝑃 + 𝜔𝐸)−1/2𝑢𝑗→ℋ𝑔 (𝑗 → +∞),

where 𝑔 is a certain element from ℋ. Let us assume that 𝑇𝜔𝐹 = 𝑔, 𝐹 ∈ ℋ. Obviously,
|𝑔| 6𝑀 lim

𝑗→+∞
|𝑢𝑗|−𝜈 = 𝑀 |𝐹 |−𝜈 ,∀𝐹 ∈ ℋ−𝜈 and 𝑇𝜔𝐹 = (𝑃 + 𝜔𝐸)−1/2𝐹, ∀𝐹 ∈ ℋ. The lemma

is proved.
4. Our nearest goal is the proof of the inequality (see (3.8′) − (3.10))

|𝑋𝜆(𝐹, 𝑣)| + |𝑌𝜆(𝐹, 𝑣)| 6𝑀 |𝜆|−𝜀′ |𝐹 |−𝜈 |𝑣|𝜈 (3.11)

(∀𝐹 ∈ ℋ𝑟
−, 𝑣 ∈ ℋ𝑟

+, 𝜆 ∈ 𝑆, |𝜆| ≥ 1, 𝜈 ∈ [1, 2|𝜆|)),
with some 𝜀′ > 0. Note that the bilinear form

𝑃 ′
𝑗,𝜆[𝑢, 𝑣] = 𝑒𝑖𝛼𝑗(𝜌𝜃𝑄𝑢(𝑚), 𝜌𝜃𝑄(𝑚)) − 𝜆𝑒𝑖𝛼𝑗(𝑢, 𝑣), (𝑢, 𝑣 ∈ ℋ𝑟

+),

where 𝜆 ∈ 𝑆, |𝜆| ≥ 1, is defined densely in ℋ𝑟, closed, and sectorial. According to the known
theorem (see Theorem 2.1 from [24, Ch.𝑉 𝐼, §2]), there is an 𝑚-sectorial operator 𝑃𝑗,𝜆 in ℋ𝑟

such that 𝐷(𝑃𝑗,𝜆) ⊂ ℋ𝑟
+, and

(𝑃𝑗,𝜆𝑢, 𝑣) = 𝑃 ′
𝑗,𝜆[𝑢, 𝑣] (∀𝑢 ∈ 𝐷(𝑃𝑗,𝜆), 𝑣 ∈ ℋ𝑟

+).

Likewise, there is a positive selfadjoint operator 𝑃 0
𝑗,𝜆 in ℋ such that 𝐷(𝑃 0

𝑗,𝜆) = ℋ𝑟
+ and

(𝑃 0
𝑗,𝜆𝑢, 𝑣) =

1

2
(𝑃 ′

𝑗,𝜆[𝑢, 𝑣] + 𝑃 ′
𝑗,𝜆[𝑣, 𝑢]), ∀𝑢, 𝑣 ∈ ℋ+.

Applying Theorem 3.2 from [24, Ch.𝑉 𝐼, §3], one obtains

𝑃−1
𝑗,𝜆 = (𝑃 0

𝑗,𝜆)−1/2ℱ𝑗,𝜆(𝑃 0
𝑗,𝜆)−1/2,

where
‖ℱ ′

𝑗,𝜆‖ℋ𝑟→ℋ𝑟 6𝑀 ;
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the number 𝑀 is independent of 𝜆 ∈ 𝑆 (|𝜆| ≥ 1). Whence, one readily concludes that

𝑃−1
𝑗,𝜆 = (𝑃 + |𝜆|𝐸)−1/2ℱ𝑗,𝜆(𝑃 + |𝜆|𝐸)−1/2,

where 𝑃 is the same operator as in Lemma 3.5, and

‖ℱ𝑗,𝜆‖ℋ𝑟→ℋ𝑟 6𝑀 ′, (𝜆 ∈ 𝑆, |𝜆| ≥ 1).

Let us prove that

ℛ𝑗,𝜈(𝜆) = (𝑃 + |𝜆|𝐸)−1/2ℱ𝑗,𝜆𝑇|𝜆|, (𝜆 ∈ 𝑆, |𝜆| ≥ 1, 𝜈 ∈ [1, 2|𝜆|)). (3.12)

The definition of operators ℛ𝑗,𝜈(𝜆), 𝑃𝑗,𝜆 entails that

𝑃−1
𝑗,𝜆 𝑢 = ℛ𝑗,𝜈(𝜆)𝑢 (∀𝑢 ∈ ℋ𝑟

+, 𝜆 ∈ 𝑆, |𝜆| ≥ 1, 𝜈 ∈ [1, 2|𝜆|)).
Therefore,

ℛ𝑗,𝜈(𝜆)𝑢 = (𝑃 + |𝜆|𝐸)−1/2ℱ𝑗,𝜆𝑇|𝜆|𝑢 (∀𝑢 ∈ ℋ𝑟).

Since the operators ℛ𝑗,𝜈(𝜆), (𝑃 + |𝜆|𝐸)−1/2ℱ𝑗,𝜆𝑇|𝜆| are continuous from ℋ𝑟
𝜈 to ℋ𝑟

−𝜈 , and the
space ℋ𝑟 is dense in ℋ𝑟

−𝜈 then,

ℛ𝑗,𝜈(𝜆)𝐹 = (𝑃 + |𝜆|𝐸)−1/2ℱ𝑗,𝜆𝑇|𝜆|𝐹,

(∀𝐹 ∈ ℋ−𝜈 , 𝜆 ∈ 𝑆, |𝜆| ≥ 1, 𝜈 ∈ [1, 2|𝜆|)),
which proves (3.12).

Now the proof of the inequality (3.11) can be easily completed. Let us substitute ℛ𝑘,𝜈(𝜆) by
the right-hand side (3.12) in the formulae (3.9), (3.10). Then, it remains only to demonstrate
that the inequalities

‖𝜌𝜃𝜕𝑚1
𝑡 (𝑃 + |𝜆|𝐸)−1/2‖ℋ→ℋ 6𝑀 |𝜆|−𝜀′ (𝑚1 < 𝑚),

‖𝜌𝜃−𝛿𝜕𝑚1
𝑡 (𝑃 + |𝜆|𝐸)−1‖ℋ→ℋ 6𝑀 |𝜆|−𝜀′ ,

|𝜌𝛿−𝜃𝜕𝑡(𝑄̄𝜌
2𝜃𝑣(𝑚1)𝜓

(𝑚2)
𝑗 )|ℋ𝑟 6𝑀 |𝑣|+, (𝑚1 +𝑚2 = 𝑚,𝑚2 ̸= 0)

hold for 𝜆 ∈ 𝑆, |𝜆| ≥ 1. Here 𝜀′, 𝛿 > 0 are sufficiently small numbers. The first two inequalities
above are deduced from the known multiplicative inequalities (see, e.g., [25]). While the number
𝛿 can be arbitrary from the interval (0, 1). The latter estimate follows from the Hardy inequality:∑︁

𝑚1+𝑚2=𝑚

|𝜌𝜃−𝑚2+𝛿𝑣(𝑚1)|ℋ𝑟 6𝑀𝛿|𝑣|+ (∀𝑣 ∈ ℋ𝑟
+).

If 𝜃 ̸= 1
2
, . . . ,𝑚− 1

2
, the inequality holds for 𝛿 = 0 as well.

6. According to (3.8), the inequality (3.11) entails that

(𝑄𝜈 − 𝜆𝐸)ℛ𝜈(𝜆) = 𝐸 +𝐺𝜈(𝜆), (𝜆 ∈ 𝑆, |𝜆| ≥ 1, 𝜈 ∈ [1, 2|𝜆|)),
where 𝐺𝜈(𝜆) : ℋ𝑟

−𝜈 → ℋ𝑟
−𝜈 is a continuous operator,

‖𝐺𝜈(𝜆)‖ℋ𝑟
−𝜈→ℋ𝑟

−𝜈
6𝑀 |𝜆|−𝜀′ , 𝜀′ > 0.

Let us select the number 𝜎0 > 0 such that 𝑀 |𝜆|−𝜀′ 6 1
2

for all |𝜆| ≥ 𝜎0. Then,

(𝑄𝜈 − 𝜆𝐸)ℛ𝜈(𝜆)𝐺′
𝜈(𝜆) = 𝐸, 𝐺′

𝜈(𝜆) = (𝐸 +𝐺𝜈(𝜆))−1,

‖(𝐸 −𝐺′
𝜈(𝜆)‖ℋ𝑟

−𝜈→ℋ𝑟
−𝜈
< 1.

Let us demonstrate that 𝑘𝑒𝑟 (𝑄𝜈 − 𝜆𝐸) = 0,∀𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎1, where 𝜎1 is a sufficiently large
number, 𝜈 ∈ [1, 2|𝜆|). Then, for 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎′ = 𝑚𝑎𝑥{𝜎0, 𝜎1}, 𝜈 ∈ [1, 2|𝜆|) one has the equality

(𝑄𝜈 − 𝜆𝐸)−1 = ℛ𝜈(𝜆)𝐺′
𝜈(𝜆). (3.13)

Let us consider the operator 𝑄*,𝜈 : ℋ𝑟
𝜈 → ℋ𝑟

−𝜈 , 𝜈 > 0, acting by the formula

< 𝑄*,𝜈𝑢, 𝑣 >= (𝜌𝜃𝑄̄𝑢(𝑚), 𝜌𝜃𝑣(𝑚)), (∀𝑢, 𝑣 ∈ ℋ𝑟
𝜈).
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Similarly to the above, one constructs the operators

ℛ*,𝜈(𝜆̄) : ℋ𝑟
−𝜈 → ℋ𝑟

𝜈 , 𝐺*,𝜈(𝜆̄) : ℋ𝑟
−𝜈 → ℋ𝑟

−𝜈 ,

such that
(𝑄*,𝜈 − 𝜆̄𝐸)ℛ*,𝜈(𝜆̄) = 𝐸 +𝐺*,𝜈(𝜆̄), (3.14)

‖𝐺*,𝜈(𝜆̄)‖ℋ−𝜈→ℋ−𝜈 6
1

2
(𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎1, 𝜈 ∈ [1, 2|𝜆|)). (3.14′)

Let 𝑢 ∈ ℋ𝑟
−𝜈 be such an element that (𝑄𝜈 − 𝜆𝐸)𝑢 = 0. Moreover, let |𝜆| ≥ 𝜎′ = 𝑚𝑎𝑥{𝜎0, 𝜎1}.

Then,
< (𝑄𝜈 − 𝜆𝐸)𝑢, 𝑣 >= 0, ∀𝑣 ∈ ℋ𝑟

𝜈 ,

i.e.
(𝜌𝜃𝑄𝑢(𝑚), 𝜌𝜃𝑣(𝑚)) − 𝜆(𝑢, 𝑣) = 0 (∀𝑣 ∈ ℋ𝑟

𝜈).

Hence,
< (𝑄*,𝜈 − 𝜆̄𝐸)𝑣, 𝑢 >= (𝑄̄(𝑡)𝜌𝜃(𝑡)𝑣(𝑚)(𝑡), 𝑢(𝑚)(𝑡)) − 𝜆̄(𝑣, 𝑢) = 0.

Suppose that 𝑣 = ℛ*,𝜈(𝜆̄)𝐹, 𝐹 ∈ ℋ𝑟
−𝜈 . Then, due to (3.9),

< (𝐸 +𝐺*,𝜈(𝜆̄))𝐹, 𝑢 >= 0, ∀𝐹 ∈ ℋ𝑟
−𝜈 .

Since the operator
(𝐸 +𝐺*,𝜈(𝜆̄)) : ℋ𝑟

−𝜈 → ℋ𝑟
𝜈

has a continuous inverse one when 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎′, 𝜈 ∈ [1, 2|𝜆|) then, < 𝐹1, 𝑢 >= 0,∀𝐹1 ∈ ℋ𝑟
−𝜈 .

Assuming that 𝐹1 = 0, one obtains 𝑢 = 0. Thus, the equality (3.13) is proved, which entails
the estimate

‖(𝑄𝜈 − 𝜆𝐸)−1‖ℋ𝑟
−𝜈→ℋ𝑟

𝜈
6 2‖ℛ𝜈(𝜆)‖ℋ𝑟

−𝜈→ℋ𝑟
𝜈
.

Applying now (3.7′), (3.12), and Lemma 3.5 we complete the proof of Lemma 3.1.
Remark. Results of the present section are also valid when the matrix 𝑄(𝑡) is diagonal and

they are deduced easier due to absence of the unit.

§ 4. Proof of Theorem 1.1.

1. Let us consider a bilinear form 𝒜[𝑢, 𝑣] (1.2). Let us assume that all the conditions of
Theorem 1.1 are satisfied. Here we assume that the matrix 𝑎(𝑡) has the form

𝑎(𝑡) = 𝑈(𝑡)Λ(𝑡)𝑈−1(𝑡), (4.1)

where the matrix functions are 𝑈(𝑡), 𝑈−1(𝑡) ∈ 𝐶𝑚(𝐽 ;𝐸𝑛𝑑C𝑙), and Λ(𝑡) is the Jordan matrix

of the following structure. There are numbers 𝑟1, . . . , 𝑟𝑝 such that
𝑝∑︀

𝑖=1

𝑟𝑖 = 𝑙, and if the complex

𝑙-dimensional space C𝑙 is represented in the from C𝑟1 × · · · ×C𝑟𝑝 then,

Λ(𝑡) = 𝑑𝑖𝑎g {𝑄1(𝑡), . . . , 𝑄𝑝(𝑡)},
where 𝑄𝑖(𝑡) is an 𝑟𝑖 × 𝑟𝑖-matrix of the form⎛⎜⎜⎝

𝑞𝑖(𝑡) 1 0 . . . 0
0 𝑞𝑖(𝑡) 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 𝑞𝑖(𝑡))

⎞⎟⎟⎠
or

𝑄𝑖(𝑡) = 𝑑𝑖𝑎g {𝑞𝑖(𝑡), . . . , 𝑞𝑖(𝑡)} (𝑟𝑖 - times). (4.2)

Increasing the number of blocks if necessary, one can achieve that 𝑟𝑖 = 1 in the case (4.2) and
then one deals with a scalar case (i.e. a one-dimensional matrix).

It is clear that {𝑞𝑖(𝑡)} are eigenvalues of the matrix 𝑎(𝑡).
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According to Lemma 2.1, the same representations take place, in particular, when eigenvalues
of the matrix 𝑞(𝑡) in the coordinate plane are all different at the ends of the interval. Because
in this case they are different by continuity in some neighborhood of the interval ends.

Let us introduce the operator 𝑄𝜈,𝑖 : ℋ𝑟𝑖
𝜈 → ℋ𝑟𝑖

−𝜈 (𝜈 > 0, 𝑖 = 1, 𝑝) by the formula

< 𝑄𝜈,𝑖𝑢, 𝑣 >= 𝑄0
𝜈,𝑖[𝑢, 𝑣] = (𝜌𝜃𝑄𝑖(𝑡)𝑢

(𝑚), 𝜌𝜃𝑣(𝑚))𝐿2(𝐽)𝑙 (𝑢, 𝑣 ∈ ℋ𝑟𝑖
𝜈 ).

In the direct sum ℋ𝑙
𝜈 = ℋ𝑟1

𝜈 ⊕ℋ𝑟2
𝜈 ⊕ · · · ⊕ ℋ𝑟𝑝

𝜈 , let us introduce the operator

ℬ𝜈 = 𝑑𝑖𝑎g {𝑄𝜈,1, . . . , 𝑄𝜈,𝑝} : ℋ𝑙
𝜈 → ℋ𝑙

−𝜈 ,

where ℋ𝑙
−𝜈 = ℋ𝑟1

−𝜈 ⊕ℋ𝑟2
−𝜈 ⊕ · · · ⊕ℋ𝑟𝑝

−𝜈 . The norm |𝐹 |−𝜈 of the element 𝐹 ∈ ℋ𝑙
−𝜈 is equal to the

upper bound of numbers | < 𝐹, 𝑣 > | with respect to 𝑣 ∈ ℋ𝑙
𝜈 such that |𝑣|𝜈 = 1.

If 𝑟 ∈ {1, . . . , 𝑝}, 𝜆 ∈ 𝑆, |𝜆| ≥ 𝑐′, 𝜈 ∈ [1, 2|𝜆|), where 𝑐′ > 0 is a sufficiently large number then
according to Lemma 3.1, there are continuous inverse

(𝑄𝜈,𝑟 − 𝜆𝐸)−1 : ℋ𝑙
−𝜈 → ℋ𝑙

𝜈 , 𝑟 = 1, 𝑝.

Obviously,
(ℬ𝜈 − 𝜆𝐸)−1 = 𝑑𝑖𝑎g {(𝑄𝜈,1 − 𝜆𝐸)−1, . . . , (𝑄𝜈,𝑝 − 𝜆𝐸)−1} : ℋ𝑙

−𝜈 → ℋ𝑙
𝜈

is a continuous operator. Let us assume that
𝑋𝜈(𝜆) = 𝑈(ℬ𝜈 − 𝜆𝐸)−1𝑈−1, (4.3)

where 𝑈 denotes the operator acting in ℋ𝑙
−𝜈 by the formula

< 𝑈𝐹, 𝑣 >=< 𝐹,𝑈*(𝑡)𝑣(𝑡) > (∀𝐹 ∈ ℋ𝑙
−𝜈 , 𝑣 ∈ ℋ𝑙

−𝜈).

Obviously, 𝑈 : ℋ𝑙 → ℋ𝑙, 𝑈 : ℋ𝑙
𝜈 → ℋ𝑙

𝜈 .
Note that if

𝐹 = (𝐹1, . . . , 𝐹𝑙) ∈ ℋ𝑙
−𝜈 , 𝑣 = (𝑣1, . . . , 𝑣𝑙) ∈ ℋ𝑙

𝜈 , 𝜈 > 0,

then

|𝐹 |−𝜈 = (
𝑙∑︁

𝑖=1

|𝐹𝑖|2−𝜈)1/2, |𝑣|𝜈 = (
𝑙∑︁

𝑖=1

|𝑣𝑖|2𝜈)1/2,

< 𝐹, 𝑣 >=
𝑙∑︁

𝑖=1

< 𝐹𝑖, 𝑣𝑖 > .

Likewise, if 𝐹 = (𝐹1, . . . , 𝐹𝑝), aaa 𝐹𝑖 ∈ ℋ𝑙
−𝜈 , 𝑣 = (𝑣1, . . . , 𝑣𝑝) ∈ ℋ𝑙

𝜈 , 𝜈 > 0 then,

|𝐹 |−𝜈 = (

𝑝∑︁
𝑖=1

|𝐹𝑖|2−𝜈)1/2, |𝑣|𝜈 = (

𝑝∑︁
𝑖=1

|𝑣𝑖|2𝜈)1/2,

< 𝐹, 𝑣 >=

𝑝∑︁
𝑖=1

< 𝐹𝑖, 𝑣𝑖 > .

For 𝐹 ∈ ℋ𝑙, one has < 𝐹, 𝑣 >= (𝐹, 𝑣), ∀𝑣 ∈ ℋ𝑙
𝜈 .

According to Lemma 3.1, the representation (4.3) entails that when 𝜆 ∈ 𝑆 are sufficiently
large in module, the following inequality, where 𝑀 is independent of 𝜆, 𝜈 ∈ [1, 2|𝜆|), holds:

‖𝑋𝜈(𝜆)‖ℋ𝑙
−𝜈→ℋ𝑙

𝜈
6𝑀. (4.3′)

By virtue of (1.2) the following equality holds for 𝐹 ∈ ℋ𝑙
−𝜈 , 𝑣 ∈ ℋ𝑙

𝜈 :

𝒜[𝑋𝜈(𝜆)𝐹, 𝑣] = 𝑥𝜆(𝐹, 𝑣) + 𝑦𝜆(𝐹, 𝑣),

where

𝑥𝜆(𝐹, 𝑣) =
𝑚∑︁
𝑗=0

𝑟𝑗∑︁
𝑖=0

(𝑝𝑖𝑎𝑖𝑗𝜕
𝑖
𝑡𝑋𝜈(𝜆)𝐹, 𝑝𝑗𝑣

(𝑗)), 𝑟𝑗 = 𝑚𝑖𝑛{𝑚, 2𝑚− 𝑗 − 1},
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𝑦𝜆(𝐹, 𝑣) = (𝜌𝜃𝑎(𝑡)𝜕𝑚𝑡 𝑋𝜈(𝜆)𝐹, 𝜌𝜃𝑣(𝑚)).

Note that 𝑦𝜆(𝐹, 𝑣) = 𝑦
(1)
𝜆 (𝐹, 𝑣) + 𝑦

(2)
𝜆 (𝐹, 𝑣), where

𝑦
(1)
𝜆 (𝐹, 𝑣) = (𝜌𝜃𝑈Λ𝜕𝑚𝑡 (ℬ𝜈 − 𝜆𝐸)−1𝑈−1𝐹, 𝜌𝜃𝑣(𝑚)),

𝑦
(2)
𝜆 (𝐹, 𝑣) =

𝑚−1∑︁
𝑗=0

𝑐𝑗(𝜌
𝜃𝑎(𝑡)(𝜕𝑚−𝑗

𝑡 𝑈)𝜕𝑗𝑡 (ℬ𝜈 − 𝜆𝐸)−1𝑈−1𝐹, 𝜌𝜃𝑣(𝑚));

𝑐𝑗 are constant numbers depending only on 𝑚, 𝑗.
Then, taking into account that

𝑦
(1)
𝜆 (𝐹, 𝑣) − 𝜆(𝑈−1𝐹,𝑈*(𝑡)𝑣(𝑡)) =< 𝑈−1𝐹,𝑈*(𝑡)𝑣(𝑡) >=< 𝐹, 𝑣 >,

one obtains
𝒜[𝑋𝜈(𝜆)𝐹, 𝑣] − 𝜆(𝐹, 𝑣) =< 𝐹, 𝑣 > +𝐾𝜆(𝐹, 𝑣) + 𝑇𝜆(𝐹, 𝑣),

where

𝐾𝜆(𝐹, 𝑣) =
𝑚∑︁
𝑗=0

𝑟𝑗∑︁
𝑖=0

(𝑝𝑖𝑎𝑖𝑗𝜕
𝑖
𝑡𝑋𝜈(𝜆)𝐹, 𝑝𝑗𝑣

(𝑗)), (4.4)

𝑇𝜆(𝐹, 𝑣) =
𝑚−1∑︁
𝑗=0

𝑐𝑗(𝜌
𝜃𝑎(𝑡)𝑈 (𝑚−𝑗)𝜕𝑗𝑡 (ℬ𝜈 − 𝜆𝐸)−1𝐹, 𝜌𝜃𝑣(𝑚)). (4.5)

Here 𝑈 (𝑚−𝑗) = 𝜕𝑚−𝑗
𝑡 𝑈 . Using the formulae (3.7′), (3.12), (3.13), (4.3) and following the same

reasoning as in §3, one establishes that when 𝜆 ∈ 𝑆, |𝜆| ≥ 𝑐′, 𝜈 ∈ [1, 2|𝜆|), where 𝑐′ > 0 is a
sufficiently large number, there is a continuous inverse operator

(𝒜𝜈 − 𝜆𝐸)−1 = 𝑋𝜈(𝜆)(𝐸 + Γ𝜈(𝜆)), (4.6)

‖Γ𝜈(𝜆)‖ℋ𝑙
−𝜈→ℋ𝑙

−𝜈
6𝑀 |𝜆|−𝜀′ , 𝜀′ > 0. (4.7)

Here the operator 𝒜𝜈 : ℋ𝑙
𝜈 → ℋ𝑙

−𝜈 is determined by the formula

< 𝒜𝜈𝑢, 𝑣 >= 𝒜[𝑢, 𝑣], (∀𝑢, 𝑣 ∈ ℋ𝑙
𝜈).

2. Let 𝑎𝑚𝑚(𝑡) ∈ 𝐶𝑚(𝐽 ; 𝐸𝑛𝑑C𝑙), and the inequality (1.3) hold. Let us assume that eigenvalues
of the matrix 𝑎(𝑡) = 𝑎𝑚𝑚(𝑡)(𝑡 ∈ 𝐽) are situated outside a certain closed sector 𝑆 ⊂ C with the
vertex at zero. Let us assume that there is a number 𝜀 ∈ (0, 1/2) such that the representation

𝑎(𝑡) = 𝑈±(𝑡)Λ±(𝑡)𝑈−1
± (𝑡), 𝑑𝑒𝑡 𝑈±(𝑡) ̸= 0 (𝑡 ∈ ∆±), (4.8)

where
𝑈±(𝑡), 𝑈−1

± (𝑡) ∈ 𝐶𝑚(∆±;𝐸𝑛𝑑C𝑙), ∆+ = [0, 𝜀), ∆− = (1 − 𝜀, 1] (4.8′)

exists and Λ±(𝑡) is the Jordan matrix of the following structure for every fixed 𝑡 ∈ ∆±. There are

numbers 𝑟+1 , . . . , 𝑟+𝑝 , 𝑟
−
1 , . . . , 𝑟

−
𝑝 such that

𝑝∑︀
𝑖=1

𝑟+𝑖 =
𝑝∑︀

𝑗=1

𝑟−𝑗 = 𝑙, and if the complex 𝑙-dimensional

space C𝑙 is represented in the form C𝑟+1 × · · · ×C𝑟+𝑝 and in the form C𝑟−1 × · · · ×C𝑟−𝑝 then

Λ+(𝑡) = 𝑑𝑖𝑎g {𝑄+
1 (𝑡), . . . , 𝑄+

𝑝 (𝑡)},

Λ−(𝑡) = 𝑑𝑖𝑎g {𝑄−
1 (𝑡), . . . , 𝑄−

𝑝 (𝑡)},
where 𝑄±

𝑖 (𝑡) is an 𝑟±𝑖 × 𝑟±𝑖 -matrix of the form⎛⎜⎜⎝
𝑞±𝑖 (𝑡) 1 0 . . . 0

0 𝑞±𝑖 (𝑡) 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 𝑞±𝑖 (𝑡)

⎞⎟⎟⎠ ,

𝑞±𝑖 (𝑡) ∈ 𝐶𝑚(∆±;𝐸𝑛𝑑C𝑟±𝑖 ),
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or
𝑄±

𝑖 (𝑡) = 𝑑𝑖𝑎g {𝑞±𝑖 (𝑡), . . . , 𝑞±𝑖 (𝑡)} (𝑟±𝑖 - times). (4.9)

Let us extend the functions 𝑞+𝑖 (𝑡) from the interval (0, 𝜀) to all the segment [0, 1] so that
𝑞+𝑖 (𝑡) ∈ 𝐶𝑚(𝐽 ; 𝐸𝑛𝑑C𝑙), 𝑞+𝑖 (𝑡) ̸∈ 𝑆. In accordance with this extension, extend the matrix Λ+(𝑡)

to the matrix Λ̃+(𝑡) so that the structure of the Jordan cells remains unaltered.
Likewise, extend the matrix 𝑈+(𝑡) so that 𝑈̃+(𝑡) ∈ 𝐶𝑚(𝐽 ; 𝐸𝑛𝑑C𝑙) and

𝑑𝑒𝑡 𝑈̃+(𝑡) ̸= 0, 𝑡 ∈ 𝐽.

Accordingly, one obtains extension of the matrix 𝑎(𝑡) from the interval (0, 𝜀) to the whole 𝐽 :

𝑎̃+(𝑡) = 𝑈̃+(𝑡)Λ̃+(𝑡)𝑈̃−1
+ (𝑡). (*)

Similarly the matrix 𝑎̃−(𝑡), to which the matrix functions 𝑞−𝑖 (𝑡), 𝑈̃−(𝑡) and Λ̃−(𝑡) correspond,
is constructed:

𝑎̃−(𝑡) = 𝑈̃−(𝑡)Λ̃−(𝑡)𝑈̃−1
− (𝑡), 𝑡 ∈ 𝐽. (**)

Let us introduce the operator 𝑄±
𝜈,𝑖 : ℋ𝑟±𝑖

𝜈 → ℋ𝑟±𝑖
−𝜈 (𝜈 > 0, 𝑖 = 1, 𝑝) by the formula

< 𝑄±
𝜈,𝑖𝑢, 𝑣 >= 𝑄0

𝜈,𝑖[𝑢, 𝑣] = (𝜌𝜃𝑄±
𝑖 (𝑡)𝑢(𝑚), 𝜌𝜃𝑣(𝑚))𝐿2(𝐽)𝑙 (𝑢, 𝑣 ∈ ℋ𝑟±𝑖

𝜈 ).

In the direct sum ℋ𝑙
𝜈 = ℋ𝑟±1

𝜈 ⊕ℋ𝑟±2
𝜈 ⊕ · · · ⊕ ℋ𝑟±𝑝

𝜈 introduce the operator

ℬ±
𝜈 = 𝑑𝑖𝑎g {𝑄±

𝜈,1, . . . , 𝑄
±
𝜈,𝑝} : ℋ𝑙

𝜈 → ℋ𝑙
−𝜈 ,

where
ℋ𝑙

−𝜈 = ℋ𝑟±1
−𝜈 ⊕ℋ𝑟±2

−𝜈 ⊕ · · · ⊕ ℋ𝑟±𝑝
−𝜈 .

According to Lemma 3.1, when 𝑟 ∈ {1, . . . , 𝑝}, 𝜆 ∈ 𝑆, |𝜆| ≥ 𝑐′, 𝜈 ∈ [1, 2|𝜆|), where 𝑐′ > 0 is a
sufficiently large number, there are continuous inverse

(𝑄±
𝜈,𝑟 − 𝜆𝐸)−1 : ℋ𝑟±𝑖

−𝜈 → ℋ𝑟±𝑖
𝜈 𝑟 = 1, 𝑝.

Obviously,

(ℬ±
𝜈 − 𝜆𝐸)−1 = 𝑑𝑖𝑎g {(𝑄±

𝜈,1 − 𝜆𝐸)−1, . . . (𝑄±
𝜈,𝑝 − 𝜆𝐸)−1} : ℋ𝑙

−𝜈 → ℋ𝑙
𝜈

is a continuous operator.
Let us break the unit of the interval [0, 1].
There are nonnegative functions 𝜓𝑗(𝑡) ∈ 𝐶∞

0 (𝐽), 𝑖 = 1, 2, . . . with the following properties:

1)
∞∑︀

𝑗=−∞
𝜓2
𝑗 (𝑡) ≡ 1 (𝑡 ∈ 𝑅).

2) all functions 𝜓𝑗(𝑡) are derived by a "shift"from one function.

3) multiplicity of the covering [0, 1] =
∞⋃︀
𝑗=1

𝑠𝑢𝑝𝑝𝜓𝑗 equals to 2.

The inequality
|𝑡− 𝜏 | 6 𝑐|𝜆|−𝜀, 𝑐 > 0 (4.10)

holds for any 𝑡, 𝜏 ∈ 𝑠𝑢𝑝𝑝𝜓𝑗(·, 𝛿), where 𝛿 > 0 is a certain number. It follows from 2) that
∞∑︀

𝑗=−∞
𝜓2
𝑗 (𝑡|𝜆|−𝜀) ≡ 1.

Let us assume that

𝑅0(𝜆, 𝑡, 𝜏) =
∞∑︁

𝑗=−∞

𝜓𝑗(·, 𝛿)𝑅𝑗(𝜆)𝜓𝑗(·, 𝛿),

where 𝑅𝑗(𝜆) is a pseudo-differential operator with the symbol



42 M.G. GADOEV

𝑅𝑗(𝑠, 𝜆) = (𝜌2𝜃(𝜏𝑗)𝑎(𝜏𝑗)𝑠
2𝑚 − 𝜆𝐼)−1, 𝜏𝑗 ∈ 𝑠𝑢𝑝𝑝𝜓𝑗(·, 𝛿).

Since the norm of the pseudo-differential operator is estimated via the norms of its symbol,
one can demonstrate that

|𝑅𝑗(𝑠, 𝜆)| 6𝑀(𝜌2𝜃(𝑡𝑖)𝑠
2𝑚 + |𝜆|)−1,

where 𝑀 > 0, 𝑡𝑖 ∈ 𝑠𝑢𝑝𝑝𝜓𝑗(·, 𝛿), 𝜆 ∈ 𝑆.
Let us construct an operator function 𝑋𝜈(𝜆), satisfying relations of the form (4.6), (4.7). Let

us fix the nonnegative functions 𝜓+(𝑡), 𝜓−(𝑡), 𝜓(𝑡) ∈ 𝐶∞[0, 1] with the following property:

𝜓2
+(𝑡) + 𝜓2

−(𝑡) + 𝜓2(𝑡) ≡ 1, 𝜓−(𝑡) = 𝜓+(1 − 𝑡) (𝑡 ∈ 𝐽),

𝜓+(𝜏) = 0 (
3

4
𝜀 < 𝜏 < 1), 𝜓+(𝜏) = 1 (0 6 𝜏 < 𝜀/2).

Let us introduce the operator 𝑋𝜈(𝜆) by the formula

𝑋𝜈(𝜆) = 𝜓+𝑈̃+(ℬ+
𝜈 − 𝜆𝐸))−1𝑈̃−1

+ 𝜓+ +𝑅0(𝜆, 𝑡, 𝜏) + 𝜓−𝑈̃−(ℬ−
𝜈 − 𝜆𝐸))−1𝑈̃−1

− 𝜓−,

where 𝜓±(𝑡) denotes the operator of multiplication by the function 𝜓±(𝑡), and 𝑈± : ℋ𝑙
− → ℋ𝑙

−
is a continuous operator such that (𝑈±𝑢)(𝑡) = 𝑈̃±(𝑡)𝑢(𝑡),∀𝑢 ∈ ℋ𝑙, (𝜆 ∈ 𝑆, |𝜆| > 𝑐′, 𝑐′ > 0 is a
sufficiently large number).

Let us represent 𝑋𝜈(𝜆) in the form

𝑋𝜈(𝜆) =
3∑︁

𝑘=1

𝑋𝜈,𝑘(𝜆), (4.11)

where
𝑋𝜈,1(𝜆) = 𝜓+𝑈̃+(ℬ+

𝜈 − 𝜆𝐸)−1𝑈̃−1
+ 𝜓+,

𝑋𝜈,2(𝜆) = 𝜓𝑅0𝜓,

𝑋𝜈,3(𝜆) = 𝜓−𝑈̃−(ℬ−
𝜈 − 𝜆𝐸)−1𝑈̃−1

− 𝜓−.

In the following items a), b), c) representations for 𝒜𝜈 [𝑋𝜈,𝑖𝐹, 𝑣] are obtained when 𝑖 = 2, 1, 3
respectively.

a) For 𝐹 ∈ ℋ𝑙
−𝜈 , 𝑣 ∈ ℋ𝑙

𝜈 one has

𝒜𝜈 [𝑋𝜈,2𝐹, 𝑣] =
𝑚∑︁

𝑖,𝑗=0

(𝑝𝑖𝑎𝑖𝑗(𝑡)𝜕
𝑖
𝑡(𝑋𝜈,2𝐹 ), 𝑝𝑗𝑣

(𝑗)(𝑡))𝐿2 =

= 𝑥𝜆(𝐹, 𝑣) + 𝑦𝜆(𝐹, 𝑣), (4.12)

where

𝑥𝜆(𝐹, 𝑣) =
𝑚∑︁
𝑗=0

𝑟𝑗∑︁
𝑖=0

(𝑝𝑖𝑎𝑖𝑗𝜕
𝑖
𝑡(𝑋𝜈,2(𝜆)𝐹 ), 𝑝𝑗𝑣

(𝑗)), 𝑟𝑗 = 𝑚𝑖𝑛{𝑚, 2𝑚− 𝑗 − 1},

𝑦𝜆(𝐹, 𝑣) = (𝜌2𝜃𝑎(𝑡)𝜕𝑚𝑡 (𝑋𝜈,2(𝜆)𝐹 ), 𝑣(𝑚)).

Here and in what follows the index 𝐿2(𝜀, 1 − 𝜀) is omitted.
Several auxiliary lemmas are necessary for further investigation.
Let ℋ̂𝑙

𝜈 be a closure of 𝐶∞
0 (𝑅𝑛)𝑙 by the norm

|𝑢|𝜈 = (|𝑢(𝑚)(𝑡)|2𝐿2
+ 𝜈|𝑢|2𝐿2

)1/2.

Let us denote by ℋ̂−𝜈 the completion of the space 𝐿2(𝐽) by the norm

|𝐹 |−𝜈 = sup
𝑣 ̸=0

|(𝐹, 𝑣)|
|𝑣|ℋ̂𝑙

𝜈

.
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Elements from ℋ̂𝑙
−𝜈 are identified with the corresponding anti-linear continuous functionals over

ℋ̂𝑙
𝜈 .
This yields a triple of densely embedded spaces

ℋ̂𝑙
𝜈 ⊂ 𝐿𝑙

2 ⊂ ℋ̂𝑙
−𝜈 .

In this embedding ℋ̂𝑙
𝜈 is a positive space, and ℋ̂𝑙

−𝜈 is a negative space (see [23, §2.0]).
Obviously, there are embeddings

ℋ̂𝑙
𝜈 ⊂ ℋ𝑙

𝜈 ⊂ 𝐿𝑙
2 ⊂ ℋ̂𝑙

−𝜈 ⊂ ℋ𝑙
−𝜈 .

Lemma 4.1. The inequality
|𝐹 |ℋ̂𝑙

−𝜈
6 |𝐹 |ℋ𝑙

−𝜈

holds.
Proof. The following inequality is obvious

|𝑣|ℋ̂𝑙
𝜈
≥ |𝑣|ℋ𝑙

𝜈
.

Using this inequality, one has

|𝐹 |ℋ̂𝑙
−𝜈

= sup
𝑣 ̸=0

|(𝐹, 𝑣)|
|𝑣|ℋ̂𝑙

𝜈

6 sup
𝑣 ̸=0

|(𝐹, 𝑣)|
|𝑣|ℋ𝑙

𝜈

= |𝐹 |ℋ𝑙
−𝜈
.

The lemma is proved.

Let us introduce the operator
∘
𝑃

′

𝜈 , acting as follows:

(
∘
𝑃

′

𝜈 𝑢, 𝑣) = (𝑢(𝑚), 𝑣(𝑚)) + 𝜈(𝑢, 𝑣), (𝑢, 𝑣 ∈ ℋ̂𝑙
𝜈),

with the domain of definition
𝐷(

∘
𝑃

′

𝜈) = ℋ̂𝑙
𝜈 .

Let us determine the operator
∘
𝑃 𝜈 : ℋ̂𝜈 → 𝐿2 by the formula

∘
𝑃 𝜈= (

∘
𝑃

′

𝜈)1/2, 𝐷(
∘
𝑃 𝜈) = 𝐷((

∘
𝑃

′

𝜈)1/2) = ℋ̂𝑙
𝜈 .

Lemma 4.2. Let 𝛼(𝑡) ∈ 𝐶𝑚(𝐽 ;𝐸𝑛𝑑C𝑙), 𝑇 : 𝐿2(𝐽) → 𝐿2(𝐽) be a bounded operator. Then
for any 𝐹 ∈ ℋ𝑙

−𝜈 , 𝑣 ∈ ℋ𝜈 the inequality

| < 𝛼(𝑡)𝑇𝐹, 𝑣(𝑗) > | 6 sup
𝑡∈𝐽

|𝛼(𝑡)|‖
∘
𝑃 𝜈 𝑇

*‖𝐿2→𝐿2|𝐹 |−𝜈 |𝑣|𝜈

holds
Proof. Since 𝐿2(𝐽)𝑙 is dense in ℋ𝑙

−𝜈 then, without loss of generality one can assume that
𝐹 ∈ 𝐿2(𝐽)𝑙. Then,

| < 𝛼(𝑡)𝑇𝐹, 𝑣(𝑗) > | = |(𝛼(𝑡)𝑇𝐹, 𝑣(𝑗))| =

= |(𝛼(𝑡)𝑇
∘
𝑃 𝜈 (

∘
𝑃 𝜈)−1𝐹, 𝑣(𝑗))| 6

6 (sup
𝑡∈𝐽

|𝛼(𝑡)|)‖
∘
𝑃 𝜈 𝑇

*‖𝐿2‖(
∘
𝑃 𝜈)−1𝐹‖𝐿2|𝑣|𝜈 .

Whence the statement of the lemma follows provided that it is taken into account that

‖(
∘
𝑃 𝜈)−1𝐹‖𝐿2 = |𝐹 |ℋ̂𝑙

−𝜈
6 |𝐹 |ℋ𝑙

−𝜈
.

Now let us prove the following inequality (see (4.12))

|𝑥𝜆(𝐹, 𝑣)| 6𝑀(|𝜆|−𝜀′ + 𝜈−𝜀′′)|𝐹 |−𝜈 |𝑣|𝜈 , (4.13)

where 𝑀 > 0, 𝜀′ > 0, 𝜀′′ > 0, 𝜈 ∈ [1, 2|𝜆|], 𝜆 ∈ 𝑆.
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Applying the Leibnitz formula, one has

𝑥𝜆(𝐹, 𝑣) =
𝑚∑︁
𝑗=0

𝑟𝑗∑︁
𝑖=0

(𝑝𝑖𝑎𝑖𝑗𝜕
𝑖
𝑡(𝑋𝜈,2(𝜆)𝐹 ), 𝑝𝑗𝑣

(𝑗)) =

=
𝑚−1∑︁
𝑖,𝑗=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜕
𝑖
𝑡(𝑋𝜈,2(𝜆)𝐹 ), 𝑣(𝑗)) +

𝑚−1∑︁
𝑖=0

(𝑝𝑖𝑝𝑚𝑎𝑖𝑚𝜕
𝑖
𝑡(𝑋𝜈,2(𝜆)𝐹 ), 𝑣(𝑚))+

+
𝑚−1∑︁
𝑗=0

(𝑝𝑗𝑝𝑚𝑎𝑚𝑗𝜕
𝑚
𝑡 (𝑋𝜈,2(𝜆)𝐹 ), 𝑣(𝑗)) = 𝑥1(𝐹, 𝑣) + 𝑥2(𝐹, 𝑣) + 𝑥3(𝐹, 𝑣).

Further

𝑥1(𝐹, 𝑣) =
𝑚−1∑︁
𝑖,𝑗=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜕
𝑖
𝑡(

+∞∑︁
𝑘=1

𝜓𝜓𝑘(·, 𝛿)𝑅𝑘(𝜆)𝜓𝜓𝑘(·, 𝛿)𝐹 ), 𝑣(𝑗)) =

=
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜕
𝑖
𝑡(𝜓𝜓𝑘(·, 𝛿)𝑅𝑘(𝜆)𝜓𝜓𝑘(·, 𝛿)𝐹 ), 𝑣(𝑗)) =

=
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜓𝜓𝑘(·, 𝛿)𝜕𝑖𝑡(𝑅𝑘(𝜆)𝜓𝜓𝑘(·, 𝛿)𝐹 ), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗(
𝑖−1∑︁
𝑙=0

𝐶 𝑙
𝑖𝜕

𝑖−𝑙(𝜓𝜓𝑘(·, 𝛿))𝜕𝑙𝑡(𝑅𝑘(𝜆)𝜓𝜓𝑘(·, 𝛿)𝐹 ), 𝑣(𝑗)) =

=
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜓𝜓𝑘(·, 𝛿)𝜕𝑖𝑡(𝑅𝑘(𝜆)𝜓𝜓𝑘(·, 𝛿)𝐹 ), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

𝑖−1∑︁
𝑙=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝐶
𝑙
𝑖𝜕

𝑖−𝑙(𝜓𝜓𝑘(·, 𝛿))𝜕𝑙𝑡(𝑅𝑘(𝜆)𝜓𝜓𝑘(·, 𝛿)𝐹 ), 𝑣(𝑗)) =

=
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜓𝜓𝑘(·, 𝛿)𝜕𝑖𝑡(𝑅𝑘(𝜆)𝐹 )𝜓𝜓𝑘(·, 𝛿), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

𝑖−1∑︁
𝑛=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜓𝜓𝑘(·, 𝛿)𝐶𝑛
𝑖 𝜕

𝑖−𝑛(𝜓𝜓𝑘(·, 𝛿))𝜕𝑛𝑡 (𝑅𝑘(𝜆)𝐹 ), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

𝑖−1∑︁
𝑙=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝐶
𝑙
𝑖𝜕

𝑖−𝑙(𝜓𝜓𝑘(·, 𝛿))𝜕𝑙𝑡(𝑅𝑘(𝜆)𝜓𝜓𝑘(·, 𝛿)𝐹 ), 𝑣(𝑗)) =

=
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜓𝜓𝑘(·, 𝛿)𝑅𝑖
𝑘(𝜆)𝐹𝜓𝜓𝑘(·, 𝛿), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

𝑖−1∑︁
𝑛=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜓𝜓𝑘(·, 𝛿)𝐶𝑛
𝑖 𝜕

𝑖−𝑛(𝜓𝜓𝑘(·, 𝛿))(𝑅𝑛
𝑘(𝜆)𝐹 ), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

𝑖−1∑︁
𝑙=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝐶
𝑙
𝑖𝜕

𝑖−𝑙(𝜓𝜓𝑘(·, 𝛿))𝑅𝑙
𝑘(𝜆)𝐹𝜓𝜓𝑘(·, 𝛿), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

𝑖−1∑︁
𝑙=0

𝑙−1∑︁
𝜂=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝐶
𝑙
𝑖𝜕

𝑖−𝑙(𝜓𝜓𝑘(·, 𝛿))𝐶𝜂
𝑙 (𝜓𝜓𝑘(·, 𝛿))𝜕𝑙−𝜂(𝜓𝜓𝑘(·, 𝛿))𝑅𝜂

𝑘(𝜆)𝐹, 𝑣(𝑗)) =
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=
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜓𝜓𝑘(·, 𝛿)𝑅𝑖
𝑘(𝜆)

∘
𝑃 𝜈 (

∘
𝑃

−1

𝜈 𝐹 )𝜓𝜓𝑘(·, 𝛿), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

𝑖−1∑︁
𝑛=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝜓𝜓𝑘(·, 𝛿)𝐶𝑛
𝑖 𝜕

𝑖−𝑛(𝜓𝜓𝑘(·, 𝛿))(𝑅𝑛
𝑘(𝜆)

∘
𝑃 𝜈 (

∘
𝑃

−1

𝜈 𝐹 ), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

𝑖−1∑︁
𝑙=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝐶
𝑙
𝑖𝜕

𝑖−𝑙(𝜓𝜓𝑘(·, 𝛿))𝑅𝑙
𝑘(𝜆)

∘
𝑃 𝜈 (

∘
𝑃

−1

𝜈 𝐹 )𝜓𝜓𝑘(·, 𝛿), 𝑣(𝑗))+

+
+∞∑︁
𝑘=1

𝑚−1∑︁
𝑖,𝑗=0

𝑖−1∑︁
𝑙=0

𝑙−1∑︁
𝜂=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗𝐶
𝑙
𝑖𝜕

𝑖−𝑙(𝜓𝜓𝑘(·, 𝛿))·

·𝐶𝜂
𝑙 (𝜓𝜓𝑘(·, 𝛿))𝜕𝑙−𝜂(𝜓𝜓𝑘(·, 𝛿))𝑅𝜂

𝑘(𝜆)
∘
𝑃 𝜈 (

∘
𝑃

−1

𝜈 𝐹 ), 𝑣(𝑗)) ≡
≡ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4,

where 𝑅𝑖
𝑘 indicates 𝜕𝑖𝑡(𝑅𝑘(𝜆)).

Then, assuming in 𝐼𝑗 (𝑗 = 1, 4) that

𝑇+
1 = 𝜓𝜓𝑘𝑅

𝑖
𝑘(𝜆), 𝑇+

2 = 𝜓𝜓𝑘𝑅
𝑛
𝑘(𝜆),

𝑇+
3 = 𝜓𝜓𝑘(·, 𝛿)𝑅𝑙

𝑘(𝜆), 𝑇+
4 = 𝜓𝜓𝑘𝑅

𝜂
𝑘(𝜆)

respectively, and then using Lemma 4.2, and taking into account that

|𝑣(𝑗)|𝐿2 6𝑀𝜈
𝑗−𝑚
2𝑚 |𝑣|𝜈 , 𝛿 = |𝜆|−𝜀′ ,

one arrives to the inequality

|𝑥1(𝐹, 𝑣)| 6𝑀 sup
𝑡∈𝐽

|𝑝𝑖𝑝𝑗𝑎𝑖𝑗||𝐹 |ℋ𝑙
−𝜈
𝜈

𝑗−𝑚
2𝑚 |𝑣|𝜈(

4∑︁
𝜇=1

‖
∘
𝑃 𝜈 𝑇

*
𝜇‖).

Let us turn to the estimate ‖
∘
𝑃 𝜈 𝑇

*
𝜇‖, 𝜇 = 1, 4. One has

‖
∘
𝑃 𝜈 𝑇

*
𝜇‖𝐿2 6 ‖𝜕𝑚𝑇 *

𝜇‖𝐿2 + 𝜈1/2‖𝑇 *
𝜇‖𝐿2 , 𝜇 = 1, 4.

Using the inequality

𝑠𝑖+𝑚

𝑠2𝑚 + |𝜆|
6𝑀 |𝜆|−𝜀, where 𝜀 =

𝑚− 𝑖

2𝑚
> 0,

which can be easily verified, one obtains (when 𝜇 = 1)

‖
∘
𝑃 𝜈 𝑇

*
1 ‖𝐿2 6 ‖𝜕𝑚𝑇 *

1 ‖𝐿2 + 𝜈1/2‖𝑇 *
1 ‖𝐿2 6

6𝑀 sup
𝑠

(
𝑠𝑖+𝑚

𝑠2𝑚 + |𝜆|
+ 𝜈1/2

𝑠𝑖

𝑠2𝑚 + |𝜆|
) 6𝑀 |𝜆|−𝜀′ , where 𝜀′ =

𝑚− 𝑖

2𝑚
> 0.

Similar estimates exist for ‖
∘
𝑃 𝜈 𝑇

*
𝜇‖, 𝜇 = 2, 4:

‖
∘
𝑃 𝜈 𝑇

*
2 ‖ 6𝑀 |𝜆|−𝜀′′ , where 𝜀′′ =

𝑛−𝑚

2𝑚
> 0,

‖
∘
𝑃 𝜈 𝑇

*
3 ‖ 6𝑀 |𝜆|−𝜀′′′ , where 𝜀′′′ =

𝑙 −𝑚

2𝑚
> 0,

‖
∘
𝑃 𝜈 𝑇

*
4 ‖ 6𝑀 |𝜆|−𝜀𝐼𝑉 , where 𝜀𝐼𝑉 =

𝜂 −𝑚

2𝑚
> 0.
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Thus, the estimate
4∑︁

𝜇=1

‖
∘
𝑃 𝜈 𝑇

*
𝜇‖ 6𝑀 |𝜆|−𝜀1 , where 𝜀1 = 𝑚𝑖𝑛(𝜀′, 𝜀′′, 𝜀′′′, 𝜀𝐼𝑉 )

holds. Hence,
𝐴) |𝑥1(𝐹, 𝑣)| 6𝑀 |𝜆|−𝜀2|𝐹 |−𝜈 |𝑣|𝜈 , where 𝜀2 > 0.

Acting similarly, one obtains estimates for 𝑥2(𝐹, 𝑣), 𝑥3(𝐹, 𝑣):
𝐵) |𝑥2(𝐹, 𝑣)| 6𝑀 |𝜆|−𝜀3|𝐹 |−𝜈 |𝑣|𝜈 , 𝜀3 > 0,

𝐶) |𝑥3(𝐹, 𝑣)| 6𝑀𝜈
𝑗−𝑚
2𝑚 |𝐹 |−𝜈 |𝑣|𝜈 .

Now 𝐴), 𝐵), 𝐶) readily provide (4.13).
Let us represent the matrix 𝜌2𝜃(𝑡)𝑎(𝑡) in the form

𝜌2𝜃(𝑡)𝑎(𝑡) = 𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗) + 𝜌2𝜃(𝑡)𝑎(𝑡) − 𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗),

where 𝑡𝑗 ∈ 𝑠𝑢𝑝𝑝𝜓𝑗(·, 𝛿).
Then (see (4.12))

𝑦𝜆(𝐹, 𝑣) = (𝜌2𝜃(𝑡)𝑎(𝑡)𝜕𝑚𝑡 (𝜓𝑅0(𝜆)𝜓𝐹 ), 𝑣(𝑚)) =

= (𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)𝜕
𝑚
𝑡 (𝜓𝑅0(𝜆)𝜓𝐹 ), 𝑣(𝑚))+

+([𝜌2𝜃(𝑡)𝑎(𝑡) − 𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)]𝜕
𝑚
𝑡 (𝜓𝑅0(𝜆)𝜓𝐹 ), 𝑣(𝑚)) =

= 𝑦
(1)
𝜆 (𝐹, 𝑣) + 𝑦

(2)
𝜆 (𝐹, 𝑣),

where
𝑦
(1)
𝜆 (𝐹, 𝑣) = (𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)𝜕

𝑚
𝑡 (𝜓𝑅0(𝜆)𝜓𝐹 ), 𝑣(𝑚)), (4.14)

𝑦
(2)
𝜆 (𝐹, 𝑣) = ([𝜌2𝜃(𝑡)𝑎(𝑡) − 𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)]𝜕

𝑚
𝑡 (𝜓𝑅0(𝜆)𝜓𝐹 ), 𝑣(𝑚)). (4.15)

Applying the Leibnitz formula, one obtains

𝑦
(1)
𝜆 (𝐹, 𝑣) = (−1)𝑚

+∞∑︁
𝑗=1

(𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)𝜕
2𝑚
𝑡 [𝜓𝜓𝑗(·, 𝛿)𝑅𝑗(𝜆)𝜓𝑗(·, 𝛿)𝜓𝐹 ], 𝑣) =

= (−1)𝑚
+∞∑︁
𝑗=1

(𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)𝜓𝜓𝑗(·, 𝛿)(𝜕2𝑚𝑡 𝑅𝑗(𝜆))𝜓𝜓𝑗(·, 𝛿)𝐹, 𝑣)+

+(−1)𝑚
+∞∑︁
𝑗=1

(𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)
2𝑚−1∑︁
𝑘=1

𝐶𝑘
2𝑚(𝜕2𝑚−𝑘(𝜓𝜓𝑘(·, 𝛿))(𝜕𝑘𝑅𝑗(𝜆))𝜓𝜓𝑗(·, 𝛿)𝐹, 𝑣) =

= 𝑇1(𝐹, 𝑣) + 𝑇2(𝐹, 𝑣),

where

𝑇1(𝐹, 𝑣) = (−1)𝑚
+∞∑︁
𝑗=1

(𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)𝜓𝜓𝑗(·, 𝛿)(𝜕2𝑚𝑡 𝑅𝑗(𝜆))𝜓𝜓𝑗(·, 𝛿)𝐹, 𝑣),

𝑇2(𝐹, 𝑣) = (−1)𝑚
+∞∑︁
𝑗=1

(𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)
2𝑚−1∑︁
𝑘=1

𝐶𝑘
2𝑚(𝜕2𝑚−𝑘(𝜓𝜓𝑘(·, 𝛿))·

·(𝜕𝑘(𝑅𝑗(𝜆))𝜓𝜓𝑗(·, 𝛿)𝐹, 𝑣).

Obviously,
𝑇1(𝐹, 𝑣) − 𝜆(𝜓𝜓𝑗(·, 𝛿)𝑅𝑗(𝜆)𝜓𝜓𝑗(·, 𝛿)𝐹, 𝑣) =< 𝜓2𝐹, 𝑣 > . (4.16)

Let us make the estimate |𝑇2(𝐹, 𝑣)|. Acting as in proving the inequality (4.13), using the obvious
inequalities

‖𝜕2𝑚−𝑛(𝜓𝜓𝑗(·, 𝛿)‖𝐿2 6𝑀 |𝜆|𝜀′(𝑛−2𝑚),
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‖𝜕𝑛𝑅𝑗(𝜆)𝐹‖𝐿2 6 sup
𝑠

|𝑠𝑛||𝐹 |−𝜈

𝑠2𝑚 + |𝜆|
6𝑀 |𝜆|−

1
2𝑚 |𝐹 |−𝜈 ,

|𝑣|𝐿2 6 𝜈−1/2(|𝜕𝑚𝑣|𝐿2 + 𝜈1/2|𝑣|𝐿2) 6𝑀𝜈−1/2|𝑣|𝜈 ,
one obtains

‖𝑇2(𝐹, 𝑣)‖𝐿2 6𝑀1𝜈
−1/2|𝜆|𝜀′(𝑛−2𝑚)− 1

2𝑚 |𝐹 |−𝜈 |𝑣|𝜈 ,
or

‖𝑇2(𝐹, 𝑣)‖𝐿2 6𝑀 |𝜆|−𝜀′′ |𝐹 |−𝜈 |𝑣|𝜈 , (4.17)

where

𝜀′′ =
𝑚− 2𝑚𝜀(𝑛− 2𝑚) + 1

2𝑚
> 0.

Let us prove the estimate (see (4.15))

|𝑦(2)𝜆 (𝐹, 𝑣)| 6𝑀 |𝜆|−𝜀′ |𝐹 |−𝜈 |𝑣|𝜈 , 𝑀 > 0, 𝜈 ∈ [1 : 2|𝜆|], 𝜆 ∈ 𝑆. (4.18)

According to the Lagrange theorem

|𝜌2𝜃(𝑡)𝑎(𝑡) − 𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)| 6𝑀1|𝑡− 𝑡𝑗|.
If 𝑡 ∈ 𝑠𝑢𝑝𝑝𝜓𝑗, oi |𝑡− 𝑡𝑗| 6 𝑐|𝜆|−𝜀′ then,

|𝜌2𝜃(𝑡)𝑎(𝑡) − 𝜌2𝜃(𝑡𝑗)𝑎(𝑡𝑗)| 6𝑀2|𝜆|−𝜀′ . (4.19)

Using (4.19) and repeating the above reasoning one establishes the inequality (4.18).
Now (4.13), (4.16), (4.17), and (4.8) provide

𝒜𝜈 [𝑋𝜈,2𝐹, 𝑣] − 𝜆(𝜓𝜓𝑗𝑅𝑗𝜓𝜓𝑗𝐹, 𝑣) =< 𝜓2𝐹, 𝑣 > +𝑇 (𝐹, 𝑣), (4.20)

where the operator function 𝑇 (𝐹, 𝑣) satisfies the estimate

‖𝑇 (𝐹, 𝑣)‖𝐿2 6𝑀 |𝜆|−𝜀′ |𝐹 |−𝜈 |𝑣|𝜈 , 𝑀 > 0, 𝜈 ∈ [1, 2|𝜆|], 𝜆 ∈ 𝑆.

b) For 𝐹 ∈ ℋ𝑙
−𝜈 , 𝑣 ∈ ℋ𝑙

𝜈 , one has

𝒜𝜈 [𝑋𝜈,1(𝜆)𝐹, 𝑣] =
𝑚∑︁

𝑖,𝑗=0

(𝑝𝑖𝑎𝑖𝑗(𝑡)𝜕
𝑖
𝑡(𝑋𝜈,1𝐹 ), 𝑝𝑗𝑣

(𝑗))𝐿2 =

= 𝑥𝜆(𝐹, 𝑣) + 𝑦𝜆(𝐹, 𝑣),

where

𝑥𝜆(𝐹, 𝑣) =
𝑚∑︁
𝑗=0

𝑟𝑗∑︁
𝑖=0

(𝑝𝑖𝑎𝑖𝑗(𝑡)𝜕
𝑖
𝑡(𝑋𝜈,1(𝜆)𝐹 ), 𝑝𝑗𝑣

(𝑗)),

𝑟𝑗 = 𝑚𝑖𝑛(𝑚, 2𝑚− 𝑗 − 1),

𝑦𝜆(𝐹, 𝑣) = (𝜌2𝜃(𝑡)𝑎(𝑡)𝜕𝑚𝑡 (𝑋𝜈,1(𝜆)𝐹 ), 𝑣(𝑚)) =

= (𝜌2𝜃(𝑡)𝑎(𝑡)𝜕𝑚𝑡 (𝜓+𝑈̃+(ℬ+
𝜈 − 𝜆𝐸)−1𝑈̃−1

+ 𝜓+𝐹 ), 𝑣(𝑚)).

Extending the matrix 𝑎(𝑡) with respect to continuity up to 𝑎̃+(𝑡) (see the formula (*)), one
obtains

𝑦𝜆(𝐹, 𝑣) ≡ (𝜌2𝜃(𝑡)𝑎̃(𝑡)𝜕𝑚𝑡 (𝜓+𝑈̃+(ℬ+
𝜈 − 𝜆𝐸)−1𝑈̃−1

+ 𝜓+𝐹 ), 𝑣(𝑚)).

Obviously,
𝑦𝜆(𝐹, 𝑣) − 𝜆(𝜓+𝑈̃+(ℬ+

𝜈 − 𝜆𝐸)−1𝑈̃−1
+ 𝜓+𝐹 ), 𝑣) =< 𝜓2

+𝐹, 𝑣 > . (4.21)

Considerations given in §3, entail the following estimate for 𝑥𝜆(𝐹, 𝑣):

|𝑥𝜆(𝐹, 𝑣)| 6𝑀 |𝜆|−𝜀|𝐹 |−𝜈 |𝑣|𝜈 . (4.22)

Thus,
𝒜𝜈 [𝑋𝜈,1𝐹, 𝑣] − 𝜆(𝜓+𝑈̃+(ℬ+

𝜈 − 𝜆𝐸)−1𝑈̃−1
+ 𝜓+𝐹 ), 𝑣) =
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=< 𝜓2
+𝐹, 𝑣 > +𝑥𝜆(𝐹, 𝑣). (4.23)

c) Similarly to the previous item, for 𝐹 ∈ ℋ𝑙
−𝜈 , 𝑣 ∈ ℋ𝑙

𝜈 one has

𝒜𝜈 [𝑋𝜈,3(𝜆)𝐹, 𝑣] =
𝑚∑︁

𝑖,𝑗=0

(𝑝𝑖𝑎𝑖𝑗(𝑡)𝜕
𝑖
𝑡(𝑋𝜈,3(𝜆)𝐹 ), 𝑣(𝑗))𝐿2(1−𝜀,1) =

= 𝑥𝜆(𝐹, 𝑣) + 𝑦𝜆(𝐹, 𝑣),

where

𝑥𝜆(𝐹, 𝑣) =
𝑚∑︁
𝑗=0

𝑟𝑗∑︁
𝑖=0

(𝑝𝑖𝑝𝑗𝑎𝑖𝑗(𝑡)𝜕
𝑖
𝑡(𝑋𝜈,3(𝜆)𝐹 ), 𝑣(𝑗)),

𝑟𝑗 = 𝑚𝑖𝑛(𝑚, 2𝑚− 𝑗 − 1),

𝑦𝜆(𝐹, 𝑣) = (𝜌2𝜃(𝑡)𝑎(𝑡)𝜕𝑚𝑡 (𝑋𝜈,3(𝜆)𝐹 ), 𝑣(𝑚)) =

= (𝜌2𝜃(𝑡)𝑎(𝑡)𝜕𝑚𝑡 (𝜓−𝑈̃−(ℬ−
𝜈 − 𝜆𝐸)−1𝑈̃−1

− 𝜓−𝐹 ), 𝑣(𝑚)).

Substituting the matrix 𝑎(𝑡) by 𝑎̃−(𝑡) (see the formula (**)), one obtains

𝑦𝜆(𝐹, 𝑣) ≡ (𝜌2𝜃(𝑡)𝑎̃(𝑡)𝜕𝑚𝑡 (𝜓−𝑈̃−(ℬ−
𝜈 − 𝜆𝐸)−1𝑈̃−1

− 𝜓−𝐹 ), 𝑣(𝑚)).

Clearly,
𝑦𝜆(𝐹, 𝑣) − 𝜆(𝜓−𝑈̃−(ℬ−

𝜈 − 𝜆𝐸)−1𝑈̃−1
− 𝜓−𝐹 ), 𝑣) =< 𝜓2

−𝐹, 𝑣 >,

and 𝑥𝜆(𝐹, 𝑣) satisfies the inequality of the type (4.22). Thus,

𝒜𝜈 [𝑋𝜈,3𝐹, 𝑣] − 𝜆(𝜓−𝑈̃−(ℬ−
𝜈 − 𝜆𝐸)−1𝑈̃−1

− 𝜓−𝐹 ), 𝑣) =

=< 𝜓2
−𝐹, 𝑣 > +𝑥𝜆(𝐹, 𝑣). (4.24)

d) representations (4.11), (4.20), (4.23), and (4.24) provide

𝒜𝜈 [𝑋𝜈(𝜆)𝐹, 𝑣] − 𝜆(𝑋𝜈(𝜆)𝐹, 𝑣) =< (𝜓2
+ + 𝜓2 + 𝜓2

−)𝐹, 𝑣 > +𝑇 (𝐹, 𝑣) =

=< 𝐹, 𝑣 > +𝑇 (𝐹, 𝑣), (4.25)

where the operator function 𝑇 (𝐹, 𝑣) satisfies the estimate

‖𝑇 (𝐹, 𝑣)‖ 6𝑀 |𝜆|−𝜀′ |𝐹 |−𝜈 |𝑣|𝜈 . (4.26)

3. According to (4.25), the inequality (4.26) entails that

(𝒜𝜈 − 𝜆𝐸)𝑋𝜈(𝜆) = 𝐸 + Γ𝜈(𝜆), (𝜆 ∈ 𝑆, |𝜆| ≥ 1, 𝜈 ∈ [1, 2|𝜆|),
where Γ𝜈(𝜆) : ℋ−𝜈 → ℋ−𝜈 is a continuous operator,

‖Γ𝜈(𝜆)‖ℋ−𝜈→ℋ−𝜈 6𝑀(|𝜆|−𝜀′ + 𝜈−𝜀′′), 𝜀′ > 0, 𝜀′′ > 0.

Let us select a number 𝜎0 > 0 such that 𝑀(|𝜆|−𝜀′ + 𝜈−𝜀′′) 6 1
2

for all |𝜆| ≥ 𝜎0. Then,

(𝒜𝜈 − 𝜆𝐸)𝑋𝜈(𝜆)Γ′
𝜈(𝜆) = 𝐸, Γ′

𝜈(𝜆) = (𝐸 + Γ𝜈(𝜆))−1,

‖𝐸 − Γ′
𝜈(𝜆)‖ℋ−𝜈→ℋ−𝜈 < 1.

Let us demonstrate that 𝑘𝑒𝑟(𝒜𝜈 − 𝜆𝐸) = 0,∀𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎1, where 𝜎1 is a sufficiently large
number 𝜈 ∈ [1, 2|𝜆|). Then, when 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎1 = 𝑚𝑎𝑥{𝜎0, 𝜎1}, 𝜈 ∈ [1, 2|𝜆|) one has the
equality

(𝒜𝜈 − 𝜆𝐸)−1 = 𝑋𝜈(𝜆)Γ′
𝜈(𝜆). (4.27)

Consider the operator 𝒜′
𝜈 : ℋ𝜈 → ℋ−𝜈 , 𝜈 > 0, acting by the formula

< 𝒜′
𝜈𝑢, 𝑣 >=

𝑚∑︁
𝑖,𝑗=0

(𝑎*𝑖𝑗𝑝𝑖𝑢
(𝑖), 𝑝𝑗𝑣

(𝑗)), ∀𝑢, 𝑣 ∈ ℋ𝜈 .
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Likewise, one constructs the operators

𝑋 ′
𝜈(𝜆̄) : ℋ−𝜈 → ℋ𝜈 , 𝐺*

𝜈(𝜆̄) : ℋ−𝜈 → ℋ−𝜈 ,

such that
(𝒜′

𝜈 − 𝜆̄𝐸)𝑋 ′
𝜈(𝜆̄) = 𝐸 +𝐺*

𝜈(𝜆̄), (4.28)

‖𝐺*
𝜈(𝜆̄)‖ℋ−𝜈→ℋ−𝜈 6

1

2
, (𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎1, 𝜈 ∈ [1, 2|𝜆|). (4.29)

Let 𝑢 ∈ ℋ𝜈 be an element such that (𝒜𝜈 − 𝜆𝐸)𝑢 = 0. Moreover, let |𝜆| ≥ 𝜎1 = 𝑚𝑎𝑥{𝜎0, 𝜎1}.
Then,

< (𝒜𝜈 − 𝜆𝐸)𝑢, 𝑣 >= 0, ∀𝑣 ∈ ℋ𝜈 ,

i.e.
𝑚∑︁

𝑖,𝑗=1

(𝑎𝑖𝑗𝑝𝑖𝑝𝑗𝑢
(𝑖), 𝑣(𝑗)) − 𝜆(𝑢, 𝑣) = 0, ∀𝑣 ∈ ℋ𝜈 .

Hence,

< (𝒜′
𝜈 − 𝜆̄𝐸)𝑣, 𝑢 >= (

𝑚∑︁
𝑖,𝑗=0

(𝑎*𝑗𝑖𝑝𝑖𝑝𝑗𝑣
(𝑗), 𝑢(𝑖)) − 𝜆̄(𝑣, 𝑢) = 0.

Let us assume that 𝑣 = 𝑋 ′
𝜈(𝜆̄)𝐹, 𝑓 ∈ ℋ−𝜈 . Then,

< (𝐸 +𝐺*
𝜈(𝜆̄))𝐹, 𝑢 >= 0, ∀𝑓 ∈ ℋ−𝜈 .

Since the operator
(𝐸 +𝐺*

𝜈(𝜆̄)) : ℋ−𝜈 → ℋ−𝜈

has a continuous inverse one when 𝜆 ∈ 𝑆, |𝜆| ≥ 𝜎′, 𝜈 ∈ [1, 2|𝜆|), then < 𝐹, 𝑢 >= 0, ∀𝑓 ∈ ℋ−𝜈 .
Assuming that 𝐹 = 0, one obtains 𝑢 = 0. Whence,

𝑘𝑒𝑟(𝒜𝜈 − 𝜆𝐸) = 0.

The estimate
‖(𝒜𝜈 − 𝜆𝐸)−1‖ℋ−𝜈→ℋ𝜈 6 2‖𝑋𝜈(𝜆)‖ℋ−𝜈→ℋ𝜈

follows from (4.27).
4. To prove Theorem 1.1 assume that 𝜈 = 1,𝒜 = 𝒜1. It is clear that the operator

𝐴 = 𝒜𝑢, 𝐷(𝐴) = {𝑢 ∈ ℋ𝑙
+;𝒜𝑢 ∈ ℋ𝑙},

satisfies the condition (𝑖) of Theorem 1.1. Since the operator (𝒜−𝜆𝐸)−1 performs a one-to-one
mapping of ℋ𝑙 to 𝐷(𝐴), there is an inverse

(𝐴− 𝜆𝐸)−1𝑢 = (𝒜− 𝜆𝐸)−1𝑢 (∀𝑢 ∈ ℋ𝑙, 𝜆 ∈ 𝑆, |𝜆| ≥ 𝑐).

The formulae (4.3′), (4.6), (4.7) provide

|(𝐴− 𝜆𝐸)−1𝑢| 6 |(𝐴− 𝜆𝐸)−1𝑢|+ = |(𝒜− 𝜆𝐸)−1𝑢|+ 6𝑀 |𝑢|− 6𝑀 |𝑢|
when 𝜈 = 1. Whence, it follows that (𝐴 − 𝜆𝐸)−1 : ℋ𝑙 → ℋ𝑙(𝜆 ∈ 𝑆, |𝜆| ≥ 𝑐) is a continuous
operator.

Let us prove the uniqueness of the operator 𝐴, possessing the properties (𝑖), (𝑖𝑖) of Theorem
1.1. Let 𝐴(1), 𝐴(2) be two operators possessing the mentioned properties. Since 𝜃 < 𝑚, the
injection ℋ𝑙

+ ⊂ ℋ𝑙 is compact. Hence, the operators 𝐴(1), 𝐴(2) have discrete spectrums.
Therefore, there is a sufficiently large in module 𝜆 ∈ 𝑆 such that there are continuous inverse
(𝐴(1) − 𝜆𝐸)−1, (𝐴(2) − 𝜆𝐸)−1. For

𝑢 ∈ ℋ𝑙, 𝐹 = (𝐴(1) − 𝜆𝐸)−1𝑢− (𝐴(2) − 𝜆𝐸)−1𝑢,

one has (𝒜− 𝜆𝐸)𝐹 = 0. Whence, and from (4.6) it follows that 𝐹 = 0. Thus,

(𝐴(1) − 𝜆𝐸)−1 = (𝐴(2) − 𝜆𝐸)−1, i.e. 𝐴1 = 𝐴2.
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5. The formula (4.6) in the case 𝜈 = |𝜆| will be necessary further in §5.

§5. Summability of the system of root vector functions of the operator A in the
Abel-Lidskii sense

1. In the present section the following results are obtained with the assumption that 𝑎(𝑡) ∈
𝐶(𝐽 ; 𝐸𝑛𝑑C𝑙) :

a) resolvent estimate for the operator 𝐴;
b) estimate of the generalized resolvent (i.e. the case when the operator 𝐴 acts from ℋ− to

ℋ+);
c) summability in the Abel-Lidskii sense for the system of root vector functions of the operator

𝐴.
In a special case when the matrix 𝑎(𝑡) ∈ 𝐶𝑚(𝐽 ; 𝐸𝑛𝑑C𝑙), and the representation

𝑎(𝑡) = 𝑈+(𝑡)Λ(𝑡)𝑈−(𝑡)

hold at the ends of the interval, one obtains an integral representation for the resolvent and the
generalized resolvent.

These conditions hold, e.g., when 𝑎(0), 𝑎(1) have simple eigenvalues.
Let the matrix 𝑎(𝑡) ∈ 𝐶(𝐽 ; 𝐸𝑛𝑑C𝑙), its eigenvalues be located outside the sector 𝑆;

conditions on 𝑎𝑖𝑗(𝑡), 𝑖 + 𝑗 < 2𝑚 be previous (see §1). For any 𝛿 > 0 one can construct a
matrix 𝑎𝛿(𝑡) such that:

1) 𝑎𝛿(𝑡) ∈ 𝐶4𝑚(𝐽 ; 𝐸𝑛𝑑C𝑙);

2) |𝑎𝛿(𝑡) − 𝑎(𝑡)| < 𝛿, 0 6 𝑡 6 1;

3) 𝑎𝛿(𝑡) = 𝑈
(𝛿)
± (𝑡)Λ

(𝛿)
± (𝑡)𝑈

(𝛿)
± (𝑡)−1, 𝑡 ∈ ∆±,

the length ∆± depends on 𝛿;

4) 𝑎𝛿(𝑡) = 𝑎(0), 𝑡 ∈ ∆+,

𝑎𝛿(𝑡) = 𝑎(1), 𝑡 ∈ ∆−;

5) Eigenvalues 𝑎𝛿(𝑡) are located outside the sector 𝑆.
In view of 4) in 3) matrices 𝑈 (𝛿)

± (𝑡), Λ
(𝛿)
± (𝑡) are independent of 𝛿:

𝑈
(𝛿)
+ (𝑡) = 𝑈+(0), 𝑡 ∈ ∆+, 𝑈

(𝛿)
− (𝑡) = 𝑈−(1), 𝑡 ∈ ∆−,

Λ
(𝛿)
+ (𝑡) ≡ Λ+(0), 𝑡 ∈ ∆+

and
Λ

(𝛿)
− (𝑡) ≡ Λ−(1), 𝑡 ∈ ∆−.

Let 𝒜(𝛿) : ℋ𝑙
𝜈 → ℋ𝑙

−𝜈 be an operator generated by the from

< 𝒜(𝛿)𝑢, 𝑣 >=
∑︁

𝑖+𝑗<2𝑚

1∫︁
0

< 𝑝𝑗(𝑡)𝑎𝑖𝑗(𝑡)𝑢
(𝑗)(𝑡), 𝑝𝑗(𝑡)𝑣

(𝑗)(𝑡) >C𝑙 𝑑𝑡+

+

1∫︁
0

< 𝜌𝜃(𝑡)𝑎𝛿(𝑡)𝑢
(𝑚)(𝑡), 𝜌𝜃(𝑡)𝑣(𝑚)(𝑡) >C𝑙 𝑑𝑡.

Let us take 1 6 𝜈 6 |𝜆|. Similarly to the item 3 §4, one can demonstrate that when |𝜆| > 𝑐𝛿
is sufficiently large, the representation

(𝒜(𝛿) − 𝜆𝐸)−1 = 𝑅(𝛿)(𝜆)(𝐸 + 𝒥 (𝛿)(𝜆))
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exists and
‖𝒥 (𝛿)(𝜆)‖ℋ−𝜈→ℋ−𝜈 → 0, when 𝜆→ +∞ in the sector 𝑆.

Here the regularizer 𝑅(𝛿)(𝜆) consists of three addends

𝑅(𝛿)(𝜆) = 𝜓+(ℬ+,𝛿 − 𝜆𝐸)−1𝜓+ + 𝜓𝑅
(𝛿)
0 (𝜆)𝜓 + 𝜓−(ℬ−,𝛿 − 𝜆𝐸)−1𝜓−.

When 𝜆′ = 𝜆′(𝛿) is sufficiently large for |𝜆| > 𝜆′, 𝜆 ∈ 𝑆, one has

‖𝒥 (𝛿)(𝜆)‖ℋ−𝜈→ℋ−𝜈 < 1/2, 𝜈 = |𝜆|.
Likewise,

‖𝑅(𝛿)(𝜆)‖ℋ𝑙→ℋ𝑙 6𝑀(1 + |𝜆|)−1, 𝜆 ∈ 𝑆, 𝜆 ≥𝑀 ′,

𝑀 ′ is independent of 𝛿.
Note that in view of 4), ℬ±,𝛿 is independent of 𝛿. Therefore,

‖(ℬ±,𝛿 − 𝜆𝐸)−1‖ℋ𝑙→ℋ𝑙 6𝑀 ′′(1 + |𝜆|)−1, |𝜆| > 𝑀 ′′, 𝜆 ∈ 𝑆,

where 𝑀 ′′ is independent of 𝛿.
One can readily verify by the explicit form of the operator functions 𝑅(𝛿)(𝜆) that

‖𝜓𝑅(𝛿)(𝜆)𝜓‖ℋ𝑙
−𝜈→ℋ𝑙

−𝜈
6𝑀(1 + |𝜆|)−1, |𝜆| > 𝑀 ′′′, 𝜆 ∈ 𝑆.

Therefore,
‖𝑅(𝛿)(𝜆)‖ℋ𝑙

−𝜈→ℋ𝑙
−𝜈

6𝑀(1 + |𝜆|)−1, 𝜆 ∈ 𝑆, |𝜆| > 𝑀1,

where 𝑀1,𝑀
′′′ are independent of 𝛿.

Now let us prove that

(𝒜− 𝜆𝐸)(𝒜(𝛿) − 𝜆𝐸)−1 = 𝐸 + Γ𝛿(𝜆),

where
‖Γ𝛿(𝜆)‖ℋ𝑙

−𝜈→ℋ𝑙
−𝜈

6𝑀𝛿, 𝜆 > 𝜆′(𝛿), 𝜆 ∈ 𝑆. (5.1)

For 𝑢, 𝑣 ∈ ℋ−𝜈 , one has

< (𝒜− 𝜆𝐸)(𝒜(𝛿) − 𝜆𝐸)−1𝑢, 𝑣 >=< 𝑢, 𝑣 > +

+ < (𝑎(𝑡) − 𝑎𝛿(𝑡))𝜌
𝜃(𝑡)𝜕𝑚𝑡 (𝒜𝛿 − 𝜆𝐸)−1𝑢, 𝜌𝜃(𝑡)𝜕𝑚𝑡 𝑣 > .

The second addend does not exceed

𝛿‖(𝒜(𝛿) − 𝜆𝐸)−1𝑢‖ℋ𝑙
𝜈
|𝑣|ℋ𝑙

𝜈
6𝑀𝛿|𝑢|ℋ𝑙

−𝜈
|𝑣|ℋ𝑙

𝜈
, 𝜆 > 𝜆′(𝛿), 𝜆 ∈ 𝑆

by module, which proves (5.1). Similar statement is valid for the selfadjoint bilinear form itself
as well. Whence,

𝑘𝑒𝑟 (𝒜− 𝜆𝐸)−1 = 0, |𝜆| > 𝑀, 𝜆 ∈ 𝑆.

Thus, for 𝜆 ∈ 𝑆, |𝜆| > 𝑀 :

(𝒜− 𝜆𝐸)−1 = (𝒜(𝛿) − 𝜆𝐸)−1(𝐸 + Γ𝛿(𝜆))−1 =

= (𝒜(𝛿) − 𝜆𝐸)−1(𝐸 + Γ𝛿
0(𝜆)),

where
‖Γ𝛿

0(𝜆)‖ℋ𝑙
−𝜈→ℋ𝑙

−𝜈
6𝑀 ′𝛿,

4 < 𝜈 < 2|𝜆|, 𝜆 ∈ 𝑆, |𝜆| > 𝜆′(𝛿).

On the basis of this equality and according to the previous scheme, let us prove that
contraction of 𝐴 on ℋ𝑙 of the operator 𝒜 has the following properties:

(𝑖)𝐴 is a unique closed operator such that

𝐷(𝐴) ⊂ ℋ𝑙
+, (𝐴𝑢, 𝑣) = 𝒜[𝑢, 𝑣], ∀𝑢 ∈ 𝐷(𝐴), 𝑣 ∈ ℋ𝑙

+,

(𝑖𝑖) ‖(𝐴− 𝜆𝐸)−1‖ℋ𝑙→ℋ𝑙 6𝑀(1 + |𝜆|)−1, 𝜆 ∈ 𝑆, |𝜆| > 𝑀.
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Upon application of Theorem 6.4.2 from [23], on the basis of the estimate (𝑖𝑖), the following
result is obtained:

Theorem 5.1. The Fourier series of any vector function 𝑓 ∈ ℋ𝑙 is summed over the system
of root vector functions of the operator 𝐴 to 𝑓 by the Abel method with the brackets of the order
𝛾 = 1

2𝑚
+ 𝜀 with sufficiently small 𝜀 > 0.

The concept of summability by the Abel method is described in [14,26]. The method was
introduced by Lidskii [26]. The works [21, 22, 27-30] should also be mentioned (see also
[31,Ch.2.§1.3, 32]).
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