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THE LOWER ESTIMATE OF DECAY RATE OF SOLUTIONS

FOR DOUBLY NONLINEAR PARABOLIC EQUATIONS

E.R. ANDRIYANOVA, F.KH. MUKMINOV

Abstract. Existence of a strong solution to a doubly nonlinear parabolic equation
in unbounded domains is established by the method of Galerkin’s approximations. In
earlier publications, existence was proved usually in bounded domains by approximating the
evolutionary part of the equation by finite differences. Usage of Galerkin’s approximations
makes it possible to prove the second integral identity. On the basis of the identity, the
lower estimate of the decay rate of the solution norm is proved in bounded domains. Similar
estimates for quasilinear parabolic equations were established earlier by Tedeev A.F. and
Alikakos N., Rostmanian R.

Keywords: doubly nonlinear parabolic equation, decay rate of solution, lower estimates,
existence of strong solution.

1. Introduction

Let Ω be an unbounded domain of the space Rn = {x = (x1, x2, . . . , xn)}, n ≥ 2. The first
mixed problem

(|u|α−2u)t =
n∑
i=1

(|uxi |p−2uxi)xi , α, p > 1, (t,x) ∈ D; (1)

u(t,x)
∣∣∣
S

= 0, S = {t > 0} × ∂Ω; u(0,x) = u0(x), u0(x) ∈ Lα(Ω) (2)

is considered in a cylinder domain D = {t > 0}×Ω for a doubly nonlinear parabolic equation.
Existence and uniqueness of the problem solution were considered by Raviart P.A. [1], Lions

J.L.[2], Bamberger A.[5], Grange O., Mignot F.[6], Alt, H.W., Luckhaus, S.[7] Bernis F.[10]
and others. The problems were basically considered in bounded domains. A strong solution of
the problem in a bounded domain was established by Raviart P.A. by means of substitution of
the evolutionary derivative by a difference relation. Bernis F. proved that a weak solution to
the problem exists in an unbounded domain by means of passing to the limit from solutions
constructed in bounded domains by Grange O., Mignot F. However, working with a weak
solution one comes across difficulties in investigating, e.g., a decrease of solution when t→∞.
Bamberger A. established uniqueness of the strong positive solution to the problem.

We suggest a usual method for constructing the strong solution to the problem in an un-
bounded domain at once based on Galerkin’s approximations. Their constructions is little
different from that suggested by Lions J.L. in [4] for the case α = 2. The suggested method
can be adapted for a significantly wider class of equations.

Let us define the space W 1
α,p(Ω) as supplements C∞0 (Ω) with respect to the norm

||v||W 1
α,p

= ||v||α + ||∇v||p,
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where ||v||α = ||v||α,Ω, ||v||α,Q =

(∫
Q

vαdx

)1/α

.

Denote by V (DT ) supplements C∞0 (DT ) with respect to the norm

||v||V = ||v||α,DT + ||∇v||p,DT .

The function u ∈ V (DT ) satisfying the identity∫
DT

(
−|u|α−2uϕt +

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂ϕ

∂xi

)
dxdt =

∫
Ω

|u0|α−2u0ϕ(0, x)dx+ (3)

+(f, ϕ)DT

when ϕ ∈ C∞0 (DT
−1) is said to be the generalized solution to the problem (1),(2). Here and in

what follows (f, ϕ)Q indicates values of the generalized function f at the element ϕ ∈ C∞0 (Q),
where Q is a domain in Rn or in R× Rn.

Theorem 1. Let f, ft ∈ (V (DT ))′, u0 ∈ W 1
α,p(Ω). Then, there is a generalized solution u to

the problem (1),(2) satisfying the conditions

u ∈ L∞((0, T );W 1
α,p(Ω)), (4)

|u|
α−2
2 ut ∈ L2(DT ), α > 1, (5)

ut ∈ Lα(DT ), C([0, T ];Lα(Ω)) when α ∈ (1, 2) (6)

|u|α−2ut ∈ Lα′(DT ) when α ≥ 2. (7)

Galerkin’s approximations are smooth functions. This facilitates the proof of their various
estimates, which afterwards extend to solution of the problem (1),(2) by passage to the limit.
In particular, the estimates

c(1 + t)−1/(p−α) ≤ ‖u(t)‖Lα(Ω) 6Mt−1/(p−α), t > 0 (8)

are determined in case of a bounded domain when p > α. The estimates (8) when α = 2 are
obtained by A.F. Tedeev [19] and Alikakos N., Rostmanian R. [15] for the Cauchy problem.
Exact two-sided estimates of the decay rate for the solution norm of a linear and quasilinear
parabolic equation in an unbounded domain are established in works by L.M. Kojevnikova [16]
and R. Kh. Karimov, L.M. Kojevnikova. [17].

2. Proof of the existence theorem

Conditions on f ensure that

f ∈ C([0, T ]; (W 1
α,p(Ω))′).

In particular, f(0) ∈ (W 1
α,p(Ω))′.

First, consider the case α > 2. Let us choose the sequence ωk ∈ C∞0 (Ω) of linearly indepen-
dent functions whose linear envelope is dense in W 1

α,p(Ω). Let us assume that Im = ∪mk=1suppωk.
Galerkin’s approximations to the solution will be sought in the form

um(t, x) =
m∑
k=1

cmk(t)ωk(x),
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where the functions cmk(t) are determined by the equations∫
Ω

(
ωj
∂

∂t

(
um
bm

+ |um|α−2um

)
+

n∑
i=1

|umxi|p−2umxi(ωj)xi

)
dx = (f, ωj)Ω, (9)

j = 1, 2, ...,m.

The numbers bm > 0 will be chosen later. Let us verify that Equations (9) are solvable with
respect to the derivatives c′mk. Obviously, Equations (9) have the form

Ajk(t)c
′
mk = Fj(cm1 , cm2 , ..., cmm) + fj(t).

The matrix of coefficients

Ajk(t) =

∫
Ω

(
1

bm
+ (α− 1)|um|α−2

)
ωjωkdx

for every t is the Gram matrix of a system of linearly independent vectors ωk, k = 1, 2, ...,m
and therefore, it has an inverse one. Equations (9) under the initial conditions cmk(0), chosen
so that um(0, x)→ u0(x), provide cmk(t). At first, these functions belong to a small interval of
time, but since the Galerkin’s approximations are limited, they can be defined at an infinite
time interval. Let us select the numbers bm so that ||um(0)||22/bm → 0 when m→∞.

Let us determine the estimates for Galerkin’s approximations. Multiplying Equation (9) by
cmj(t) and summing over, we obtain∫

Ω

(
um

(
um
bm

+ |um|α−2um

)
t

+
n∑
i=1

|umxi |p
)
dx = (f, um)Ω.

Upon integration with respect to t, we have∫
Ω

(
u2
m(t)

2bm
+
α− 1

α
|um(t)|α

)
dx+ ||∇um||pp,Dt0 = (f, um)Dt0+ (10)

+

∫
Ω

(
u2
m(0)

2bm
+
α− 1

α
|um(0)|α

)
dx.

The latter integral is limited by a constant independent of m in the right-hand side due to
convergencies selected above. Furthermore,

|(f, um)Dt0 | 6
t∫

0

||um(τ)||W 1
α,p
||f(τ)||(W 1

α,p)′dτ 6 c

t∫
0

(||um(τ)||α + ||∇um(τ)||p)dτ 6

6 c(ε) + ε

t∫
0

(||um(τ)||αα + ||∇um(τ)||pp)dτ.

Therefore, it follows from (10) and the Gronwall lemma that the sequence um is limited in
spaces C([0, T ];Lα(Ω)) and V (DT ).

Let us multiply equations (9) by c′mj(t) and make the summation:∫
Ω

(
u′m

(
um
bm

+ |um|α−2um

)
t

+
n∑
i=1

|umxi |p−2umxiu
′
mxi

)
dx = (f, u′m)Ω.
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integrating with respect to t, we obtain∫
DT0

(
1

bm
+ (α− 1)|um|α−2

)
(u′m)2dxdt+

1

p
||∇um(T )||pp =

=
1

p
||∇um(0)||pp + (f, u′m)DT . (11)

Let us transform the latter addend by integration by parts

(f, u′m)DT = (f(T ), um(T ))Ω − (f(0), um(0))Ω − (f ′, um)DT .

Note that

|(f(T ), um(T ))Ω| 6 ||f(T )||(W 1
α,p)′ ||um(T )||W 1

α,p
6 c(ε) + ε(||um(T )||αα + ||∇um(T )||pp).

Since um is limited in the space V (DT ), we have

|(f ′, um)DT | 6 ||ft||(V (DT ))′ ||um||V (DT ) 6 c.

Therefore, from the equalities (11) we establish the boundedness of the sequences |um|
α−2
2 u′m,

and ∇um in the spaces L2(DT ), and C([0, T ];Lp(Ω)), respectively. The established facts allow
us to choose a subsequence umk converging weakly in the spaces indicated below. In order to
simplify the notation, the subindex k will be omitted.

um → u weakly in V (DT ).

A(um) = −
n∑
i=1

∂

∂xi

(
|umxi |p−2umxi

)
→ χ weakly in (V (DT ))′.

(
|um|

α−2
2 um

)′
→ ũ weakly in L2(DT ).

In what follows, we will prove that one can choose the sequence umk converging to u almost

everywhere in DT . This will help to determine that ũ =
(
|u|α−2

2 u
)′
.

The sequence um ∈ C([0, T ];W 1
α,p(Ω)) is limited. For every bounded domain Q ⊂ Ω with

a smooth boundary, one obtains compactness of the injection L1(Q) ⊂ W 1
1 (Q). Therefore,

by means of a diagonal process one can single out a subsequence umk(ts) → hs strongly in
L1(Q) on a countable dense subset ts ⊂ [0, T ]. Choosing a subsequence once more, we can also
consider (omitting the subindices), that um(ts, x)→ hs(x) almost everywhere in Q for every ts.
Likewise, when α ≤ p, we can consider that the sequence um(ts) → hs strongly in Lα(Q) for
every ts.

Let us us determine now an equicontinuity with respect to t of the sequence vm(t) in L2(Ω),

vm = |um|
α−2
2 um.

||vm(t2)− vm(t1)||2 6
t2∫
t1

||v′m(t)||2dt 6 (12)

|t2 − t1| t2∫
t1

||v′m(t)||22dt


1
2

6 c|t2 − t1|
1
2 .

Furthermore, the sequence vm(t) is bounded in the space C([0, T ];L2(Ω)). Then, one can single
out the subsequence vmk(t), converging weakly in L2(Ω) with the same ts as above. Together
with the above convergence almost everywhere in Q ⊂ Ω, this entails a strong convergence in
L1(Q) for every ts (see J.L. Lions [4]).
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One can readily determine the uniform mutual convergence vm(t) with respect to the norm
L1(Q):

||vn(t)− vm(t)||1,Q = ||vn(t)− vn(tsk) + vn(tsk)− vm(tsk) + vm(tsk)− vm(t)||1,Q 6

6 CQ|t− tsk |
1
2 + ||vn(tsk)− vm(tsk)||1,Q

for the bounded domain Q from (12). Selecting a finite set of numbers tsk with a small step
and then increasing n,m, one achieves the smallness of the right-hand side uniform in t.

Thus, the convergence vmk → v in C([0, T ];L1(Q)) is determined. Convergence will also
occur in L1((0, T ) × Q) therefore, one can single out a subsequence converging in (0, T )×Q
almost everywhere. Since Q is arbitrary, the diagonal process can single out the subsequence
vmk , converging in DT almost everywhere. Then, the sequence umk will converge as well almost
everywhere in DT to u (Lemma 1.3. J.L. Lions [4]). Thus, it is established that vmk → v =

|u|α−2
2 u.

Furthermore, (v′m, ϕ)DT = −(vm, ϕ
′)DT . Turning to the limit, we obtain

(ũ, ϕ)DT = −(v, ϕ′)DT .

Whence, ũ = v′ = (|u|α−2
2 u)′.

Let us demonstrate that the sequence |um|α−2u′m is bounded in Lα′(D
T ). Indeed,

|(|um|α−2u′m, ϕ)DT | =
∣∣∣(|um|α−2

2 u′m, ϕ|um|
α−2
2

)
DT

∣∣∣ 6 C||ϕ|um|
α−2
2 ||2,DT

6 C||ϕ||α,DT ||um||
α−2
2

α,DT
6 C1||ϕ||α,DT .

Then, we can consider that |um|α−2u′m → |u|α−2u′ weakly in Lα′(D
T ).

Let us prove the equality χ = A(u). To this end, integral correlations are necessary. Let us
multiply Equation (9) by a smooth function dj(t), integrate it with respect to t and proceed to
the limit when m→∞, denoting dj(t)ωj(x) by ϕ in the final expression:

((|u|α−2u)′, ϕ)DT + (χ, ϕ)DT = (f, ϕ)DT . (13)

Note, that(
u′m
bm
, ϕ

)
DT

=
1

bm
(−(um, ϕ

′)DT + (um(T ), ϕ(T ))Ω − (um(0), ϕ))→ 0,

due to boundedness of um in C([0, T ];Lα(Ω)), and to bm →∞. Thus, u is a generalized solution
of the problem (1),(2), if it is determined that χ = A(u).

Obviously, the function u ∈ V (DT ) can be approximated by linear combinations

N∑
j=1

dj(t)ωj(x).

Therefore, (13) yields

(f − χ, u)DT = ((|u|α−2u)′, u)DT =
α− 1

α
(||u(T )||αα − ||u(0)||αα) . (14)

Note that the inclusion v, v′ ∈ L2(DT ) entails v ∈ C([0, T ];L2(Ω)) and ‖u(t)‖α ∈ C([0, T ]), α > 1.
In what follows, standard arguments of monotony are given. One can easily verify that

Xm =

T∫
0

(A(um(t))− A(h(t)), um(t)− h(t))Ωdt ≥ 0 ∀h ∈ V (DT ). (15)
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One can readily deduce the relations

(A(um), um)DT = (f, um)DT +
α− 1

α
(||um(0)||αα − ||um(T )||αα) +

+
1

2bm

(
||um(0)||22 − ||um(T )||22

)
from Equations (9). Therefore,

Xm = (f, um)DT +
α− 1

α
(||um(0)||αα − ||um(T )||αα)+

+
1

2bm

(
||um(0)||22 − ||um(T )||22

)
− (A(um), h)DT − (A(h), um − h)DT .

Whence, (since lim inf ||um(T )||α ≥ ||u(T )||α)

lim supXm 6 (f, u)DT +
α− 1

α
(||u0||αα − ||u(T )||αα)− (χ, h)DT − (A(h), u− h)DT .

Applying (14), one obtains

(χ− A(h), u− h) ≥ 0

from (15). Assume that h = u− λω, λ > 0, ω ∈ V (DT ) :

λ(χ− A(u− λω), ω)DT ≥ 0.

Turning λ→ 0, we have (χ− A(u), ω) ≥ 0, ∀ω. Whence, χ = A(u).
Let us assume now that α 6 2. Galerkin’s approximations will be sought for in the same

form, but the functions cmk(t) are to be determined from the equations∫
Ω

(
ωj
∂

∂t

(
v
α
2
−1

m um

)
+

n∑
i=1

|umxi |p−2umxi(ωj)xi

)
dx = (16)

= (f, ωj)Ω, j = 1, 2, ...,m.

Here, the functions vm = u2
m + εm are introduced for the sake of regularization, the numbers

εm > 0 are to be selected in what follows. Let us verify that Equations (16) are solvable with
respect to the derivatives c′mk. Manifestly, they have the form

Ajk(t)c
′
mk = Fj(cm1 , cm2 , ..., cmm) + fj(t).

The coefficients matrix

Ajk(t) =

∫
Ω

((α− 1)u2
m + εm)v

α
2
−2

m ωjωkdx

for every t is the Gram matrix of the system of linearly independent vectors ωk, k = 1, 2, ...m
and therefore, has the inverse one. One obtains the functions cmk(t) from Equations (16) with
the initial conditions cmk(0), selected so that um(0, x)→ u0(x).

Let us set the estimates for Galerkin’s approximations. Multiplying Equations (16) by cmj(t)
and summing over, we obtain∫

Ω

(
um

(
(α− 1)v

α
2
−1

m − εm(α− 2)v
α
2
−2

m

)
u′m +

n∑
i=1

|umxi |p
)
dx = (f, um)Ω.

Since umu
′
m = v′m/2, upon integrating with resect to t one has∫

Im

(
α− 1

α
vm(t)

α
2 − εmvm(t)

α
2
−1

)
dx+ ||∇um||pp,Dt0 = (f, um)Dt0 (17)
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+

∫
Im

(
α− 1

α
vm(0)

α
2 − εmvm(0)

α
2
−1

)
dx.

The latter integral in the right-hand side is bounded by a constant independent of m due to
the convergencies selected above. Similarly to the above,

|(f, um)Dt0| 6 c(ε) + ε

t∫
0

(||um(τ)||αα + ||∇um(τ)||pp)dτ.

Note that the choice εm ensures the validity of the inequalities∫
Im

εmvm(t)
α
2
−1dx ≤

∫
Im

ε
α
2
mdx ≤ ε

α
4
m. (18)

Therefore, (17) and the Gronwall lemma entail the uniform boundedness of the integrals∫
Im

vm(t)
α
2 dx with respect to t and m and hence, of the sequence um in spaces C([0, T ];Lα(Ω))

and V (DT ).
Let us multiply Equations (16) by c′mj(t) and make the summation:∫

Ω

(
(u′m)2((α− 1)u2

m + εm)v
α
2
−2

m +
n∑
i=1

|umxi |p−2umxiu
′
mxi

)
dx = (f, u′m)Ω.

Integration with respect to t provides∫
DT0

(u′m)2((α− 1)u2
m + εm)v

α
2
−2

m dxdt+
1

p
||∇um(T )||pp = (19)

=
1

p
||∇um(0)||pp + (f, u′m)DT .

Similarly to the above, one has |(f, u′m)DT | 6 c. Moreover, (α − 1)u2
m + εm ≥ (α − 1)vm.

Assuming that g(u) =
u∫
0

(t2 + εm)
α−2
4 dt, we determine from the equalities (19) the boundedness

of the sequences v
α−2
4

m u′m = (g(um))′ and ∇um in the spaces L2(DT ) and C([0, T ];Lp(Ω)),
respectively. The established facts allow us to choose the subsequence umk , converging weakly
in the below spaces. For the sake of simplicity in notation, the subindex k is omitted.

um → u weakly in V (DT ).

A(um)→ χ weakly in (V (DT ))′.

(g(um))′ → ũ weakly in L2(DT ).

In what follows, we prove that one can chose a subsequence umk , converging to u almost

everywhere on DT . This allows us to determine that ũ = |u|α−2
2 u′.

Proceeding as above, one can consider (omitting subindices) that um(ts, x) → hs(x) almost
everywhere in Q for every ts, and when α ≤ p one can consider that the sequence um(ts)→ hs
strongly in Lα(Q) for every ts.

Let us determine now the equicontinuity with respect to t of the sequence g(um(t)) in L2(Q).

||g(um(t2))− g(um(t1))||2,Q 6

t2∫
t1

||(g(um(t)))′||2,Ωdt 6
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6

|t2 − t1| t2∫
t1

||(g(um(t)))′||22dt


1
2

6 c|t2 − t1|
1
2 . (20)

The sequence g(um(t)) is bounded in the space C([0, T ];L2(Q)). Then, one can singe out
the subsequence g(umk(t)), converging weakly in L2(Ω) with ts the same as above. Together
with the convergence almost everywhere in Q ⊂ Ω determined above, this entails a strong
convergence in L1(Q) for every ts. For a bounded domain Q from (20) this leads to a uniform
mutual convergence g(um(t)) according to the norm L1(Q). Thus, the convergence g(umk)→ v
is determined in C([0, T ];L1(Q)). Convergence will also occur in L1((0, T )×Q), therefore, one
can single out a subsequence, converging in (0, T )×Q almost everywhere. Since Q is arbitrary,
we can single out the subsequence g(umk), converging in DT almost everywhere by means of
the diagonal process. Then the sequence umk will converge almost everywhere in DT to u as

well. Thus, it is determined that g(umk)→ v = 2
α
|u|α−2

2 u. Meanwhile, ũ = |u|α−2
2 u′.

When α 6 2, the sequence u′m is bounded in Lα(DT ). Indeed, (19) provides that

|(u′m, ϕ)DT | = |
(
v
α−2
4

m u′m, ϕv
2−α
4

m

)
DT
| 6 C||ϕv

2−α
4

m ||2,DTm

6 C||ϕ||α′,DT ||vm||
2−α
4

α
2
,DTm

6 C1||ϕ||α′,DT ; DT
m = (0, T )× Im.

Therefore, one can consider that u′m → u′ weakly in Lα(DT ), and then u ∈ C([0, T ];Lα(Ω)).
Let us prove the equality χ = A(u). To this end, integral relations are necessary. Let us

multiply Equations (16) by a smooth function dj(t), integrate with respect to t ∈ (0, T ) and
integrate by parts in the first term. Then, denoting dj(t)ωj(x) by ϕ, we have

(v
α
2
−1

m (T )um(T ), ϕ(T ))Ω − (v
α
2
−1

m um, ϕt)DT + (|∇um|p−2∇um, ϕxi)DT

= (f, ϕ)DT + (v
α
2
−1

m (0)um(0), ϕ(0))Ω.

Note that |v
α
2
−1

m um| 6 v
α
2
−1

m v
1
2
m ∈ C([0, T ], Lα′(Q)), since

(
v
α−1
2

m

)α′
= v

α
2
m is a bounded sequence

in C([0, T ];L1(Q)). Hence, one can single out a subsequence so that the weak convergencies

v
α
2
−1

m um → |u|α−2u in Lα′(D
T ) and v

α
2
−1

m (T )um(T ) → |u|α−2u(T ) in Lα′(Ω) are provided. The
fact that the limiting functions will be of this very type, is provided by the above determined
convergence of the subsequence um almost everywhere in DT , and almost everywhere in Ω when
t = T as well. Then, upon passage to the limit m→∞, we have

(|u|α−2(T )u(T ), ϕ(T ))Ω − (|u|α−2u, ϕt)DT + (χ, ϕ)DT (21)

= (f, ϕ)DT + (|u|α−2(0)u(0), ϕ(0))Ω.

Substituting ϕ = u into (21), we obtain

(f − χ, u)DT =
α− 1

α
(||u(T )||αα − ||u(0)||αα) . (22)

The correlation (21) indicates that u is a generalized solution to the problem (1),(2), if it is
determined that χ = A(u).

Further, standard arguments of monotony follow. One can readily deduce the relations

(A(um), um)DT = (f, um)DT +

∫
Im

(
α− 1

α
v
α
2
m(0)− εmv

α
2
−1

m (0)

)
dx

−
∫
Im

(
α− 1

α
v
α
2
m(T )− εmv

α
2
−1

m (T )

)
dx (23)
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from Equations (17).
Let us make use of the inequality (18), then (23) entails

Xm 6 (f, um)DT +
α− 1

α

∫
Im

(
v
α
2
m(0)− v

α
2
m(T )

)
dx+ 2ε

α
4
m−

−(A(um), h)DT − (A(h), um − h)DT .

Whence, (since lim inf ||v
α
4
m(T )||2 ≥ ||u(T )||α and εm → 0)

lim supXm 6 (f, u)DT +
α− 1

α
(||u0||αα − ||u(T )||αα)− (χ, h)DT − (A(h), u− h)DT .

Then, similarly to the case α > 2, it is proved that χ = A(u). The theorem is proved.

3. Lower estimate for the solution norm in a bounded domain

Let us assume that α 6 p and the domain Ω is bounded. Let us determine lower estimates of
decay rate of solutions when t→∞. Since the uniqueness of the solution is not established so
far, in fact, we will determine lower estimates only for the constructed solution in the domain
DT for every sufficiently large T .

First, consider the case α ≥ 2. Let us introduce the notation

E(t) =

∫
Ω

(
u2
m(t)

2bm
+
α− 1

α
|um(t)|α

)
dx,

H(t) = ||∇um(t)||pp.

Upon differentiation with respect to t, Formula (10) for f = 0 takes the form

E ′ +H = 0. (24)

Formula (11) is written after differentiation as follows:∫
Ω

(
1

bm
+ (α− 1)|um(t)|α−2

)
u′2m(t)dx+

1

p
H ′(t) = 0. (25)

The estimates

(E ′)2 =

∫
Ω

(
umu

′
m(t)

bm
+ (α− 1)|um(t)|α−2u′m(t)

)
dx

2

6


∫

Ω

u2
m(t)

bm
dx

∫
Ω

u′2m(t)

bm
dx

 1
2

+ (α− 1)

∫
Ω

|um|αdx
∫
Ω

|um|α−2u′2m(t)dx

 1
2


2

6

hold. Applying the Cauchy-Bunyakowsky inequality for the scalar product in R2, we deduce

6

∫
Ω

u′2m(t)

bm
dx+ (α− 1)

∫
Ω

|um|α−2u′2m(t)dx

∫
Ω

u2
m(t)

bm
dx+ (α− 1)

∫
Ω

|um|αdx

 ,

whence,

(E ′)2 6 −α
p
H ′(t)E(t). (26)
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By means of (24), the latter is rewritten in the from

−HE ′ 6 −1

γ
EH ′, γ =

p

α
.

Whence, γE
′

E
≥ H′

H
or, upon integration,

H(t) 6
H(0)Eγ(t)

Eγ(0)
.

Then,

E ′(t) = −H(t) ≥ −H(0)Eγ(t)

Eγ(0)
,

or

E ′

Eγ
≥ − H(0)

Eγ(0)
.

Whence,

E1−γ(t)− E1−γ(0) 6 (γ − 1)
H(0)t

Eγ(0)
.

Thus,

E(t) ≥ E(0)

(
1 + (γ − 1)

H(0)t

E(0)

) 1
1−γ

. (27)

For a fixed t ∈ [0, T ] when α ≤ p in case of a bounded domain we can single out the sequence
umk(t), converging strongly in the space Lα(Ω). Therefore,

Em(t)→ α− 1

α
||u(t)||αα.

The functions

um(t) =
n∑
k=1

cmk(t)ωk

belong to the linear envelope of the functions ω1, ω2, ..., ωm. All norms are equivalent in a
finite-dimensional space therefore,∫

Ω

u2
m(t)dx 6 cm‖um(t)‖2

α 6 c̃m.

Let us choose the numbers bm so that c̃m 6 bm/m. Upon passing to the limit in (27) when
m→∞, we obtain

||u(t)||αα ≥ ||u(0)||αα(1 + C(u0)t)−
α
p−α . (28)

Let α 6 2. In this case, let us use the notation

E(t) =

∫
Im

(
α− 1

α
v
α
2
m − εmv

α−2
2

m

)
dx+ 2ε

α
4
m.

Note, that (18) entails the inequality E(t) ≥ ε
α
4
m.

Let us differentiate the formula (17) with respect to t and rewrite it for f = 0:

E ′ +H = 0. (29)



THE LOWER ESTIMATE OF DECAY RATE OF SOLUTIONS FOR PARABOLIC EQUATIONS . . . 13

Formula (19) entails that∫
Im

((α− 1)u2
m + ε)v

α−4
2

m u′2mdx = −1

p
H ′(t). (30)

For every ν > 0, the following inequalities are evident:

(E ′(t))2 =

∫
Im

(
α− 1

2
v
α−2
2

m (2umu
′
m)− εm

α− 2

2
v
α−4
2

m (2umu
′
m)

)
dx

2

6
1

4

(α− 1)

∫
Im

v
α−2
2

m (νu2
m + u′2m/ν)dx+ εm(2− α)

∫
Im

v
α−4
2

m (νu2
m + u′2m/ν)dx

2

6
1

4

− 1

pν
H ′ + αE(t)ν + εm(3− α)ν

∫
Im

v
α−2
2

m dx− 2ανε
α
4
m

2

.

Invoking (18), we obtain

(E ′(t))2 6
1

4

(
− 1

pν
H ′ + αE(t)ν

)2

.

Minimizing the right-hand side with respect to ν, we establish (26).
Further reasoning is similar to the case α > 2.
Let us demonstrate that the estimate (28), determined for a bounded domain, is exact. Let

us use an inequality of the Steklov-Friedrichs type

‖ϕ‖p ≤ C‖∇ϕ‖p, ∀ ϕ ∈ C∞0 (Ω).

If p > α, the inequalities

‖ϕ‖α ≤ C1‖ϕ‖p ≤ C2‖∇ϕ‖p (31)

hold. Differentiating (14) or (22) with respect to T , by means of (31), written for u, we find
that

α− 1

α

d

dt
‖u(t)‖αα = −(A(u), u(t))Ω = −‖∇u(t)‖pp ≤ −C−1

2 ‖u(t)‖pα.

Solving the differential inequality, we obtain the estimate

||u(t)||αα 6 ||u(0)||αα(1 + c(u0)t)−
α
p−α ,

proving the precision of the inequality (28).
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