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THE CONVERGENCE DOMAIN
FOR SERIES OF EXPONENTIAL MONOMIALS

O.A. KRIVOSHEYEVA

Abstract. Problems of convergence for exponential series of monomials are studied in
the paper. Exponential series, Dirichlet’s series and power series are particular cases of
these series. The space of coefficients of exponential series of monomials converging in the
given convex domain in a complex plane is described. The complete analogue of the Abel
theorem for these series is formulated with a natural restriction. In particular, results on
continuation of convergence of exponential series follow from this analogue. A complete
analogue of the Cauchy-Hadamard theorem is obtained as well. It provides a formula for
finding the convergence domain of these series by their coefficients. The obtained results
include all earlier known results connected with the Abel and Cauchy-Hadamard theorems
for exponential series, Dirichlet’s series and power series as particular cases.
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1. Introduction

The paper is devoted to investigation of convergence of series of exponential monomials, i.e.
series of the form

∞,mk−1∑
k=1,n=0

dk,nz
n exp(λkz). (1.1)

The problem of describing the space of coefficients of the converging series (1.1), the character
of convergence of the series are investigated, the domain of their convergence is described, and
the problem of continuation of convergence of the series (1.1) is studied.

Let Λ = {λk,mk}∞k=1 be a multiple sequence, where λk are complex numbers numbered with
respect to nondecreasing moduli, |λk| → ∞ when k →∞, and mk are natural numbers. Certain
known characteristics of the sequence Λ will be of use:

m(Λ) = lim
k→∞

mk

|λk|
, σ(Λ) = lim

j→∞

ln j

|ξj|
,

where ξk is a non-decreasing in modulus sequence, composed of points λk, and every λk occurs
in it mk times exactly.

The subject related to series of exponential monomials and their particular cases, namely
series of exponents (i.е. series of the form (1.1), where mk = 1, k = 1, 2, . . .), the Dirichlet series
(i.e. series of the form (1.1), where mk = 1 and λk are positive integers) and the Taylor series
has a rich history. Their investigation originates from works of Taylor, Cauchy, Hadamard,
Abel, and Dirichlet. The above problems for such series were studied by E. Hille [3], G.L. Lunts
[4,5], A.F. Leont’ev [1,2], A.V. Bratishchev [6] and other mathematicians. Series of exponential
monomials are a natural generalization of the series of exponents. The theory of the latter is
presented completely enough in the monograph [1] by A.F. Leont’ev. The fundamental result of
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the theory of series of exponentials has become classical and belongs to A.F. Leont’ev as well.
He managed to prove that any function, analytical in a convex domain D ⊂ C, can be expanded
into a series of exponentials with fixed coefficients λ1, λ2, . . . , provided that certain conditions
are imposed on the coefficients. As it is known, exponents (and they only) are eigenfunctions
of a differential operator. Therefore, the problem of representation by exponential series can be
considered as a problem of expansion in terms of eigenfunctions of an operator.

Denote the space of functions, analytical in the domain D, having the topology of a uniform
convergence on compact subsets D, by H(D). Since there is a sufficiently large supply of
eigenfunctions of a differential operator in H(D) (all exponents, to be more exact), there is
a variety of sets of coefficients λ1, λ2, . . ., that allow one to obtain the representation of all
functions from H(D) in terms of exponential series. If we turn from the whole space H(D)
to its closed subspace W , which is invariant with respect to the differential operator (e.g. the
space of solutions of a homogeneous convolution equation or a system of such equations), it
appears that as a rule, eigenfunctions of the operator by themselves (in this case, there is only
a countable set of eigenfunctions) are not sufficient to expand all functions from W. However,
the situation changes if together with eigenfunctions of the differential operator in W, adjoint
functions are considered. The latter functions are exponential monomials

zn exp(λkz), n = 1, 2, . . . ,mk − 1,

where mk is the multiplicity of the eigenvalue λk. The problem of expanding functions from
a closed subspace W ⊂ H(D), invariant with respect to the differential operator, in terms of
eigen and adjoint functions of the differential operator is termed as the fundamental principle
problem. Such term is due to the fact that in a particular case, when the invariant subspace
is a space of solutions to a linear homogeneous differential equation with constant coefficients,
the possibility to expand an arbitrary solution in terms of eigen and adjoint functions of the
differential operator is called the fundamental L. Euler principle. Thus, issues related to the
behaviour of the series of the form (1.1) become of importance. As well as in the theory of
exponential series, the priorities for such series, particularly for the power Dirichlet series, are the
problems of describing classes of convergence domains, including the problem on continuation of
convergence, and the character of the series convergence, as well as recovery of the convergence
domain by coefficients of the series. In the theory of power series, the first two problems are
solved by means of the Abel theorem (it is more often called the Abel lemma), and the last
one is solved by means of the Cauchy-Hadamard theorem. For the Dirichlet series, there is
an analogue of the Abel theorem (see, e.g., [2], Chapter 2, Lemma 1.1), that claims that the
convergence of the Dirichlet series

∞∑
k=1

dk exp(λkz)

at one point z0 entails its convergence in the half-plane {z ∈ C : Re z < Re z0}.
If the value σ(Λ) vanishes, then (see [2], Chapter 2, Theorem 1.1) the convergence is absolute
and uniform in any half-plane {z ∈ C : Re z < Re z0 − ε}, where ε > 0.

Moreover, for the Dirichlet series, there is a complete analogue of the Cauchy-Hadamard
theorem, where the distance from the origin of coordinates to the boundary line of the half-
plane of convergence is calculated provided that σ(Λ) = 0 (see [2], Chapter 2, Theorem 1.2).
In case of exponential series, the complete analogue of the Abel theorem does not exist. There
is a result (see [3], [2], Chapter 2, Theorem 2.1) on the convex character of the set of points
of absolute convergence of an exponential series. The series converges uniformly on compact
subsets of the interior of this set (see [2], Chapter 2, Theorem 2.2). If σ(Λ) = 0, then the
simple and absolute convergence of the exponential series in a convex domain are equivalent
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(see [2], Chapter 2, Theorem 2.3). Moreover, there is an analogue of the Cauchy-Hadamard
theorem for exponential series (see [3], [4], [5] and [1], Theorem 3.1.3). It describes the domain
of convergence of an exponential series that results as an intersection of a family of half-planes.
Moreover, a formula for determining the distance from the origin of coordinates to the boundary
lines of these half-planes is given. Only results from [6] can be mentioned in case of general
series of the form (1.1). They prove that the domain of absolute convergence of the series (1.1)
is convex provided that m(Λ) = 0.

The present paper presents a complete analogue of the Abel theorem for series of exponential
monomials, and particularly, for exponential series provided that the conditions σ(Λ) = m(Λ) =
0 are satisfied. It is demonstrated that the domain of convergence of the series (1.1) is a convex
domain of a special form. It is proved that the point-to-point convergence of the series (1.1)
in the domain is equivalent to its absolute convergence, uniform convergence on compacts and
even to convergence in a stronger topology. An analogue of the Cauchy-Hadamard theorem
theorem is presented and it contains all the previous similar results for the Dirichlet series and
series of exponents as particular cases.

2. The space of coefficients of converging series

Let D be a convex domain in C. Let us describe the space of sequences of coefficients
{dk,n}∞,mk−1

k=1,n=0, that provide convergence of the series (1.1) in the domain. Denote by K(D) =
{Kp}∞p=1 the sequence of convex compacts in the domain D, exhausting it strictly, i.e. Kp ⊂
intKp+1, p = 1, 2, . . . and D =

⋃∞
p=1Kp. Here, the symbol int indicates the interior of the set.

For every p = 1, 2, . . . , introduce a Banach space of sequences of complex numbers

Qp = {d = {dk,n} : ||d||p = sup
k,n
|dk,n| expHKp(λk) <∞},

where Kp ∈ K(D) and

HM(ξ) = sup
z∈M

Re(zξ)

is the support function of the set M ⊂ C (to be exact, of the set complex conjugate to M). Let
Q(D) =

⋂
pQp. Determine the metric

ρ(d, d′) =
∞∑
p=1

2−p
||d− d′||p

1 + ||d− d′||p

in the space Q(D).
Obviously, Q(D) becomes the Frechet space with this metric. Note that due to the injection
Kp ⊂ intKp+1 and the definition of the support function, there is a positive number αp for
every p = 1, 2, . . . such that

HKp(ξ) + αp|ξ| 6 HKp+1(ξ), ∀ξ ∈ C. (2.1)

Hence, the inequalities

||d||1 6 ||d||2 6 . . . 6 ||d||p 6 . . .

hold for every element d ∈ Q(D).
Let us demonstrate that the space Q(D) coincides with the space of coefficients of series of

the form (1.1) converging in the domain D. But first, let us prove some auxiliary statements.
Lemma 2.1. The series
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∞∑
k=1

mk exp(−ε|λk|) (2.2)

converges for any ε > 0 if and only if σ(Λ) = 0.
Proof. Let us assume that σ(Λ) = 0, and {ξj} is a nondecreasing in module sequence

composed of points λk, and every λk occurs in it mk times exactly. Then, for every δ > 0, there
is a number N(δ) such that

ln j < δ|ξj|, j ≥ N(δ).

Fix ε > 0 and select δ < ε. One has

∞∑
j=N(δ)

exp(−ε|ξj|) <
∞∑

m=N(δ)

exp(−εlnj
δ

) =
∞∑

m=N(δ)

1

j
ε
δ

<∞.

Hence, the series (2.2) converges for any ε > 0. Let us demonstrate the converse. Let the latter
statement be true. Since terms of the series (2.2) are positive, their permutation does not affect
the convergence of the series. Therefore, one can suppose that λk are numbered with respect
to increasing moduli, i.e. |λ1| 6 |λ2| 6 . . .. Moreover, if the sequence {λk}∞k=1 is bounded, then
the series (2.2) diverge. Hence, |λk| → ∞, when k → ∞. Let us prove the remaining part
by contradiction. Assume that σ(λ) = 4c > 0. Then, there is a sequence of natural numbers
{j(l)}∞j=1 such that

lnj(l) ≥ 2c|ξj(l)|, l = 1, 2, . . . .

Turning once more to the subsequence, one can assume that

2|ξj(l)| 6 |ξj(l+1)|, l = 1, 2, . . . .

Let us compose a new subsequence of natural numbers

j(l, s), l = 1, 2, . . . , s = 1, 2, . . . , l′(l),

where l′(l) is an integer part of the number j(l)/2. Suppose that

j(l, s) = j(l)− l′(l) + s.

Since the moduli ξj are nondecreasing, one has

lnj(l, s)

|ξj(l,s)|
≥ lnj(l, s)

|ξj(l)|
≥ lnj(l, 1)

|ξj(l)|
≥ lnj(l)− ln2

|ξj(l)|
≥ 2c− ln2

|ξj(l)|
.

Since |ξj| → ∞, there is a number l0 such that

lnj(l, s)

|ξj(l,s)|
≥ c, l ≥ l0, s = 1, 2, . . . , l′(l).

Whence, for all l ≥ l0 and ε = c, one obtains

j(l)∑
j=j(l)−l′(l)+1

exp(−ε|ξj|) =

l′(l)∑
s=1

exp(−ε|ξj(l,s)|) ≥
l′(l)∑
s=1

exp(
−ε
c

ln j(l, s)) =

=

l′(l)∑
s=1

1

j(l, s)
ε
c

=

l′(l)∑
l=1

1

j(l, s)
≥ l′(l)

j(l)
≥ 2−1j(l)− 1

j(l)
.
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Since j(l)→∞, when l →∞, this contradicts the convergence of the series (2.2) when ε = c.
Thus, σ(Λ) = 0 and the lemma is proved.

Denote by S a unit circle with the centre at the origin of coordinates. Let E be a set in C,
Θ be a closed subset of the circle S. A convex hull Θ of E is the set

E(Θ) = {z ∈ C : Re(zξ) < HE(ξ), ξ ∈ Θ}.
Note that the interior E lies in E(Θ). Indeed, if z is an interior point of E then, the definition
of the support function provides the inequalities Re(zξ) < HE(ξ), ∀ξ ∈ Θ. It means that
z ∈ E(Θ). In a particular case, when Θ = S, the Θ – convex hull of the set coincides with
its ordinary convex hull (to be more exact with the interior of the convex hull) and thus, is
a convex domain. The latter takes place in the general case as well. This is verified by the
following statement.

Lemma 2.2. Let E be a set in C, Θ be a closed subset of the circle S. Then, the set E(Θ)
is a convex domain.

Proof. By definition, the set E(Θ) is an intersection of half-planes and therefore, it is convex.
Convexity entails connectivity E(Θ). It remains to demonstrate that E(Θ) is an open set.
Suppose this is not true. Then, there is a point z0 ∈ E(Θ) and a sequence {zk} such that
zk → z0 if k → ∞ and zk /∈ E(Θ) for all k ≥ 1, i.e. Re(zkξk) ≥ HE(ξk) for some ξk ∈ Θ,
k = 1, 2, . . . . Turning to the subsequence, one can believe that {ξk} converges to the point
ξ0 ∈ Θ. Then, the latter inequality provides

Re(z0ξ0) = lim
k→∞

Re(zkξk) ≥ limk→∞Re(zkξk) ≥ limk→∞HE(ξk) ≥ HE(ξ0)

in view of the lower semicontinuity of the support function (see [7]).
We have arrived to a contradiction with the definition of E(Θ), because z0 ∈ E(Θ), and ξ0 ∈ Θ.
The lemma is proved.

Let Λ = {λk,mk}∞k=1. Denote by Θ(Λ) the set of all partial limits of the sequence {λk/|λk|}∞k=1

(except for the point λk = 0, if it exists). Manifestly, Θ(Λ) is a closed subset of the circle S.
Lemma 2.3. Let the sequence Λ be such that m(Λ) = 0. Assume that the common term of

the series (1.1) is bounded on the set E ⊂ C, i.e.

|dk,nzn exp(λkz)| 6 A(z), k = 1, 2, . . . , n = 0, 1, . . . ,mk − 1, z ∈ E.
Moreover, if 0 ∈ E, the sequence {dk,n}∞,mk−1

k=1,n=0 is bounded as well.
Then, there is an injection d = {dk,n} ∈ Q(D), where D = E(Θ(Λ)).
Proof. Suppose that d /∈ Q(D). Then, d /∈ Qp for some number p = 1, 2, . . . . It means that

there is a subsequence {dkl,nl} such that

|dkl,nl | expHKp(λkl)→ +∞, p→∞. (2.3)

Turning to the subsequence once more, one can consider that {λkl/|λkl |} converges to a point
x0 ∈ Θ(Λ). Since Kp+1 is a compact in the domain D = E(Θ(Λ)), the definition of the set
E(Θ(Λ)) and of the support function entails that the estimate Re(z0x0) > HKp+1(x0) is true
for some z0 ∈ E.
Then, in view of (2.1) and the continuity of the support function of the compact (see [7]), there
is δ > 0 such that

Re(z0x0) > HKp+1(x) ≥ HKp(x) + αp|x|, x ∈ B(x0, δ). (2.4)

Select a number l0 such that

λkl/|λkl | ∈ B(x0, δ), l ≥ l0.
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First, let us assume that z0 6= 0. By condition, m(Λ) = 0. Hence, by virtue of the definition
of the quantity m(Λ), for every ε > 0 there is l1 ≥ l0 such that mkl 6 ε|λkl | for all l ≥ l1. Let
us fix ε > 0 such that ε ln |z0| > −αp. Then, in view of (1.4) and the positive homogeneity of
the support function for all l ≥ l1, one obtains

|znl0 exp(λklz0)| = exp(nol ln |z0|+Re(λklz0)) >

> exp(−nlαpε−1 +Re(λklz0)) > exp(−mklαpε
−1 +Re(λklz0)) ≥

≥ exp(−αp|λkl |+HKp(λkl) + αp|λkl |) = expHKp(λkl).

Thus, due to (2.3), one has

|dkl,nlz
nl
0 exp(λklz0)| → +∞, p→∞.

This contradicts the condition of the lemma.
Now, let z0 = 0. Then, invoking (2.3) and (2.4) for all l ≥ l0, one obtains

|dkl,nl | = |dkl,nl exp(λklz0)| ≥ |dkl,nl | expHKp(λkl)→ +∞, p→∞.
This contradicts the condition of the lemma as well. Thus, d ∈ Q(D). The lemma is proved.

Remark. If 0 ∈ E, an additional condition of boundedness of the sequence of coefficients
{dk,n} is imposed on the lemma. It is important if 0 is an isolated point of the set E. As an
example, consider the series

∞∑
k=1

exp(2k)z exp(kz).

Here Θ(Λ) = {1}. Let us take the set consisting of the two points {−2, 0} as E. Then, E(Θ(Λ))
coincides with the half-plane Rez < 0, and the common term of the series is bounded on E.
However, the series does not converge in the half-plane (it diverges on the circle S). It converges
in the half-plane Rez < −2, which coincides with the set E ′(Θ(Λ)), where E ′ = {−2}. In this
case, the condition of boundedness of the coefficients is violated (the remaining conditions are
satisfied), and the lemma becomes untrue. If 0 ∈ E is not an isolated point of E, the lemma
holds true even without the condition of boundedness of the coefficients. Indeed, under the
above assumptions, the point 0 lies in the closure of the set E ′ = E \{0}. It remains to mention
that in this case, the domains E(Θ(Λ)) and E ′(Θ(Λ)) coincide (because the support functions
of the sets E and E ′ coincide obviously).

Assume that

cp,k,n = sup
z∈Kp
|zn exp(zλk)|, p, k = 1, 2, . . . , n = 0, 1, . . . ,mk − 1.

Lemma 2.4. Let the sequence Λ be such that m(Λ) = 0. Then, for any number p, there
is a constant C > 0 such that the inequalities cp,k,n 6 C expHKp+1(λk), ∀k = 1, 2, . . . , ∀n =
0, 1, . . . ,mk − 1 hold.

Proof. Let us assume that the statement of the lemma is not true. Then, for some number
p, there is a subsequence {kl, nl} such that

cp,kl,nl > l expHKp+1(λkl), l = 1, 2, . . . (2.5)

Denote by z0, a point of the compact Kp with a maximum modulus. One can assume that
Kp 6= {0}. Then, z0 6= 0 and one has

cp,kl,nl 6 |z0|nl expHKp(λkl) = exp(nl ln |z0|+HKp(λkl)) 6
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6 exp(mkl | ln |z0||+HKp(λkl)).

By condition, m(Λ) = 0. Hence, for every ε > 0, there is a number l0 such that mkl 6 ε|λkl| for
all l ≥ l0. Let us fix ε > 0 such that ε| ln |z0|| < αp. Then, according to the above, and in view
of (2.1), one obtains

cp,kl,nl 6 exp(ε|λkl | ln |z0|+HKp(λkl)) 6

6 exp(αp|λkl |+HKp(λkl)) 6 expHKp+1(λkl), l ≥ l0.

This contradicts (2.5). The lemma is proved.
Lemma 2.5. Let us assume that D is a convex domain in C, and the sequence Λ is such

that σ(Λ) = m(Λ) = 0 and d = {dk,n} ∈ Q(D). Then, for every p = 1, 2, ..., there is a number
Cp > 0 (independent of the sequence d) such that

∞,mk−1∑
k=1,n=0

|dk,n|cp,k,n 6 Cp||d||p+2.

Proof. Let d = {dk,n} ∈ Q(D). By virtue of Lemma 2.4, in view of (2.1) and the definition
of a norm in the space Qp+2, one obtains

∞,mk−1∑
k=1,n=0

|dk,n|cp,k,n 6 C

∞,mk−1∑
k=1,n=0

|dk,n| expHKp+1(λk) 6

6 C

∞,mk−1∑
k=1,n=0

|dk,n| exp(HKp+2(λk) +HKp+1(λk)−HKp+2(λk)) 6

C||d||p+2

∞∑
k=1

mk exp(−αp+1|λk|).

By condition, σ(Λ) = 0. Hence, the latter series converges according to Lemma 2.1. This
provides the necessary inequality with a constant Cp > 0, independent of d = {dk,n}. The
lemma is proved.

The following theorem describes the space of sequences of coefficients of series of exponential
monomials converging in the convex domain D ⊂ C.

Theorem 2.6. Let D be a convex domain in C and the sequence Λ be such that σ(Λ) =
m(Λ) = 0. Then, the following statements are equivalent.
1) The series (1.1) converges in the domain D.
2) There exists an injection d = {dk,n} ∈ Q(D).

Proof. Let us assume that 1) holds. Then, the common term of the series (1.1) is bounded
at every point of the domain D. Hence, according to Lemma 2.3 and in view of the remark
to it, the sequence d = {dk,n} belongs to the space Q(D(Θ(Λ))). Since the domain D lies in
D(Θ(Λ)), the definition of the space Q(D) readily provides the injection Q(D(Θ(Λ))) ⊂ Q(D).
Thus, d ∈ Q(D).

Assume now that 2) holds. Then, it follows from the inequality in Lemma 2.5 that the series
(1.1) converges on any compact of the domainD and hence, in the domainD itself. The theorem
is proved.

Remark. Lemma 2.5 has been used while proving the implication 2)→1). According to
it, the injection d = {dk,n} ∈ Q(D) entails not only point-to-point convergence of the series
(1.1), but also its absolute and uniform convergence on compacts in the domain D (and even
convergence in a stronger topology). Keeping in mind the implication 1)→2), one can claim
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that the simple convergence of the series (1.1) in the domain D is equivalent to its absolute
and uniform convergence on compacts of the domain.

3. An analogue of the Abel theorem for series of exponential monomials

The following result is an analogue of the Abel theorem for the series (1.1).
Theorem 3.1. Let the sequence Λ be such that σ(Λ) = m(Λ) = 0. Suppose that the common

term of the series (1.1) is bounded on the set E ⊂ C. Moreover, if the origin of coordinates is
an isolated point of the set E, the sequence {dk,n}∞,mk−1

k=1,n=0 is bounded as well. Then, for every
number p = 1, 2, . . . , there is a number Cp > 0 (independent of the sequence d) such that

∞,mk−1∑
k=1,n=0

|dk,n|cp,k,n 6 Cp||d||p+2,

where the numbers cp,k,n and the norms ||d||p are constructed according to the sequence of
compacts K(D) and D = E(Θ(Λ)). In particular, the series (1.1) converges absolutely and
uniformly on any compact from the domain D.

Proof. Let us assume that the conditions of the theorem hold. Then, according to lemma 2.3
and the remark to it, there is an injection d = {dk,n} ∈ Q(D). Whence, according to Lemma
2.5, there is a number Cp > 0 (independent of the sequence d) for every p = 1, 2, . . . such that

∞,mk−1∑
k=1,n=0

|dk,n|cp,k,n 6 Cp||d||p+2.

In particular, it means that the series (1.1) converges absolutely and uniformly on any compact
from the domain D. The theorem is proved.

Remark. 1. Theorem 3.1 entails that under the condition σ(Λ) = m(Λ) = 0, the interior
of the set of convergence of the series (1.1) is always a convex and even a Θ — convex domain
(i.e. a domain which is an intersection of half-planes {z : Re(zξ) < h(ξ), ξ ∈ Θ}), h is a lower
semicontinuous function.

2. If we exclude the condition σ(Λ) = 0 from Theorem 3.1, the latter becomes untrue. The
book [2, Chapter 2] contains an example of the Dirichlet series for which σ(Λ) > 0. The series
converges in the half-plane (and hence, its common term is bounded in the half-plane), but
diverges absolutely at every point of the plane.

3. The condition m(Λ) = 0 is also essential. Indeed, let the sequence Λ = {k,mk} be such
that m(Λ) = τ > 0, and σ(Λ) = 0 (for example, mk = 2k). Consider the series

∞∑
k=1

exp(2k)zmk−1 exp(kz).

One can readily demonstrate that the series converges in a domain lying in the half-plane
Rez < −a, where a > 1 is selected from the condition a > 2(τ ln a + 1), and in the circle
B(0, r), where r ∈ (0, 1) is such that −2−1τ ln r > 3. Meanwhile, it obviously diverges on the
circle S. Thus, the interior of the set of convergence of the given series is not a convex domain
and even not a domain at all (it is not connected).

As it was mentioned, Theorem 3.1 is an analogue of the Abel theorem for power series.
Indeed, Theorem 3.1, as well as the latter theorem, proves that the boundedness of the common
term of the series at some boundary points of the domain entails its absolute and uniform
convergence inside the domain. A power series is a particular case of an exponential series:
by means of a simple transformation of the variable, a power series turn into a series of the
form

∑
dk exp(kz). However, reformulating Theorem 3.1 for the particular case, one obtains a

weaker statement than the Abel theorem. This is explained by the fact that the circles, where
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the power series should converge absolutely and uniformly, turn into unbounded sets under the
above transformation. However, the uniform convergence in Theorem 3.1 is guaranteed only
on compact subsets. Complicating the proof of this theorem significantly, one can demonstrate
that the series (1.1) converges all the same uniformly in some cases on unbounded sets as well.
However, this sets will not always contain images of circles during transformation of the variable
that turns a power series into an exponential series. The following example clarifies the above.
Consider the series

∞∑
k=1

(exp(kz) + z exp(kz)). (3.1)

The set Θ(Λ) in this case is a singleton: Θ(Λ) = {1}. Coefficients of the series are equal to one
and are bounded therefore. Hence, according to Theorem 3.1, the series (3.1) converges in the
domain E(Θ(Λ)), where E = {0}, which coincides with the left half-plane, and is uniform on its
compacts. One can demonstrate that the series (3.1) converges uniformly on some unbounded
sets as well (for example, on angles strictly smaller than π and with the vertexes belonging to a
negative real semiaxis). However, it does not converge uniformly in any half-plane of the form
Π(a) = {z : Rez < −a}, a > 0.
Consider the series

∞∑
k=1

exp(kz). (3.2)

It is derived from the power series wk by means of the transformation w = exp z. The latter
series converges in the circle B(0, 1) and according to the Abel theorem, it converges uniformly
in any circle of a smaller radius. The circles transfer into half-planes Π(a) under the above
transformation. Hence, the series (3.2) converges uniformly at every half-plane. Such difference
in sets of uniform convergence of the series (3.1) and (3.2) is connected with the presence of
the multipliers z in the series (3.1). As one can see from this example, it is impossible to prove
a theorem of the type 3.1 preserving such multiplyers so that its particular case was the Abel
theorem for power series. However, the situation can be adjusted by rejecting the cofactors zn in
the series (1.1), i.e. considering only "pure"exponential series, which is verified by the following
result.

Together with E(Θ), define a set

E(Θ, ε) = {z ∈ C : Re(zξ) < HE(ξ)− ε,∀ξ ∈ Θ}
for every ε > 0.
Note that if Θ lies at a corner with the vertex at zero and of an angle not greater than π, the
set E(Θ), and E(Θ, ε) as well, is unbounded for a sufficiently small ε > 0.

Theorem 3.2. Let us assume that terms of the series

∞∑
k=1

dk exp(λkz) (3.3)

are uniformly bounded on the set E, that is

|dk exp(λkz)| 6 A, k = 1, 2, . . . , z ∈ E.
Furthermore, let σ(Λ) = 0 and the closed set Θ ⊂ S be such that the injection
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λk/|λk| ∈ Θ, k ≥ k0

holds true for some number k0. Then, there is c(ε,Λ) > 0 for every ε such that the inequality

∞∑
k=k0

|dk exp(λkz)| 6 Ac(ε,Λ), z ∈ E(Θ, ε)

holds.
In particular, the series (3.3) converges absolutely and uniformly on E(Θ(Λ), ε).

Proof. Let ε > 0 and z ∈ E(Θ, ε). Since ξk = λk/|λk| ∈ Θ for all k ≥ k0 then, by definition
of E(Θ, ε), one has the estimate

∞∑
k=k0

|dk exp(λkz)| =
∞∑

k=k0

|dk exp(|λk|(ξkz))| =

=
∞∑

k=k0

|dk| exp(|λk|Re(ξkz)) 6
∞∑

k=k0

|dk| exp(|λk|(HE(ξk)− ε)).

Further, by virtue of the definition of the support function, find the point zk ∈ E, k ≥ k0 such
that

Re(zkξk) ≥ HE(ξk)− ε/2.

The above and the condition of the theorem provide

∞∑
k=k0

|dk exp(λkz)| 6
∞∑

k=k0

|dk| exp(|λk|(HE(ξk)− ε)) 6

6
∞∑

k=k0

|dk| exp(|λk|(Re(zkξk)− ε/2)) =
∞∑

k=k0

|dk| exp((Re(zkλk)− ε|λk|/2)) =

=
∞∑

k=k0

|dk exp(|λkzk)| exp(−ε|λk|/2) 6 A

∞∑
k=k0

exp(−ε|λk|/2).

Since σ(Λ) = 0, than the latter series converges according to Lemma 2.1 and one obtains the
required inequality. The theorem is proved.

Remark. Consider an exponential series

∞∑
k=1

dk exp(kz) (3.4)

into which the power series
∑
dkw

k transfers under the transformation w = exp z. In this case
σ(Λ) = 0, and the injection λk/|λk| ∈ Θ = {1} is true for every number k = 1, 2, . . ..

Let us assume that the common term of the series (3.4) is bounded at the point z0 and that
E = {z0}. Then, according to Theorem 3.2, the series (3.4) converges absolutely ad uniformly
on every set E(Θ, ε), ε > 0, coinciding with the half-plane {z : Rez < Rez0 − ε}. This yields
the Abel theorem for power series.
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4. An analogue of the Cauchy-Hadamard theorem for series of exponential
monomials

Let us represent a result which is an analogue of the Cauchy-Hadamard theorem for power
series. This theorem contains a formula for calculating the radius of convergence of a power
series. An analogue of the circle for exponential series is a half-plane, and an analogue of the
radius of the circle is the distance from the origin of coordinates to the half-plane. If Θ(Λ)
consists of two points, then the corresponding Θ(Λ)-convex domain of convergence of the series
(1.1) is an intersection of two half-planes. This domain has two “radii of convergence” — the
distances from the origin of coordinates to two straight lines, which are the boundaries of these
half-planes. If Θ(Λ) is an infinite set, then there are infinitely many corresponding “radii of
convergence” of the series (1.1). Note that some distances should be taken with the minus
sign. Such a situation occurs when the domain of convergence does not include the origin of

coordinates. Consider, for example, the series
∞∑
k=1

2k exp(kz).

Applying the Abel theorem to the power series corresponding to the latter series, one readily
verifies that the domain of its convergence is the half-plane {z : Rez < ln(1/2)}. For the sake
of clarity, the “radius of convergence” here is considered to be the quantity ln(1/2), equal to
the distance from the origin of coordinates to the straight line bounding the half-plane, taken
with the minus sign, and not the distance itself. Let us illustrate this. Consider another series
∞∑
k=1

2−k exp(kz).

Similarly to the first case, one finds out that the domain of convergence of the series is a half-
plane {z : Rez < ln 2}. Here the “radius of convergence” is already equal to ln 2, i.e. to the
distance from the origin of coordinates to the line bounding the half-plane.

Before formulating the above stated result, let us introduce some additional notation. Let
ξ ∈ Θ(Λ). Assume that

h(d, ξ) = inf limj→∞ min
06n6mk(j)−1

ln(1/|dk(j),n|)
|λk(j)|

for a sequence of coefficients d = {dk,n} of the series (1.1). Here, the infimum is taken with
respect to all subsequences {λk(j)} of the sequence {λk} such that λk(j)/|λk(j)| converges to
ξ, when j → ∞. Thus, we have obtained the function h(d, ξ), ξ ∈ Θ(Λ). One can readily
deduce from its definition that it is lower semi-continuous. Then, similarly to Lemma 2.2, it is
demonstrated that the set

D = D(d,Λ) = {z : Re(zξ) < h(d, ξ), ξ ∈ Θ(Λ)}
is a Θ(Λ)-convex domain .
Theorem 4.1. Let the sequence Λ be such that σ(Λ) = m(Λ) = 0. Then the series (1.1)

converges at every point of the domain D and diverges at every point of its exterior C \ D
except for the origin of coordinates if the series

∑
dk,0 converges.

Proof. Let z ∈ D. Choose a number p such that z ∈ Kp, where Kp is an element of the set
K(D). Then, according to Lemma 2.4, in view of (2.1), one obtains the estimate

∞,mk−1∑
k=1,n=0

|dk,n||z|n exp(Re(zλk)) 6 C

∞,mk−1∑
k=1,n=0

|dk,n| expHKp+1(λk) =

= C

∞,mk−1∑
k=1,n=0

|dk,n| exp(HKp+2(λk) +HKp+1(λk)−HKp+2(λk)) 6
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6
∞,mk−1∑
k=1,n=0

|dk,n| exp(HKp+2(λk)− αp+1|λk|). (4.1)

Let us demonstrate that

limk→∞ max
06n6mk−1

|dk,n| exp(HKm+2(λk)) < +∞. (4.2)

Assume that this is not true. Then, for some subsequence {k(j), n(j)}, one has

lim
j→∞
|dk(j),n(j)| expHKp+2(λk(j)) = +∞,

or

lim
j→∞

(ln |dk(j),n(j)|+HKp+2(λk(j))) = +∞,

which is equivalent.
Whence,

lim
j→∞
|λk(j)|−1(ln |dk(j),n(j)|+HKp+2(λk(j))) ≥ 0. (4.3)

Turning to the subsequence once more, one can consider that λk(j)/|λk(j)| converges to a point
ξ ∈ Θ(Λ). Then, in view of the continuity, positive homogeneity of the support function of the
compact, and the definition of the quantity h(d, ξ), one obtains

lim
j→∞
|λk(j)|−1(ln |dk(j),n(j)|+HKp+2(λk(j))) 6

6 lim
j→∞
|λk(j)|−1 ln |dk(j),n(j)|+ lim

j→∞
|λk(j)|−1|HKp+2(λk(j)) 6

6 lim
j→∞
|λk(j)|−1 ln |dk(j),n(j)|+HKp+2(ξ) 6 −h(d, ξ) +HKp+2(ξ) < 0.

The latter estimate here follows from the fact that

HKp+2(ξ) < HD(ξ)

(because Kp+2 is a compact in the domain D) and

HD(ξ) 6 h(d, ξ)

(by virtue of the definition of the domain D = D(d,Λ) and the support function HD). Thus,
we have arrived to a contradiction with (4.3). Hence, (4.2) holds true. Therefore, according to
(4.1), one has

∞,mk−1∑
k=1,n=0

|dk,n||z|n expRe(zλk) 6 C ′
∞,mk−1∑
k=1,n=0

mk exp(−αp+1|λk|).

By condition, σ(Λ) = 0. Then, by virtue of Lemma 2.1, the latter series converges. It means
that the series (1.1) converges at the point z.

Now, let z ∈ C \D. If z = 0 and the series
∑
dk,0 converges, then the series (1.1) converges

at the point z = 0.
Let z 6= 0. By definition of the domain D, there is ξ ∈ Θ(Λ) such that

Re(zξ) > h(d, ξ). (4.4)
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According to the definition of the quantity h(d, ξ), find the subsequence {k(j), n(j)} such that
λk(j)/|λk(j)| converges to the point ξ and

h(d, ξ) = lim
j→∞

ln(1/|dk(j),n(j)|)
|λk(j)|

· (4.5)

Let us assume that the series (1.1) still converges at the point z. Then, the common term of
the series (1.1) is bounded on the set E = {z} ∪D, and according to Lemma 2.3, the sequence
of its coefficients d belongs to the space Q(D′), where D′ is a Θ(Λ) — convex hull of the set E.
While z is a boundary point in the domain D′ (because it lies outside D). Hence, in view of
(4.4), there is a point z′ in the domain D′ such that

Re(z′ξ) > h(d, ξ). (4.6)

Let us choose a number p such that the compact K ′p ∈ K(D′) for it contains z′. As it was
mentioned, d ∈ Q(D′). Therefore, according to definition of the space Q(D′), one has

|dk,n| 6 B exp(−HK′
p
(λk)), k = 1, 2, . . . , n = 0, 1, . . . ,mk − 1,

where B is a positive constant. Since z′ ∈ K ′p, then

Re(z′λk) 6 HK′
p
(λk), k = 1, 2, . . . .

In view of the latter and according to the above, one obtains

|dk,n| 6 B exp(−Re(z′λk)).
Whence and from (4.6), it follows that

lim
j→∞

ln(1/|dk(j),n(j)|)
|λk(j)|

≥
− lnB +Re(z′λk(j))

|λk(j)|
= Re(z′ξ) > h(d, ξ).

This contradicts (4.5). The theorem is proved.
Remark. In a particular case, one has the formula

h(d, 1) = limk→∞
ln(1/|dk|)

k
= limk→∞(− ln k

√
|dk|)

for the series (3.4).
Carrying out the transformation w = exp z, that turns the series (3.4) into a power series,

one obtains the following formula for the radius of convergence of the latter

R = exph(d, 1) = limk→∞
1

k
√
|dk|

.

Thus, we have obtained the Cauchy-Hadamard formula for power series.
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