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ABOUT FILTERING PROBLEM OF DIFFUSION PROCESSES

E.M. ASADULLIN, F.S. NASYROV

Abstract. The filtering problem of nonlinear one-dimensional diffusion processes is
considered. The structures of observable and nonobservable processes are found. It is
shown, that solution of the optimal filtering problem can be reduced to solution of the
filtering problem for the case when a nonobservable process has a simpler structure and
an observable process is the Wiener process with a random smooth trend. The equation
connecting a conditional expectation for the initial filtering problem with an unnormalized
filtering density for the reduced filtering problem is obtained.
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1. Introduction

Given a complete probability space (Ω,F ,P) with a flow of σ-algebras {Ft}, t ∈ [0, T ], and
independent Wiener processes W1(t), W2(t), t ∈ [0, T ], consistent with the flow {Ft}. Consider a
diffusion process (x(t), y(t)), satisfying the following system of stochastic differential equations:

x(t) = x0 +

∫ t

0

b1(s, x(s), y(s)) ds+

∫ t

0

σ1(s, x(s), y(s)) dW1(s)+

+

∫ t

0

σ2(s, x(s), y(s)) dW2(s),

(1)

y(t) = y0 +

∫ t

0

b2(s, x(s), y(s)) ds+

∫ t

0

σ0(s, y(s))dW2(s), (2)

where integrals with respect to the Wiener processes are Ito stochastic integrals. The coefficients
of the equations are supposed to be jointly continuous with respect to (t, x, y), locally
Lipschitzian and satisfy conditions of a linear growth with respect to (x, y). These conditions
guarantee the existence of a unique solution to the system (1)–(2). The function σ0(s, y) is also
supposed to be separated from zero.

The process y(t) is observable and the process x(t) is not.
The filtering problem of diffusion processes consists in finding the conditional expectation

mt = E[f(x(t))|Yt], where Yt = σ{y(s), s ≤ t} is the σ-algebra, generated by values of the
process y(s) when s ∈ [0, t], f(x) is the determinate function such that E|f(x(t))| <∞.

In works of Liptser R.Sh., Shiryaev A.N. [1], Kallianpur G. [2], Rozovskii B.L. [7] and many
other researchers, the given problem (in a multi-dimensional case) has been reduced to the
problem of finding an unnormalized filtering density, which is a solution to the stochastic partial
differential equation. It is known [7], that the conditional expectation mt can be calculated by
the formula

mt = E[f(x(t))|Yt] =

∫
R

f(x) π(t, x) dx, (3)
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where π(t, x) = 1∫
R V (t,x)dx

V (t, x) and V (t, x) are normalized, and unnormalized filtering
densities, respectively. Here, the density V (t, x) satisfies the linear Ito stochastic partial
differential equation

V (t, x)− V (0, x) =

=

∫ t

0

{
[a(s, x, y(s)) V (s, x)]′′xx −

[
b1(s, x, y(s)) V (s, x)

]′
x

}
ds+

+

∫ t

0

{
h(s, x, y(s)) V (s, x)−

[
σ2(s, x, y(s)) V (s, x)

]′
x

}
dW̃ (s),

V (0, x) = π(0, x). (4)

In the latter formula a = 1
2
[(σ1)2 + (σ2)2], h = b2

σ0 , π(0, x) is a conditional density x(0) with
respect to Y0, and W̃ (t) is a Wiener process resulting from application of the Girsanov theorem
aiming to “remove the trend” in the equation for the observed component (2):

y(t) = y0 +

∫ t

0

σ0(s, y(s)) dW̃ (s). (5)

The normalized density π(t, x), in its turn, satisfies a stochastic differential equation which is
already nonlinear.

Earlier, it has been possible to solve a stochastic differential equation (4) in a linear case
only (the Kalman-Bucy filter). In other separate cases, attempts have been made to solve the
problem by methods of statistical modelling, which is rather laborious and complicated. In
[1], we reduced the problem to solving a pair of non-stochastic partial differential equations.
Moreover, construction of the solution to the problem of nonlinear filtering of diffusion processes
was exemplified.

The aim of the present work is to simplify the filtering equation (4) itself by substituting the
original filtering problem (1)–(2) by a simpler problem, where the stochastic differential equation
for a non-normalized filtering density is much simpler, and the renewal process coincides with
the new observed process. Thus, the given result allows one to simplify solution of practical
problems of noise filtering.

Let us introduce the necessary notation. The sets R = (−∞,+∞), [0, T ], T > 0 are supposed
to be provided with σ-algebras of the Borel sets, indicated by B(R) and B([0, T ]), respectively;
the Lebesque measure is considered to be given on these subsets. Let us indicate by 1(A) the
indicator of the set A, i.e. the function equal to 1 within A, and 0 outside A.

2. Structure of processes x(t) and y(t)

The below considerations are in many respects based on the structure of solutions to the
system of equations (1)–(2). Therefore, our immediate aim is to investigate the structure of
the processes x(t) and y(t). Let us rewrite Equations (1) and (2) with Stratonovich stochastic
integrals

x(t) = x0 +

∫ t

0

b̃1(s, x(s), y(s)) ds+

∫ t

0

σ1(s, x(s), y(s)) ∗ dW1(s)+

+

∫ t

0

σ2(s, x(s), y(s)) ∗ dW2(s),

(6)

y(t) = y0 +

∫ t

0

b̃2(s, x(s), y(s)) ds+

∫ t

0

σ0(s, y(s)) ∗ dW2(s), (7)

where
b̃1(s, x(s), y(s)) = b1(s, x(s), y(s))− 1

2
[σ1(σ1)′x + σ1(σ

2)′x + σ0(σ
2)′y],
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b̃2(s, x(s), y(s)) = b2(s, x(s), y(s))− 1

2
σ0(s, y(s))(σ0)′y(s, y(s)).

It is known [5, 6] that the solution of the given system can be reduced to the solution
of a finite chain of systems of differential equations that do not contain stochastic integrals.
Therefore, let us find the solution to the system (6)–(7) in the form

x(t) = φ̃(t,W1(t),W2(t)), y(t) = ψ̃(t,W2(t)),

where φ̃(t, u, v), ψ̃(t, u, v) are smooth arbitrary functions. Given

φ̃′u(s, u,W2(s)) = σ1(s, φ̃(s, u,W2(s)), ψ̃(s,W2(s))), (8)

φ̃′v(s,W1(s), v) = σ2(s, φ̃(s,W1(s), v), ψ̃(s, v)), (9)

ψ̃′v(s, v) = σ0(s, ψ̃(s, v)). (10)

It follows from the formulae (10), that
∫

dψ̃

σ0(s,ψ̃)
= v + C(s). Hence, ψ̃ = ψ(s, v + C(s)), where

ψ(s, v) is an already determinate function, defined by the latter relation, and C(s) is an unknown
arbitrary smooth function. Hence, the observed process is represented in the form

y(s) = ψ(s,W2(s) + C(s)). (11)

Then, upon similar reasoning, the relation (8) provides

x(s) = φ(s, y(s),W1(s) + D̃(s, y(s))), (12)

where φ(s, y, u) is a determinate function defined from the equality∫
dφ

σ1(s,φ,ψ)
= u+ D̃(s, ψ). Here D̃(s, ψ) is an unknown function.

Let us use the relation (9) to find D̃(s, ψ). To this end, note that by virtue of (11), one has

φ̃(s,W1(s), v) = φ(s, ψ(s, v + C(s)),W1(s) + D̃(s, ψ(s, v + C(s)))).

Therefore, in view of the formulae (8) and (10), the relation (9) takes the form

φ̃′v(s,W1(s), v) =

= φ′y(s, ψ(s, v + C(s)),W1(s) + D̃(s, ψ(s, v + C(s))))σ0(s, ψ(s, v + C(s)))+

+ σ1
(
s, φ(s, ψ(s, v + C(s)),W1(s) + D̃(s, ψ(s, v + C(s)))), ψ(s, v + C(s))

)
×

× D̃′ψ (s, ψ(s, v + C(s)))σ0(s, ψ(s, v + C(s))) =

= σ2
(
s, φ(s, ψ(s, v + C(s)),W1(s) + D̃(s, ψ(s, v + C(s)))), ψ(s, v + C(s))

)
.

Assuming that ψ = ψ(s, v + C(s)) in the latter equality, one obtains the equation for an
unknown function D̃:

D̃′ψ(s, ψ) =

=
σ2(s, φ(s, ψ,W1(s) + D̃(s, ψ)), v)− φ′ψ(s, ψ,W1(s) + D̃(s, ψ))σ0(s, ψ)

σ1(s, φ(s, ψ,W1(s) + D̃(s, ψ)), ψ)σ0(s, ψ)
. (13)

Equation (13) allows one to find the unknown function D̃(s, ψ) with the accuracy to an unknown
arbitrary function P (s):

D̃(s, ψ) = D(s, P (s), ψ), (14)
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where D(s, p, ψ) is derived from Equation (13). The unknown functions C(s) and P (s) are in
their turn found (see [6]) from the relations

φ̃′s(s, u, v)|u=W1(s),v=W2(s) = b̃1(s, x(s), y(s)),

ψ̃′s(s, v)|v=W2(s) = b̃2(s, x(s), y(s)),
(15)

which represent a system of differential equations in C(s) and P (s). Indeed, in view of the
formulae (8)–(14), the first relation of (15) takes the form

φ′s(s, ψ(s,W2 + C),W1 +D(s, P, ψ(s,W2 + C)))+

+ φ′y(s, ψ(s,W2 + C),W1 +D(s, P, ψ(s,W2 + C)))×
×
[
ψ′s(s,W2 + C) + σ0(s, ψ(s,W2 + C)) C ′

]
+

+ σ1(s, φ(s, ψ(s,W2 + C),W1 +D(s, P, ψ(s,W2 + C)), ψ(s,W2 + C)))×
×
[
D′s(s, P, ψ(s,W2 + C)) +D′p(s, P, ψ(s,W2 + C))P ′+

+D′ψ(s, P, ψ(s,W2 + C)) (ψ′s(s,W2 + C) +

+ σ0(s, ψ(s,W2 + C)) C ′
)]

=

= b̃1(s, φ(s, ψ(s,W2 + C),W1 +D(s, P, ψ(s,W2 + C))), ψ(s,W2 + C)).

Here, we write C = C(s), P = P (s), W1 = W1(s), W2 = W2(s) for the sake of brevity.
Likewise, the second relation of (15) yields the equation

ψ′s(s,W2 + C) + σ0(s, ψ(s,W2 + C))C ′ =

= b̃2(s, φ(s, ψ(s,W2 + C),W1 +D(s, P, ψ(s,W2 + C))), ψ(s,W2 + C)).

Making use of the latter relation, one arrives to the Cauchy problem

C ′ =
1

σ0
[ b̃2 − ψ′s ], (16)

P ′ =
1

σ1D′p

[
b̃1 − φ′s − φ′y b̃2 − σ1D′s − σ1D′ψ b̃

2
]
, (17)

φ(s, ψ(s,W2(s) + C(s)),W1(s) + D̃(s, P (s), ψ(s,W2(s) + C(s))))|s=0 = x0,

ψ(s,W2(s) + C(s))|s=0 = y0.

We have previously omitted arguments of functions involved in (16) and (17).
Thus, the system of stochastic equations (1)–(2) can be reduced to the solution of a chain of

systems of differential equation that do not include stochastic integrals any more.

3. Reduction of the original problem

Further considerations are connected with the formulae (11)–(12). Let us use the notation

ỹ(s) = W2(s) + C(s), x̃(s) = W1(s) +D(s, P (s), ψ(s, ỹ(s))). (18)

Then, y(s) = ψ(s, ỹ(s)), x(s) = φ(s, ψ(s, ỹ(s)), x̃(s)). Hence, the original observed process y(s)
represents a determinate function of the process ỹ(s).

Assume that Yt = σ(y(s), s ≤ t), Ỹt = σ(ỹ(s), s ≤ t).

Lemma 1. For any t, the equality Yt = Ỹt holds.

Proof. Manifestly Yt ⊆ Ỹt. It remains only to verify the reverse injection. Indeed, by virtue
of the relation (10) and assumptions made for the function σ0, the function ψ(s, v) is strictly
monotonous in the variable v with every s. Therefore, the equality {ω : ỹ(s, ω) ≤ x} = {ω :
y(s, ω) = ψ(s, ỹ(s, ω)) ≤ ψ(s, x)} ∈ Yt holds for preimages.



ABOUT FILTERING PROBLEM OF DIFFUSION PROCESSES 7

Consider the filtering problem of the processes (x̃(s), ỹ(s)), where the first component is
unobservable and is to be estimated, and the second one is observable. By virtue of the formulae
(12) and (11), Lemma 1 entails that the conditional expectation mt for the original problem
(1)–(2) equals

mt = E[f(x(t))|Yt] = E[f(x(t))|Ỹt] = E[f(φ(s, ψ(s, ỹ(s)), x̃(s)))|Ỹt]. (19)

Here f(x) and φ(s, y, u) are determinate functions. On the other hand, the unnormalized
conditional density Ṽ (t, x) for the (x̃(s), ỹ(s)) filtering problem exists and the conditional
expectation m̃t is determined by the formula

m̃t = E[f(x̃(t))|Yt] =
1∫

R
Ṽ (t, u) du

∫
R

f(u) Ṽ (t, u) du. (20)

In what follows we will need a property of conditional expectations

Lemma 2. The conditional expectation mt from the formula (19) equals

mt =
1∫

R
Ṽ (t, u) du

∫
R

f(φ(t, ψ(t, ỹ(t)), u)) Ṽ (t, u) du. (21)

Proof. Note that in order to prove (21), it suffices to verify that for any determinate function
g(t, v, u), for which E|g(t, ỹ(t), x̃(t))| <∞ is true, the following equality holds:

E[g(t, ỹ(t), x̃(t))|Yt] =
1∫

R
Ṽ (t, u) du

∫
R

g(t, ỹ(t), u) Ṽ (t, u) du. (22)

Indeed, taking g(t, v, u) = f(φ(t, ψ(t, v), u)) in the latter formula, one obtains (21).
Let S ∈ B(R+), U, V ∈ B(R). Then, assuming that f(u) = 1(u ∈ U) in the formula

(20) and multiplying both sides of the formula by 1((t, ỹ(t)) ∈ S × V ), due to properties
of conditional expectations and additivity of the integral, one obtains the formula (22) with
the function g(t, v, u) = 1((t, v, u) ∈ S×V ×U). Manifestly, the formula (22) remains valid for
linear combinations of such functions g(t, y, u). Then, using standard passages to the limit, one
concludes that our formula (22) holds for an arbitrary bounded function or a function of fixed
signs g(t, v, u) such that E|g(t, ỹ(t), x̃(t))| <∞.

Lemma 3. Let π̃(t, x) be a normalized filtering density for the filtering problem of
(x̃(s), ỹ(s)). Then, the equality

π(t, x) = π̃(t, φ−1(t, y(t), x))
(
σ1(t, x, Y (t))

)−1 (23)

holds for any t and x.

Proof. Let us substitute the variables x = φ(t, y(t), u) in the integral from the right-hand
side of the relation (21). Then, by virtue of (8), one has

dx = σ1(t, φ(t, y(t), u), y(t))du, u = φ−1(t, y(t), x),

where φ−1(t, y(t), x) =
∫

dx
σ1(t,x,y(t))

− D(t, P (t), y(t)) is a function inverse to the function
φ(t, y(t), x) for every t.
Hence, the right-hand side of the formula (22) equals

mt =
1∫

R
Ṽ (t, u) du

∫
R

f(x) Ṽ (t, φ−1(t, y(t), x))
(
σ1(t, x, y(t))

)−1
dx.

On the other hand, according to (3), one has mt =
∫
R
f(x)π(t, x)dx. Since the function f(x) is

arbitrary, one arrives to the formula (23).

Thus, to solve the filtering problem (1)–(2), it is sufficient to find the unnormalized filtering
density Ṽ (t, u) for the filtering problem of (x̃(s), ỹ(s)). In order to construct a stochastic
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differential equation for the density Ṽ (t, u), one has to know equations satisfied by the processes
x̃(s) and ỹ(s). In view of the formulae (18) and (16), and due to the Ito formula, one has

dỹ(s) = B2(s, x̃(s), ỹ(s))ds+ dW2(s), (24)

where

B2(s, u, v) =
1

σ0(s, ψ(s, v))
[ b2(s, φ(s, ψ(s, v), u)), ψ(s, v))−

−1

2
σ0(s, ψ(s, v))(σ0)′ψ(s, ψ(s, v))− ψ′s(s, v) ].

In order to introduce an equation for the unobserved component of x̃(s), let us find the
stochastic Ito differential for the function x̃(s) = W1(s) + D(s, P (s), ψ(s,W2(s) + C(s))) and
transform the resulting expression by means of the formulae (8)–(17). We obtain

dx̃ = dW1 +D′ψψ
′
vdW2+

+

{
D′s +D′pP

′
s +D′ψψ

′
vC
′ +D′ψψ

′
s +

1

2
[D′ψψ

′
v]
′
v

}
ds = dW1 + σ̃2dW2 +B1ds, (25)

where

σ̃2(s, u, v) =
σ2(s, φ(s, ψ(s, v), u), ψ(s, v))− φ′ψ(s, ψ(s, v), u)σ0(s, ψ(s, v))

σ1(s, φ(s, ψ(s, v), u), ψ(s, v))
;

B1(s, u, v) =
b̃1(s, φ(s, ψ(s, v), u), ψ(s, v))

σ1(s, φ(s, ψ(s, v), u), ψ(s, v))
−

−
φ′s(s, ψ(s, v), u) + φ′ψ(s, ψ(s, v), u)̃b2(s, φ(s, ψ(s, v), u), ψ(s, v))

σ1(s, φ(s, ψ(s, v), u), ψ(s, v))
+

+
1

2

[
σ2(s, φ(s, ψ(s, v), u), ψ(s, v))− φ′ψ(s, ψ(s, v), u)σ0(s, ψ(s, v))

σ1(s, φ(s, ψ(s, v), u), ψ(s, v))

]′
v

.

Thus, the formulae (24) and (25) entail that the processes (x̃(s), ỹ(s)) are solutions of the
stochastic differential equations

x̃(t) = x̃0 +

∫ t

0

B1(s, x̃(s), ỹ(s))ds+W1(t) +

∫ t

0

σ̃2(s, x̃(s), ỹ(s))dW2(s), (26)

ỹ = ỹ0 +

∫ t

0

B2(s, x̃(s), ỹ(s))ds+W2(t), (27)

where x̃0 = φ−1(0, y0, x0), ỹ0 = ψ−1(0, y0). Therefore, for the filtering problem of the processes
(x̃(s), ỹ(s)), one can construct an equation of the form (4) for an unnormalized filtering density.
Meanwhile, it follows from the formula (5) that the observed process ỹ(s) coincides with W̃ (t).

Theorem 1. In the above assumptions, the conditional expectation mt for the filtering
problem (1)–(2) can be derived from the correlation (21), where Ṽ (t, x) is an unnormalized
filtering density for the problem (26)–(27). Moreover, normalized filtering densities for the above
filtering problems are connected by the equality (23).

In conclusion, we would like to mention that solution of the filtering problem for (x̃(s), ỹ(s))
allows one to solve a similar problem not only for original processes (x(s), y(s)), but also for a
class of diffusion processes, that can be represented in the form of the relations (11) and (12).
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