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INVERSE PROBLEM FOR SUBDIFFUSION EQUATION

WITH FRACTIONAL CAPUTO DERIVATIVE

R.R. ASHUROV, M.D. SHAKAROVA

Abstract. We consider an inverse problem on determining the right-hand side of the
subdiffusion equation with the fractional Caputo derivative. The right-hand side of the
equation has the form 𝑓(𝑥)𝑔(𝑡) and the unknown is the function 𝑓(𝑥). The condition
𝑢(𝑥, 𝑡0) = 𝜓(𝑥) is taken as the over-determination condition, where 𝑡0 is some interior point
of the considered domain and 𝜓(𝑥) is a given function. By the Fourier method we show that
under certain conditions on the functions 𝑔(𝑡) and 𝜓(𝑥) the solution of the inverse problem
exists and is unique. We provide an example showing the violation of the uniqueness of the
solution of the inverse problem for some sign-changing functions 𝑔(𝑡). For such functions 𝑔(𝑡)
we find necessary and sufficient conditions on the initial function and on the function from
the over-determination condition, which ensure the existence of a solution to the inverse
problem.

Keywords: subdiffusion equation, forward and inverse problems, the Caputo derivatives,
Fourier method.
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1. Introduction

Given a fixed number 𝜌 ∈ (0, 1], we consider the following initial-boundary value problem⎧⎪⎨⎪⎩
𝐷𝜌

𝑡 𝑢(𝑥, 𝑡)−∆𝑢(𝑥, 𝑡) = 𝐹 (𝑥, 𝑡) ≡ 𝑓(𝑥)𝑔(𝑡), 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 ],

𝑢(𝑥, 𝑡)|𝜕Ω = 0,

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ Ω.

(1.1)

Here 𝑓(𝑥), 𝑔(𝑡) and 𝜙(𝑥) are continuous functions in the domain Ω ⊂ R𝑁 and 𝐷𝜌
𝑡 ℎ(𝑡) stands

for the Caputo fractional derivative (see, for instance, [1])

𝐷𝜌
𝑡 ℎ(𝑡) =

𝑡∫︁
0

𝜔1−𝜌(𝑡− 𝑠)
𝑑

𝑑𝑠
ℎ(𝑠)𝑑𝑠, 𝜔𝜌(𝑡) =

𝑡𝜌−1

Γ(𝜌)
,

where Γ(𝜌) is the gamma function. If we first integrate and then differentiate, then we get the
Riemann-Liouville derivative.
It should be noted that if 𝜌 = 1, then both the Caputo derivative and the Riemann-Liouville

derivative coincide with the classical first order derivative. Therefore, if 𝜌 = 1, then problem
(1.1) coincides with the usual initial-boundary value problem for the diffusion equation.
Problem (1.1) is also called the forward problem. The main purpose of this study is the

inverse problem on determining the right-hand side of the equation, namely, the function 𝑓(𝑥).
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To solve the inverse problem, one needs an extra condition. Following A.I. Prilepko and A.B.
Kostin [2] and K.B. Sabitov [3] (see also [4]), we consider the additional condition in the form:

𝑢(𝑥, 𝑡0) = 𝜓(𝑥), 𝑥 ∈ Ω, (1.2)

where 𝑡0 is a given fixed point of the segment (0, 𝑇 ].
We call the initial-boundary value problem (1.1) together with the additional condition (1.2)

the inverse problem on finding the part 𝑓(𝑥) of the right-hand side of the equation.
The authors usually impose an additional condition (1.2) at the final time 𝑡0 = 𝑇 (see, for

instance, [5], [6] for classical diffusion equations and [7], [8] for subdiffusion equations). The
meaning of taking condition (1.2) at 𝑡0 is that in some cases the uniqueness of the solution of
the inverse problem is violated if 𝑡0 = 𝑇 and by choosing 𝑡0 it is possible to achieve uniqueness
in these cases as well.
We are interested in the classical solution (we simply call it a solution) of the problems

under consideration, i.e. such solutions that themselves and all the derivatives involved in the
equation are continuous, moreover, all the given functions are continuous and the equation is
obeyed at each point. As an example, let us give the definition of the solution to the inverse
problem.

Definition 1.1. A pair of functions {𝑢(𝑥, 𝑡), 𝑓(𝑥)} with the properties

1. 𝐷𝜌
𝑡 𝑢(𝑥, 𝑡),∆𝑢(𝑥, 𝑡) ∈ 𝐶(Ω× (0.𝑇 ]),

2. 𝑢(𝑥, 𝑡) ∈ 𝐶(Ω× [0.𝑇 ]),
3. 𝑓(𝑥) ∈ 𝐶(Ω),

and satisfying conditions (1.1), (1.2) is called a solution of the inverse problem.

We note that in this definition the requirement of continuity in a closed domain of all deriva-
tives of the solution appearing in (1.1) was proposed by O.A. Ladyzhenskaya [9]. The advantage
of this choice is that the uniqueness of such a solution is proved quite simply, moreover, the
solution found by the Fourier method satisfies the above conditions.
Inverse problems on determining the right hand side of various subdiffusion equations were

studied by a number of authors due to the importance of such problems for applications.
However, it should be immediately noted that for the abstract case of the source function
𝐹 (𝑥, 𝑡) there is no general theory yet, see survey paper [10] and the references therein. In
all known works, the split source function 𝐹 (𝑥, 𝑡) ≡ 𝑓(𝑥)𝑔(𝑡) is considered and the methods of
investigation depend on whether 𝑓(𝑥) or 𝑔(𝑡) is unknown. It is somewhat more difficult to study
the case when function 𝑔(𝑡) is unknown. For example, in papers [11] and [12] the questions of
finding the non-stationary source function 𝑔(𝑡) were studied. It should be noted that in these
papers the over-determination condition is taken in a fairly general form: 𝐵[𝑢(·, 𝑡)] = 𝜓(𝑡),
where 𝐵 is a linear continuous functional. In particular, one can take 𝑢(𝑥0, 𝑡) or

∫︀
Ω
𝑢(𝑥, 𝑡)𝑑𝑥

as 𝐵[𝑢(·, 𝑡)]. The determination of the unknown function 𝑔(𝑡) for subdiffusion equations was
studied in the articles [10] and [13].
For subdiffusion and diffusion equations, the case 𝑔(𝑡) ≡ 1 and the unknown is 𝑓(𝑥) was

studied by many authors, see, for example, [14]–[20]. We mention only some of these articles.
Subdiffusion equations with an elliptic part as an ordinary differential expression were con-

sidered in papers [14],[15], [16]. The authors of papers [17], [18] studied subdiffusion equations,
the elliptic part of which is the Laplace operator or a second-order differential operator. Paper
[19] is devoted to study the inverse problem for a subdiffusion equation with the Caputo frac-
tional derivative and an arbitrary elliptic self-adjoint differential operator. The authors of this
paper proved the uniqueness and existance of a generalized solution. The case of the Riemann-
Liouville derivative was considered in [20]. Here the uniqueness and existence of a classical
solution were proved. In papers [14] and [18], the fractional derivative in the subdiffusion
equation is a two-parameter generalized Hilfer fractional derivative.
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In [21], the authors considered the inverse problem of simultaneous determination of the
order of the Riemann-Liouville fractional derivative and the source function in subdiffusion
equations. Using the classical Fourier method, the authors proved that the solution to this
inverse problem exists and is unique.
In monograph by K.B. Sabitov [22] the solvability of forward and inverse problems for equa-

tions of mixed parabolic-hyperbolic type was studied.
We note some results obtained for the case 𝑔(𝑡) ̸≡ 1. For classical diffusion equations, such

an inverse problem was studied in detail, see the well-known monograph by S. Kabanikhin [23,
Ch. 8] as well as [2], [3], [4], [5], [6]. Since the equation considered by us also covers the diffusion
equation, we will dwell on these works in more detail at the end of Section 4.
In paper [24] the problem on finding function 𝑓(𝑥) for an abstract subdiffusion equation with

the Caputo derivative was studied. To find the function 𝑓(𝑥), the authors used the following

additional condition
∫︀ 𝑇

0
𝑢(𝑡)𝑑𝜇(𝑡) = 𝑢𝑇 .

M. Slodichka et al. [7] and [8] studied the uniqueness of a solution of the inverse problem
for a subdiffusion equation, the elliptic part of which depends on time. It was proved that if
function 𝑔(𝑡) is sign-definite, then the solution of the inverse problem is unique. It should be
especially noted that in [8] the authors constructed an example of a function 𝑔(𝑡) that changes
sign in the domain under consideration and this resulted in the loss of the uniqueness of the
solution to the inverse problem.
It is well known that the considered inverse problem is ill-posed, i.e., the solution does not

depend continuously on the given data. Therefore, in the works of some authors, various
regularization methods were proposed for constructing an approximate solution of the inverse
problem, see, for instnace, [25], [26]. In paper [25] the inverse problem for the fractional diffusion
equation with the Riemann-Liouville derivative was considered. Assuming that solutions to the
equation can be represented by a Fourier series, the authors applied the Tikhonov regularization
method to find an approximate solution. Convergence estimates for exact and regularized
solutions were presented for a priori and a posteriori rules for choosing parameters. In [26],
similar questions were investigated for the stochastic fractional diffusion equation.
This work is devoted to the study of forward problem (1.1) and inverse problem (1.1), (1.2)

on determining the right-hand side of the equation. Let us list the main results of this paper.
1) First, in Section 3, we prove the existence and uniqueness theorem for the forward problem

(1.1) by using the Fourier method. We present conditions on the initial function 𝜙(𝑥) and on
the right-hand side of the equation that ensure the validity of the application of the Fourier
method. Due to the fact that the elliptic part of the equation is the Laplace operator, the
conditions on the functions 𝑓(𝑥) and 𝑔(𝑡) turned out to be easier to check than in the case of
a general elliptic operator, see [27];
2) Then in Section 4, under a certain condition on function 𝑔(𝑡) (for example, the constant

sign is sufficient), we prove the existence and uniqueness of a solution to the inverse problem.
Further, we show that if this condition is violated, then for the existence of a solution to the
inverse problem it is sufficient the functions in the initial condition and the over-determination
condition to be orthogonal to some eigenfunctions of the Laplace operator with the Dirichlet
condition;
3) An example of function 𝑔(𝑡) is constructed in Section 4, for which the condition noted

above is not satisfied and, as a result, the inverse problem has more than one solution.
The following Section 2 is auxiliary and contains definitions and well-known assertions nec-

essary for further presentation. The section Conclusions completes this work.

2. Preliminaries

In this auxiliary section we define fractional powers of a self-adjoint extension of the Laplace
operator, formulate a lemma from book by Krasnoselskii et al. [28], a fundamental result
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by V.A. Il’in [29] about the convergence of the Fourier coefficients and indicate some needed
properties of the Mittag-Leffler function.
We denote by {𝜆𝑘} and {𝑣𝑘(𝑥)} a set of positive eigenvalues and an associated complete

system of orthonormal eigenfunctions in 𝐿2(Ω) of the following spectral problem{︂−∆𝑣(𝑥) = 𝜆𝑣(𝑥), 𝑥 ∈ Ω,

𝑣(𝑥)|𝜕Ω = 0.

Let 𝜎 be an arbitrary real number. Consider an operator 𝐴𝜎 acting in 𝐿2(Ω) as

𝐴𝜎𝑔(𝑥) =
∞∑︁
𝑘=1

𝜆𝜎𝑘𝑔𝑘𝑣𝑘(𝑥), 𝑔𝑘 = (𝑔, 𝑣𝑘),

on the domain

𝐷(𝐴𝜎) =

{︃
𝑔 ∈ 𝐿2(Ω) :

∞∑︁
𝑘=1

𝜆2𝜎𝑘 |𝑔𝑘|2 <∞

}︃
.

On the elements of 𝐷(𝐴𝜎) we introduce the norm

‖𝑔‖2𝜎 =
∞∑︁
𝑘=1

𝜆2𝜎𝑘 |𝑔𝑘|2 = ‖𝐴𝜎𝑔‖2.

Let 𝐴 be the operator acting in 𝐿2(Ω) as 𝐴𝑔(𝑥) = −∆𝑔(𝑥) on the domain 𝐷(𝐴) = {𝑔 ∈ 𝐶2(Ω) :

𝑔(𝑥) = 0, 𝑥 ∈ 𝜕Ω}, then by 𝐴 ≡ 𝐴1 we denote the self-adjoint extension of 𝐴 in 𝐿2(Ω).
In our reasoning the following lemma from the book Krasnoselskii et al. [28] plays an impor-

tant role.

Lemma 2.1. Let 𝜎 > 𝑁
4
. Then operator 𝐴−𝜎 continuously maps the space 𝐿2(Ω) into 𝐶(Ω),

and moreover, the following estimate holds

‖𝐴−𝜎𝑔‖𝐶(Ω) ⩽ 𝐶‖𝑔‖𝐿2(Ω).

In order to prove the existence of solutions of forward and inverse problems, it is necessary
to study the convergence of the following series:

∞∑︁
𝑘=1

𝜆𝜏𝑘|ℎ𝑘|2, 𝜏 >
𝑁

2
, (2.1)

where ℎ𝑘 are the Fourier coefficients of function ℎ(𝑥). In the case of integers 𝜏 , in fundamental
paper [29] by V.A. Il’in, conditions were obtained for the convergence of such series in terms
of the membership of the function ℎ(𝑥) in the classical Sobolev spaces 𝑊 𝑘

2 (Ω). To formulate

these conditions, we introduce the class 𝑊̂ 1
2 (Ω) as the closure in the 𝑊 1

2 (Ω)-norm of the set of
all continuously differentiable in Ω functions vanishing in the vicinity of the boundary of Ω.
The theorem of V.A. Il’in states that if the function ℎ(𝑥) satisfies the conditions

ℎ(𝑥) ∈ 𝑊

[︀
𝑁
2

]︀
+1

2 (Ω) and ℎ(𝑥),∆ℎ(𝑥), . . . ,∆

[︀
𝑁
4

]︀
ℎ(𝑥) ∈ 𝑊̂ 1

2 (Ω), (2.2)

then scalar series (2.1) converges. Here [𝑎] denotes the integer part of a number 𝑎. Similarly, if
in (2.1) we replace 𝜏 by 𝜏 + 2, then the convergence conditions becomes

ℎ(𝑥) ∈ 𝑊

[︀
𝑁
2

]︀
+3

2 (Ω) and ℎ(𝑥),∆ℎ(𝑥), . . . ,∆

[︀
𝑁
4

]︀
+1ℎ(𝑥) ∈ 𝑊̂ 1

2 (Ω). (2.3)

For 0 < 𝜌 < 1 and an arbitrary complex number 𝜇, let 𝐸𝜌,𝜇(𝑧) denote the Mittag-Leffler
function with two parameters of the complex argument 𝑧:

𝐸𝜌,𝜇(𝑧) =
∞∑︁
𝑘=0

𝑧𝑘

Γ(𝜌𝑘 + 𝜇)
. (2.4)
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For 𝜇 = 1 we have the classical Mittag-Leffler function 𝐸𝜌(𝑧) = 𝐸𝜌,1(𝑧).
We recall some properties of the Mittag-Leffler functions, see, for instance, [30].

Lemma 2.2. For any 𝑡 ⩾ 0 one has

|𝐸𝜌,𝜇(−𝑡)| ⩽
𝐶

1 + 𝑡
, (2.5)

where constant 𝐶 is independent of 𝑡 and 𝜇.

Lemma 2.3. (see [31]). The classical Mittag-Leffler function of the negative argument
𝐸𝜌(−𝑡) is monotonically decreasing function for all 0 < 𝜌 < 1 and

0 < 𝐸𝜌(−𝑡) < 1, 𝐸𝜌(0) = 1.

Lemma 2.4. (see [30, Eq. (2.30)] and [32, Lm. 4]). Let 𝜇 be an arbitrary complex number.
Then the following asymptotic estimate holds⃒⃒⃒⃒

𝐸𝜌,𝜇(−𝑡)−
𝑡−1

Γ(𝜇− 𝜌)

⃒⃒⃒⃒
⩽
𝐶

𝑡2
, 𝑡 > 1,

where 𝐶 is an absolute constant.

Lemma 2.5. (see [31, Eq. (4.4.5)]). Let 𝜌 > 0, 𝜇 > 0 and 𝜆 ∈ 𝐶. Then for all positive 𝑡
one has

𝑡∫︁
0

(𝑡− 𝜂)𝜇−1𝜂𝜌−1𝐸𝜌,𝜌(𝜆𝜂
𝜌)𝑑𝜂 = 𝑡𝜇+𝜌−1𝐸𝜌,𝜌+𝜇(𝜆𝑡

𝜌). (2.6)

3. Well-posedness of forward problem (1.1)

First we consider the following problem for a homogeneous equation⎧⎪⎨⎪⎩
𝐷𝜌

𝑡 𝑦(𝑥, 𝑡)−∆𝑦(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ],

𝑦(𝑥, 𝑡)|𝜕Ω = 0,

𝑦(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ Ω,

(3.1)

where 𝜙(𝑥) is a given function.

Theorem 3.1. Let function 𝜙(𝑥) satisfy conditions (2.2). Then problem (3.1) has a unique
solution:

𝑦(𝑥, 𝑡) =
∞∑︁
𝑘=1

𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌)𝑣𝑘(𝑥), (3.2)

where 𝜙𝑘 are the Fourier coefficients of function 𝜙(𝑥).

Proof. This theorem for a more general subdiffusion equation was proved in [27]. We only
mention the main points of the proof.
Obviously, (3.2) is a formal solution to problem (3.1), see [1], [33]. Let us show that the

operators 𝐴 = −∆ and 𝐷𝜌
𝑡 can be applied term-by-term to series (3.2) and the resulting series

converges uniformly in (𝑥, 𝑡) ∈ (Ω× (0, 𝑇 ]). If 𝑆𝑗(𝑥, 𝑡) is the partial sum of series (3.2), then

−∆𝑆𝑗(𝑥, 𝑡) =

𝑗∑︁
𝑘=1

𝜆𝑘𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌)𝑣𝑘(𝑥).

Using the identity

𝐴−𝜎𝑣𝑘(𝑥) = 𝜆−𝜎
𝑘 𝑣𝑘(𝑥),
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with 𝜎 > 𝑁
4
and applying Lemma 2.1 for 𝑔(𝑥) = −∆𝑆𝑗(𝑥, 𝑡), we have

‖ −∆𝑆𝑗(𝑥, 𝑡)‖2𝐶(Ω) =

⃒⃒⃒⃒⃒⃒⃒⃒ 𝑗∑︁
𝑘=1

𝜆𝑘𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌)𝑣𝑘(𝑥)
⃒⃒⃒⃒⃒⃒⃒⃒2
𝐶(Ω)

⩽ 𝐶

𝑗∑︁
𝑘=1

𝜆
2(𝜎+1)
𝑘 |𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌)|2.

We apply estimates (2.5) to obtain

‖ −∆𝑆𝑗(𝑥, 𝑡)‖2𝐶(Ω) ⩽ 𝐶

𝑗∑︁
𝑘=1

𝜆
2(𝜎+1)
𝑘 |𝜙𝑘|2

|1 + 𝜆𝑘𝑡𝜌|2
⩽ 𝐶𝑡−2𝜌

𝑗∑︁
𝑘=1

𝜆2𝜎𝑘 |𝜙𝑘|2, 𝑡 > 0.

Therefore, if 𝜙(𝑥) satisfies conditions (2.2), then −∆𝑦(𝑥, 𝑡) ∈ 𝐶(Ω × (0, 𝑇 ]). From equation
(3.1) one has 𝐷𝜌

𝑡 𝑦(𝑥, 𝑡) = ∆𝑦(𝑥, 𝑡), 𝑡 > 0, and hence we get 𝐷𝜌
𝑡 𝑦(𝑥, 𝑡) ∈ 𝐶(Ω× (0, 𝑇 ]).

The uniqueness of the solution follows from the completeness of the system {𝑣𝑘(𝑥)} in 𝐿2(Ω),
see [20]. We only note that it is important here that the derivatives of the solution involved in
the equation are continuous up to the boundary of domain Ω, see Definition 1.1. Nevertheless,
below we give a proof of the uniqueness of a solution of the inverse problem in detail, see the
proof of Theorem 4.1.

Now we consider the following auxiliary initial-boundary value problem:⎧⎪⎨⎪⎩
𝐷𝜌

𝑡𝜔(𝑥, 𝑡)−∆𝜔(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ],

𝜔(𝑥, 𝑡)|𝜕Ω = 0,

𝜔(𝑥, 0) = 0, 𝑥 ∈ Ω.

(3.3)

Theorem 3.2. Let 𝑓(𝑥) satisfy conditions (2.2) and 𝑔(𝑡) ∈ 𝐶[0, 𝑇 ]. Then problem (3.3) has
a unique solution

𝜔(𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑓𝑘

⎡⎣ 𝑡∫︁
0

𝜂𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝜂𝜌)𝑔(𝑡− 𝜂)𝑑𝜂

⎤⎦ 𝑣𝑘(𝑥). (3.4)

where 𝑓𝑘 = (𝑓, 𝑣𝑘).

Proof. Again, as in the previous theorem, (3.4) is a formal solution to problem (3.3), see [1],
[33].
Let 𝑆𝑗(𝑥, 𝑡) be the partial sum of series (3.4) and 𝜎 > 𝑁

4
. Repeating the above reasoning

based on Lemma 2.1 and using the Parseval’s identity and Lemma 2.5, we arrive at

‖ −∆𝑆𝑗(𝑥, 𝑡)‖2𝐶(Ω) =

⃒⃒⃒⃒⃒⃒⃒⃒ 𝑗∑︁
𝑘=1

𝜆𝑘𝑓𝑘

𝑡∫︁
0

𝜂𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝜂𝜌)𝑔(𝑡− 𝜂)𝑑𝜂𝑣𝑘(𝑥)

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐶(Ω)

⩽

⃒⃒⃒⃒⃒⃒⃒⃒
𝐴−𝜎

𝑗∑︁
𝑘=1

𝜆𝜎+1
𝑘 𝑓𝑘

𝑡∫︁
0

𝜂𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝜂𝜌)𝑔(𝑡− 𝜂)𝑑𝜂𝑣𝑘(𝑥)

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐶(Ω)

⩽

⃒⃒⃒⃒⃒⃒⃒⃒ 𝑗∑︁
𝑘=1

𝜆𝜎+1
𝑘 𝑓𝑘

𝑡∫︁
0

𝜂𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝜂𝜌)𝑔(𝑡− 𝜂)𝑑𝜂𝑣𝑘(𝑥)

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2(Ω)

⩽𝐶
𝑗∑︁

𝑘=1

⃒⃒⃒⃒
𝜆𝜎+1
𝑘 𝑓𝑘

𝑡∫︁
0

𝜂𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝜂𝜌)𝑔(𝑡− 𝜂)𝑑𝜂

⃒⃒⃒⃒2

⩽𝐶
𝑗∑︁

𝑘=1

[︂
𝜆𝜎+1
𝑘 |𝑓𝑘| max

0⩽𝑡⩽𝑇
|𝑔(𝑡)|

𝑡∫︁
0

𝜂𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝜂𝜌)𝑑𝜂
]︂2
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⩽𝐶
𝑗∑︁

𝑘=1

[︂
𝜆𝜎+1
𝑘 |𝑓𝑘| max

0⩽𝑡⩽𝑇
|𝑔(𝑡)|𝑡𝜌𝐸𝜌,𝜌+1(−𝜆𝑘𝑡𝜌)

]︂2
, 𝑡 > 0.

Lemma 2.2 implies

‖ −∆𝑆𝑗(𝑥, 𝑡)‖𝐶(Ω) ⩽ 𝐶 max
0⩽𝑡⩽𝑇

|𝑔(𝑡)|𝑓‖𝜎, 𝑡 > 0.

Hence, −∆𝜔(𝑥, 𝑡) ∈ 𝐶(Ω×(0, 𝑇 ]) and in particular 𝜔(𝑥, 𝑡) ∈ 𝐶(Ω× [0, 𝑇 ]). Then from equation
(3.3) one has

𝐷𝜌
𝑡𝑆𝑗(𝑥, 𝑡) = ∆𝑆𝑗(𝑥, 𝑡) +

𝑗∑︁
𝑘=1

𝑓𝑘𝑔(𝑡)𝑣𝑘(𝑥), 𝑡 > 0.

Therefore, from the above reasoning, we have 𝐷𝜌
𝑡𝜔(𝑥, 𝑡) ∈ 𝐶(Ω× (0, 𝑇 ]). The uniqueness of the

solution follows from the completeness of the system {𝑣𝑘(𝑥)} in 𝐿2(Ω).

We proceed to solving main problem (1.1). We note that if 𝑦(𝑥, 𝑡) and 𝜔(𝑥, 𝑡) are solutions of
problems (3.1) and (3.3), respectively, then the function 𝑢(𝑥, 𝑡) = 𝑦(𝑥, 𝑡) + 𝜔(𝑥, 𝑡) is a solution
to problem (1.1). Therefore, we can use the already proven assertions and obtain the following
result.

Theorem 3.3. Let 𝜙(𝑥), 𝑓(𝑥) satisfy conditions (2.2) and 𝑔(𝑡) ∈ 𝐶[0, 𝑇 ]. Then problem
(1.1) has a unique solution

𝑢(𝑥, 𝑡) =
∞∑︁
𝑘=1

⎡⎣𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌) + 𝑓𝑘

𝑡∫︁
0

𝜂𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝜂𝜌)𝑔(𝑡− 𝜂)𝑑𝜂

⎤⎦ 𝑣𝑘(𝑥). (3.5)

4. Well-posedness of inverse problem (1.1), (1.2)

We apply additional condition (1.2) to equation (3.5) and denote by 𝜓𝑘 the Fourier coefficients
of function 𝜓(𝑥) : 𝜓𝑘 = (𝜓, 𝑣𝑘). Then

∞∑︁
𝑘=1

𝑓𝑘𝑏𝑘,𝜌(𝑡0)𝑣𝑘(𝑥) =
∞∑︁
𝑘=1

𝜓𝑘𝑣𝑘(𝑥)−
∞∑︁
𝑘=1

𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)𝑣𝑘(𝑥), (4.1)

where

𝑏𝑘,𝜌(𝑡) =

𝑡∫︁
0

(𝑡− 𝑠)𝜌−1𝐸𝜌,𝜌(−𝜆𝑘(𝑡− 𝑠)𝜌)𝑔(𝑠)𝑑𝑠.

From here, to find 𝑓𝑘, we obtain the following equation

𝑓𝑘𝑏𝑘,𝜌(𝑡0) = 𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0). (4.2)

Of course, the case 𝑏𝑘,𝜌(𝑡0) = 0 is critical. This can happen when 𝑔(𝑡) changes sign. The
following example shows that for such 𝑔(𝑡) the uniqueness of the unknowns 𝑓𝑘 can be violated,
see also [8].
Example 1. We consider the following homogeneous inverse problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐷𝜌
𝑡 𝑢(𝑥, 𝑡)−∆𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ],

𝑢(𝑥, 𝑡)|𝜕Ω = 0,

𝑢(𝑥, 0) = 0, 𝑥 ∈ Ω,

𝑢(𝑥, 𝑡0) = 0, 𝑥 ∈ Ω.

(4.3)
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Take any eigenfunction 𝑣 of the Laplace operator subject to homogeneous Dirichlet boundary
conditions, i.e. −∆𝑣 = 𝜆𝑣 with 𝑣(𝑥)|𝜕Ω = 0 and set 𝑡0 = 1, 𝑇 (𝑡) = 𝑡𝜌(1 − 𝑡𝑏), 𝑏 > 0. Then,
𝑢(𝑥, 𝑡) = 𝑇 (𝑡)𝑣(𝑥) satisfies problem (4.3) with

𝑓(𝑥) = 𝑣(𝑥) and 𝑔(𝑡) = 𝐷𝜌
𝑡 𝑇 (𝑡) + 𝜆𝑇 (𝑡).

Then, besides the trivial solution (𝑢, 𝑓) = (0, 0) to problem (4.3), we also have the following
non-trivial solution

𝑢(𝑥, 𝑡) = 𝑇 (𝑡)𝑣(𝑥), 𝑓(𝑥) = 𝑣(𝑥).

It can be shown easily that, for example, for the parameters 𝑏 = 0.1 and 𝜌 = 0.5, the function
𝑔(𝑡) changes its sign. Indeed, one has

𝑔(𝑡) =
𝜌𝐵(𝜌, 1− 𝜌)

Γ(1− 𝜌)
− (𝑏+ 𝜌)𝑡𝜌𝐵(𝑏+ 𝜌, 1− 𝜌)

Γ(1− 𝜌)
+ 𝜆𝑡𝜌(1− 𝑡𝑏),

and

𝑔(0) = 0.5Γ(0.5) =

√
𝜋

2
> 0,

𝑔(1) = 0.5Γ(0.5)− 0.6𝐵(0.6, 0.5)

Γ(0.5)
=

√
𝜋

2
− 6Γ(0.6)

Γ(1.1)
< 0.

We note that 𝑔(𝑡) does not belong to 𝐶1[0, 𝑇 ], see Lemma 4.3 below.
Let us divide the set of natural numbers N into two groups 𝐾0,𝜌 and 𝐾𝜌: N = 𝐾𝜌 ∪ 𝐾0,𝜌,

while the number 𝑘 is assigned to 𝐾0,𝜌, if 𝑏𝑘,𝜌(𝑡0) = 0, and if 𝑏𝑘,𝜌(𝑡0) ̸= 0, then this number is
assigned to 𝐾𝜌. Note that for some 𝑡0 the set 𝐾0,𝜌 can be empty, then 𝐾𝜌 = N. For example,
if 𝑔(𝑡) is sign-preserving, then 𝐾𝜌 = N, for all 𝑡0.
There arises a natural question about the size of set 𝐾0,𝜌, i.e., how many elements does 𝐾0,𝜌

contain? As the authors of paper [6] noted, at least for 𝜌 = 1, the set 𝐾0,1 can contain infinitely
many elements. Indeed, in this case

𝑏𝑘,1(𝑡0) =

𝑡0∫︁
0

𝑒−𝜆𝑘(𝑡0−𝑠)𝑔(𝑠)𝑑𝑠,

and according to Muntz’s theorem (see monograph by S. Kaczmarz and H. Steinhouse [34]),
the set 𝐾0,1 for some continuous functions 𝑔(𝑡) contains infinitely many elements, see also [35].
In the case of the diffusion equation, the criterion for the uniqueness of a solution of the

inverse problem was studied in the papers cited above [2], [3], [4], [5], [6]. This criterion can be
formulated as follows: the inverse problem has a unique solution if and only if

𝑏𝑘,1(𝑡0) ̸= 0. (4.4)

From equation (4.2) for finding 𝑓𝑘 it easily follows that the criterion for the uniqueness of the
solution of the inverse problem for the subdiffusion equation has a similar form:

𝑏𝑘,𝜌(𝑡0) ̸= 0. (4.5)

Let us establish two-sided estimates for 𝑏𝑘,𝜌(𝑡0). First we suppose that 𝑔(𝑡) does not change
sign, for the diffusion equation, i.e. for 𝑏𝑘,1(𝑡0), see Sabitov et al. [3], [4]. Then 𝐾0,𝜌 is empty.

Lemma 4.1. Let 𝑔(𝑡) ∈ 𝐶[0, 𝑇 ] and 𝑔(𝑡) ̸= 0, 𝑡 ∈ [0, 𝑇 ]. Then there are constants 𝐶0, 𝐶1 >
0, depending on 𝑡0, such that for all 𝑘:

𝐶0

𝜆𝑘
⩽ |𝑏𝑘,𝜌(𝑡0)| ⩽

𝐶1

𝜆𝑘
.
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Proof. By virtue of the Weierstrass theorem, we have |𝑔(𝑡)| ⩾ 𝑔0 = 𝑐𝑜𝑛𝑠𝑡 > 0. We apply the
mean value theorem and Lemma 2.5 to obtain

|𝑏𝑘,𝜌(𝑡0)| =
⃒⃒⃒⃒ 𝑡0∫︁
0

𝜂𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝜂𝜌)𝑔(𝑡0 − 𝜂)𝑑𝜂

⃒⃒⃒⃒
=|𝑔(𝜉𝑘)|𝑡𝜌0𝐸𝜌,𝜌+1(−𝜆𝑘𝑡𝜌0), 𝜉𝑘 ∈ [0, 𝑡0].

It is easy to see that

𝐸𝜌,𝜌+1(−𝑡) = 𝑡−1(1− 𝐸𝜌(−𝑡)).
Therefore, using Lemma 2.3 and the estimate |𝑔(𝑡)| ⩾ 𝑔0 one has

|𝑏𝑘,𝜌(𝑡0)| = |𝑔(𝜉𝑘)|
1

𝜆𝑘
(1− 𝐸𝜌(−𝜆𝑘𝑡𝜌0)) ⩾

𝐶0

𝜆𝑘
.

Finally Lemma 2.2 implies

|𝑏𝑘,𝜌(𝑡0)| ⩽ 𝐶
|𝑔(𝜉𝑘)|𝑡𝜌0
1 + 𝜆𝑘𝑡

𝜌
0

⩽ 𝐶
max
0⩽𝜉⩽𝑡0

|𝑔(𝜉)|

𝜆𝑘
⩽
𝐶1

𝜆𝑘
.

Theorem 4.1. Let 𝜌 ∈ (0, 1], 𝑔(𝑡) ∈ 𝐶[0, 𝑇 ] and 𝑔(𝑡) ̸= 0, 𝑡 ∈ [0, 𝑇 ]. Moreover, let the
function 𝜙(𝑥) satisfy condition (2.2) and 𝜓(𝑥) satisfy condition (2.3). Then there exists a
unique solution of inverse problem (1.1)-(1.2):

𝑓(𝑥) =
∞∑︁
𝑘=1

1

𝑏𝑘,𝜌(𝑡0)
[𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)] 𝑣𝑘(𝑥), (4.6)

𝑢(𝑥, 𝑡) =
∞∑︁
𝑘=1

𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌)𝑣𝑘(𝑥) +
∞∑︁
𝑘=1

𝑏𝑘,𝜌(𝑡)

𝑏𝑘,𝜌(𝑡0)
[𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)] 𝑣𝑘(𝑥). (4.7)

For the diffusion equation (𝜌 = 1), this theorem is proved only in cases where Ω is an interval
on R, see [3], or a rectangle in R2, see [4]. This is a new theorem for subdiffusion equations
(𝜌 ∈ (0, 1)).

Proof. Since 𝑏𝑘,𝜌(𝑡0) ̸= 0 for all 𝑘 ∈ N, we get the following equations from (4.2):

𝑓𝑘 =
1

𝑏𝑘,𝜌(𝑡0)
[𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)] , (4.8)

𝑢𝑘(𝑡) = 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌) +
𝑏𝑘,𝜌(𝑡)

𝑏𝑘,𝜌(𝑡0)
[𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)] . (4.9)

With these Fourier coefficients, we have the following series for the unknown functions 𝑓(𝑥)
and 𝑢(𝑥, 𝑡):

𝑓(𝑥) =
∞∑︁
𝑘=1

1

𝑏𝑘,𝜌(𝑡0)
[𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)] 𝑣𝑘(𝑥) =

∞∑︁
𝑘=1

[𝑓𝑘,1 + 𝑓𝑘,2]𝑣𝑘(𝑥), (4.10)

𝑢(𝑥, 𝑡) =
∞∑︁
𝑘=1

𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌)𝑣𝑘(𝑥) +
∞∑︁
𝑘=1

𝑏𝑘,𝜌(𝑡)

𝑏𝑘,𝜌(𝑡0)
[𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)] 𝑣𝑘(𝑥). (4.11)

If 𝐹𝑗(𝑥) is the partial sums of series (4.10), then applying Lemma 2.1 as above we have

‖𝐴−𝜎𝐹𝑗(𝑥)‖2𝐶(Ω) ⩽
𝑗∑︁

𝑘=1

𝜆2𝜎𝑘 |𝑓𝑘,1 + 𝑓𝑘,2|2 ⩽ 2

𝑗∑︁
𝑘=1

𝜆2𝜎𝑘 𝑓
2
𝑘,1 + 2

𝑗∑︁
𝑘=1

𝜆2𝜎𝑘 𝑓
2
𝑘,2 ≡ 2𝐼1,𝑗 + 2𝐼2,𝑗, (4.12)
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where 𝜎 > 𝑁
4
. Therefore by Lemma 4.1 one has

𝐼1,𝑗 ⩽
𝑗∑︁

𝑘=1

𝜆2𝜎𝑘
|𝑏𝑘,𝜌(𝑡0)|2

|𝜓𝑘|2 ⩽ 𝐶

𝑗∑︁
𝑘=1

𝜆𝜏+2
𝑘 |𝜓𝑘|2, 𝜏 = 2𝜎 >

𝑁

2
, (4.13)

𝐼2,𝑗 ⩽
𝑗∑︁

𝑘=1

⃒⃒⃒⃒
𝐸𝜌(−𝜆𝑘𝑡𝜌0)
𝑏𝑘,𝜌(𝑡0)

⃒⃒⃒⃒2
𝜆2𝜎𝑘 |𝜙𝑘|2 ⩽ 𝐶

𝑗∑︁
𝑘=1

𝜆𝜏𝑘|𝜙𝑘|2, 𝜏 = 2𝜎 >
𝑁

2
. (4.14)

Thus, if 𝜙(𝑥) satisfies conditions (2.2) and 𝜓(𝑥) satisfies conditions (2.3), then from estimates
of 𝐼𝑖,𝑗 and (4.12) we obtain 𝑓(𝑥) ∈ 𝐶(Ω). Further, the fact that function 𝑢(𝑥, 𝑡) given by (4.11)
is a solution to the inverse problem is proved exactly as the proof of Theorem 3.3. Here we also
apply Lemma 4.1.
To prove the uniqueness of the solution, we assume the contrary. Let there exist two different

solutions {𝑢1, 𝑓1} and {𝑢2, 𝑓2} satisfying inverse problem (1.1)-(1.2). We need to show that
𝑢 ≡ 𝑢1 − 𝑢2 ≡ 0, 𝑓 ≡ 𝑓1 − 𝑓2 ≡ 0. For {𝑢, 𝑓} we have the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐷𝜌
𝑡 𝑢(𝑥, 𝑡)−∆𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ],

𝑢(𝑥, 𝑡)|𝜕Ω = 0,

𝑢(𝑥, 0) = 0, 𝑥 ∈ Ω,

𝑢(𝑥, 𝑡0) = 0, 𝑥 ∈ Ω, 𝑡0 ∈ (0, 𝑇 ].

(4.15)

We take any solution {𝑢, 𝑓} and define 𝑢𝑘 = (𝑢, 𝑣𝑘) and 𝑓𝑘 = (𝑓, 𝑣𝑘). Then, due to the self-
adjointness of the operator −∆ and the continuity of the derivatives of the solution up to the
boundary of the domain Ω, we have

𝐷𝜌
𝑡 𝑢𝑘(𝑡) = (𝐷𝜌

𝑡 𝑢, 𝑣𝑘) = (∆𝑢, 𝑣𝑘) + 𝑓𝑘𝑔(𝑡) = (𝑢,∆𝑣𝑘) + 𝑓𝑘𝑔(𝑡) = −𝜆𝑘𝑢𝑘(𝑡) + 𝑓𝑘𝑔(𝑡).

Therefore, for 𝑢𝑘 we obtain the Cauchy problem

𝐷𝜌
𝑡 𝑢𝑘(𝑡) + 𝜆𝑘𝑢𝑘(𝑡) = 𝑓𝑘𝑔(𝑡), 𝑡 > 0, 𝑢𝑘(0) = 0,

and the additional condition

𝑢𝑘(𝑡0) = 0.

If 𝑓𝑘 is known, then the unique solution of the Cauchy problem has the form

𝑢𝑘(𝑡) = 𝑓𝑘

𝑡∫︁
0

𝜂𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝜂𝜌)𝑔(𝑡− 𝜂)𝑑𝜂 = 𝑓𝑘𝑏𝑘,𝜌(𝑡).

Apply the additional condition to get

𝑢𝑘(𝑡0) = 𝑓𝑘𝑏𝑘,𝜌(𝑡0) = 0.

Since 𝑏𝑘,𝜌(𝑡0) ̸= 0 for all 𝑘 ∈ N, then due to completeness of the set of eigenfunctions {𝑣𝑘} in
𝐿2(Ω), we finally have 𝑓(𝑥) ≡ 0 and 𝑢(𝑥, 𝑡) ≡ 0.

Now consider the case when 𝑔(𝑡) changes sign. In this case, function 𝑏𝑘,𝜌(𝑡0) can become zero,
and as a result, the set 𝐾0,𝜌 may turn out to be non-empty. Now we should consider separately
the case of diffusion (𝜌 = 1) and subdiffusion (0 < 𝜌 < 1) equations.

Lemma 4.2. Let 𝜌 = 1, 𝑔(𝑡) ∈ 𝐶1[0, 𝑇 ] and 𝑔(𝑡0) ̸= 0. Then there exists a number 𝑘0 such
that, starting from the number 𝑘 ⩾ 𝑘0, the following estimates hold:

𝐶0

𝜆𝑘
⩽ |𝑏𝑘,1(𝑡0)| ⩽

𝐶1

𝜆𝑘
, (4.16)

where constants 𝐶0 and 𝐶1 > 0 depend on 𝑘0 and 𝑡0.
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Proof. By integrating by parts and the mean value theorem, we get

𝑏𝑘,1(𝑡0) =

𝑡0∫︁
0

𝑒−𝜆𝑘𝑠𝑔(𝑡0 − 𝑠)𝑑𝑠 = − 1

𝜆𝑘
𝑔(𝑡0 − 𝑠)𝑒−𝜆𝑘𝑠

⃒⃒⃒⃒𝑡0
0

− 1

𝜆𝑘

𝑡0∫︁
0

𝑒−𝜆𝑘𝑠𝑔′(𝑡0 − 𝑠)𝑑𝑠

=
1

𝜆𝑘

[︀
𝑔(𝑡0)− 𝑔(0)𝑒−𝜆𝑘𝑡0

]︀
+
𝑔′(𝜉𝑘)

𝜆2𝑘

[︀
𝑒−𝜆𝑘𝑡0 − 1

]︀
, 𝜉𝑘 ∈ [0, 𝑡0].

Therefore, there exists a constant 𝐶0 such that the required lower bound holds. The upper
estimate follows from the boundedness of function 𝑔(𝑡).

Corollary 4.1. If conditions of Lemma 4.2 are satisfied, then estimate (4.16) holds for all
𝑘 ∈ 𝐾1.

Corollary 4.2. If conditions of Lemma 4.2 are satisfied, then set 𝐾0,1 has a finite number
elements.

In case of subdiffusion equation (𝜌 ∈ (0, 1)) we have

Lemma 4.3. Let 𝜌 ∈ (0, 1), 𝑔(𝑡) ∈ 𝐶1[0, 𝑇 ] and 𝑔(0) ̸= 0. Then there exist numbers 𝑚0 > 0
and 𝑘0 such that, for all 𝑡0 ⩽ 𝑚0 and 𝑘 ⩾ 𝑘0, the following estimates hold:

𝐶0

𝜆𝑘
⩽ |𝑏𝑘,𝜌(𝑡0)| ⩽

𝐶1

𝜆𝑘
, (4.17)

where constants 𝐶0 and 𝐶1 > 0 depend on 𝑚0 and 𝑘0.

Proof. Let 𝜌 ∈ (0, 1). Using equality (2.6) we integrate by parts, then apply the mean value
theorem. Then we have

𝑏𝑘,𝜌(𝑡0) =

𝑡0∫︁
0

𝑔(𝑡0 − 𝑠)𝑠𝜌−1𝐸𝜌,𝜌(−𝜆𝑘𝑠𝜌)𝑑𝑠 =
𝑡0∫︁
0

𝑔(𝑡0 − 𝑠)𝑑
[︀
𝑠𝜌𝐸𝜌,𝜌+1(−𝜆𝑘𝑠𝜌)

]︀

=𝑔(𝑡0 − 𝑠)𝑠𝜌𝐸𝜌,𝜌+1(−𝜆𝑘𝑠𝜌)
⃒⃒⃒⃒𝑡0
0

+

𝑡0∫︁
0

𝑔′(𝑡0 − 𝑠)𝑠𝜌𝐸𝜌,𝜌+1(−𝜆𝑘𝑠𝜌)𝑑𝑠

=𝑔(0) 𝑡𝜌0𝐸𝜌,𝜌+1(−𝜆𝑘𝑡𝜌0) + 𝑔′(𝜉𝑘)

𝑡0∫︁
0

𝑠𝜌𝐸𝜌,𝜌+1(−𝜆𝑘𝑠𝜌)𝑑𝑠, 𝜉𝑘 ∈ [0, 𝑡0].

For the last integral formula (2.6) implies

𝑡0∫︁
0

𝑠𝜌𝐸𝜌,𝜌+1(−𝜆𝑘𝑠𝜌)𝑑𝑠 = 𝑡𝜌+1
0 𝐸𝜌,𝜌+2(−𝜆𝑘𝑡𝜌0).

We apply the asymptotic estimate of the Mittag-Leffler functions (Lemma 2.4) to get

𝑏𝑘,𝜌(𝑡0) =
𝑔(0)

𝜆𝑘
+
𝑔′(𝜉𝑘)

𝜆𝑘
𝑡0 +𝑂

(︂
1

(𝜆𝑘𝑡
𝜌
0)

2

)︂
.

If 𝑔(0) ̸= 0, then for sufficiently small 𝑡0 and sufficiently large 𝑘 we obtain the required lower
estimate. This also implies the required upper bound.

Corollary 4.3. If conditions of Lemma 4.3 are satisfied, then estimate (4.17) holds for all
𝑡0 ⩽ 𝑚0 and 𝑘 ∈ 𝐾𝜌.

Corollary 4.4. If conditions of Lemma 4.3 are satisfied and 𝑡0 is sufficiently small, then set
𝐾0,𝜌 has a finite number elements.
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Theorem 4.1 proves the existence and uniqueness of a solution to the inverse problem (1.1)-
(1.2) under condition 𝑔(𝑡) ∈ 𝐶[0, 𝑇 ] and 𝑔(𝑡) ̸= 0, 𝑡 ∈ [0, 𝑇 ], i.e., 𝑔(𝑡) does not change sign.
In Example 1, we saw that if this condition is violated, then the uniqueness of the solution to
problem (1.1)-(1.2) is violated. This naturally give rise to the questions: if 𝑔(𝑡) changes sign,
is uniqueness always violated? What can be said about the existence of a solution? How many
solutions can there be?
It should be emphasized that the answers to these questions were not known even for the

classical diffusion equation (i.e. 𝜌 = 1).
Lemmas 4.2 and 4.3 proved above allow us to answer these questions. Let us formulate the

corresponding result.

Theorem 4.2. Let 𝑔(𝑡) ∈ 𝐶1[0, 𝑇 ], function 𝜙(𝑥) satisfy condition (2.2) and 𝜓(𝑥) satisfy
condition (2.3). Further, we assume that for 𝜌 = 1 the conditions of Lemma 4.2 are satisfied,
and for 𝜌 ∈ (0, 1), the conditions of Lemma 4.3 are satisfied and 𝑡0 is sufficiently small.
1) If set 𝐾0,𝜌 is empty, i.e. 𝑏𝑘,𝜌(𝑡0) ̸= 0, for all 𝑘, then there exists a unique solution of the

inverse problem (1.1)-(1.2):

𝑓(𝑥) =
∞∑︁
𝑘=1

1

𝑏𝑘,𝜌(𝑡0)
[𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)] 𝑣𝑘(𝑥), (4.18)

𝑢(𝑥, 𝑡) =
∞∑︁
𝑘=1

𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌)𝑣𝑘(𝑥) +
∞∑︁
𝑘=1

𝑏𝑘,𝜌(𝑡)

𝑏𝑘,𝜌(𝑡0)
[𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)] 𝑣𝑘(𝑥). (4.19)

2) If set 𝐾0,𝜌 is not empty, then for the existence of a solution to the inverse problem, it is
necessary and sufficient that the following conditions

𝜓𝑘 = 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0), 𝑘 ∈ 𝐾0,𝜌, (4.20)

be satisfied. In this case, the solution to the problem (1.1)-(1.2) exists but is not unique:

𝑓(𝑥) =
∑︁
𝑘∈𝐾𝜌

1

𝑏𝑘,𝜌(𝑡0)
[𝜓𝑘 − 𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌0)] 𝑣𝑘(𝑥) +

∑︁
𝑘∈𝐾0,𝜌

𝑓𝑘𝑣𝑘(𝑥), (4.21)

𝑢(𝑥, 𝑡) =
∞∑︁
𝑘=1

[︀
𝜙𝑘𝐸𝜌(−𝜆𝑘𝑡𝜌) + 𝑓𝑘

]︀
𝑣𝑘(𝑥), (4.22)

where 𝑓𝑘, 𝑘 ∈ 𝐾0,𝜌, are arbitrary real numbers.

Proof. The proof of the first part of the theorem is completely analogous to the proof of Theorem
4.1. As regards the proof of the second part of the theorem, we note the following.
If 𝑘 ∈ 𝐾𝜌, then again from (4.2) we have (4.8) and (4.9).
If 𝑘 ∈ 𝐾0,𝜌, i.e. 𝑏𝑘,𝜌(𝑡0) = 0, then the solution of equation (4.2) with respect to 𝑓𝑘 exists if

and only if the conditions (4.20) are satisfied. In this case, the solution of the equation can be
arbitrary numbers 𝑓𝑘. As shown above (see Corollaries 4.2 and 4.4), under the conditions of
the theorem, the set 𝐾0,𝜌, 𝜌 ∈ (0, 1], contains finitely many elements.

Note that condition (4.20) is rather difficult to verify. Given relation 𝐸𝜌(−𝑡) ̸= 0, 𝑡 > 0 (see
Lemma 2.3), one can replace this condition with a simpler condition.

Remark 4.1. For conditions (4.20) to be satisfied, it suffices that the following orthogonality
conditions hold:

𝜙𝑘 = (𝜙, 𝑣𝑘) = 0, 𝜓𝑘 = (𝜓, 𝑣𝑘) = 0, 𝑘 ∈ 𝐾0,𝜌.

In other words, if the symbol 𝐻0 denotes a subspace of 𝐿2(Ω) spanned by a linear combination of
eigenfunctions 𝑣𝑘(𝑥), 𝑘 ∈ 𝐾0,𝜌 then in order for conditions (4.20) to be satisfied, it is sufficient
that 𝜙 and 𝜓 to be orthogonal to 𝐻0.
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Let us briefly mention some known results on inverse problems for the diffusion equation (i.e.,
𝜌 = 1). In work by D.G. Orlovskii [5] abstract diffusion equations in Banach and Hilbert spaces
were considered. In the case of a Hilbert space, the elliptic part of the equation is self-adjoint,
and the found uniqueness criterion is similar to (4.5). A condition on the function 𝑏𝑘,1(𝑇 ) is
found, which ensures the existence of a generalized solution (note that here condition (4.5) is
given at the point 𝑡0 = 𝑇 ).
In I.V. Tikhonov, Yu.S. Éidel’man [6], abstract diffusion equations in Banach and Hilbert

spaces are also considered. In the case of a self-adjoint elliptic part, the uniqueness criterion
coincides with (4.5). It is shown that if we consider equations in a Banach space, then condition
(4.5) is not a criterion, and an addition to (4.5) is found that turns (4.5) into a uniqueness
criterion for equations with a non-conjugate elliptic part.
The elliptic part of the diffusion equation in work A.I. Prilepko, A.B. Kostin [2] is a second-

order differential expression. Both non-self-adjoint and self-adjoint elliptic parts are considered.
In this paper, 𝑔(𝑡) also depends on the spatial variable: 𝑔(𝑡) := 𝑔(𝑥, 𝑡). In the case of a
self-adjoint elliptic part, the authors succeeded to find a criterion for the uniqueness of the
generalized solution of the inverse problem: the solution is unique if and only if the system

𝑤𝑘(𝑥) = 𝑣𝑘(𝑥)

𝑡0∫︁
0

𝑔(𝑥, 𝑡)𝑒−𝜆𝑘(𝑡0−𝑡)𝑑𝑡, 𝑘 = 1, 2, · · ·

is complete in 𝐿2(Ω). It is easy to see that if 𝑔(𝑥, 𝑡) is independent of 𝑥, then this criterion
coincides with (4.5). It should be emphasized that the Fourier method is not applicable to the
equation considered in this paper.
The closest to our research are works by K.B. Sabitov and A.R. Zaynullov [3] and [4]. We

borrowed some ideas from these works. In work [3] the elliptic part of the equation is 𝑢𝑥𝑥 defined
on an interval (in [4] this was the Laplace operator on the rectangle). Having considered the
over-determination condition in form (1.2), it is shown that the criterion for the uniqueness of
the classical solution is (4.5). When condition (4.5) is satisfied, a classical solution is constructed
by the Fourier method. We note that the existence of a classical solution was not discussed in
the works listed above.

5. Conclusion

In this paper, we consider the subdiffusion equation with a fractional derivative of order
𝜌 ∈ (0, 1], and take the Laplass operator as the elliptic part. The right-hand side of the
equation has the form 𝑓(𝑥)𝑔(𝑡), where 𝑔(𝑡) is a given function and the inverse problem of
determining function 𝑓(𝑥) is considered. Following works [2] and [3], the over-determination
condition is taken in a more general form. It is proved that the criterion for the uniqueness of
the classical solution of the inverse problem for the subdiffusion equations coincides with the
analogous condition for the diffusion equations.
In the case when this condition is not satisfied, a necessary and sufficient condition for the

existence of a classical solution is found and all solutions of the inverse problem are constructed
using the classical Fourier method. Note that if 𝑔(𝑡) changes sign, then it is only known (see
[6]) that the set 𝐾0,1 can contain infinitely many elements. In Corollaries 4.2 and 4.4, exact
conditions are found that guarantee the finiteness of the number of elements 𝐾0,𝜌, 𝜌 ∈ (0, 1] for
sign-variables 𝑔(𝑡). We emphasize that all the results listed in this paragraph are also new for
the classical diffusion equation.
The results of this work can be generalized to more general subdiffusion equations by replac-

ing the Laplace operator in (1.1) with a high-order self-adjoint elliptic operator with variable
coefficients. At the same time, instead of the result of V.A. Il’in, similar results by Sh.A. Alimov
[36] should be used for a general elliptic operator.
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