УДК 517.968

ВОЗМУЩЕНИЕ ПРОСТОЙ ДИССИПАТИВНОЙ ВОЛНЫ: ОТ ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ К АСИМПТОТИКЕ

Л.А. КАЛЯКИН

Аннотация. Мы рассматриваем задачу о возмущении простой (бегущей) волны на примере нелинейного уравнения в частных производных, которое моделирует динамику доменной стенки в слабом ферромагнетике. Основное внимание уделяется случаю, когда при фиксированных постоянных коэффициентах существует много точных решений в виде простой волны. Эти решения определяются из обыкновенного дифференциального уравнения с краевыми условиями на бесконечности. Уравнение зависит от скорости волны, как от параметра. Подходящие решения соответствуют фазовой траектории, которая соединяет неподвижные точки. Главная проблема состоит в том, что скорость волны не определяется однозначно по коэффициентам исходного уравнения. Для уравнения с медленно меняющимися коэффициентами строится асимптотика решения по малому параметру. В рассматриваемом случае известная асимптотическая конструкции оказывается неоднозначной из-за неопределенности скорости возмущенной волны. Для однозначной идентификации скорости предлагается дополнительное ограничение на структуру асимптотического решения. Это ограничение в форме требования стабильности переднего фронта волны извлекается из результатов численных экспериментов с исходным уравнением.

Ключевые слова: простая волна, возмущение, малый параметр, асимптотика.

Mathematics Subject Classification: 35Q60, 35L20, 35A18

1. Введение

1.1. Исходные данные. В настоящей работе под простой волной понимается функция со специфической зависимостью от переменных: $\phi(x,t) = \Phi(x-vt)$. При v = const функция $\Phi(s)$ от аргумента s = x - vt интерпретируется, как волна, бегущая по оси x со скоростью v. Отыскание решений в такой форме дает один из способов редукции к обыкновенным дифференциальным уравнениям. Редукции на основе других инвариантных решений здесь не обсуждаются. Для приложений интерес представляют простые волны, которые на фазовой плоскости (Φ, Φ) соответствуют траекториям, соединяющим неподвижные точки. Они связываются с описанием динамического перехода от одного равновесия к другому [1], [2]. Получаемые таким способом точные решения можно использовать в качестве приближений для анализа более сложных задач, используя теорию возмущений и асимптотики по малому параметру, как это продемонстрировано в ряде публикаций [3]-[6]. К сожалению, реализация идей, использованных в [4], [5] для параболических уравнений, наталкивается на значительные трудности в случае гиперболических уравнений [6]. Проблемы, которые возникают при построении асимптотик и подходы к их решению мы обсудим на примере уравнения магнитодинамики, выведенного в [7]:

$$\frac{\partial^2 \phi}{\partial t^2} - c^2 \frac{\partial^2 \phi}{\partial x^2} + \Omega^2 \sin \phi \cos \phi + \omega^2 \sin \phi + \alpha \frac{\partial \phi}{\partial t} = 0, \quad t > 0, \ x \in \mathbb{R}.$$
(1.1)

L.A. KALYAKIN, PERTURBATION OF A SIMPLE WAVE: FROM SIMULATION TO ASYMPTOTICS.

© Калякин Л.А. 2023.

Поступила 19 марта 2023 г.

Уравнение имеет тривиальные решения — равновесия $\phi \equiv 0$ и $\phi \equiv \pi$. Для магнитодинамики интерес представляют решения с краевыми условиями на бесконечности [7], [8]:

 $\phi(x,t) \to 0 \text{ при } x \to -\infty, \quad \phi(x,t) \to \pi \text{ при } x \to +\infty.$ (1.2)

В случае постоянных коэффициентов можно выделить такие решения в виде простой волны $\phi = \Phi_0(x - vt)$. Ее отыскание сводится к обыкновенному дифференциальному уравнению

$$[v^2 - c^2]\frac{d^2\Phi_0}{ds^2} + \Omega^2\sin\Phi_0\cos\Phi_0 + \omega^2\sin\Phi_0 - \alpha v\frac{d\Phi_0}{ds} = 0, \quad s = x - vt.$$
(1.3)

В этом уравнении присутствует параметр v — скорость волны, и решения существуют при любой скорости. Однако краевые условия приводят к ограничениям на v. Ситуация схожа со спектральной задачей. Подходящие решения соответствуют фазовым траекториям — сепаратрисам, которые соединяют равновесия $\Phi_0 \equiv 0$ и $\Phi_0 \equiv \pi$.

Если $\omega^2 < \Omega^2$, то такая сепаратриса существует при единственном значении v, определяемом из соотношения

$$\alpha \frac{v}{\sqrt{c^2 - v^2}} \Omega = \omega^2. \tag{1.4}$$

На фазовой плоскости $(\Phi, \dot{\Phi})$ эта сепаратриса соединяет два седла с координатами (0,0) и $(\pi, 0)$. Соответствующее решение интерпретируется как доменная стенка, двигающаяся со скоростью v. При других значениях v траектория из (0,0) входит в другие (устойчивые) равновесия, так что краевые условия (1.2) не выполняются.

Если $\omega^2 > \Omega^2$, то при любой скорости 0 < v < c траектория из седла (0,0) входит в неподвижную точку $(\pi, 0)$, которая оказывается либо узлом, либо фокусом. То есть в этом случае существуют волны с условиями (1.2), бегущие с разными скоростями.

Хотя уравнение (1.3) не интегрируемо, но оно обладает спецификой, которая была обнаружена Звездиным в [7]. Волна со скоростью, удовлетворяющей (1.4), независимо от соотношений между ω^2 и Ω^2 выписывается через сепаратрисное решение уравнения маятника

$$\Phi_0(s) = 2 \arctan \exp(s \Lambda_0), \quad \Lambda_0 = \Omega/\sqrt{c^2 - v^2}.$$
(1.5)

Следует отметить, что простая волна представляет собой изолированное решение уравнения в частных производных. Проблема стабилизации к ней других решений в постановке задачи Коши исследована для параболических уравнений типа КПП [9], [10]. Для неинтегрируемых гиперболических уравнений подобные общие результаты отсутствуют.

1.2. Постановка задачи. Если коэффициенты зависят от x, t, то в общей ситуации решения в виде простой волны не существует. Для приближенного анализа задачи применяются либо численные [11], либо асимптотические методы [3]. В случае медленно меняющихся коэффициентов можно строить асимптотическое решение, похожее на бегущую волну, [3]. Именно эта задача рассматривается ниже.

Чтобы выявить суть проблемы и не затемнять изложение несущественными деталями, исходная задача рассматривается в простейшей форме. Коэффициенты $c(\tau)$, $\Omega(\tau)$, $\alpha(\tau)$, $\omega(\tau)$ в уравнении (1.1) предполагаются положительными функциями, гладко зависящими от медленной переменной $\tau = \varepsilon t$. Малый параметр $0 < \varepsilon \ll 1$ присутствует только в τ . Если коэффициенты c, Ω — постоянные, то они приводятся к единичным значениям путем масштабных преобразований. В общем случае перенормировка x, t приводит к уравнению, возмущенному малыми добавками порядка $\mathcal{O}(\varepsilon)$. Такой подход не дает никаких преимуществ при исследовании задачи и здесь не используется. В магнитодинамике коэффициент ω^2 соответствует амплитуде внешней силы, от направления которой зависит знак перед соответствующим слагаемым в (1.1). Отличия в знаке перед ω^2 не существенны ввиду возможности сдвига зависимой переменной $\phi \Rightarrow \phi + \pi$, при котором знак меняется. Для краевой задачи дополнительно требуется замена $x \Rightarrow -x$, которая приводит к волне, бегущей в противоположном направлении.

Дифференциальное уравнение (1.1) дополняется начальным условием:

$$\phi(x,t)|_{t=0} = \Phi_0(x), \quad \partial_t \phi(x,t)|_{t=0} = -v_0 \Phi'_0(x), \quad x \in \mathbb{R}.$$
(1.6)

Начальная функция берется в виде следа простой волны; то есть $\Phi_0(s)$ при $s = x - v_0 t$ удовлетворяет уравнению (1.3) с постоянными (начальными) коэффициентами и с краевыми условиями (1.2). Для идентификации функций $\Phi_0(s)$, как единственного решения автономного уравнения надо фиксировать сдвиг по s, например, условием $\Phi_0(0) = \pi/2$. Ограничение на исходные параметры в начальный момент

$$\alpha^2 v_0^2 - 4(\omega^2 - \Omega^2)(c^2 - v_0^2) > 0$$
 при $\tau = 0$ (1.7)

гарантируют, что для невозмущенного уравнения (1.3) равновесие $\Phi_0 = \pi$ в случае $\omega^2 > \Omega^2$ соответствует устойчивому узлу.

Начальная функция, как решение дифференциального уравнения с постоянными коэффициентами, имеет асимптотику вблизи равновесий

$$\Phi_0(s) = \begin{cases} \exp(\lambda_-^0 s)[c_-^0 + \mathcal{O}(\exp(\lambda_-^0 s))], & s \to -\infty, \\ \\ \pi + \exp(-\lambda_+^0 s)[c_+^0 + \mathcal{O}(\exp(-\lambda_+^0 s))], & s \to +\infty \end{cases}$$

с константами $c_{\pm}^0 \neq 0$. Показатели $\lambda_{\pm}^0 > 0$ удовлетворяют соответствующим характеристическим уравнениям:

$$(v_0^2 - c^2)(\lambda_{\pm}^0)^2 \pm \alpha \, v_0 \lambda_{\pm}^0 + \Omega^2 \mp \omega^2 = 0 \quad \text{при } \tau = 0.$$

Целью данной работы является построение для задачи (1.1), (1.2), (1.6) асимптотического при $\varepsilon \to 0$ решения, пригодного до далеких времен на каком-нибудь промежутке $0 < t \leq \tau_0 \varepsilon^{-1}$, ($\tau_0 = \text{const} > 0$), когда деформация уравнения становится существенной. Под асимптотическим решением понимается функция $\phi_{as}(x,t;\varepsilon)$, которая при подстановке в уравнение (1.1) дает невязку, малую при $\varepsilon \to 0$ равномерно по x,t в широкой области. Это понятие будет уточнено в разделе 6. Основной целью является приближенное описание траектории (движения центра) возмущенной волны, точное положение которой определяется искомым решением из соотношения $\phi(x,t;\varepsilon) = \pi/2$.

2. Исходные численные эксперименты

При анализе задач, связанных с приложениями, численные и аналитические методы дополняют друг друга. В работах по построению асимптотик численные расчеты часто используются для иллюстраций. Иногда сравнение численных и аналитических результатов приводится в качестве аргумента в пользу формул, полученных формально, вместо их строгого обоснования. В данной работе подобное сравнение выполняется с целью выбора асимптотического анзатца. Дело в том, что в рассматриваемой задаче возможны разные конструкции для асимптотического решения. При отсутствии теорем обоснования это ведет к неопределенности асимптотического решения и к появлению фиктивных асимптотик, известных в разных ситуациях [12].

В этом разделе приводятся результаты численных экспериментов с уравнением (1.1) при коэффициентах $c^2 = \Omega^2 = \alpha = 1$. Возмущение заложено в медленном изменении коэффициента $\omega^2(\tau) = (1+\tau)\omega_0^2$, $\tau = \varepsilon t$ при значении малого параметра $\varepsilon = 0.03$. Начальные данные соответствуют простой волне в форме (1.5). На рисунках 1 и 2 профили волны как функции пространственной координаты x приведены в далекие моменты времени $t = 1/2\varepsilon$ для разных значений константы ω_0^2 . Пунктирная линия соответствует профилю начальной волны, сдвинутой для сравнения на подходящее расстояние.

РИС. 1. Сравнение возмущенной волны (сплошная линия) с профилем начальной функции при $\Omega^2 < \omega^2 < 2\Omega^2$.

РИС. 2. Сравнение возмущенной волны (сплошная линия) с профилем начальной функции при $\omega^2 > 2\Omega^2$.

Основной результат численных экспериментов: Для возмущенной волны наблюдается нарушение со временем симметрии относительно центра. При этом структура переднего фронта сохраняется, а задний фронт деформируется. Этот эффект слабо выражен при $\omega^2 < \Omega^2$ и отчетливо наблюдается при $\omega^2 > 2\Omega^2$.

3. Анзатц асимптотического решения

Анзатц для асимптотического решения берется в виде отрезка ряда по степеням малого параметра

$$\phi_{as}(x,t;\varepsilon) = \Phi(s;\tau) + \varepsilon \Phi_1(s;\tau) + \varepsilon^2 \Phi_2(s;\tau) + \dots$$
(3.1)

с одной быстрой переменной

$$s = x - \varepsilon^{-1}S(\tau) - S_1(\tau) - \varepsilon S_2(\tau) - \dots, \quad (\tau = \varepsilon t)$$

Фазовая функция $S(\tau)$, а также сдвиг фазы $S_1(\tau)$ и последующие поправки подлежат определению. Такой подход соответствует методу двух масштабов.

Подстановка анзатца (3.1) в исходное уравнение (1.1) и выделение членов порядка $\mathcal{O}(1)$, $\varepsilon \to 0$ приводит к одному уравнению на две функции: $\Phi(s, \tau)$ и $V(\tau) = S'(\tau)$.

$$[V^2 - c^2]\frac{d^2\Phi}{ds^2} + \Omega^2 \sin\phi \cos\Phi + \omega^2 \sin\Phi - \alpha V\frac{d\Phi}{ds} = 0.$$
(3.2)

Дополнительно ставится краевое условие, соответствующее исходному

$$\Phi(s;\tau) \to 0 \text{ при } s \to -\infty, \quad \Phi(s;\tau) \to \pi \text{ при } s \to +\infty,$$
(3.3)

и начальное условие на скорость: $V(0) = v_0$. Помимо того, для выделения единственного решения автономного уравнения (3.2) надо фиксировать сдвиг по независимой переменной *s*. Это можно сделать дополнительным условием:

$$\Phi(0;\tau) = \frac{\pi}{2}.$$
(3.4)

Если скорость $V = V(\tau)$ выбрать из соотношения

$$\alpha \frac{V}{\sqrt{c^2 - V^2}} \,\Omega = \omega^2,\tag{3.5}$$

то решение обыкновенного дифференциального уравнения (3.2) с условиями (3.3), (3.4) выписывается в элементарных функциях [7]:

$$\Phi(s;\tau) = 2 \arctan \exp(s\Lambda), \quad \Lambda = \Omega/\sqrt{c^2 - V^2}.$$
(3.6)

Асимптотика этого решения на бесконечности описывается формулами

$$\Phi(s;\tau) = \begin{cases} \exp(\Lambda s)[2 + \mathcal{O}(\exp(\Lambda s)))], & s \to -\infty, \\ \\ \pi + \exp(-\Lambda s)[2 + \mathcal{O}(\exp(-\Lambda s))], & s \to +\infty. \end{cases}$$

Отметим, что при переменных коэффициентах скорость $V(\tau)$ и показатель $\Lambda = \Lambda(\tau)$ в общем случае зависят от медленного времени τ . Из анализа фазового портрета уравнения (3.2) следует, что найденная таким образом пара функций Φ, V будет единственным решением задачи (3.2), (3.3), (3.4), если $\omega^2 < \Omega^2$.

При коэффициентах $\omega^2 > \Omega^2$ единственности решения нет, и существуют другие пары Φ, V , для которых явные представления отсутствуют. Для $\Phi(s, \tau)$ можно выписать асимптотику вблизи равновесий:

$$\Phi(s;\tau) = \begin{cases} \exp(\lambda_{-}s)[c_{-} + \mathcal{O}(\exp(\lambda_{-}s))], & s \to -\infty, \\ \\ \pi + \exp(-\lambda_{+}s)[c_{+} + \mathcal{O}(\exp(-\lambda_{+}s))], & s \to +\infty, \end{cases} \qquad (3.7)$$

Здесь функции медленного времени $\lambda_{\pm}(\tau) > 0$ и $c_{\pm}(\tau)$ зависят от выбора $V(\tau)$. Выражения для коэффициентов $c_{\pm}(\tau)$ в явной форме не известны, как это бывает в неинтегрируемом уравнении. Показатели $\lambda_{\pm}(\tau)$ удовлетворяют алгебраическим уравнениям

$$(V^2 - c^2)(\lambda_{\pm})^2 \pm \alpha \, V \lambda_{\pm} + \Omega^2 \mp \omega^2 = 0.$$
(3.8)

При условии (1.7) корни $\lambda_{\pm}(\tau)$ остаются действительными и свойство $c_{\pm}(\tau) \neq 0$ сохраняется в зависимости от $V(\tau)$ в некоторой окрестности начальной точки $0 < \tau < \tau_0$. Однако эволюция скорости $V(\tau)$ при $\tau > 0$ не определена и это остается главной проблемой в случае $\omega^2 > \Omega^2$.

Предлагаемый нами подход основан на наблюдении за результатами численных экспериментов: при $\omega^2 > \Omega^2$ передний фронт волны деформируется слабо. Поэтому предполагается, что показатель λ_+ в асимптотике на бесконечности остается постоянным и совпадает со значением $\lambda_+(\tau) \equiv \lambda_+^0 = \text{const}$, которое соответствует асимптотике начальной (невозмущенной) волны при скорости $V(0) = v_0$. В таком случае $V(\tau)$ при $\tau > 0$ однозначно определяется из (3.8):

$$V(\tau) = \frac{1}{2\lambda_{+}^{0}} \left[-\alpha + \sqrt{\alpha^{2} + 4(c^{2}(\lambda_{+}^{0})^{2} + \omega^{2} - \Omega^{2})} \right].$$
 (3.9)

Справедливо и обратное утверждение: если $V(\tau)$ определено по формуле (3.9), то соответствующий корень уравнения (3.8) будет постоянным $\lambda_{+}(\tau) \equiv \text{const.}$ Назовем это свойство *стабильностью переднего фронта волны*¹. Другие аргументы в пользу стабильности фронта обнаруживаются в формальной конструкции асимптотического решения и приведены в разделе 5.

Второе уравнение в (3.8) определяет корень $\lambda_{-}(\tau)$, зависимость которого от τ отражает деформацию со временем заднего фронта волны.

Заметим, что при выборе скорости $V(\tau)$ из соотношения (3.5) оба уравнения (3.8) выполняются, корни совпадают $\lambda_+ = \lambda_- = \Lambda(\tau)$ и не являются константами. В этом случае для главного члена асимптотики в форме (3.6) сохраняется симметрия с деформацией переднего и заднего фронта, что соответствует численным экспериментам при $\omega^2 < \Omega^2$. Альтернативный способ определения скорости по формуле (3.9) предназначен для случая $\omega^2 > \Omega^2$, когда симметрия не сохраняется, и начальная волна не обязана иметь симметричную форму (3.6).

После вычисления скорости фазовая функция восстанавливается через интеграл

$$S(\tau) = \int_0^\tau V(\eta) \, d\eta.$$

Поправка скорости $V_1(\tau) = S'_1(\tau)$ и сдвиг фазы $S_1\tau$) на этом этапе остаются неопределенными.

Поскольку функция $\Phi(s;\tau)$ как решение задачи (3.2), (3.3) быстро стабилизируется на бесконечности при $s \to \pm \infty$, то нуль фазы $x - \varepsilon^{-1}S(\varepsilon t) + S_1(\varepsilon t) = 0$ можно идентифицировать с приближенной траекторией центра возмущенной волны. Очевидно, для нахождения траектории на далеких временах, когда $\varepsilon t \approx 1$, помимо функции $S(\tau)$ требуется определение сдвига фазы $S_1\tau$), которая находится через поправку скорости $V_1(\tau) = S'_1(\tau)$. Так же, как в других подобных задачах теории возмущений, функция $V_1(\tau)$ определяется на следующем шаге из требования малости первой поправки по сравнению с главным членом в асимптотическом решении.

4. ΠΕΡΒΑЯ ΠΟΠΡΑΒΚΑ

Для первой поправки асимптотического решения (3.1) получается линейное уравнение

$$[V^2 - c^2]\frac{d^2\Phi_1}{ds^2} + q(s;\tau)\Phi_1 - \alpha V\frac{d\Phi_1}{ds} = f(s;\tau)$$
(4.1)

с коэффициентом

$$q(s;\tau) = \frac{d}{d\phi} \left[\Omega^2 \sin\phi \,\cos\phi + \omega^2 \,\sin\phi \right]_{\phi = \Phi(s;\tau)}$$

Правая часть f выписывается через предыдущее приближение. Эта функция выделяется из невязки, которая возникает при подстановке главного члена асимптотики $\Phi(s;\tau)$ в исходное уравнение (1.1):

$$f(s;\tau) = -2VV_1\Phi_{ss} + V'\Phi_s + 2V\Phi_{s\tau} + \alpha V_1\Phi_s - \alpha\Phi_{\tau}.$$
(4.2)

Комментарий. Постановка задачи и описанная конструкция асимптотического решения похожи на теорию возмущения солитонов, [13]–[16]. Основное отличие проистекает из неинтегируемости исходного невозмущенного уравнения с постоянными коэффициентами (1.1). Отсутствие интегрируемости делает невозможным использование аналога разложения Фурье [17], [18] при решении задачи Коши для линеаризованного уравнения в частных

¹Для других уравнений, например, типа КПП стабильность какого-либо из фронтов не обсуждалась, хотя фактически была использована в [5], [6].

производных

$$\frac{\partial^2 \phi_1}{\partial t^2} - c^2 \frac{\partial^2 \phi_1}{\partial x^2} + q \phi_1 + \alpha \frac{\partial \phi_1}{\partial t} = f, \ t > 0, \ x \in \mathbb{R}.$$

Поэтому для поправок начальная задача не рассматривается, и дело ограничивается частными решениями $\phi_1 = \Phi_1(s; \tau)$, определяемыми из обыкновенного дифференциального уравнения¹.

Явное представление для поправки Φ_1 выписывается в терминах функции $\Phi(s;\tau)$ на основе фундаментальной системы решений однородного линеаризованного уравнения, соответствующего (4.1). Одно из таких решений дается производной $\Psi_1(s;\tau) = \partial_s \Phi(s;\tau)$ и имеет экспоненциальную асимптотику на бесконечности

$$\Psi_1(s;\tau) = \exp(\mp\lambda_{\pm}s)[\mp c_{\pm}\lambda_{\pm} + \mathcal{O}(\exp(\mp\lambda_{\pm}s))], \quad s \to \pm\infty.$$
(4.3)

C использованием вронскиана $W(s; \tau) = \exp(-\beta(\tau) s)$, где

$$\beta(\tau) = \alpha V(\tau) / [c^2 - V(\tau)^2],$$

второе решение определяется по формуле Лиувилля

$$\Psi_2(s;\tau) = \Phi_s(s;\tau) \int_0^s \frac{\exp(-\beta\eta)}{(\Phi_\eta(\eta;\tau))^2} d\eta.$$
(4.4)

Экспоненциальная асимптотика легко извлекается из формулы (4.4):

$$\Psi_2(s,\tau) = \exp((\lambda_- - \beta)s)[C_- + \mathcal{O}(\exp((\lambda_- - \beta)s))], \quad s \to -\infty.$$
(4.5)

На другой бесконечности $s \to +\infty$ структура асимптотики зависит от разности $\lambda_+ - \beta$:

$$\Psi_{2}(s,\tau) = \begin{cases} \exp((\lambda_{+} - \beta)s)[C_{+} + \mathcal{O}(\exp((\lambda_{+} - \beta)s))], & \text{если } \lambda_{+} - \beta > -\lambda_{+}, \\ \exp(-\lambda_{+}s)[C_{+} + \mathcal{O}(\exp(-\lambda_{+}s))], & \text{если } \lambda_{+} - \beta < -\lambda_{+}. \end{cases}$$
(4.6)

Коэффициенты $C_{\pm}(\tau) \neq 0$ выражаются через β, c_{\pm} и λ_{\pm} .

Заметим, что общее решение уравнения (4.1) включает линейную комбинацию решений из базиса Ψ_1, Ψ_2 . Функция $\Psi_1(s; \tau) = \partial_s \Phi(s; \tau)$ экспоненциально стремится к нулю при $s \to \pm \infty$ с показателями λ_{\pm} . Добавка этой функции не меняет структуру первой поправки на бесконечности и может не учитываться с учетом того, что такой же эффект вносит поправка сдвига фазы $\varepsilon S_1(\tau)$, определение которой переносится на следующий шаг. Функция $\Psi_2(s, \tau)$ экспоненциально растет при $s \to -\infty$ и поэтому не включается в поправку $\Phi_1(s; \tau)$. При этом надо следить, чтобы используемое частное решение для Φ_1 не содержало подобных растущих слагаемых.

Частное решение неоднородного уравнения можно выписывать в разной форме с точностью до слагаемого с $\Psi_1(s;\tau) = \partial_s \Phi(s;\tau)$. Для дальнейших выкладок удобно представление:

$$\Phi_1(s;\tau) = \Phi_s(s;\tau) \int_0^s \frac{\exp(-\beta\eta)}{(\Phi_\eta(\eta;\tau))^2} \int_{-\infty}^\eta f(\zeta;\tau) \Phi_\zeta(\zeta;\tau) \exp(\beta\zeta) \, d\zeta \, d\eta.$$
(4.7)

Приводимый ниже анализ первой поправки $\Phi_1(s;\tau)$ направлен на идентификацию поправки скорости $V_1(\tau)$. Для этого строится асимптотика функции $\Phi_1(s;\tau)$ при $s \to \pm \infty$ с целью выделения слагаемых, убывающих медленнее $\Psi_1(s;\tau)$, из-за которых нарушается требование асимптотичности в последовательности приближений (3.1).

¹Для неинтегрируемых уравнений влияние малых невязок в начальных данных остается невыясненным во всех задачах о возмущении простых волн [3]; зачастую этот вопрос не обсуждается вовсе [16].

Лемма 4.1. Правая часть в уравнении для первой поправки (4.1) имеет асимптотику на бесконечности

$$f(s,\tau) = \begin{cases} c_{-} \exp(\lambda_{-}s)[s f^{-}(\tau) + f_{0}^{-}(\tau) + \mathcal{O}(\exp(\lambda_{-}s))], & s \to -\infty, \\ c_{+} \exp(-\lambda_{+}s)[s f^{+}(\tau) + f_{0}^{+}(\tau) + \mathcal{O}(\exp(-\lambda_{+}s))], & s \to +\infty \end{cases}$$
(4.8)

с коэффициентами при главной части

$$f^{\pm}(\tau) = \lambda_{\pm}'(\tau) [\pm \alpha + 2V(\tau)\lambda_{\pm}(\tau)], \qquad (4.9)$$

$$f_0^{\pm}(\tau) = -2VV_1\lambda_{\pm}^2 - [V' + \alpha V_1](\pm\lambda_{\pm}) - [2V(\pm\lambda_{\pm}) + \alpha]c'_{\pm}/c_{\pm}.$$

Доказательство получается подстановкой асимптотики (3.7) в формулу (4.2). Растущие по s множители возникают при дифференцировании по τ экспонент.

Независимо от способа определения скорости $V(\tau)$ структура первой поправки в асимптотике при $s \to -\infty$ определяется функцией $\Psi_1(s;\tau) = \Phi_s(s;\tau)$ с точностью до степенного множителя s^2 :

Лемма 4.2. Первая поправка, определяемая по формуле (4.7), имеет асимптотику на минус бесконечности

$$\Phi_1(s,\tau) = \Psi_1(s;\tau) \frac{1}{2\lambda_{-}(\tau) + \beta(\tau)} \left[\frac{1}{2} s^2 f^{-}(\tau) + s \,\tilde{f}^{-}(\tau) + \mathcal{O}(1) \right], \quad s \to -\infty$$
(4.10)

с коэффициентом

$$\tilde{f}^{-}(\tau) = f_{0}^{-}(\tau) - \frac{f^{-}(\tau)}{2\lambda_{-}(\tau) + \beta(\tau)}.$$

Доказательство получается интегрированием соответствующих асимптотик в формуле (4.7) после подстановки (4.8).

Асимптотика на другой бесконечности $s \to +\infty$ имеет отличия от $\Psi_1(s;\tau)$ в экспоненциальных слагаемых.

Лемма 4.3. Если $2\lambda_{+}(\tau) > \beta(\tau)$, то первая поправка, определяемая по формуле (4.7) имеет асимптотику на плюс бесконечности $s \to +\infty$ в виде:

$$\Phi_1(s,\tau) = \Psi_2(s;\tau)J(\tau) + \Psi_1(s;\tau)\frac{1}{-2\lambda_+(\tau) + \beta(\tau)} \left[\frac{1}{2}s^2 f^+(\tau) + s\,\tilde{f}^+(\tau) + \mathcal{O}(1)\right].$$
(4.11)

Коэффициент $J(\tau)$ определяется через сходящийся интеграл:

$$J(\tau) = \int_{-\infty}^{\infty} f(\zeta;\tau) \Phi_{\zeta}(\zeta;\tau) \exp(\beta\zeta) \, d\zeta; \quad \tilde{f}^{+}(\tau) = f_{0}^{+}(\tau) - \frac{f^{+}(\tau)}{-2\lambda_{+}(\tau) + \beta(\tau)}. \tag{4.12}$$

Доказательство. Для внутреннего интеграла в формуле (4.7) главный член асимптотики при $\eta \to +\infty$ определяется выражением $J(\tau)$ из (4.12). Заметим, что внешний интеграл в формуле (4.7) представляет собой функцию $\Psi_2(s;\tau)$. Поэтому после выделения главного члена из внутреннего интеграла получаем соотношение

$$\Phi_1(s;\tau) = \Psi_2(s;\tau)J(\tau) - \Psi_1(s;\tau) \int_0^s \frac{\exp(-\beta\eta)}{(\Phi_\eta(\eta;\tau))^2} \int_\eta^\infty f(\zeta;\tau)\Phi_\zeta(\zeta;\tau)\exp(\beta\zeta)\,d\zeta\,d\eta.$$

Асимптотика второго слагаемого при $s \to +\infty$ получается интегрированием аналогично лемме 2. $\hfill \square$

Замечание 4.1. При использовании формулы (4.11) надо иметь в виду, что она не имеет отношения к асимптотике на минус бесконечности. Функция $\Psi_2(s;\tau)$, экспоненциально растущая при $s \to -\infty$, используется здесь только для краткости записи в асимптотике $s \to +\infty$. В случае $2\lambda_{+}(\tau) < \beta(\tau)$ интеграл в (4.12) расходится, поэтому асимптотику внутреннего интеграла в (4.7) надо вычислять другим способом.

Лемма 4.4. Если $2\lambda_{+}(\tau) < \beta(\tau)$, то первая поправка, определяемая по формуле (4.7) имеет асимптотику бесконечности

$$\Phi_1(s,\tau) = \Psi_1(s;\tau) \frac{1}{-2\lambda_+(\tau) + \beta(\tau)} \left[\frac{1}{2} s^2 f^+(\tau) + s \tilde{f}^+(\tau) + \mathcal{O}(1) \right], \quad s \to +\infty.$$
(4.13)

Доказательство состоит в выделении главных членов экспоненциально растущей асимптотики внутреннего интеграла при $\eta \to +\infty$. В силу условия $2\lambda_+(\tau) < \beta(\tau)$ функция во внешнем интеграле (4.7) экспоненциально стремится к нулю при $\eta \to +\infty$. В итоге получается требуемое соотношение (4.13).

5. Сдвиг фазы

Приводимые ниже вычисление поправки скорости $V_1(\tau)$ и соответствующего сдвига фазы $S_1(\tau)$ не являются самоцелью. Эти вычисления больше направлены на уточнение первой поправки $\Phi_1(s;\tau)$ в асимптотическом решении и на обоснование формулы для главного члена в асимптотике скорости $V(\tau) + \varepsilon V_1(\tau)$.

Формулы для $V_1(\tau)$ получаются из требования исключения из поправки $\Phi_1(s;\tau)$ главных членов асимптотики при $s \to +\infty$.

Лемма 5.1. Пусть $2\lambda_{+}(\tau) > \beta(\tau)$. Если поправка скорости $V_{1}(\tau)$ выбрана из соотношения

$$a(\tau)V_1 + b(\tau) = 0, (5.1)$$

где

$$a(\tau) = [V(\tau)\beta(\tau) + \alpha] \int_{-\infty}^{\infty} \Phi_s^2(s;\tau) \exp(\beta(\tau)s) \, ds,$$

$$b(\tau) = \int_{-\infty}^{\infty} [\partial_\tau (V(\tau) \, \Phi_s^2(s;\tau)) - \alpha \Phi_\tau(s;\tau) \Phi_s(s;\tau)] \exp(\beta(\tau)s) \, ds,$$

то первая поправка асимптотического решения, определяемая по формуле (4.7), имеет асимптотику на плюс бесконечности

$$\Phi_1(s;\tau) = \Psi_1(s;\tau) \frac{1}{-2\lambda_+(\tau) + \beta(\tau)} \left[\frac{1}{2} s^2 f^+(\tau) + s \,\tilde{f}^+(\tau) + \mathcal{O}(1) \right], \quad s \to +\infty$$
(5.2)

независимо от способа определения скорости $V(\tau)$.

Доказательство. Если выполнено условие $2\lambda_+(\tau) > \beta(\tau)$, то из сравнения формул (4.3) и (4.6) видно, что в выражении (4.11) главный член асимптотики при $s \to +\infty$ содержится в слагаемом $\Psi_2(s;\tau)J(\tau)$. Его исключение состоит в требовании обращения в нуль множителя $J(\tau) = 0$. Ввиду выражений (4.2), (4.12) такое требование эквивалентно соотношению (5.1). Поэтому при условии (5.1) соотношение (4.11) переходит в (5.2). Неопределенность в скорости $V(\tau)$ сохраняется для случая $\omega^2 > \Omega^2$.

Следствие 5.1. Если функция $V(\tau)$ выбрана по формуле (3.9), а поправка скорости $V_1(\tau)$ выбрана из соотношения (5.1), то первая поправка асимптотического решения, определяемая по формуле (4.7), имеет асимптотику на плюс бесконечности

$$\Phi_1(s;\tau) = \Psi_1(s;\tau) \frac{1}{-2\lambda_+(\tau) + \beta(\tau)} \left[s f_0^+(\tau) + \mathcal{O}(1) \right], \quad s \to +\infty.$$

Доказательство. Поскольку в этом случае $\lambda'_{+} = 0$, то в силу (4.9) коэффициент в главном члене асимптотики (5.2) обращается в нуль: $f^{+} = 0$, а коэффициент при *s* равен f_{0}^{+} . Этот результат указывает на предпочтительность формулы (3.9) по сравнению с (3.5) при выборе скорости $V(\tau)$ в случае $\omega^{2} > \Omega^{2}$.

Л.А. КАЛЯКИН

Если $2\lambda_+(\tau) < \beta(\tau)$, то формула (5.1) для $V_1(\tau)$ теряет смысл, поскольку интегралы расходятся. В этом случае асимптотика $\Phi_1(s;\tau)$ при $s \to +\infty$ имеет другую структуру и исключение секулярностей приводит к другой формуле для поправки скорости.

Лемма 5.2. Пусть $2\lambda_{+}(\tau) < \beta(\tau)$ и функция $V(\tau)$ выбрана по формуле (3.9). Если поправка скорости $V_{1}(\tau)$ определена из соотношения

$$V_1 + \frac{V'}{2V\lambda_+ + \alpha} + \frac{c'_+}{c_+\lambda_+} = 0,$$
(5.3)

то первая поправка асимптотического решения, определяемая по формуле (4.7), имеет асимптотику на плюс бесконечности

$$\Phi_1(s,\tau) = \Psi_1(s;\tau) \cdot \mathcal{O}(1), \quad s \to +\infty.$$
(5.4)

Доказательство. При условии $2\lambda_{+}(\tau) < \beta(\tau)$ асимптотика функции $\Phi_{1}(s,\tau)$ представлена в формуле (4.13). Главные члены определяются слагаемыми со степенными множителями s^{2} и s. Исключение коэффициента $f_{+}(\tau)$ при s^{2} с учетом выражения (4.9) приводит к требованию $\lambda'_{+}(\tau) = 0$, что соответствует выбору $V(\tau)$ по формуле (3.9). Исключение оставшегося при s коэффициента $f^{0}_{+}(\tau)$ с учетом выражения (4.9) приводит к уравнению на V_{1} в форме (4.9). После этого соотношение (4.13) переходит в (5.4).

Комментарий. Соотношение (5.1) содержит как скорость V (в коэффициентах) так и поправку V_1 . Такая специфика возникает из-за наличия диссипации с коэффициентом $\alpha \neq 0$. При возмущении интегрируемых уравнений [16] подобное соотношение не содержит V_1 и используется для определения главного члена $V(\tau)$. В рассматриваемой задаче при $\omega^2 > \Omega^2$ требование (5.1) в форме одного уравнения на две функции V, V_1 отражает суть явления асимптотической некорректности, которое возникает при анализе диссипативных систем [4], [5]. Как обычно в математических задачах, для устранения неопределенности нужны дополнительные ограничения на искомое (асимптотическое) решение. Одним из возможных вариантов является требование стабильности переднего фронта волны в форме $\lambda'_+ = 0$. С одной стороны это ведет к однозначному определению V из формулы (3.9). С другой стороны соотношение $\lambda'_+ = 0$ приводит к расширению области пригодности асимптотического решения, что можно рассматривать, как другую форму дополнительного требования.

6. Область пригодности асимптотического решения

Конструкцию асимптотического решения в виде ряда (3.1) с коэффициентами, зависящими от одной быстрой переменной s, можно реализовать до любого порядка ε^n . Под областью пригодности асимптотического решения понимается множество точек $(s, \tau) \in D \subset \mathbb{R}^2$ на плоскости, на котором ряд (3.1) является равномерно асимптотическим при $\varepsilon \to 0$, [19, стр. 26]. Из требования малости последующей поправки $\varepsilon^{n+1}\Phi_{n+1}(s;\tau)$ по сравнению с предыдущей $\varepsilon^n\Phi_n(s;\tau)$ равномерно по (s,τ) извлекаются ограничения на D. Эти ограничения зависят от конструкции коэффициентов асимптотики $\Phi_n(s;\tau)$, $V_n(\tau)$. Ввиду гладкости функций $\Phi_n(s;\tau)$ ряд будет асимптотическим при $\varepsilon \to 0$ равномерно по s,τ в полосе $\{|s| \leq L, 0 < \tau \leq \tau_0\}$, любой ширины L = const > 0, не зависящей от ε . Этот простейший результат для области пригодности не зависит от способа вычисления поправок скорости, а при $\omega^2 > \Omega^2$ не зависит и от скорости $V(\tau)$.

Расширение области пригодности возможно при учете структуры коэффициентов $\Phi_n(s;\tau)$ на бесконечности. Специфика рассматриваемой задачи проявляется в том, что источником неравномерности являются степенные множители s^k , k > 0, которые обнаруживаются при убывающих экспонентах в асимптотике функций $\Phi_n(s;\tau)$ при $s \to \pm \infty$. Расширение области пригодности случается при исключении таких (секулярных) слагаемых и оказывается возможным при подходящем выборе $V_n(\tau)$. На этом пути уточняется

асимптотическое решение и ликвидируются неоднозначности скорости. Эти идеи похожи на те, что используются в теории нелинейных колебаний [20].

Простейшее уточнение области пригодности можно получить, если учесть асимптотику на минус бесконечности. Для первой поправки асимптотика дается формулой (4.10) и содержит слагаемые с множителями s, s^2 . В старших поправках степени s увеличиваются на 2 на каждом шаге. Требование асимптотичности последовательности поправок в форме: $\varepsilon s^2 \leq \varepsilon^{2\delta}$ (при каком-нибудь $\delta > 0$) приводит к описанию области пригодности на заднем фронте волны в виде:

$$-\varepsilon^{-1/2+\delta} < s < L, \quad \forall \, \delta, L > 0$$

На переднем фронте подобное расширение получается, если в конструкции асимптотического решения подходящим образом выбирать поправки скоростей, как это сделано для первой поправки в Лемме 5.

Теорема 6.1. Пусть начальная волна имеет специальную структуру (1.5), и скорость $V(\tau)$ выбрана по формуле (3.5). Если первая поправка скорости выбрана из (5.1), а последующие поправки из похожих условий в старших членах асимптотики, то ряд (3.1) является асимптотическим решением уравнения (1.1) в полосе

$$-\varepsilon^{-1/2+\delta} < s < \varepsilon^{-1/2+\delta}, \quad \forall \, \delta > 0. \tag{6.1}$$

Доказательство. Если скорость $V(\tau)$ определена из формулы (3.5), то имеют место соотношения

$$\frac{\alpha V\Omega}{\sqrt{c^2 - V^2}} = \omega^2, \quad \lambda_+ = \Lambda = \frac{\Omega}{\sqrt{c^2 - V^2}}, \quad \beta = \frac{\alpha V\Omega}{c^2 - V^2}.$$

Следовательно

$$\lambda_{+} - \beta = \frac{1}{\Omega\sqrt{c^2 - V^2}} (\Omega^2 - \omega^2).$$

В случае $\Omega^2 - \omega^2 > 0$ получаем $\lambda_+ - \beta > 0 > -\lambda_+$, так что функция $\Psi_2(s;\tau)$ согласно (4.5) экспоненциально растет при $s \to +\infty$. Соответствующее слагаемое в асимптотике первой поправки (4.11) должно быть исключено. Это можно сделать требованием $J(\tau) = 0$, которое сводится к уравнению (5.1) для поправки скорости. После определения V_1 в асимптотике (4.11) остаются слагаемые с множителями s^2 , s. Они определяют границу области пригодности на переднем фронте (6.1) из требования $\varepsilon s^2 < \varepsilon^{2\delta}$.

В случае $\Omega^2 - \omega^2 < 0$ получается $\lambda_+ - \beta < 0$, и здесь возможны два варианта: 1) Если $-\lambda_+ < \lambda_+ - \beta$, то главный член асимптотики функции $\Psi_2(s;\tau)$ согласно (4.5) экспоненциально убывает при $s \to +\infty$. Однако он убывает медленнее функции $\Psi_1(s;\tau)(s;\tau) \approx \exp(-\lambda_+ s)$ и рассматривается, как секулярное слагаемое. Поэтому $\Psi_2(s;\tau)J(\tau)$ в формуле (4.11) следует исключить тем же требованием $J(\tau) = 0$, сводящимся к уравнению (5.1) для поправки скорости.

2) Если $-\lambda_+ > \lambda_+ - \beta$, то в асимптотике (4.11) присутствуют лишь слагаемые с множителями s^2 , *s*, которые определяют область пригодности на переднем фронте в виде (6.1). \Box

Для случая $\omega^2 < \Omega^2$ скорость $V(\tau)$, $\tau > 0$ и поправки к ней определены однозначно, и в приведенной конструкции не видно других возможностей расширения области пригодности. Иная ситуация складывается при $\omega^2 > \Omega^2$, когда остается произвол в выборе $V(\tau)$, $\tau > 0$. Требование стабильности фронта волны позволяет расширить область пригодности.

Теорема 6.2. Пусть $\omega^2(\tau) > \Omega^2(\tau), \ 0 < \tau < \tau_0$, начальные параметры волны удовлетворяют условию (1.7) и скорость $V(\tau)$ выбрана по формуле (3.9). Если первая поправка скорости определена из (5.1), а последующие поправки из похожих условий в старших членах асимптотики, то ряд (3.1) является асимптотическим решением уравнения (1.1) в полосе

$$-\varepsilon^{-1/2+\delta} < s < \varepsilon^{-1+\delta}, \quad \forall \, \delta > 0. \tag{6.2}$$

Если дополнительно выполнено соотношение на начальные параметры:

$$2\lambda_+^0 < \alpha \, V/(c^2-V^2) \equiv \beta(\tau), \quad 0 < \tau < \tau_0,$$

и первая поправка скорости определена из (5.3), а последующие поправки из похожих условий в старших членах асимптотики, то область пригодности на переднем фронте волны расширяется до бесконечности:

$$-\varepsilon^{-1/2+\delta} < s < \infty.$$

Доказательство. Выбор скорости из (3.9) приводит к постоянству показателя $\lambda_{+} = \lambda_{+}^{0} = \text{const.}$ В таком случае асимптотика первой поправки (5.2) не содержит слагаемого с множителем s^{2} , и она приобретает вид

$$\Phi_1(s,\tau) = \Psi_1(s;\tau) \cdot \mathcal{O}(s), \quad s \to +\infty.$$

Поэтому для выполнения условия малости первой поправки на полуоси s > 0 достаточно неравенства $\varepsilon s < \varepsilon^{\delta}$, $\delta > 0$.

При дополнительном условии, которое означает $2\lambda_{+} < \beta$, асимптотика первой поправки в форме (4.13) не содержит слагаемого с множителем s^2 в силу $\lambda_{+} = \lambda_{+}^0 = \text{const.}$ Слагаемое с первой степенью *s* исключается выбором поправки скорости из (5.3), как показано в лемме 5.2. В итоге асимптотика первой поправки не содержит растущих множителей $\Phi_1(s,\tau) = \Psi_1(s;\tau) \cdot \mathcal{O}(1), s \to +\infty$, и тем самым свойство асимптотичности выполняется независимо от s > 0.

Комментарий. Область, описываемая формулой (6.2), очевидно, не симметрична относительно центра волны s = 0. Специфика несимметрии обусловлена выбором скорости $V(\tau)$ из требования стабильности переднего фронта: $\lambda_+ = \text{const.}$ Все формальные построения (другого) асимптотического решения в той же форме (3.1) можно выполнить, исходя из требования стабильности заднего фронта: $\lambda_- = \text{const.}$ Для такого решения область пригодности описывается формулой, похожей на (6.2) со сменой границ:

$$-\varepsilon^{-1+\delta} < s < \varepsilon^{-1/2+\delta}.\tag{6.3}$$

Как видим, проблема единственности асимптотического не решается расширением области пригодности. Поскольку для обоснования асимптотики в настоящее время не видно никаких перспектив, то в данной работе выбор асимптотического решения предлагается делать из сравнения с численным экспериментом. Такой выбор приводит к требованию стабильности переднего (а не заднего) фронта волны: $\lambda_{+} = \text{const.}$

7. Заключительные численные эксперименты

В данном разделе сравниваются три способа для приближенного вычисления траектории волны. В первом способе траектория (назовем ее численной) находится из соотношения $\phi(x,t) = \pi/2$ на основе численного решения исходного уравнения (1.1). Для численной реализации задача дополняется начальными условиями на отрезке большой длины -l < x < L, которые соответствуют специальному невозмущенному решению (1.5). Граничные условия $\phi(-l,t) = 0$, $\phi(-L,t) = \pi$, t > 0 на далеких краях $l, L \approx \varepsilon^{-1}$ имитируют условия на бесконечности (1.2). Получаемая таким способом траектория близка к точной. Погрешность зависит от способа аппроксимации уравнения и мало зависит от соотношений параметров ω и Ω .

Два других приближения для траектории определяются на основе асимптотических формул соотношением

$$x = \int_0^t V(\varepsilon \, \eta) \, d\eta$$

без использования сдвига фазы¹. Для скорости $V(\tau)$ используются формулы (3.5), либо (3.9). Графики соответствующих трех приближений изображены на рисунках: жирным пунктиром, жирной сплошной и слабой сплошной линиями. Слабый пунктир соответствует невозмущенной траектории.

Численные эксперименты проводились при коэффициентах $c^2 = \Omega^2 = \alpha = 1$. Возмущение заложено в медленном изменении коэффициента $\omega^2(\tau) = (1 \pm \tau/2)\omega_0^2$, $\tau = \varepsilon t$ при значении малого параметра $\varepsilon = 0.01 \div 0.03$. Направление деформации траектории при возмущении определяется знаком производной $(\omega^2)'(\tau) = \pm (\omega_0)^2/2$, рисунок 3.

Близость асимптотических траекторий к численной зависит от соотношения параметров ω и Ω . Если $\omega^2 \leq \Omega^2$, то вычисления по формуле (3.5) безальтернативны, поскольку скорость V единственна. На рисунке 4 соответствующая асимптотическая траектория практически совпадает с численной. Если $\omega^2 > \Omega^2$, то с увеличением разности $\omega^2 - \Omega^2$ более пригодной становится формула (3.9), рисунок 5; это особенно заметно при $\omega^2 > 2\Omega^2$ на рисунке 6.

Комментарий. На рассматриваемой волне со специальным начальным профилем (1.5), для которого $\lambda_{+} = \Lambda(0)$, имеет место соотношение

$$2\Lambda(0) - \beta(0) = \frac{\lambda}{\Omega^2} (2\Omega^2 - \omega^2)|_{\tau=0}.$$

Поэтому при $\omega^2 > 2\Omega^2$ выполняется неравенство $2\lambda_0 < \beta(\tau)$ на некотором промежутке $0 < \tau < \tau_0$. Тогда в силу теоремы 6.2 формула (3.9), вытекающая из требования стабильности, обеспечивает максимальную область пригодности асимптотического решения на переднем фронте волны. Наличие широкой области пригодности служит указанием на близость соответствующей асимптотической траектории к точной. Тем не менее, *pacuuрение области пригодности не может служить критерием для отбора формулы для скорости.* Например, требование стабильности заднего фронта λ_- = const также приводит к расширению области пригодности (6.3). Это требование, примененное ко второму уравнению (3.8), дает формулу для скорости:

$$V(\tau) = \frac{1}{2\lambda_{-}^{0}} \left[\alpha + \sqrt{\alpha^{2} + 4(c^{2}(\lambda_{-}^{0})^{2} - \omega^{2} - \Omega^{2})} \right],$$

отличную от (3.9). Непригодность этого результата обнаруживается при сравнении с численным экспериментом. Получаемая таким способом асимптотическая траектория не близка к численной траектории ни при каких параметрах ω и Ω , как это видно на рисунке 7.

Похожая ситуация складывается и для формулы (3.5). В задаче со специальным начальным условием (1.5) оценка области пригодности (6.1) не зависит от соотношения параметров ω^2 , Ω^2 . Однако при $\omega^2 > \Omega^2$ использование формулы (3.5) приводит к большим ошибкам, что обнаруживается при сравнении с численным экспериментом. Впрочем, при начальных данных, отличных от (1.5), формула (3.5) заведомо не годится.

¹Эффективность уравнений (5.3) для вычисления поправки скорости и сдвига фазы не велика ввиду отсутствия явных выражений для решения обыкновенного дифференциального уравнения $\Phi(s;\tau)$ и для коэффициентов асимптотики $c_{\pm}(\tau)$.

РИС. 3. Траектория возмущенной волны (жирная пунктирная линия) в сравнении с траекторией невозмущенной волны при разных направлениях деформации коэффициента $\omega^2(\tau)$.

РИС. 4. Приближенные траектории возмущенной волны на разных масштабах при $\omega^2 < \Omega^2$.

РИС. 5. Приближенные траектории возмущенной волны при разных направлениях деформации коэффициента $\omega^2(\tau)$ в случае $\Omega^2 < \omega^2 < 2\Omega^2$.

8. Заключение

При возмущении простой волны асимптотическое решение зависит от выбора главного члена в асимптотике медленно деформирующейся скорости $V(\varepsilon t) + \mathcal{O}(\varepsilon), \varepsilon \to 0$. В задаче для уравнения (1.1) предложена конструкция, которая основана на требовании стабильности переднего фронта волны. Она приводит к алгебраическому уравнению для скорости¹ и

¹В более общей задаче это будет уравнение Гамильтона-Якоби для фазовой функции [5], [6].

РИС. 6. Приближенные траектории возмущенной волны при разных направлениях деформации коэффициента $\omega^2(\tau)$ в случае $\omega^2 > 2\Omega^2$.

Рис. 7. Приближенные траектории возмущенной волны при разных направлениях деформации коэффициента $\omega^2(\tau)$, вычисленные из условия стабильности заднего фронта. Параметры ω^2 , Ω^2 соответствуют рис.5.

к однозначному определению $V(\tau)$ по формуле (3.9). На выбор асимптотического решения со стабильным фронтом указывают численные эксперименты. Роль переднего фронта в определении скорости волны обсуждалась еще в первой работе Фишера [21], см. также [2, стр. 216, 219]. Строгое обоснование представленной здесь асимптотики с доказательством теоремы существования и с оценкой остатка отсутствует. Это относится ко всем известным результатам о возмущении простых волн.

СПИСОК ЛИТЕРАТУРЫ

- А.Н. Колмогоров, И.Г. Петровский, Н.С. Пискунов. Исследование уравнения диффузии, соединенной с возрастанием вещества, и его применение к одной биологической проблеме // Бюллетень МГУ. Матем., мех. 1:6, 1–25 (1937).
- 2. Дж. Марри. Нелинейные дифференциальные уравнения в биологии. Лекции о моделях. М.: Мир. 1983.
- 3. В.П. Маслов, В.Г. Данилов, К.А. Волосов. *Математическое моделирование процессов тепло*массопереноса, М.: Наука. 1987.
- 4. В.Г. Данилов. Глобальные формулы для решений квазилинейных параболических уравнений с малым параметром и некорректность // Матем. заметки. 46:1, 115–117 (1989).
- 5. В.Г. Данилов. Асимптотичемкие решения типа бегущих волн для полулинейных параболических уравнений с малым параметром // Матем. заметки. 48:2, 148–151 (1990).
- 6. Л.А. Калякин. Возмущение простой волны в системе с диссипацией // Матем. заметки. 112:4, 553-566 (2022).

Л.А. КАЛЯКИН

- 7. A.K. Zvezdin. Dynamics of domain walls in weak ferromagnets // Письма в ЖЭТФ. 29:10, 605-610 (1979).
- 8. З.В. Гареева, С.М. Чен. Сверхбыстрая динамика доменных границ в антиферромагнетиках и ферримагнетиках с температурами компенсации магнитного и углового моментов (Миниобзор) // Письма в ЖЭТФ. 114:4, 250–262 (2021).
- 9. Я.И. Канель. О стабилизации решений задачи Коши для уравнений, встречающихся в теории горения // Матем. сб. 59:101, 245-288 (1962).
- K. Uchiyama. The behavior of solutions of some non-linear diffusion equations for large time // J. Math. Kyoto Univ. 18:3, 453-508 (1978).
- 11. Т.Б. Шапаева, Р.Р. Муртазин, Е.Г. Екомасов. Динамика доменной границы под действием импульсного и градиентного магнитных полей в редкоземельных ортоферритах // Изв. РАН. Сер. физ. **78**:2. 155–158 (2014).
- 12. Л.А. Калякин. Фиктивные асимптотические решения // Уфимск. матем. журн. 6:2, 45-66 (2014).
- 13. В.И. Карпман, Е.М. Маслов. *Теория возмущений для солитонов* // ЖЭТФ. **73**:8, 538–559 (1977).
- 14. Е.М. Маслов. К теории возмущений для солитонов во втором приближении // ТМФ. **42**:3, 362–370 (1980).
- 15. А. Ньюэлл. *Обратное преобразование рассеяния*. В кн. Солитоны / под ред. Р. Буллаф, Ф. Кодри. М.: Мир. 193–269, 1983.
- 16. В.П. Маслов, Г.А. Омельянов. Асимптотические солитонообразные решения уравнений с малой дисперсией // УМН. 36:3(219), 63-126 (1981).
- 17. Л.А. Калякин. Возмущение солитона Кортевега де Фриза // ТМФ. 92:1, 62-76 (1992).
- 18. Л.А. Калякин. К задаче о первой поправке в теории возмущения солитонов // Матем. сб. 186:7, 51-76 (1995).
- 19. А.Х. Найфэ. Методы возмущений. М.: Мир. 1976.
- 20. Н.Н. Боголюбов, Ю.А. Митропольский. Асимптотические методы в теории нелинейных колебаний. М.: Наука. 1974.
- 21. R.A. Fischer. The wave of advance of advantageous genes // Ann. Eugenics. 7, 355-369 (1937).

Леонид Анатольевич Калякин, Институт математики с ВЦ УФИЦ РАН, ул.Чернышевского, 112, 450077, г. Уфа, Россия E-mail: klenru@mail.ru