
ISSN 2074-1871 Уфимский математический журнал. Том 14. № 4 (2022). С. 145-153.

REMARKS ON GARSIA ENTROPY

AND MULTIDIMENSIONAL ERDÖS MEASURES

V.I. OSELEDETS, V.L. KULIKOV, E.F. OLEKHOVA

Abstract. We conjecture that the Garsia entropy coincides with the entropy of the invariant
multidimensional Erdös measure. This conjecture is true for all Garsia numbers. We also
specify the algebraic unit being non-Pisot number, for which this conjecture is true.
We prove a theorem, which generalizes the Garsia theorem on the absolute continuity of

the infinite Bernoulli convolution for the Garsia numbers. The proof uses relations between
the multidimensional Erdös problem and the one-dimensional Erdös problem.
We discuss a connection between the entropy of the invariant Erdös measure and the

conditional Ledrappier–Young entropies. We also formulate three conjectures and obtain
some consequences from them. In particular, we conjecture that the Hausdorff dimension of
the Erdös measure is equal to the Ledrappier–Young dimension of conditional measure for
the multidimensional invariant Erdös measure along the unstable foliation corresponding to
the top Lyapunov exponent of multiplicity 1. For 2-numbers, we obtain formulae for the
Hausdorff dimension of Erdös measures on the unstable plane.
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1. Introduction

In this paper we consider infinite Bernoulli convolutions associated with a number 𝛽 ∈ (1, 2)
and a parameter 𝑝0 ∈ (0, 1). We define a random variable as

𝜁(𝛽, 𝑝0) =
∞∑︁
𝑘=1

𝛽−𝑘𝜀𝑘,

where {𝜀𝑘}𝑘∈N are independent identically distributed (i.i.d.) random variables:

P(𝜀𝑘 = 0) = 𝑝0, P(𝜀𝑘 = 1) = 𝑝1 = 1− 𝑝0, 0 < 𝑝0 < 1.

We observe that the series in the previous formula converges for each realization of a sequence
of independent variables {𝜀𝑘}𝑘∈N.
We define the following measure: 𝜇(∆) = P(𝜁 ∈ ∆). The measure 𝜇 is called an infinite

Bernoulli convolution; we shall also call it Erdös measure.
According to the Jessen–Wintner theorem (1935), the distribution of the random variable 𝜁

is either absolutely continuous or purely singular, that is, the mixed case is impossible. It is
naturally to ask, for which values of 𝛽 the distribution of 𝜁 is singular and for which values of
𝛽 it is absolutely continuous. This problem was formulated by Erdös 83 years ago [1] and it
seems to be very simple at the first glance. But in fact, this issue is very difficult. In 1995,
B. Solomyak proved that for almost all 𝛽, 1 < 𝛽 < 2 and 𝑝0 = 1

2
, the distribution of 𝜁 is
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absolutely continuous. Erdös proved in 1939 that if 𝛽 is a Pisot number, then the distribution
of 𝜁 is singular. For example, if 𝛽 is the golden ratio, then the distribution of 𝜁 is singular.
Another proof of the singularity of the Erdös measure for the case of the golden ratio was

given in [2]. The proof used the notion of an invariant Erdös measure for the transformation
𝑇1 of the interval [0, 1]: 𝑥 → 𝑇1𝑥 = {𝛽𝑥}, where {𝑥} denotes the fractional part of the number
𝑥.

Definition 1.1. An invariant Erdös measure 𝜇1 is a 𝑇1-invariant probability measure on
[0, 1] such that the restriction of the Erdös measure on [0, 1] is absolutely continuous with respect
to 𝜇1 [2].

For each Pisot number 𝛽 there is a unique 𝑇1-invariant Erdös measure (see [2], [3]).

Conjecture 1.1. There is a unique 𝑇1-invariant Erdös measure for each number 𝛽.

We denote 𝜌 = 𝛽−1 and define the contractions 𝑆0 : 𝑥 → 𝜌𝑥, 𝑆1 : 𝑥 → 𝜌𝑥 + 𝜌, 𝑥 ∈ R+. Let
𝐾1 be (a closed) support of 𝜇. It is well known that 𝐾1 is a unique solution of the Hutchinson
equation (see [4])

𝐾1 = 𝑆0𝐾1 ∪ 𝑆1𝐾1.

It is easy to see that

𝐾1 =

[︂
0;

1

𝛽 − 1

]︂
.

The set 𝐾1 is the attractor of the Iterated Function System (IFS) (𝑆0, 𝑆1), that is the set 𝐾1

is the attractor for Markov chain on real line with the transition probabilities 𝑝0 and 𝑝1 for the
following transitions:

𝑥 → 𝑆0𝑥, 𝑥 → 𝑆1𝑥.

The Erdös measure 𝜇 is a unique stationary distribution for this Markov chain.

Remark 1.1. There is a connection with a first order autoregresion model 𝐴𝑅(1). Let 𝐴𝑅(1)
model be

𝑋𝑛+1 = 𝛽−1𝑋𝑛 + 𝛽−1𝜀𝑛+1.

We consider a stationary Markov process 𝑋𝑛 satisfying this relation. Then the Erdös measure 𝜇
is the one-dimensional distribution of this process. That is, the Erdös measure is the stationary
distribution for a first-order autoregressive model with the Bernoulli noise.

The measure 𝜇 satisfy the following equation, which is a self-similarity equation:

𝜇 = 𝑝0𝜇 ∘ 𝑆−1
0 + 𝑝1𝜇 ∘ 𝑆−1

1 ,

where 0 < 𝑝0 < 1, 𝑝0 + 𝑝1 = 1. Another form of the self-similarity equation reads as

𝜇(∆) = 𝑝0𝜇(𝛽∆) + 𝑝1𝜇(𝛽∆− 1).

We observe that the self-similarity equation is simply the equation for the invariant measure of
our Markov chain. The solution of this equation is the Erdös measure with parameters 𝛽, 𝑝0.
We note that here we deal with the simplest random dynamical system. We recall that Erdös
proved that the Erdös measure is singular if 𝛽 is a Pisot algebraic integer; no other cases of
singularity are known.
Let us recall the following definitions.

– An algebraic integer 𝛽 is the root of an irreducible (minimal) polynomial 𝑝(𝑥) with integer
coefficients and the highest coefficient 1.

– If 𝛽 > 1 and the absolute values of all other roots are less than 1, then 𝛽 is called Pisot
number.
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We also recall that Hausdorff dimension of any probability measure 𝜇 is defined by the
formula

dim𝐻(𝜇) = inf(dim𝐻(∆) : 𝜇(∆) = 1).

Determining the dimension of self-similar measures is a fundamental problem in fractal geom-
etry.

Remark 1.2. It is well known that the Erdös measure is exact dimensional, that is,

dim𝐻(𝜇) = lim
𝜀→+0

log(𝜇(∆𝑥))

log 𝜀
,

where ∆𝑥 denotes the 𝜀-neighborhood of 𝑥: ∆𝑥 = (𝑥−𝜀, 𝑥+𝜀), 𝜀 > 0 and the limit is independent
of 𝑥 for almost all 𝑥 with respect to the measure 𝜇.

Hausdorff dimension of 𝜇 and Garsia entropy The Garsia entropy is defined by the
formula [5]:

ℎ𝐺(𝛽, 𝑝0) = lim
𝑛→∞

𝐻(𝜁𝑛)

𝑛
,

where

𝜁𝑛 =
𝑛∑︁

𝑘=1

𝛽−𝑘𝜀𝑘

and 𝐻(𝜁𝑛) is the Shennon entropy of the random variable 𝜁𝑛.
For algebraic integer 𝛽, the Garsia entropy is the absolute value of top Lyapunov exponent

of some sequence of independent random matrices, see [6]. For the Pisot numbers, the Garsia
entropy is equal to the entropy of some hidden Markov chain, that is, this is the absolute value
of the top Lyapunov exponent with respect to the Markov measure, see [2], [3].
The paper is organized as follows. In Section 2 we prove a theorem, which generalizes the

Garsia theorem on the absolute continuity of the infinite Bernoulli convolution for the Garsia
numbers. In Sections 3 and 4 we discuss the entropy of the invariant Erdös measure and the
conditional Ledrappier–Young entropies. We also formulate some conjectures and obtain some
consequences from them. In Section 4, we obtain formulas for the Hausdorff dimension of Erdös
measures on an unstable plane for 2-numbers.

2. Garsia theorem and related issues

Garsia [5] proved that the Erdös measure is absolutely continuous as 𝛽 is an algebraic integer
number, the absolute value of all the roots of the minimal polynomial are greater than 1, the
absolute value of the free coefficient of the minimal polynomial is equal to 2 and 𝑝0 = 0.5. We
call such numbers Garsia numbers. Here we give an alternative proof of the Garsia theorem.
For algebraic integers 𝛽, the Hausdorff dimension of the Erdös measure can be calculated by

the Hochman formula [7]:

𝛿1 = dim𝐻(𝜇) = min

{︂
1,

ℎ𝐺(𝛽, 𝑝0)

log 𝛽

}︂
.

For Garsia numbers the Garsia entropy reads as

ℎ𝐺(𝛽, 𝑝0) = −𝑝0 log 𝑝0 − 𝑝1 log 𝑝1.

Indeed, if
𝑛∑︁

𝑘=1

𝑥𝑘𝛽
−𝑘 =

𝑛∑︁
𝑘=1

𝑦𝑘𝛽
−𝑘,
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where 𝑥𝑘, 𝑦𝑘 ∈ {0, 1}, 𝑘 = 1, . . . , 𝑛, then the polynomial

𝑓(𝑥) =
𝑛∑︁

𝑘=1

(𝑥𝑘 − 𝑦𝑘)𝑥
𝑛−𝑘

has the root 𝛽. Hence, 𝑓(𝑥) is divisible by minimal polynomial 𝑝(𝑥) of 𝛽. But this is impossible
because 𝑝(0) = ±2 and 𝑥𝑘 − 𝑦𝑘 = 0,±1.
From the equation ℎ𝐺(𝛽, 𝑝

𝑐𝑟
0 ) = log 𝛽 we find the critical value 𝑝𝑐𝑟0 < 0.5. For Garsia numbers,

the Erdös measure is singular if 𝑝0 ∈ (0, 𝑝𝑐𝑟0 )∪ (1− 𝑝𝑐𝑟0 , 1). Otherwise, the Hausdorff dimension
of the Erdös measure is 1. This follows from the Hochman formula.
We shall prove the theorem, which generalizes the Garsia theorem on the absolute continuity

of the infinite Bernoulli convolution for the Garsia numbers. The proof uses the connection
between the multidimensional Erdös problem and the one-dimensional Erdös problem.

Multidimensional Erdös problem. Multidimensional Erdös problem is the problem on the
distribution of a random variable

𝜂 =
∞∑︁
𝑘=1

𝐴−𝑘𝜉𝑘, 𝜉𝑘 ∈ Z𝑑, 𝑑 ⩾ 2,

where 𝐴 is an expanding matrix, the absolute values of all its eigenvalues are greater than 1
and 𝜉𝑘 are i.i.d. random variables.
For the minimal polynomial of number 𝛽

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + . . .+ 𝑎𝑑−1𝑥

𝑑−1 + 𝑥𝑑,

we consider the residue field of polynomial ring R[𝑥] modulo 𝑝(𝑥). This field is a linear 𝑑-
dimensional space and (1, 𝑥, . . . , 𝑥𝑑−1) is the basis in this space.
The matrix of the linear multiplication operator by 𝑥 with respect to this basis has the form

𝐴 =

⎛⎜⎜⎜⎜⎝
0 0 . . . 0 −𝑎0
1 0 . . . 0 −𝑎1
0 1 . . . 0 −𝑎2
...

...
...

...
0 0 . . . 1 −𝑎𝑑−1

⎞⎟⎟⎟⎟⎠ .

By definition this is the companion matrix for the polynomial 𝑝(𝑥).
For Garsia number | det𝐴| = 2. Let 𝜉𝑘 be 𝜉𝑘 = 𝜀𝑘 𝑒, where 𝑒 is a non-zero solution of the

equation [︀
𝐴−1𝑟

]︀
= 0, 𝑟 ∈ Z𝑑.

Proposition 2.1. The distribution of the random variable 𝜂 is absolutely continuous at 𝑝0 =
0.5 and singular at 𝑝0 ̸= 0.5.

This proposition follows from [8].
Let us explain the connection between the multidimensional and one-dimensional Erdös prob-

lems for the algebraic integer 𝛽. Let 𝛽1 = 𝛽, 𝛽2, . . . , 𝛽𝑑 be the roots of the polynomial 𝑝(𝑥). We
define 𝜂, 𝑙𝑖, 𝑖 ∈ {1, . . . , 𝑑} provided 𝜉𝑘 = 𝜀𝑘𝑒:

𝜂 =
∞∑︁
𝑘=1

𝜀𝑘𝐴
−𝑘𝑒,

𝑙𝑖 ∈ R𝑑 : 𝑙𝑖𝐴 = 𝛽𝑖𝑙𝑖, 𝑖 = 1, . . . , 𝑑.

Proposition 2.2. The left eigenvector (row) 𝑙𝑖 of the companion matrix 𝐴, corresponding
to the eigenvalue 𝛽𝑖, has the form

𝑙𝑖 = (1, 𝛽𝑖, 𝛽
2
𝑖 , . . . , 𝛽

𝑑−1
𝑖 ).
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The Garsia absolute continuity theorem is a special case of the following theorem. In partic-
ular, it provides an alternative proof of the Garsia theorem.

Theorem 2.1. Distribution of the random variable 𝜁 (𝛽𝑖, 0.5) is absolutely continuous.

Proof. We have

𝑙𝑖 𝜂 = 𝑙𝑖 𝑒 𝜁(𝛽𝑖, 𝑝0).

The numbers 𝑙𝑖𝑒 are non-zero for all 𝑖 = 1, . . . , 𝑑. Indeed, if for some 𝑖 the identity 𝑙𝑖𝑒 = 0
holds, then according to Proposition 2.2 there exists a polynomial of 𝑥 of degree 𝑑− 1, which
has the root 𝛽𝑖. But this is impossible, since 𝑝(𝑥) is the minimal polynomial of degree 𝑑.
Let us recall that the distribution of the random variable 𝜂 is absolutely continuous at

𝑝0 = 0.5. Hence, it follows that the distribution of random variable 𝜁(𝛽𝑖, 0.5) =
𝑙𝑖𝜂
𝑙𝑖𝑒

is absolutely
continuous. The proof is complete.

3. Invariant Erdös measure on torus T𝑑

Let 𝐴 be a hyperbolic matrix, 𝐴 ∈ 𝐺𝐿(𝑑,Z). Let 𝐿𝑢 be the unstable subspace in R𝑑 for the
matrix 𝐴 corresponding to the points 𝜆, |𝜆| > 1 of the spectrum of the matrix 𝐴. Similarly,
𝐿𝑠 is the stable subspace in R

𝑑 for the matrix 𝐴 corresponding to the points 𝜆, |𝜆| < 1 of the
spectrum of the matrix 𝐴. We have

R𝑑 = 𝐿𝑢 ⊕ 𝐿𝑠, 𝐴𝐿𝑢 = 𝐿𝑢, 𝐴𝐿𝑠 = 𝐿𝑠.

We consider 𝑉𝐴𝑅(1)-model

𝑋𝑛+1 = 𝐴−1𝑋𝑛 + 𝜀𝑛+1𝑒,

where {𝜀𝑘, 𝑘 ∈ Z} are i.i.d.,

P(𝜀𝑘 = 0) = 𝑝0, P(𝜀𝑘 = 1) = 𝑝1, 𝑝0 + 𝑝1 = 1, 𝑝0, 𝑝1 > 0,

and 𝑒 ̸= 0, 𝑒 ∈ Z𝑑, that is, 𝑒 = (1, 0, . . . , 0)𝑇 .
Let 𝜋𝑠 be the projector on 𝐿𝑠, 𝜋𝑠𝐿𝑢 = 0. Similarly, let 𝜋𝑢 be the projector on 𝐿𝑢, 𝜋𝑢𝐿𝑠 = 0.

Note that 𝐴𝜋𝑠 = 𝜋𝑠𝐴 and 𝐴𝜋𝑢 = 𝜋𝑢𝐴. In addition, we denote 𝑒𝑠 = 𝜋𝑠𝑒, 𝑒𝑢 = 𝜋𝑢𝑒, 𝑒𝑠 + 𝑒𝑢 = 𝑒.
We also consider the equations

𝜋𝑢𝑋𝑛+1 = 𝐴−1𝜋𝑢𝑋𝑛 + 𝜀𝑛+1𝑒𝑢

𝜋𝑠𝑋𝑛+1 = 𝐴−1𝜋𝑠𝑋𝑛 + 𝜀𝑛+1𝑒𝑠

and its particular solutions

𝑋𝑢
𝑛 =

∞∑︁
𝑘=0

𝐴−𝑘𝑒𝑢𝜀𝑛−𝑘,

𝑋𝑠
𝑛 = −

∞∑︁
𝑘=1

𝐴𝑘𝑒𝑠𝜀𝑛+𝑘.

We consider a particular solution to the 𝑉𝐴𝑅-model:

𝑋𝑛 = 𝑋𝑠
𝑛 +𝑋𝑢

𝑛 , 𝑋𝑠
𝑛 = 𝜋𝑠𝑋𝑛, 𝑋𝑢

𝑛 = 𝜋𝑢𝑋𝑛. (3.1)

In particular,

𝑋0 = . . .− 𝐴2𝑒𝑠𝜀2 − 𝐴𝑒𝑠𝜀1 + 𝐴0𝑒𝑢𝜀0 + 𝐴−1𝑒𝑢𝜀−1 + . . . .

Proposition 3.1. Process {𝑋𝑛, 𝑛 ∈ 𝑍} is a stationary process.



150 V.I. OSELEDETS, V.L. KULIKOV, E.F. OLEKHOVA

The proof follows immediately from formulae (3.1).
Let T𝑑 be R𝑑/Z𝑑. We define the algebraic endomorphism 𝑇𝑑 of T𝑑:

𝑇𝑑 : 𝑥 → 𝐴𝑥 mod Z𝑑.

We have

𝐴𝑋𝑛+1 = 𝑋𝑛 + 𝜀𝑛+1𝐴𝑒.

We define ̃︀𝑋𝑛 = 𝑋𝑛 mod Z𝑑 which satisfies the equatioñ︀𝑋𝑛 = 𝐴 ̃︀𝑋𝑛+1 mod Z𝑑.

Process ̃︀𝑋𝑛 is T𝑑-valued stationary process. Let 𝜇𝐴 denote distribution of the random variablẽ︀𝑋0 = 𝑋0 mod Z𝑑. The measure 𝜇𝐴 is 𝑇𝑑-invariant measure.

Remark 3.1. Let det𝐴 = ±1. If in the previous formulae we replace 𝐴 by 𝐴−1, then on the
torus we get a new stationary process ̃︀𝑌𝑛 = − ̃︀𝑋𝑛. Hence, this implies that

𝜇𝐴−1(∆) = 𝜇𝐴(−∆),

where −∆ = {−𝑥 | 𝑥 ∈ ∆ ⊂ T𝑑}.

Proposition 3.2. The entropy of algebraic automorphism 𝑇𝑑 : 𝑥 → 𝐴𝑥 of T𝑑 with respect to
the measure 𝜇𝐴 is equal to the entropy of algebraic automorphism 𝑇𝑑 with respect to the measure
𝜇𝐴−1 and

ℎ(𝑇𝑑, 𝜇𝐴) = ℎ(𝑇−1
𝑑 , 𝜇𝐴−1) = ℎ(𝑇𝑑, 𝜇𝐴−1).

Proof. The map 𝑥 → −𝑥 establishes an isomorphism of the transformation 𝑇𝑑 with the invariant
measure 𝜇𝐴 and the transformation 𝑇𝑑 with the invariant measure 𝜇𝐴−1 . Hence, the coincidence
of entropies follows. The proof is complete.

Definition 3.1. We call the distribution of the random variable ̃︀𝑋0 multidimensional invari-
ant Erdös measure for the number 𝛽.

Conjecture 3.1. The Garsia entropy ℎ𝐺(𝛽, 𝑝0) is equal to the entropy of the transformation
𝑇𝑑 with respect to the invariant Erdös measure 𝜇𝐴, where 𝐴 is the companion matrix of the
number 𝛽.

Recall the definition of the invariant Erdös measure 𝜇1 for the transformation 𝑇1 : 𝑥 → {𝛽𝑥},
𝑥 ∈ [0, 1]. An invariant Erdös measure 𝜇1 is a 𝑇1-invariant probability measure on [0, 1] such
that the restriction of the Erdös measure on [0, 1] is absolutely continuous with respect to 𝜇1.

Conjecture 3.2. The endomorphism 𝑇1 with an invariant Erdös measure 𝜇1 is isomorphic
to the factor-endomorphism of the transformation 𝑇𝑑 with an invariant Erdös measure 𝜇𝐴 such
that its entropy is equal to the Ledrappier–Young entropy ℎ1 along the unstable foliation corre-
sponding the top Lyapunov exponent 𝑙𝑜𝑔𝛽. Moreover, the Hausdorff dimension of the measure
𝜇1 (dim𝐻(𝜇1) = 𝛿1 = dim𝐻(𝜇)) is equal to the Ledrappier–Young dimension 𝛾1 of measure 𝜇𝐴

along the unstable foliation corresponding to the top Lyapunov exponent log 𝛽 of multiplicity 1.

Remark 3.2. By the Ledrappier–Young formula [9],

ℎ(𝑇𝑑, 𝜇𝐴) = 𝛾1𝜆1 + 𝛾2𝜆2 + · · ·+ 𝛾𝑟𝜆𝑟,

where 𝑟 is the number of positive Lyapunov exponents for 𝑇𝑑. In our case, the Lyapunov
exponents are the logarithms of the absolute values of the roots of the minimal polynomial for
the number 𝛽.
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Hence, if 𝑝0 = 0.5 then 𝛽 is a Pisot number if and only if ℎ𝐺(𝛽, 0.5) < log 𝛽. The identity
ℎ𝐺(𝛽, 0.5) = log 𝛽 is impossible for the case of the hyperbolic automorphism 𝑇𝑑. If 𝛽 is not a
Pisot number, then ℎ𝐺(𝛽, 0.5) > log 𝛽. Then according to the Hochman formula

𝛾1 = 𝛿1 = min

{︂
1,

ℎ𝐺(𝛽, 0.5)

log 𝛽

}︂
we obtain 𝛿1 = 1.

For Pisot number and for each 𝑝0 by the Hochman formula we obtain 𝛿1 < 1. Hence,
ℎ𝐺(𝛽, 𝑝0) = ℎ(𝑇1, 𝜇1). According Conjecture 3, ℎ(𝑇1, 𝜇1) = ℎ(𝑇𝑑, 𝜇𝐴), i.e. ℎ𝐺(𝛽, 𝑝0) =
ℎ(𝑇𝑑, 𝜇𝐴). So, for Pisot number, Conjecture 3.1 follows from Conjecture 3.2.

Definition 3.2. An algebraic integer 𝛽 is called 𝑘-number if dim𝐿𝑢 = 𝑘.

Let det𝐴 = ±1 and 𝐴 be a hyperbolic matrix, 𝐴 ∈ 𝐺𝐿(𝑑,Z). We define the dual multidi-
mensional Erdös problem by replacing 𝐴 with 𝐴−1. Interesting cases are 𝑘 = 𝑑− 2, 𝑑− 1. Let
𝑘 = 𝑑− 2 and 𝑙 be the left 𝛼-eigenvector: 𝑙𝐴 = 𝛼𝑙, |𝛼| < 1, 𝛼 ̸= 𝛼, 𝑙 = (1, 𝛼, . . . , 𝛼𝑑−1). Then
for multidimensional Erdös problem with the matrix 𝐴−1 and corresponding vector 𝜂 we have

𝑙 𝜂 = 𝑙 𝑒 𝜁(𝛼−1, 𝑝0) = 𝜁(𝛼−1, 𝑝0).

The number 𝛼−1 is an example of a complex Pisot number.

Let ̃︀𝛽 = 𝛼−1. Denote the companion matrix of ̃︀𝛽 by 𝐵. The matrices 𝐵 and 𝐴−1 are
conjugate in the group 𝐺𝐿(𝑑,Z). Let 𝐵 = 𝐶𝐴−1𝐶−1, 𝐶 ∈ 𝐺𝐿(𝑑,Z).
The map 𝑇𝐶 : 𝑥 → 𝐶𝑥 mod Z𝑑 gives semiconjugacy for the automorphisms of multiplication

by matrices 𝐵 and 𝐴−1 on the torus T𝑑.
We consider 𝑉𝐴𝑅-model for 𝐴−1:

𝑋𝑛+1 = 𝐴𝑋𝑛 + 𝜀𝑛+1𝑒.

Let 𝑌𝑛 = 𝐶𝑋𝑛, then
𝑌𝑛+1 = 𝐵𝑌𝑛 + 𝜀𝑛+1𝐶𝑒.

The distribution of the random variable ̃︀𝑌0 = 𝑌0 mod Z𝑑 is denoted by 𝜈. We observe that̃︀𝑌0 = 𝑇𝐶
̃︀𝑋0.

Proposition 3.3. The automorphism 𝑇−1
𝑑 with invariant measure 𝜇𝐴−1 has the same entropy

as the automorphism of multiplication by the matrix 𝐵 with invariant measure 𝜈.

Proof. The proposition follows from the semi-conjugation of the automorphisms of multiplica-
tion by matrices 𝐵 and 𝐴−1 on the torus T𝑑 and from the fact that

#{𝑇−1
𝐶 𝑥} = | det𝐶|.

Let 𝑋𝑛 be a stationary 𝑉𝐴𝑅(1)-process: 𝑋𝑛+1 = 𝐴−1𝑋𝑛+𝜀𝑛+1𝑒, which we denote by 𝑋𝑛(𝐴).

Definition 3.3. The distribution 𝜇𝑢
𝐴 of random variable 𝜋𝑢𝑋0(𝐴) is called the Erdös measure

on 𝐿𝑢.

Let 𝛽 be a cubic (deg 𝑝(𝑥) = 3) complex 2-number, Im 𝛽 ̸= 0, i.e. 𝛽1 = 𝛽, 𝛽2 = 𝛽, 𝛽 is a
complex Pisot number, |𝛽| > 1 and 0.5 < 𝛽3 < 1, where 𝛽3 is the second Galois conjugate. Let
𝐴 be the companion matrix for the real Pisot number 𝛽−1

3 . Then the number 𝛽 corresponds to
the matrix 𝐴−1 and the measure 𝜇𝐴−1 . For a real Pisot number 𝛽−1

3 we have

ℎ(𝑇3, 𝜇𝐴) = dim𝐻(𝜇1) log(𝛽
−1
3 ).

Similarly for the 𝛽:
ℎ(𝑇−1

3 , 𝜇𝐴−1) = dim𝐻(𝜇
𝑢
𝐴−1) log |𝛽|.
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Proposition 3.4. For a 2-number 𝛽 satisfying the conditions described above, the Hausdorff
dimension of the Erdös measure on 𝐿𝑢 is equal to the doubled dimension of the Erdös measure
for the number 𝛽−1

3 .

Proof. The proposition follows from the identity ℎ(𝑇3, 𝜇𝐴) = ℎ(𝑇−1
3 , 𝜇𝐴−1).

4. Examples with 2-numbers

Example 4.1. Consider the 2-number 𝛽 with the minimal polynomial:

𝑝(𝑥) = 𝑥3 + 𝑥2 + 𝑥− 1,

𝛼 ≈ −0.420 + 0.606𝚤, |𝛼| < 1, |𝛼|−1 < 2, 𝛽 = 𝛼−1,

𝛽 satisfies the assumptions of Proposition 3.4. In addition, 𝛽−1
3 is the tribonacci number. In

particular, the Hausdorff dimension of the Erdös measure for the number 𝛽−1
3 can be calculated

with a high precision for each 𝑝0, see [10].
By Proposition 3.4, the largest dimension dim𝐻(𝜇

𝑢
𝐴−1) for 𝑝0 = 0.5 is approximately equal

to 1.96081862 .

Example 4.2. We consider positive 2-number 𝛽 with the minimal polynomial:

𝑝(𝑥) = 𝑥3 − 𝑥2 − 2𝑥+ 1.

The roots of this polynomial are:

𝛽 = 𝛽1 ≈ 1.8019, 𝛽2 ≈ −1.2470, 𝛽3 ≈ 0.4450.

We have 𝛽−1
3 ≈ 2.2470. This is the Pisot number.

Let 𝐴 be the companion matrix of the polynomial 𝑝(𝑥). The companion matrix for 𝛽−1
3 is

similar to the matrix 𝐴−1 in the group 𝐺𝐿(3,Z). Since 2 < 𝛽−1
3 < 3, in the usual Erdös problem

three digits 0, 1, 2 are used and the corresponding IFS is an overlapping system. In our case,
one of the nonzero digits is missing, and the corresponding IFS has no overlaps. This yields

ℎ(𝑇−1
3 , 𝜇𝐴−1) = −𝑝0 log 𝑝0 − 𝑝1 log 𝑝1

since 𝛽−1
3 is Pisot number and the Erdös measure with two digits 0, 1 is invariant under the

endomorphism 𝑇1 : 𝑥 → {𝛽−1
3 𝑥}.

In this example

ℎ(𝑇3, 𝜇𝐴) = 𝛾1 log 𝛽1 + 𝛾2 log |𝛽2|.
Depending on 𝑝0, if ℎ(𝑇3, 𝜇𝐴) < log 𝛽1, then

𝛾1 log 𝛽1 = ℎ𝐺(𝛽1, 𝑝0) = ℎ(𝑇3, 𝜇𝐴).

Hence, 𝛾2 = 0. If ℎ(𝑇3, 𝜇𝐴) ⩾ log 𝛽1, then 𝛾1 = 1. This implies

𝛾2 =
𝐻(𝑝0)− log 𝛽1

log |𝛽2|
, dim(𝜇𝑢

𝐴) = 1 + 𝛾2.

Hence, the largest dimension dim𝐻(𝜇
𝑢
𝐴) (for 𝑝0 = 0.5) is approximately equal to 1.473.

Conclusion

We associated the endomorphism 𝑇1 with the one-dimensional unstable foliation correspond-
ing to the top Lyapunov exponent. We also define the transformation 𝑇𝑟, 𝑟 = dim𝐿𝑢 with
the invariant Erdös measure 𝜇𝑟 corresponding to the Erdös measure 𝜇𝑢

𝐴. It can be shown that
the measure 𝜇𝑟 is a sofic measure and Conjecture 3.2 can be generalized to this case. We also
conjecture that for 𝑝0 = 0.5 Erdös measure is singular if and only if 𝛽 is Pisot number.
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