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THE BOUNDARY MORERA THEOREM

FOR DOMAIN 𝜏+ (𝑛− 1)

G. KHUDAYBERGANOV, J.Sh. ABDULLAYEV

Abstract. In this work, we will continue to construct an analysis in the future tube and

move on to study the Lie ball. The Lie ball can be realized as a future tube. These realizations

will be the subject of our research. These methods turn out to be convenient for computing

the Bergman, Cauchy-Szegö and Poisson kernels in this domain.

In the theory of functions Morera’s theorems have been studied by many mathematicians.

In the complex plane, the functions with one-dimensional holomorphic extension property

are trivial but Morera’s boundary theorems are not available. Therefore, the results of the

work are essential in the multidimensional case. In this article, we proved the boundary

Morera theorem for the domain 𝜏+ (𝑛− 1). An analog of Morera’s theorem is given, in

which integration is carried out along the boundaries of analytic disks. For this purpose,

we use the automorphisms 𝜏+ (𝑛− 1) and the invariant Poisson kernel in the domain

𝜏+ (𝑛− 1). Moreover, an analogue of Stout’s theorem on functions with the one-dimensional

holomorphic continuation property is obtained for the domain 𝜏+ (𝑛− 1). In addition,

generalizations of Tumanov’s theorem is obtained for a smooth function from the given

class of CR manifolds.
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kernel, holomorphic continuation, Morera’s theorem, analytic disk, Hardy spaces.
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1. Introduction and preliminary results

The issue on holomorphic continuation of functions defined on the entire boundary into the
domain was studied quite well. The usual (non-boundary) Morera theorems in domains of the
space C𝑛 are well known (see, for example, [5], [8])
A high great interest of specialists is attracted by the multidimensional boundary analogues

of Morera’s theorem (see [11], [14]–[16], [18], [23], [24], [29]). One way or another, they dealt
with an entire boundary of the domain and studied a holomorphic continuation of the function
𝑓 from the boundary 𝜕𝐷 of a domain 𝐷 in C𝑛 provided the integrals of 𝑓 over the boundaries
of the analytic disks lying on 𝜕𝐷 vanish.
The first result related to this topic was obtained by M.L. Agranovskii and R.E. Val’skii in

[19], who studied functions with the one-dimensional property of holomorphic continuation in
a ball. The proof was based on the properties of the automorphism group of a ball. In [12],
E.L. Stout extended the Agranovskii and Val’skii theorem to an arbitrary bounded domains

G. Khudayberganov, J.Sh. Abdullayev, The boundary Morera theorem for the domain

𝜏+ (𝑛− 1).

© G. Khudayberganov, J.Sh. Abdullayev 2020.

The work is supported by the project “Functional properties of 𝐴-analytical functions and their applications.

Some problems of complex analysis in matrix domains (2017-2020)” no. OT-F4-(37+29) of Ministry of Innovative

Development of the Republic of Uzbekistan.

Submitted July 1, 2020.

196



THE BOUNDARY MORERA THEOREM FOR DOMAIN 𝜏+ (𝑛− 1) 197

with a smooth boundary via using the complex Radon transform. A.E. Tumanov in [17] showed
that each smooth function with the one-dimensional property of holomorphic continuation along
analytic disks on generating minimal manifolds is a CR function. An alternative proof of Stout’s
theorem was given by A.M. Kytmanov and S.G. Myslivets (see [9]), who applied the Bochner –
Martinelli integral. The idea of using integral representations (Bochner – Martinelli, Cauchy –
Fantappie, logarithmic residue) turned out to be useful in studying functions with the one-
dimensional holomorphic continuation property along complex curves, see [24], [25].
In papers [30], [37], a boundary version of Morera’s theorem was considered for classical

domains. Its starting point was the result of Nagel and Rudin [11], which stated that if the
function 𝑓 is continuous on the boundary of the ball in C𝑛 and

2𝜋∫︁
0

𝑓
(︀
𝜙
(︀
𝑒𝑖𝜃, 0, . . . , 0

)︀)︀
𝑒𝑖𝜃𝑑𝜃 = 0

for all (holomorphic) automorphisms of the 𝜙 ball, then the function 𝑓 can be continued
holomorphically into the ball. An alternative proof of the theorem of Nagel and Rudin was
given by S. Kosbergenov in [31]. It allowed one to generalize this statement to the case of
classical domains.
In papers [32]–[34], a boundary version of Morera’s theorem was studied for matrix balls,

as well as for matrix balls associated with classical domains of the second and third types.
This statement is generalized for a matrix ball by replacing the domain boundary by a Shilov
boundary (skeleton).
In all previous results, the domain 𝐷 was assumed to be bounded. In [35], [36], there was

studied a subspace of the Schwartz space on a closed convex unbounded set in R𝑛 was formed
by the function admitting holomorphic continuation in C𝑛. In ([20]–[22], [27], [28], [38]), the
following case of unbounded domains of 𝐷 were considered: a domain with a boundary being
the Poincare spheré or the Heisenberg group, the matrix upper half-plane, and also Siegel
domains of the second kind. Morera’s theorem with the Heisenberg group was also considered
by M. Agranovskii, K. Berenstein, and D. Chang in [20]. In this work, the integration was made
over spheres of maximal dimension. We give an analogue of Morera’s theorem, in which the
integration is made along the boundaries of analytic disks.
In [28], [38], the Bochner –Martinelli integral was used in the proof of this theorem. The

domain 𝐷 was biholomorphically mapped onto the ball, the intersections of this ball with
complex lines were considered, the inverse disks were the inverse images of these intersections
in the domain 𝐷. B. Kurbanov gave an alternative proof of this theorem in [21] and in [22]
considered Morera’s theorem for the matrix upper half-plane.
In this paper, we consider the boundary Morera theorem for a future tube 𝜏+ (𝑛− 1) and we

use automorphisms 𝜏+ (𝑛− 1) and the invariant Poisson kernel in the domain 𝜏+ (𝑛− 1).

2. Realizations of Lie ball and automorphisms 𝜏+ (𝑛− 1)

We consider an 𝑛-dimensional complex space C𝑛, with ordered set 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) of 𝑛
complex numbers. For 𝑧, 𝑤 ∈ C𝑛 we let

𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) , ⟨𝑧, 𝑤⟩ = 𝑧1𝑤1 + . . .+ 𝑧𝑛𝑤𝑛,

|𝑧| =
√︀

⟨𝑧, 𝑧⟩ =
√︁

|𝑧1|2 + |𝑧2|2 + . . .+ |𝑧𝑛|2.
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The domain ℜ𝑛
𝐼𝑉 (Lie ball) consists of 𝑛-dimensional complex vectors 𝑧 satisfying certain

conditions:

ℜ𝑛
𝐼𝑉 =

{︀
𝑧 ∈ C𝑛 : |⟨𝑧, 𝑧⟩|2 − 2|𝑧|2 + 1 > 0, |⟨𝑧, 𝑧⟩| < 1

}︀
. (2.1)

This classical domain is of the fourth type according to the classification by E. Cartan, see
[1], or the Lie ball, see [3]. The Lie ball ℜ𝑛

𝐼𝑉 is a complete circular convex bounded domain.
The Shilov’s boundary (skeleton) Γℜ𝑛

𝐼𝑉
of the domain ℜ𝑛

𝐼𝑉 is defined as follows:

Γℜ𝑛
𝐼𝑉

= {𝑧 ∈ C𝑛 : |⟨𝑧, 𝑧⟩| = 1, |𝑧| = 1} . (2.2)

An unbounded domain of the form

𝜏+ (𝑛) =
{︀
𝑤 ∈ C𝑛+1 : (Im𝑤𝑛+1)

2 > (Im𝑤1)
2 + . . .+ (Im𝑤𝑛)

2 , Im𝑤𝑛+1 > 0
}︀

is called future tube in C𝑛+1.
The boundary 𝜕𝜏+ (𝑛) of the domain 𝜏+ (𝑛) consists of

𝜕𝜏+ (𝑛) =
{︀
𝑤 ∈ C𝑛+1 : (Im𝑤𝑛+1)

2 = (Im𝑤1)
2 + . . .+ (Im𝑤𝑛)

2 , Im𝑤𝑛+1 > 0
}︀

and skeleton

Γ𝜏+(𝑛) =
{︀
𝑤 ∈ C𝑛+1 : Im𝑤1 = . . . = Im𝑤𝑛 = Im𝑤𝑛+1 = 0

}︀
= Rn+1,

on which the boundary degenerates.
The following statement is true

Theorem 2.1. The map Φ : C𝑛
𝑧 → C𝑛

𝑤 defined by identities

𝑤𝑘 =
−2𝑖𝑧𝑘

𝑛−1∑︀
𝑗=1

𝑧2𝑗 + (𝑧𝑛 − 𝑖)2
, 𝑘 = 1, . . . , 𝑛− 1, 𝑤𝑛 =

2 (𝑧𝑛 − 𝑖)
𝑛−1∑︀
𝑗=1

𝑧2𝑗 + (𝑧𝑛 − 𝑖)2
− 𝑖, (2.3)

biholomorphically maps the domain ℜ𝑛
𝐼𝑉 onto 𝜏+ (𝑛− 1), while Γℜ𝑛

𝐼𝑉
is mapped onto Γ𝜏+(𝑛−1).

Remark 2.1. We call the transformation (2.3) a generalized Cayley transform. In [4], there
was considered the issue on the existence of a biholomorphic map of the domain 𝜏+(𝑛) into the
classical domain of the fourth type. In [7], the embedding of the future tube into the classical
domain ℜ𝑛+1

𝐼𝑉 was given. The goal of Theorem 2.1 is to find an explicit mapping establishing a
biholomorphic equivalence of the domains ℜ𝑛

𝐼𝑉 and 𝜏+ (𝑛− 1); this is useful for calculating a
Jacobian in other important concepts.

Proof. It is known that the group 𝐺 of analytic automorphisms of domains of the fourth type
is described as follows [2], [4]. Consider a group of linear transformations with real coefficients
of (𝑛+ 2) variables that keep the quadratic form on its place

− 𝑢2
1 − . . .− 𝑢2

𝑛 + 𝑣21 + 𝑣22 = 𝐴′𝐻𝐴 (2.4)

where

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
𝑢1
...
𝑢𝑛

𝑣1
𝑣2

⎞⎟⎟⎟⎟⎟⎠ , 𝐻 =

(︂
−𝐼(𝑛) 0
0 𝐼(2)

)︂

and 𝐼(𝑛) is the unit matrix of size 𝑛. More precisely, we consider a group of linear transforma-
tions of the matrix 𝐺 satisfying the equalities 𝐺 = 𝐺 and 𝐺′𝐻𝐺 = 𝐻. Note that the number

of real parameters of this group is equal to (𝑛+1)(𝑛+2)
2

.
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The set of points of (𝑛+ 2) dimensional complex space satisfying the conditions

𝐴′𝐻𝐴 = −𝑢2
1 − . . .− 𝑢2

𝑛 + 𝑣21 + 𝑣22 = 0 (2.5)

and

𝐴′𝐻𝐴 = − |𝑢1|2 − . . .− |𝑢𝑛|2 + |𝑣1|2 + |𝑣2|2 > 0 (2.6)

transforms into itself under one-to-one transformations 𝐴 → 𝐺𝐴.
Note that 𝑣1 and 𝑣2 are both nonzero and do not belong to the same line passing through

the origin since otherwise we would have

|𝑣1|2 + |𝑣2|2 =
⃒⃒
𝑣21 + 𝑣22

⃒⃒2
and |𝑢1|2 + . . .+ |𝑢𝑛|2 <

⃒⃒
𝑢2
1 + . . .+ 𝑢2

𝑛

⃒⃒
. (2.7)

Therefore, the imaginary part of the ratio 𝑣1
𝑣2

is nonzero. It can be shown that our point set
consists of two components, each containing points with a certain sign of the imaginary part
𝑣1
𝑣2
. It is also obvious that the transformations of our group either preserves the sign of the

imaginary part 𝑣1
𝑣2

for all points of the considered set or make it opposite for all points.
Thus, linear transformations preserving the sign of the imaginary part 𝑣1

𝑣2
, form a subgroup

of index two. We consider this subgroup and the set of points defined by the conditions:

𝐴′𝐻𝐴 = 0, 𝐴′𝐻𝐴 > 0, Im
𝑣1
𝑣2

> 0. (2.8)

Passing to inhomogeneous coordinates, we transfer this set to a bounded domain in 𝑛 dimen-
sional complex space. Dividing the first relation in (2.8) by (𝑣1 + 𝑖𝑣2)

2, we obtain(︂
𝑢1

𝑣1 + 𝑖𝑣2

)︂2

+ . . .+

(︂
𝑢𝑛

𝑣1 + 𝑖𝑣2

)︂2

=
𝑣1 − 𝑖𝑣2
𝑣1 + 𝑖𝑣2

. (2.9)

Dividing the second relation in (2.8) by |𝑣1 + 𝑖𝑣2|2 and keeping in mind that

|𝑣1|2 + |𝑣2|2

|𝑣1 + 𝑖𝑣2|2
=

|𝑣1 − 𝑖𝑣2|2 + |𝑣1 + 𝑖𝑣2|2

2 |𝑣1 + 𝑖𝑣2|2
,

we get ⃒⃒⃒⃒
𝑢1

𝑣1 + 𝑖𝑣2

⃒⃒⃒⃒2
+ . . .+

⃒⃒⃒⃒
𝑢𝑛

𝑣1 + 𝑖𝑣2

⃒⃒⃒⃒2
<

1

2

(︃
1 +

⃒⃒⃒⃒
𝑣1 − 𝑖𝑣2
𝑣1 + 𝑖𝑣2

⃒⃒⃒⃒2)︃
. (2.10)

The third condition (2.8) means that ⃒⃒⃒⃒
𝑣1 − 𝑖𝑣2
𝑣1 + 𝑖𝑣2

⃒⃒⃒⃒
< 1.

Hence, we let

𝑧𝑘 =
𝑢𝑘

𝑣1 + 𝑖𝑣2
, 𝑘 = 1, . . . , 𝑛,

and then the set defined in (2.10) becomes a bounded domain

|𝑧1|2 + . . .+ |𝑧𝑛|2 <
1

2

(︀
1 +

⃒⃒
𝑧21 + . . .+ 𝑧2𝑛

⃒⃒)︀
< 1. (2.11)

and our group of linear transformations becomes a (𝑛+1)(𝑛+2)
2

-parametric group of linear frac-
tional transformations of this domain onto itself. It can be proved that this group of mappings
is transitive in the considered domain. Finally, if we put 𝐺 = 𝐻, then we get the map 𝑧 → −𝑧,
so that (2.11) is the symmetric domain.

The inequality (2.11) can be written as

ℜ𝑛
𝐼𝑉 =

{︀
𝑧 ∈ C𝑛 : |⟨𝑧, 𝑧⟩|2 − 2|𝑧|2 + 1 > 0, |⟨𝑧, 𝑧⟩| < 1

}︀
.
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We let
𝑢𝑘 = (𝑣2 + 𝑢𝑛)𝑤𝑘, 𝑘 = 1, . . . , 𝑛− 1, 𝑣1 = (𝑣2 + 𝑢𝑛)𝑤𝑛,

then,

−2𝑖𝑧𝑘
𝑛−1∑︀
𝑘=1

𝑧2𝑘 + (𝑧𝑛 − 𝑖)2
=

−2𝑖𝑢𝑘

𝑣1+𝑖𝑣2
𝑛−1∑︀
𝑘=1

(︁
𝑢𝑘

𝑣1+𝑖𝑣2

)︁2
+
(︁

𝑢𝑛

𝑣1+𝑖𝑣2

)︁2
− 2𝑖𝑢𝑛

𝑣1+𝑖𝑣2
− 1

=

−2𝑖𝑢𝑘

𝑣1+𝑖𝑣2
𝑛∑︀

𝑘=1
𝑢2
𝑘

(𝑣1+𝑖𝑣2)
2 − 2𝑖𝑢𝑛

(𝑣1+𝑖𝑣2)
− 1

=
−2𝑖𝑢𝑘

𝑣1 − 𝑖𝑣2 − 2𝑖𝑢𝑛 − 𝑣1 − 𝑖𝑣2

=
𝑢𝑘

𝑣2 + 𝑢𝑛

= 𝑤𝑘, 𝑘 = 1, . . . , (𝑛− 1),

and

2 (𝑧𝑛 − 𝑖)
𝑛−1∑︀
𝑘=1

𝑧2𝑘 + (𝑧𝑛 − 𝑖)2
− 𝑖 =

2
(︁

𝑢𝑛

𝑣1+𝑖𝑣2
− 𝑖
)︁

𝑛−1∑︀
𝑘=1

(︁
𝑢𝑘

𝑣1+𝑖𝑣2

)︁2
+
(︁

𝑢𝑛

𝑣1+𝑖𝑣2

)︁2
− 2𝑖𝑢𝑛

𝑣1+𝑖𝑣2
− 1

− 𝑖

=
2
(︁

𝑢𝑛

𝑣1+𝑖𝑣2
− 𝑖
)︁

𝑛∑︀
𝑘=1

𝑢2
𝑘

(𝑣1+𝑖𝑣2)
2 − 2𝑖𝑢𝑛

(𝑣1+𝑖𝑣2)
− 1

− 𝑖

=
2𝑢𝑛 − 2𝑖𝑣1 + 2𝑣2

𝑣1 − 𝑖𝑣2 − 2𝑖𝑢𝑛 − 𝑣1 − 𝑖𝑣2
− 𝑖

=?
𝑣1

𝑣2 + 𝑢𝑛

= 𝑤𝑛,

i.e.,

𝑤𝑘 =
−2𝑖𝑧𝑘

𝑛−1∑︀
𝑘=1

𝑧2𝑘 + (𝑧𝑛 − 𝑖)2
, 𝑘 = 1, . . . , 𝑛− 1, 𝑤𝑛 =

2 (𝑧𝑛 − 𝑖)
𝑛−1∑︀
𝑘=1

𝑧2𝑘 + (𝑧𝑛 − 𝑖)2
− 𝑖.

On the other hand,

(𝑤1 − �̄�1)
2 + . . .+ (𝑤𝑛−1 − �̄�𝑛−1)

2 − (𝑤𝑛 − �̄�𝑛)
2 =

− |𝑢1|2 − . . .− |𝑢𝑛|2 + |𝑣1|2 + |𝑣2|2

|𝑣2 + 𝑢𝑛|2
.

Then, according inequality (2.6), relation (2.1) becomes

(Im𝑤𝑛)
2 − (Im𝑤1)

2 − . . . − (Im𝑤𝑛−1)
2 > 0. (2.12)

Domain (2.12) consists of two connected pieces which analytically equivalent each to other.
In one piece the inequality Im𝑤𝑛 > 0 holds, while in the other the opposite inequality Im𝑤𝑛 < 0
is satisfied. The domain 𝜏+ (𝑛− 1) coincides with one of them. This means that Φ maps ℜ𝑛

𝐼𝑉

onto 𝜏+ (𝑛− 1) . The map Φ is holomorphic because
𝑛−1∑︀
𝑘=1

𝑧2𝑘+(𝑧𝑛 − 𝑖)2 ̸= 0.

Now we are going to find 𝑧1, . . . , 𝑧𝑛. We have the following identities:

−2𝑖𝑤𝑘

𝑛−1∑︀
𝑘=1

𝑤2
𝑘 − (𝑤𝑛 + 𝑖)2

=
−2𝑖𝑤𝑘

𝑤2
1 + . . .+ 𝑤2

𝑛−1 − 𝑤2
𝑛 − 2𝑖𝑤𝑛 + 1

=
−2𝑖 · 𝑢𝑘

𝑣2+𝑢𝑛

𝑣2−𝑢𝑛

𝑣2+𝑢𝑛
− 2𝑖 𝑣1

𝑣2+𝑢𝑛
+ 1
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=
−2𝑖𝑢𝑘

𝑣2 − 𝑢𝑛 − 2𝑖𝑣1 + 𝑣2 + 𝑢𝑛

=
−2𝑖𝑢𝑘

2𝑣2 − 2𝑖𝑣1

=
𝑢𝑘

𝑣1 + 𝑖𝑣2
= 𝑧𝑘, 𝑘 = 1, . . . , (𝑛− 1),

and

−2 (𝑤𝑛 + 𝑖)
𝑛−1∑︀
𝑘=1

𝑤2
𝑘 − (𝑤𝑛 + 𝑖)2

=
−2 ·

(︁
𝑣1

𝑣2+𝑢𝑛
+ 𝑖
)︁

𝑣2−𝑢𝑛

𝑣2+𝑢𝑛
− 2𝑖 𝑣1

𝑣2+𝑢𝑛
+ 1

=
−2𝑣1 − 2𝑖𝑣2 − 2𝑖𝑢𝑛

𝑣2 − 𝑢𝑛 − 2𝑖𝑣1 + 𝑣2 + 𝑢𝑛

=
−2𝑣1 − 2𝑖𝑢2 − 2𝑖𝑢𝑛

2𝑣2 − 2𝑖𝑣1
=

𝑢𝑛 − 𝑖𝑣1 + 𝑣2
𝑣1 + 𝑖𝑣2

=
𝑢𝑛

𝑣1 + 𝑖𝑣2
− 𝑖 = 𝑧𝑛 − 𝑖.

Then by (2.3) we can find the inverse map Ψ = Φ−1 : C𝑛
𝑤 → C𝑛

𝑧 , which is defined as

𝑧𝑘 =
−2𝑖𝑤𝑘

𝑛−1∑︀
𝑘=1

𝑤2
𝑘 − (𝑤𝑛 + 𝑖)2

, 𝑘 = 1, . . . , (𝑛− 1) , 𝑧𝑛 = 𝑖− 2 (𝑤𝑛 + 𝑖)
𝑛−1∑︀
𝑘=1

𝑤2
𝑘 − (𝑤𝑛 + 𝑖)2

. (2.13)

By the inequality

𝑤2
1 + . . .+ 𝑤2

𝑛−1 − 𝑤2
𝑛 − 2𝑖𝑤𝑛 + 1 ̸= 0,

the map Φ−1 is holomorphic in 𝜏+(𝑛− 1). In the same way we prove that Φ−1 maps holomor-
phically 𝜏+(𝑛− 1) into ℜ𝑛

𝐼𝑉 . Thus, Φ maps biholomorphically the domain ℜ𝑛
𝐼𝑉 onto 𝜏+(𝑛− 1).

Now for the points 𝑧1, . . . , 𝑧𝑛 ∈ Γℜ𝑛
𝐼𝑉

we calculate:

⟨𝑧, 𝑧⟩ = −𝑊 − 4𝑖𝑤𝑛

𝑊

and

|𝑧|2 =
4
𝑛−1∑︀
𝑘=1

|𝑤𝑘|2 + |𝑖𝑊 − 2 (𝑤𝑛 + 𝑖)|2

|𝑊 |2
, (2.14)

where 𝑊 =
𝑛−1∑︀
𝑘=1

𝑤2
𝑘 − (𝑤𝑛 + 𝑖)2. In addition, the complex numbers 𝑤1, 𝑤2, . . . , 𝑤𝑛 satisfy the

conditions

|⟨𝑧, 𝑧⟩| = 1, |𝑧| = 1

if and only if

Im𝑤1 = . . . = Im𝑤𝑛 = 0.

This means that the map Φ biholomorphically converts Γℜ𝑛
𝐼𝑉

to Γ+
𝜏 (𝑛).

Thus, Φ maps biholomorphically the domain ℜ𝑛
𝐼𝑉

onto 𝜏+ (𝑛− 1), and it is clear that it
transforms Γℜ𝑛

𝐼𝑉
into Γ+

𝜏 (𝑛).

It is known that each biholomorphic map Φ : 𝐷 → 𝐺 establishes a group isomorphism of
Aut𝐷 and Aut𝐺 by the formulã︀Φ : 𝜙 → Φ ∘ 𝜙 ∘ Φ−1, 𝜙 ∈ Aut𝐷, (2.15)

i.e., the isomorphism of the groups Aut𝐷 and Aut𝐺 is necessary for the holomorphic equiva-
lence of the domains 𝐷 and 𝐺 (but not enough), see [8].
Thus, using Theorem 2.1 and the formula (2.15), we obtain a transitive group of holomorphic

automorphisms of the domain 𝜏+ (𝑛− 1). We recall that the group automorphisms of a domain
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are called transitive if there exists an automorphism transferring each point 𝑎 of a domain to
any other point of this domain.

We know that [3] the automorphism Φ𝑎 of a Lie ball ℜ𝑛
𝐼𝑉 transfering the point

𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) into 0 = (0, . . . , 0) can be found explicitly:

Φ𝑎(𝑧) =

(︂(︂(︂
1

2
(⟨𝑧, 𝑧⟩+ 1),

𝑖

2
(⟨𝑧, 𝑧⟩ − 1)

)︂
𝐴′ − 𝑧𝑋 ′

0𝐴
′
)︂(︂

1
𝑖

)︂)︂−1

·
(︂
𝑧𝑄′ −

(︂
1

2
(⟨𝑧, 𝑧⟩+ 1),

𝑖

2
(⟨𝑧, 𝑧⟩ − 1)

)︂
𝑋0𝑄

′
)︂
,

where

𝐴 =
1

2
(1 + |⟨𝑎, 𝑎⟩|2 − 2|𝑎|2)−

1
2

(︂
−𝑖(⟨𝑎, 𝑎⟩ − ⟨𝑎, 𝑎⟩) ⟨𝑎, 𝑎⟩+ ⟨𝑎, 𝑎⟩ − 2

⟨𝑎, 𝑎⟩+ ⟨𝑎, 𝑎⟩+ 2 𝑖(⟨𝑎, 𝑎⟩ − ⟨𝑎, 𝑎⟩)

)︂
,

𝑋0 =
1

1− |⟨𝑎, 𝑎⟩|2

(︂
𝑎+ �̄�− (⟨𝑎, 𝑎⟩ · 𝑎+ ⟨𝑎, 𝑎⟩ · �̄�))

𝑖(𝑎− �̄�) + 𝑖(⟨𝑎, 𝑎⟩ · 𝑎− ⟨𝑎, 𝑎⟩ · �̄�)

)︂
,

and the nondegenerate matrix 𝑄 is chosen as

𝑄(𝐼(𝑛) −𝑋 ′
0𝑋0)𝑄

′ = 𝐼(𝑛). (2.16)

Using the transformation (2.3) and the automorphism Φ𝑎 of the Lie ball ℜ𝑛
𝐼𝑉 transferring the

point 𝑎 to (0, 0, . . . , 0), we define the following map:

Ψ𝑏 = Φ ∘ Φ𝑎 ∘ Φ−1,where 𝑏 = Φ(𝑎). (2.17)

It is clear that Ψ𝑏 is an automorphism of the domain 𝜏+ (𝑛− 1) transferring the point
𝑏 ∈ 𝜏+ (𝑛− 1) into the point i = (0, 0, . . . , 𝑖).

In this way, using map (2.3), we can find the group of automorphisms of the domain
𝜏+ (𝑛− 1).

Under the map Φ, the generalized unitary transformation of the Lie ball ℜ𝑛
𝐼𝑉

transferring the
point (0, 0, . . . , 0) onto itself becomes the transformation of the domain 𝜏+ (𝑛− 1) preserving
the point i = (0, 0, . . . , 𝑖).

3. Boundary Morera theorem for the future tube

Let Φ be the Cayley transform (2.3) that maps the points of the Lie ball ℜ𝑛
𝐼𝑉 to the points

in the future tube 𝜏+ (𝑛− 1). We consider the following embedding of the circle Δ = {|𝑡| < 1}
into the future tube 𝜏+ (𝑛− 1):{︀

𝜁𝑡 ∈ C𝑛 : 𝜁𝑡 = Φ
(︀
𝑡Φ−1 (𝜆)

)︀
, 𝑡 ∈ Δ

}︀
, (3.1)

where 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛) ∈ Γ𝜏+(𝑛−1). If Ψ is an automorphism of the domain 𝜏+ (𝑛− 1),
then this automorphism maps set (3.1) into some analytic disk with boundaries on Γ𝜏+(𝑛−1).

We denote 𝑇 = {𝑡 ∈ C : |𝑡| = 1} and we define the Hardy space𝐻𝑝 (𝜏+ (𝑛− 1)), 0 < 𝑝 < +∞
on the domain 𝜏+ (𝑛− 1) as a space of holomorphic functions 𝐹 in 𝜏+ (𝑛− 1) with a finite norm

‖𝑓‖𝐻𝑝 = sup
0<𝑟<1

⎛⎜⎝ ∫︁
Γ𝜏+(𝑛−1)

|𝑓 (𝑟𝑧)|𝑝𝑑𝜂

⎞⎟⎠
1
𝑝

,

where 𝜂 is the Lebesgue measure on the skeleton of Γ𝜏+(𝑛−1). The corresponding spaces
𝐻∞ (𝜏+ (𝑛− 1)) are defined as functions with a finite norm defined by

‖𝑓‖𝐻∞ = sup
𝑧∈𝜏+(𝑛−1)

|𝑓 (𝑧)| .
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Theorem 3.1. Let 𝑓 be a continuous bounded function on Γ𝜏+(𝑛−1). If the function 𝑓 satis-
fies the condition ∫︁

𝑇

𝑓 (Ψ (𝜁𝑡)) 𝑑𝑡 = 0, (3.2)

for all automorphisms Ψ ∈ Aut (𝜏+ (𝑛− 1)) and for a fixed 𝜆0 ∈ Γ𝜏+(𝑛−1), then the function 𝑓
can be continued holomorphically on 𝜏+ (𝑛− 1) to a function 𝐹 in the class 𝐻∞ (𝜏+ (𝑛− 1))
and 𝐹 is continuous up to Γ𝜏+(𝑛−1).

Proof. Without loss of generality, we can assume that condition (3.2) is satisfied for arbitrary
𝜆 ∈ Γ𝜏+(𝑛−1). In condition (3.2), we substitute an automorphism

Ψ = Φ ∘ Φ−1
𝑎 ∘ Φ−1

instead of Ψ and we get: ∫︁
𝑇

𝑓(Φ ∘ Φ−1
𝑎 ∘ Φ−1(𝜁𝑡))𝑑𝑡 = 0. (3.3)

Since 𝜁𝑡 = Φ(𝑡Φ−1 (𝜆)) and denoting Θ = Φ−1(𝜆), we rewrite condition (3.3) in the form∫︁
𝑇

𝑓(Φ ∘ Φ−1
𝑎 (Θ𝑡))𝑑𝑡 = 0. (3.4)

Let us consider in more detail the Shilov boundary (skeleton) Γℜ𝑛
𝐼𝑉

for the domain ℜ𝑛
𝐼𝑉 . Put

𝑧 = 𝑥 + 𝑖𝑦, where 𝑥 and 𝑦 are real vectors. The intersection of Γℜ𝑛
𝐼𝑉

with the complex sphere
𝑆𝑛 = {𝑧 ∈ C𝑛 : ⟨𝑧, 𝑧⟩ = 1} reads as{︀

|𝑥|2 = |𝑦|2 + 1, ⟨𝑥, 𝑦⟩ = 0, |𝑥|2 + |𝑦|2 = 1
}︀
,

hence 𝑦 = 0 and 𝑆𝑛 intersects Γℜ𝑛
𝐼𝑉

along the 𝑛-dimensional real sphere
{︀
𝑥 ∈ R𝑛 : |𝑥|2 = 1

}︀
.

Thats why the skeleton Γℜ𝑛
𝐼𝑉

can be written as

Γℜ𝑛
𝐼𝑉

=
{︀
𝑧 = 𝑒𝑖𝜙𝑥 : |𝑥|2 = 1, 0 6 𝜙 6 2𝜋

}︀
.

It means that the skeleton Γℜ𝑛
𝐼𝑉

has real dimension 𝑛. Then we can consider the following
parameterization of the core of the Lie ball:

𝜉 = Θ𝑡, 𝑡 = 𝑒𝑖𝜙, 0 6 𝜙 6 2𝜋, Θ ∈ 𝑆𝑛,

where 𝑆𝑛 is the real unit sphere and the normalized Lebesgue measure of the skeleton of the
Lie ball Γℜ𝑛

𝐼𝑉
can be represented as

𝑑𝜎 =
𝑑𝜙

2𝜋
∧ 𝑑𝜎1 (Θ) =

1

2𝜋𝑖

𝑑𝑡

𝑡
∧ 𝑑𝜎1 (Θ) ,

where 𝑡 = 𝑒𝑖𝜙 and 𝑑𝜎1 is a positive measure on 𝑆𝑛. Using this representation, we multiply the
identity in condition (3.4) by 𝑑𝜎1(Θ) and integrate over the skeleton of Γℜ𝑛

𝐼𝑉
:∫︁

Γℜ𝑛
𝐼𝑉

𝑓(Φ ∘ Φ−1
𝑎 (𝜉))𝜉𝑘𝑑𝜎(𝜉) = 0, (3.5)

where 𝜉𝑘, 𝑘 = 1, 2, . . ., are the coordinates of the vector 𝜉 ∈ Γℜ𝑛
𝐼𝑉
. After changing the variables

𝜔 = Φ−1
𝑎 (𝜉), identity (3.5) casts into the form:∫︁

Γℜ𝑛
𝐼𝑉

𝑓(Φ(𝜔))Φ𝑘
𝑎(𝜔)𝑑𝜎 (Φ𝑎(𝜔)) = 0, (3.6)
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where Φ𝑘
𝑎 is the 𝑘th component of the automorphism Φ𝑎. By virtue of [13], we have that

𝑑𝜎 (Φ𝑎 (𝜔)) = 𝑃ℜ𝑛
𝐼𝑉

(𝜔, 𝑎) 𝑑𝜎 (𝜔) ,

here 𝑃ℜ𝑛
𝐼𝑉
(𝜔, 𝑎) is the Poisson kernel in ℜ𝑛

𝐼𝑉 . Hence,∫︁
Γℜ𝑛

𝐼𝑉

𝑓(Φ(𝜔))Φ𝑘
𝑎(𝜔)𝑃ℜ𝑛

𝐼𝑉
(𝜔, 𝑎)𝑑𝜎(𝜔) = 0, (3.7)

for all points 𝑎 ∈ ℜ𝑛
𝐼𝑉 and for all 𝑘.

Now in this integral, using the mapping (2.3), we make the replacement 𝑢 = Φ(𝜔):

Φ𝑘
𝑎 (𝜔) = Φ𝑘

𝑎 ∘ Φ−1 (𝑢) = Ψ𝑘
𝑏 (𝑢) ,

where Ψ𝑘
𝑏 (𝑢) is the 𝑘th component of the map Ψ𝑏 = Φ𝑎 ∘ Φ−1. Due to [30] we can write the

automorphism Φ𝑎 in the following form:

Φ𝑎(𝜔) =
(1 + |(𝑎, 𝑎)|2 − 2|𝑎|2)

1
2

1 + (𝜔, 𝜔)(𝑎, 𝑎)− 2(𝜔, �̄�)

(︂
𝜔 − 𝑎+

(𝑎, 𝑎)− (𝜔, 𝜔)

1− |(𝑎, 𝑎)|2
(�̄�− 𝑎 · (𝑎, 𝑎))

)︂
𝑄′.

Since the nondegenerate matrix 𝑄 depends only on 𝑎, the condition (3.7) also holds for the
map

Φ𝑎 (𝜔) =
1

1 + (𝜔, 𝜔)(𝑎, 𝑎)− 2 (𝜔, 𝑎)

(︂
𝜔 − 𝑎+

(𝑎, 𝑎)− (𝜔, 𝜔)

1− |(𝑎, 𝑎)|2
(︁
𝑎− 𝑎(𝑎, 𝑎)

)︁)︂
.

Then, the relation (2.13) for Ψ𝑘
𝑏 (𝑢) is of the form:

Ψ𝑘
𝑏 (𝑢) =

𝑈𝐵

2𝑈 + 2𝐵 + 8𝑢𝑛𝑏𝑛 − 8
𝑛−1∑︀
𝑘=1

𝑢𝑘𝑏𝑘 + 𝑖
(︀
4𝑢𝑛 − 4𝑏𝑛

)︀
+ 2

·

(︃
−2𝑖𝑢𝑘

𝑈
− −2𝑖𝑏𝑘

𝐵
+

((4𝑖𝑢𝑛 + 𝑈)𝐵 − (4𝑖𝑏𝑛 +𝐵)𝑈)𝐵

𝑈
(︀
4𝑖𝑏𝑛𝐵 − 4𝑖𝑏𝑛𝐵 − 16|𝑏𝑛|2

)︀ (︂
2𝑖𝑏𝑘

𝐵
+

2𝑖𝑏𝑘
𝐵

· 4𝑖𝑏𝑛 +𝐵

𝐵

)︂)︃
,

where 𝑘 = 1, . . . , (𝑛− 1) , and

Ψ𝑛
𝑏 (𝑢) =

𝑈𝐵

2𝑈 + 2𝐵 + 8𝑢𝑛𝑏𝑛 − 8
𝑛−1∑︀
𝑘=1

𝑢𝑘𝑏𝑘 + 𝑖
(︀
4𝑢𝑛 − 4𝑏𝑛

)︀
+ 2

·

(︃
− 2 (𝑢𝑛 + 𝑖)

𝑈
+

2 (𝑏𝑛 + 𝑖)

𝐵
+

((4𝑖𝑢𝑛 + 𝑈)𝐵 − (4𝑖𝑏𝑛 +𝐵)𝑈)𝐵

𝑈
(︀
4𝑖𝑏𝑛𝐵 − 4𝑖𝑏𝑛𝐵 − 16|𝑏𝑛|2

)︀
·

(︃
−𝑖−

2
(︀
𝑏𝑛 − 𝑖

)︀
𝐵

+

(︂
𝑖− 2 (𝑏𝑛 + 𝑖)

𝐵

)︂
· 4𝑖𝑏𝑛 +𝐵

𝐵

)︃)︃
,

where

𝐵 =
𝑛−1∑︁
𝑘=1

𝑏2𝑘 − (𝑏𝑛 + 𝑖)2, 𝑈 =
𝑛−1∑︁
𝑘=1

𝑢2
𝑘 − (𝑢𝑛 + 𝑖)2.

By the Lemma 3.4 in [13] we have:

𝑃ℜ𝑛
𝐼𝑉

(︀
Φ−1 (𝑢) , Φ−1 (𝑏)

)︀
𝑑𝜎
(︀
Φ−1 (𝑢)

)︀
= 𝑃𝜏+(𝑛−1) (𝑢, 𝑏) 𝑑𝜂 (𝑢) ,

here the Poisson kernel 𝑃𝜏+(𝑛−1) (𝑢, 𝑏) for the domain 𝜏+ (𝑛− 1) has the following form [6]:

𝑃𝜏+(𝑛−1) (𝑢, 𝑏) =
[(𝑦2)]

𝑛
2⃒⃒

(𝑥+ 𝑖𝑦 − 𝑢)2
⃒⃒𝑛 ,
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where

𝑦2 = 𝑦2𝑛 − (𝑦′)
2
= 𝑦2𝑛 −

(︀
𝑦21 + 𝑦22 + . . . + 𝑦2𝑛−1

)︀
, 𝑥+ 𝑖𝑦 = 𝑏 ∈ 𝜏+ (𝑛− 1) , 𝑢 ∈ Γ𝜏+(𝑛−1).

Then, in condition (3.7), the integration set becomes Γ𝜏+(𝑛−1) and we obtain the condition∫︁
Γ𝜏+(𝑛−1)

𝑓(𝑢)Ψ𝑘
𝑏 (𝑢)𝑃𝜏+(𝑛−1)(𝑢, 𝑏)𝑑𝜂(𝑢) = 0, (3.8)

for all points 𝑏 ∈ 𝜏+ (𝑛− 1) and for all 𝑘 = 1, . . . , 𝑛.
We introduce the following notation:

𝐹 (𝑏) =

∫︁
Γ𝜏+(𝑛−1)

𝑓(𝑢)𝑃𝜏+(𝑛−1)(𝑢, 𝑏)𝑑𝜂(𝑢).

According Proposition 2.5 in [13], the Poisson integral 𝐹 (𝑏) is well-defined and it is a real
analytic function in 𝜏+(𝑛− 1) continuous up to Γ𝜏+(𝑛−1) and equal to 𝑓 on Γ𝜏+(𝑛−1). We need
to show that 𝐹 is a holomorphic function once 𝑓 satisfies the assumptions of Theorem 3.1. In
order to do this, we consider a differential operator of Euler type of the following form:

𝜕 =
𝑛−1∑︁
𝑘=1

2𝑖𝑏𝑘
𝜕

𝜕𝑏𝑘
−
(︀
𝑖𝐵 + 2(𝑏𝑛 − 𝑖)

)︀ 𝜕

𝜕𝑏𝑛
.

We denote

Δ (𝑦) := 𝑦2𝑛 − (𝑦′)
2
= 𝑦2𝑛 −

(︀
𝑦22 + 𝑦23 + . . . + 𝑦2𝑛−1

)︀
,

then the Poisson kernel 𝑃𝜏+(𝑛−1)(𝑢, 𝑏) can be written as

𝑃𝜏+(𝑛−1) (𝑢, 𝑏) =
Δ

𝑛
2

(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀
|Δ(𝑏− 𝑢)|𝑛

, 𝑏 ∈ 𝜏+ (𝑛− 1) , 𝑢 ∈ Γ𝜏+(𝑛−1).

Then the partial derivatives 𝑃𝜏+(𝑛−1) (𝑢, 𝑏) cast into the form:

𝜕𝑃𝜏+(𝑛−1) (𝑢, 𝑏)

𝜕𝑏𝑘
=

1

Δ
𝑛
2 (𝑏− 𝑢)

𝜕

𝜕𝑏𝑘

(︃
Δ

𝑛
2

(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀
Δ

𝑛
2

(︀
𝑏− 𝑢

)︀ )︃

=
1

Δ
𝑛
2 (𝑏− 𝑢)

(︃
𝑛Δ

𝑛
2
−1
(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀
2
(︀
𝑏𝑘 − 𝑏𝑘

)︀
2Δ

𝑛
2

(︀
𝑏− 𝑢

)︀ +
𝑛

2

Δ
𝑛
2

(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀
2
(︀
𝑏𝑘 − 𝑢𝑘

)︀
Δ

𝑛
2
+1
(︀
𝑏− 𝑢

)︀ )︃

=𝑛

(︃ (︀
𝑏𝑘 − 𝑏𝑘

)︀
Δ
(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀ + (︀
𝑏𝑘 − 𝑢𝑘

)︀
Δ
(︀
𝑏− 𝑢

)︀)︃ Δ
𝑛
2

(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀
|Δ𝑛 (𝑏− 𝑢)|

=𝑛

(︃ (︀
𝑏𝑘 − 𝑏𝑘

)︀
Δ
(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀ + (︀
𝑏𝑘 − 𝑢𝑘

)︀
Δ
(︀
𝑏− 𝑢

)︀)︃ 𝑃𝜏+(𝑛−1) (𝑢, 𝑏)

=𝑛

⎛⎜⎜⎜⎝
(︀
𝑏𝑘 − 𝑏𝑘

)︀(︂
𝑛−1∑︀
𝑘=1

(︀
𝑏𝑘 − 𝑏𝑘

)︀2 − (︀𝑏𝑛 − 𝑏𝑛
)︀2)︂𝑛

2

+

(︀
𝑏𝑘 − 𝑢𝑘

)︀⃒⃒⃒⃒
(𝑏𝑛 − 𝑢𝑛)

2 −
𝑛−1∑︀
𝑘=1

(𝑏𝑘 − 𝑢𝑘)
2

⃒⃒⃒⃒𝑛
⎞⎟⎟⎟⎠ 𝑃𝜏+(𝑛−1) (𝑢, 𝑏) ,
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for all 𝑘 = 1, 2, . . . , 𝑛− 1, and

𝜕𝑃𝜏+(𝑛−1) (𝑢, 𝑏)

𝜕𝑏𝑛
=

1

Δ
𝑛
2 (𝑏− 𝑢)

𝜕

𝜕𝑏𝑛

(︃
Δ

𝑛
2

(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀
Δ

𝑛
2

(︀
𝑏− 𝑢

)︀ )︃

=
1

Δ
𝑛
2 (𝑏− 𝑢)

(︃
−
𝑛Δ

𝑛
2
−1
(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀ (︀
𝑏𝑛 − 𝑏𝑛

)︀
Δ

𝑛
2

(︀
𝑏− 𝑢

)︀ −
𝑛Δ

𝑛
2

(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀ (︀
𝑏𝑛 − 𝑢𝑛

)︀
Δ

𝑛
2
+1
(︀
𝑏− 𝑢

)︀ )︃

=− 𝑛

(︃(︀
𝑏𝑛 − 𝑢𝑛

)︀
Δ
(︀
𝑏− 𝑢

)︀ + (︀
𝑏𝑛 − 𝑏𝑛

)︀
Δ
(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀)︃ Δ
𝑛
2

(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀
|Δ𝑛 (𝑏− 𝑢)|

=− 𝑛

(︃ (︀
𝑏𝑛 − 𝑏𝑛

)︀
Δ
(︀
𝑖
(︀
�̄�− 𝑏

)︀)︀ + (︀𝑏𝑛 − 𝑢𝑛

)︀
Δ
(︀
𝑏− 𝑢

)︀)︃ 𝑃𝜏+(𝑛−1) (𝑢, 𝑏)

=− 𝑛

⎛⎜⎜⎜⎝
(︀
𝑏𝑛 − 𝑏𝑛

)︀(︂
𝑛−1∑︀
𝑘=1

(︀
𝑏𝑘 − 𝑏𝑘

)︀2 − (︀𝑏𝑛 − 𝑏𝑛
)︀2)︂𝑛

2

+

(︀
𝑏𝑛 − 𝑢𝑛

)︀⃒⃒⃒⃒
(𝑏𝑛 − 𝑢𝑛)

2 −
𝑛−1∑︀
𝑘=1

(𝑏𝑘 − 𝑢𝑘)
2

⃒⃒⃒⃒𝑛
⎞⎟⎟⎟⎠ 𝑃𝜏+(𝑛−1)(𝑢, 𝑏),

Hence, we have the following relation:

𝜕𝑃𝜏+(𝑛−1) (𝑢, 𝑏) =
𝑛−1∑︁
𝑘=1

2𝑖𝑏𝑘
𝜕𝑃𝜏+(𝑛−1) (𝑢, 𝑏)

𝜕𝑏𝑘
−
(︀
𝑖𝐵 + 2(𝑏𝑛 − 𝑖)

)︀ 𝜕𝑃𝜏+(𝑛−1) (𝑢, 𝑏)

𝜕𝑏𝑛

=𝑛𝑃𝜏+(𝑛−1) (𝑢, 𝑏)

⎛⎜⎜⎝4
𝑛−1∑︀
𝑘=1

|𝑏𝑘|2 + 2𝑖𝐵 (𝑏𝑛 + 𝑖)− 2𝑖𝐵
(︀
𝑏𝑛 − 𝑖

)︀
+ 4|𝑏𝑛 + 𝑖|2

−4𝑖𝑏𝑛𝐵 −
(︂
8
𝑛−1∑︀
𝑘=1

|𝑏𝑘|2 + 2|𝑖𝐵 − 2 (𝑏𝑛 + 𝑖)|2
)︂

−
−4

𝑛−1∑︀
𝑘=1

𝑢𝑘𝑏𝑘 + 𝑖
(︀
(2𝑢𝑛 + 𝑖)𝐵 − 𝑈

(︀
2𝑏𝑛 − 𝑖

)︀)︀
+ (2𝑢𝑛 + 𝑖)

(︀
2𝑏𝑛 − 𝑖

)︀
2𝑈 + 2𝐵 + 8𝑢𝑛𝑏𝑛 − 8

𝑛−1∑︀
𝑘=1

𝑢𝑘𝑏𝑘 + 𝑖
(︀
4𝑢𝑛 − 4𝑏𝑛

)︀
+ 2

⎞⎟⎟⎠ .

Moreover,
𝑛−1∑︁
𝑘=1

Ψ𝑘
𝑏 (𝑢)

2𝑖𝑏𝑘

𝐵
−Ψ𝑛

𝑏 (𝑢)

(︃
2
(︀
𝑏𝑛 − 𝑖

)︀
𝐵

+ 𝑖

)︃
=

𝑈𝐵

2𝑈 + 2𝐵 + 8𝑢𝑛𝑏𝑛 − 8
𝑛−1∑︀
𝑘=1

𝑢𝑘𝑏𝑘 + 𝑖
(︀
4𝑢𝑛 − 4𝑏𝑛

)︀
+ 2

·

(︃
−4

𝑛−1∑︁
𝑘=1

𝑢𝑘𝑏𝑘

𝑈𝐵
+ 1 + 𝑖

(︃
(2𝑢𝑛 + 𝑖)

𝑈
−
(︀
2𝑏𝑛 − 𝑖

)︀
𝐵

)︃
+

(2𝑢𝑛 + 𝑖)

𝑈

(︀
2𝑏𝑛 − 𝑖

)︀
𝐵

−
𝑛−1∑︁
𝑘=1

⃒⃒⃒⃒
−2𝑖𝑏𝑘
𝐵

⃒⃒⃒⃒2
−
⃒⃒⃒⃒
𝑖− 2 (𝑏𝑛 + 𝑖)

𝐵

⃒⃒⃒⃒2
+

[(4𝑖𝑢𝑛 + 𝑈)𝐵 − (4𝑖𝑏𝑛 +𝐵)𝑈 ]𝐵

𝑈
(︀
4𝑖𝑏𝑛𝐵 − 4𝑖𝑏𝑛𝐵 − 16|𝑏𝑛|2

)︀(︃
−4𝑖𝑏𝑛 +𝐵

𝐵

(︃
1−

𝑛−1∑︁
𝑘=1

⃒⃒⃒⃒
−2𝑖𝑏𝑘
𝐵

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝑖− 2 (𝑏𝑛 + 𝑖)

𝐵

⃒⃒⃒⃒2)︃)︃)︃
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=

⎛⎜⎜⎝4
𝑛−1∑︀
𝑘=1

|𝑏𝑘|2 + 2𝑖𝐵 (𝑏𝑛 + 𝑖)− 2𝑖𝐵
(︀
𝑏𝑛 − 𝑖

)︀
+ 4|𝑏𝑛 + 𝑖|2

−4𝑖𝑏𝑛𝐵 −
(︂
8
𝑛−1∑︀
𝑘=1

|𝑏𝑘|2 + 2|𝑖𝐵 − 2 (𝑏𝑛 + 𝑖)|2
)︂

−
−4

𝑛−1∑︀
𝑘=1

𝑢𝑘𝑏𝑘 + 𝑖
(︀
(2𝑢𝑛 + 𝑖)𝐵 − 𝑈

(︀
2𝑏𝑛 − 𝑖

)︀)︀
+ (2𝑢𝑛 + 𝑖)

(︀
2𝑏𝑛 − 𝑖

)︀
2𝑈 + 2𝐵 + 8𝑢𝑛𝑏𝑛 − 8

𝑛−1∑︀
𝑘=1

𝑢𝑘𝑏𝑘 + 𝑖
(︀
4𝑢𝑛 − 4𝑏𝑛

)︀
+ 2

⎞⎟⎟⎠𝐵.

Then

𝜕𝐹 =
𝑛−1∑︁
𝑘=1

2𝑖𝑏𝑘

∫︁
Γ𝜏+(𝑛−1)

𝑓(𝑢)
𝜕𝑃𝜏+(𝑛−1)(𝑢, 𝑏)

𝜕𝑏𝑘
𝑑𝜂(𝑢)

−
(︀
𝑖𝐵 + 2(𝑏𝑛 − 𝑖)

)︀ ∫︁
Γ𝜏+(𝑛−1)

𝑓(𝑢)
𝜕𝑃𝜏+(𝑛−1)(𝑢, 𝑏)

𝜕𝑏𝑛
𝑑𝜂(𝑢)

=

∫︁
Γ𝜏+(𝑛−1)

𝑓(𝑢)

(︃
𝑛−1∑︁
𝑘=1

2𝑖𝑏𝑘
𝜕𝑃𝜏+(𝑛−1)(𝑢, 𝑏)

𝜕𝑏𝑘
−
(︀
𝑖𝐵 + 2(𝑏𝑛 − 𝑖)

)︀ 𝜕𝑃𝜏+(𝑛−1)(𝑢, 𝑏)

𝜕𝑏𝑛

)︃
𝑑𝜂(𝑢)

=𝑛

∫︁
Γ𝜏+(𝑛−1)

𝑓(𝑢)

⎛⎜⎜⎝4
𝑛−1∑︀
𝑘=1

|𝑏𝑘|2 + 2𝑖𝐵 (𝑏𝑛 + 𝑖)− 2𝑖𝐵
(︀
𝑏𝑛 − 𝑖

)︀
+ 4|𝑏𝑛 + 𝑖|2

−4𝑖𝑏𝑛𝐵 −
(︂
8
𝑛−1∑︀
𝑘=1

|𝑏𝑘|2 + 2|𝑖𝐵 − 2 (𝑏𝑛 + 𝑖)|2
)︂

−
−4

𝑛−1∑︀
𝑘=1

𝑢𝑘𝑏𝑘 + 𝑖
(︀
(2𝑢𝑛 + 𝑖)𝐵 − 𝑈

(︀
2𝑏𝑛 − 𝑖

)︀)︀
+ (2𝑢𝑛 + 𝑖)

(︀
2𝑏𝑛 − 𝑖

)︀
2𝑈 + 2𝐵 + 8𝑢𝑛𝑏𝑛 − 8

𝑛−1∑︀
𝑘=1

𝑢𝑘𝑏𝑘 + 𝑖
(︀
4𝑢𝑛 − 4𝑏𝑛

)︀
+ 2

⎞⎟⎟⎠
· 𝑃𝜏+(𝑛−1) (𝑢, 𝑏) 𝑑𝜂(𝑢)

=
𝑛

|𝐵|2

⎛⎜⎝ ∫︁
Γ𝜏+(𝑛−1)

𝑓(𝑢)
𝑛−1∑︁
𝑘=1

Ψ𝑘
𝑏 (𝑢)2𝑖𝑏𝑘𝑃𝜏+(𝑛−1)(𝑢, 𝑏)𝑑𝜂(𝑢)

−
∫︁

Γ𝜏+(𝑛−1)

𝑓(𝑢)Ψ𝑛
𝑏 (𝑢)

(︀
𝑖�̄� + 2

(︀
𝑏𝑛 − 𝑖

)︀)︀
𝑃𝜏+(𝑛−1)(𝑢, 𝑏)𝑑𝜂(𝑢)

⎞⎟⎠ .

(3.9)

Now by (3.8) and (3.9) we obtain:

𝜕𝐹 = 0 (3.10)

for all points 𝑏 ∈ 𝜏+ (𝑛− 1). This yields that 𝐹 is holomorphic in 𝜏+ (𝑛− 1). Indeed, expanding
the function into a Taylor series in powers of (𝑏− i), where i = (0, 0, . . . , 𝑖) ∈ 𝜏+ (𝑛− 1), we
get:

𝐹 (𝑏) =
∑︁
‖𝛼‖>0
‖𝛽‖>0

𝑐𝛼,𝛽(𝑏− i)𝛼(𝑏− i)𝛽,
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where 𝛼 = (𝛼1, . . . , 𝛼𝑛), 𝛽 = (𝛽1, . . . , 𝛽𝑛) are multi-indexes and

𝑏𝛼 = 𝑏𝛼1
1 𝑏𝛼2

2 · · · 𝑏𝛼𝑛
𝑛 , ‖𝛼‖ = 𝛼1 + 𝛼2 + . . .+ 𝛼𝑛.

Then by (3.10) we obtain

𝜕𝐹 =
∑︁

‖𝛼‖,‖𝛽‖

‖𝛽‖ 𝑐𝛼,𝛽(𝑏− i)𝛼(𝑏− i)𝛽 = 0,

i.e., if ‖𝛽‖ > 0, then all the coefficients 𝑐𝛼,𝛽 are equal to zero. Consequently, the function 𝐹 is
holomorphic in 𝜏+ (𝑛− 1) and 𝐹 ∈ 𝐻∞(𝜏+ (𝑛− 1)).

The proof of this theorem shows that a more general theorem is also true.

Theorem 3.2. Let 𝑓 be a continuous bounded function on Γ𝜏+(𝑛−1). If condition (3.2) is sat-
isfied for the function 𝑓 for all automorphisms mapping the point i = (0, 0, . . . , 𝑖) into the points
from some open set 𝑉 ⊂ 𝜏+ (𝑛− 1). Then 𝑓 can be holomorphically continued in 𝜏+ (𝑛− 1) to
a function 𝐹 ∈ 𝐻∞(𝜏+ (𝑛− 1)) continuous up to Γ𝜏+(𝑛−1).

Let ΔΨ = {𝜁 : 𝜁 = Ψ(𝜉𝑡)} be an analytic disk, where 𝜉𝑡 is defined as in (3.1) and Ψ is an
automorphism of the domain 𝜏+(𝑛− 1).

Corollary 3.1. If a continuous and bounded in Γ𝜏+(𝑛−1) function 𝑓 can be holomorphically
continued into the analytic disks ΔΨ for all automorphisms Ψ mapping the point i = (0, 0, . . . , 𝑖)
into the points from some open set 𝑉 ⊂ 𝜏+ (𝑛− 1), then 𝑓 can be holomorphically continued
into 𝜏+ (𝑛− 1) to a function 𝐹 ∈ 𝐻∞(𝜏+ (𝑛− 1)) continuous up to Γ𝜏+(𝑛−1).

This Corollary 3.1 is an analogue Stout theorem [12] on functions with the one dimensional
property of holomorphic continuation but in our case it is formulated for the domain 𝜏+ (𝑛− 1).
The following corollary generalizes a similar Tumanov theorem [17] for a smooth function of

a given class of CR manifolds.

Corollary 3.2. If a continuous bounded function 𝑓 defined on Γ𝜏+(𝑛−1) can be holomorphi-
cally continued in 𝑡 into each analytic disk ΔΨ lying in 𝜏+(𝑛− 1) with a boundary on Γ𝜏+(𝑛−1),
then 𝑓 can be holomorphically continued into the domain 𝜏+(𝑛 − 1) and, therefore, is a CR
function on Γ𝜏+(𝑛−1).
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4. I.I. Pjateckǐi-Šapiro. Automorphic functions and the geometry of classical domains. Gordon and

Breach, New York (1969).

5. V.S. Vladimirov. Methods of the theory of functions of several complex variables. Nauka, Moscow

(1964). [M.I.T. Press, Cambridge (1966).]

6. V.S. Vladimirov. Generalized functions in mathematical physics. Nauka, (1979). [Mir, Moscow

(1979).]

7. V.S. Vladimirov, A.G.Sergeev. Complex analysis in the future tube // Itogi Nauki Tekh. Ser.

Sovrem. Probl. Mat. Fundam. Napravleniya. 8, 191–266 (1985). [Encycl. Math. Sci. 8, 179–253

(1994).]



THE BOUNDARY MORERA THEOREM FOR DOMAIN 𝜏+ (𝑛− 1) 209

8. B.V. Shabat. Introduction to Complex Analysis Part II: Functions of Several Variables. Nauka,

Moscow (1985). [Amer. Math. Soc., Providence, RI (1992).]

9. L.A. Aizenberg, A.P. Yuzhakov. Integral representations and residues in multidimensional com-

plex analysis Transl. Math. Monogr. 58. Amer. Math. Soc., Providence, RI (1983).

10. L.A. Aizenberg. Carleman Formulas in complex analysis. Nauka, Novosibirsk (1990).

11. A. Nagel and W. Rudin. Moebius-invariant function spaces on balls and spheres // Duke Math.

43:1 841–865 (1976).

12. E.L. Stout. The boundary values of holomorphic functions of several complex variables // Duke

Math. 44:1, 105–108 (1977).

13. A. Koranyi. The Poisson integral for generalized half-planes and bounded symmetric domaines //

Ann. Math. 82:2, 332–350 (1965).

14. J. Globevnik. A boundary Morera theorem // J. Geom. Anal. 3, 269–277 (1993).

15. J. Globevnik, E.L. Stout. Boundary Morera theorems for holomorphic functions of several com-

plex variables // Duke Math. 64:3. 571–615 (1991).

16. E. Grinberg. A boundary analogue of Morera’s theorem on the unit ball of C𝑛 // Proc. Amer.

Math. Soc. 102. 114–116 (1988).

17. A.E. Tumanov. Extension of CR functions into a wedge from a manifold of finite type // Matem.

Sborn. 136(178):1(5), 128–139 (1988). [Math. USSR Sb. 64:1, 129–140 (1989).]

18. M.L. Agranovskii, A.M. Semenov. Boundary analogs of the Hartogs theorems // Sibir. Matem.

Zhurn. 32:1, 168–170 (1991). [Siberian Math. J. 32:1, 137–139 (1991).]

19. M.L. Agranovskii, R.E. Val’skii. Maximality of invariant function algebras // Sibir. Matem.

Zhurn. 12:1, 3–12 (1971). [Siberian Math. J. 12:1, 1–7 (1971).]

20. M. Agranovsky, C.A. Berenstein, D.C. Chang. Morera theorems for holomorphic 𝐻𝑝 spaces in

the Heisenberg group // J. Reine Angew. Math. 443, 49–89 (1993).

21. B.T. Kurbanov. Morera theorem for certain unbounded domains // in Proceedings of Inter-

national Conference “Mathematical Models and Methods of Studying Them”. 2. Institute of

Computational Modeling, Krasnoyarsk, 49–51 (2001). (in Russian).

22. B.T. Kurbanov. Boundary Morera theorem for the generalized upper half-plane // in “Higher

dimensional complex analysis”, Krasnoyarsk State University, Krasnoyarsk, 68–78 (2002). (in

Russian).

23. A.M. Kytmanov, S.G. Myslivets. Multidimensional integral representations Springer, Cham

(2015).

24. A.M. Kytmanov, S.G. Myslivets. On a certain boundary analog of the Morera theorem // Sibir.

Matem. Zhurn. 36:6, 1350–1353 (1995). [Siberian Math. J. 36:6, 1171–1174 (1995).]

25. A.M. Kytmanov, S.G. Myslivets. On holomorphicity of functions represented by the logarithmic

residue formula // Sibir. Matem. Zhurn. 38:2, 351–361 (1997). [Siberian Math. J. 38:2, 302–311

(1997).]

26. S.G. Myslivets. On holomorpic continuation of functions along complex curves // Topics in

Complex Analysis, Differential Geometry and Mathematical Physics. Third Int. Workshop on

Complex Structures and Vector Fields. Varna, // World Scientific. 39–45 (1996).

27. A.M. Kytmanov, S.G. Myslivets. On holomorphic continuation of functions in Siegel domains //

J. Natural Geom. 17, 11–20 (2000).

28. S.G. Myslivets. Boundary Morera theorem on the Poincare sphere // in “Complex analysis and

differential operators”, Krasnoyarsk State University, Krasnoyarsk, 97–102 (2000).

29. A.M. Kytmanov, S.G. Myslivets. Higher-dimensional boundary analogs of the Morera theorem

in problems of analytic continuation of functions // J. Math. Sci. 120:6, 1842–1867 (2004).

30. S. Kosbergenov, A.M. Kytmanov, S.G. Myslivets. On the boundary Morera theorem for classical

domains // Sib. Matem. Zhurn. 40:3, 595–604 (1999). [Siber. Math. J. 40:3, 506–514 (1999).]

31. S. Kosbergenov. On the boundary Morera theorem for the ball and the polydisk // in “Complex

Analysis and Mathematical Physics”, Krasnoyarsk State University, Krasnoyarsk, 59–65 (1998).

(in Russian)



210 G. KHUDAYBERGANOV, J.Sh. ABDULLAYEV

32. S. Kosbergenov. On a multidimensional boundary Morera theorem for the matrix ball // Izv.

Vyssh. Uchebn. Zaved. Mat., 4, 28–32 (2001). [Russian Math. (Iz. VUZ). 45:4, 26–30 (2001).]

33. G. Khudayberganov, Z.K. Matyakubov. Boundary version of the Morera theorem for a matrix

ball of the second Type // J. Siber. Fed. Univ. Math. Phys. 7:4, 466–471 (2014). (in Russian).

34. G.Kh. Khudayberganov, B.P. Otemuratov, U.S. Rakhmonov. Boundary Morera theorem for the

matrix ball of the third type // J. Siber. Fed. Univ. Math. Phys. 11:1, 40–45 (2018). (in Russian).

35. I.Kh. Musin, P.V. Yakovleva. On a space of smooth functions on a convex unbounded set in R𝑛

admitting holomorphic extension in C𝑛 // Cent. Eur. J. Math. 10:2, 665–692 (2012).

36. I.Kh. Musin, P.V. Fedotova. On a class of infinitely differentiable functions on unbounded convex

set in R𝑛 admitting holomorphic continuation in C𝑛 // Ufimsk. Mat. Zhurn. 1:2, 75–100 (2009).

(in Russian).

37. B.P. Otemuratov. Analogs of Morera’s theorem for integrable functions in classical domains //

Uzbek. Matem. Zhurn. 3, 115–122 (2012).

38. B.P. Otemuratov, B. Kutlymuratov. Boundary theorem of Morera on the Poincare sphere for

integrable functions // Uzbek. Matem. Zhurn. 4. 185–190 (2010).

Gulmirza Khudayberganov,
National University of Uzbekistan named after M. Ulugbek,
Universitetskaya street, Vuzgorodok,
100174, Tashkent, Uzbekistan
E-mail: gkhudaiberg@mail.ru

Jonibek Shokirovich Abdullayev,
National University of Uzbekistan named after M. Ulugbek,
Universitetskaya street, Vuzgorodok, 100174
Tashkent, Uzbekistan
E-mail: jonibek-abdullayev@mail.ru


