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ON DISCRETIZATION OF DARBOUX INTEGRABLE SYSTEMS
ADMITTING SECOND-ORDER INTEGRALS

K. ZHELTUKHIN, N. ZHELTUKHINA

Abstract. We consider a discretization problem for hyperbolic Darboux integrable systems.
In particular, we discretize continuous systems admitting - and y-integrals of the first and
second order. Such continuous systems were classified by Zhyber and Kostrigina. In the
present paper, continuous systems are discretized with respect to one of continuous variables
and the resulting semi-discrete system is required to be also Darboux integrable.

To obtain such a discretization, we take z- or y-integrals of a given continuous system
and look for a semi-discrete systems admitting the chosen integrals as n-integrals. This
method was proposed by Habibullin. For all considered systems and corresponding sets of
integrals we were able to find such semi-discrete systems. In general, the obtained semi-
discrete systems are given in terms of solutions of some first order quasilinear differential
systems. For all such first order quasilinear differential systems we find implicit solutions.
New examples of semi-discrete Darboux integrable systems are obtained. Also for each of
considered continuous systems we determine a corresponding semi-discrete system that gives
the original system in the continuum limit.
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1. INTRODUCTION

In the present paper we study the problem of the discretization of integrable equations so
that the integrability property is preserved. In particular, we consider hyperbolic systems

p;y:fl('r7y7p7p$7py> /L’:]‘J""m7 (1'1)

where p = (p*, ..., p™), p. = (p,...,p") and p, = (p;, N 1
For such hyperbolic systems it is convenient to use Darboux integrability [I]. The above
system is said to be integrable if it admits m functionally independent non-trivial x-integrals

and m functionally independent non-trivial y-integrals. A function I(z,y, p, py, Dyy, - - -) is called
an z-integral of the system (1.1)) if

D, I(x,y,p, Dy, Pyys ---) =0 for all solutions of (1.1)), (1.2)

where D, is the total derivative with respect to x. One can define y-integrals in a similar way.
Darboux integrable systems are extensively studied, see [2]-[I1] and a review paper [12].

The extension of the notion of Darboux integrability to discrete and semi-discrete Darboux
integrable systems was developed by Habibullin and Pekcan [I3], see also [14]. In recent years
there is an interest in studying such systems, see [I5]-[25]. A semi-discrete system

qlim:fi(xanaQ7Q$aq1) Z':]_’“,7m7 (13)
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where ¢ = (¢*,...,¢™), ¢z = (¢},...,¢") and ¢; = (¢ (x,n +1),...,¢"(z,n + 1)), is called
Darboux integrable if it admits m functionally independent non-trivial z-integrals and m
functionally independent non-trivial n-integrals. A function J(z,n,q, gz, Gzs, - - -) is called an
n-integral of the system (1.3 if

DJ(xz,n,q, Gz, Quay - --) = J(T,1,4, @zy Quay - - -) for all solutions of (|1.3)), (1.4)

where D is the shift operator, that is Dqg = ¢;. Note that Dq. = qir1, K = 1,2,3,.... The
z-integrals I(x,n,q,qi,qs,...) for system are defined in the same way as for continuous
systems.

A hypothesis states that any continuous Darboux integrable system can be discretized with
respect to one of the independent variables such that the resulting semi-discrete system is
Darboux integrable and admits the set of x- or y-integrals of the original system as n—integrals
[26]. The results of our work support the above conjecture. We complete the discretization of
continuous Darboux integrable equations derived by Zhiber and Kostrigina in [§]. In their paper,
Zhiber and Kostrigina considered the classification problem for continuous Darboux integrable
systems with two integrals of the first order and two integrals of the second order. They found
all such systems together with their z- and y-integrals. Following [8], we have two types of
systems. The first system is

Uy Uy 1 o
Ugy = + + 3 Uz Vy,
U—+v u+v u-+a‘v

v —QQUmUy—i- ! + L UV
Y w4 a2y alu+v) u+av) Y

(1.5)

with « being a nonzero constant. We mention that in the case a = 1, system (|1.5)) was discretized
in [26]. For a # 1, it possesses y-integrals

1 11—« —a
11:(1+_>U( Ua ) _%( U ) | (1.6)
o u-+v U+ v

1
g = e (0t Duatav, (1.7)

Uy a(u+v)

and the z-integrals have the same form in u, u,, u,, and v,v,, v, variables.
The second system reads as

Vg Uy " 1 N 1
Uy = ULV,
Y uww+d w+d  aluv + c) Y

(1.8)
UV Uy o 1
Ugy = + + VUgVy,
uv + ¢ (uv—l—d uv+c)
where «, ¢ and d are nonzero constants. For &« = —1 it possesses y-integrals
I — (d—c)v*ui  cuyv, (1.9)
2(uv +d)?>  ww+d
and p
g, = ey (d=QJuite — cuv,. (1.10)

Uy c(uv + d)
where ¢ and d are non-zero constants and the z-integrals have the same form in u, u,, u,, and
V, Uy, Uy, variables.
For oo # —1 it possesses y-integrals

B 2, 8+1
L=tV P (1.11)
(wvo +d)#  (uv + d)Bs+!
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and
Ugy 20Uz + UV,
Jg=—""4+ — 1.12
3 . wo +d ( )
where d and f = —a # 1 are nonzero constants, and the z-integrals have the same form in

U, Uy, Uyy aNd U, Uy, vy, variables.

In order to discretize the systems and , we employ a method introduced
by Habibullin et. all [20], see also [24]-[26]. According to this approach, one takes the
x- or y-integrals of a system and looks for a semi-discrete system admitting such integrals as
n-integrals. In general, one gets a set of semi-discrete systems admitting these n-integrals. For
all sets of the y-integrals of systems and we obtain corresponding semi-discrete
systems. Note that initially we allow the parameters «, ¢ and d in integrals , and
(1.9)-(1.12) to depend on n. It turns out that only d may depend non-trivially on n in one case.
In all cases we are able to choose a semi-discrete system that gives the original system in the
continuum limit. Also in examples, where we can write a semi-discrete system explicitly, we
show that the system is Darboux integrable.

The following theorems are formulated for a hyperbolic type semi-discrete system

(1.13)

{ulx - f($7n7u7vvux7vx7u1avl)a

Vg = g(xv n,u,v, Ug, Ug, Uy, Ul)a
where variables u, v depend on a continuous variable x € R and a discrete variable n € Z.

Theorem 1.1. Let o # 1. System (1.13) admits n-integrals (1.6) and (1.7) if and only if it
15 of the form

Uy +v -
Uy = 1+ 1D? 1uaca
Uu v
. (1.14)
a+ 1Dy —vDy
Vig = Uy —|-D1Ux.
(e u+v

The function Dy is equal to 1 or given implicitly by H(n, Ky, L1) = 0, where, for each n, the
symbol H denotes an arbitrary smooth function and

an, DY — avDIT 4+ (1= DYy

K, = D 1) , (1.15)
_ o1 o1 _ - o
L, (m — DIt y)ePi (—1)*P" (an, D — avDI 4 (1= DY uy) (116)
Dy(Dy 1) (D™ — 1)t '
Let us construct some examples.
Example 1.1. In the case Dy = 1 system (1.14]) becomes
U + U1
Uy = + o Uy,
u
1\ vy — v (1.17)
Vg = (1+—> Uy + Vg
a) utv

This system is Darboux integrable. Indeed, it possesses two independent non-trivial n-integrals
(1.6), (1.7) and two independent non-trivial x-integrals

F1= i and Fo =

v — Vg (v — v)l%a

Uy —u

— a(v; —v)l%a. (1.18)

The x-integrals can be found by considering the x-ring corresponding to the system.
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Example 1.2. Letting K1 =0 and a = —1, we get

D, — Uy + U1.
Uy + v
Using (1.14)), we find the system
U + v
Uy = T Uy,
u
B (1.19)
Vig = V-
Uy + v

This system is Darbouz integrable. It possesses two independent non-trivial n-integrals (|1.6),
(1.7) and two independent non-trivial x-integrals

(UQ+U1)(U—U1) (u—ul)(ul +Ul)

Fi = and Fo = . 1.20
P (o) (0 — w) 27 (—ug + ug)(uy + v) (1.20)
1
Example 1.3. Choosing K1 =0 and a = 5 we get
4U1 + 2’01
D, = :
v+ /02 + 16u? + Suyv;
By (1.14), we obtain the system
, 2
uy + vy v+ /v + 16U + 8uyv;
Uiy = Uy,
! U+ v duy + 2v;
2
o v+ /02 + 16u? + Suyv;
Vg = —
! U+ v duq + 211 (1.21)
v(4uy + 2v1)
(u+v)(v + /02 + 16u? + Suqvy)
4uq 4 201
+ Vg
L v+ /v2 + 16u3 + Suyv;
This system possesses two independent non-trivial n-integrals (1.6) and ((1.7)).
Example 1.4. Considering L; =0 and o« = —1/2, we get
p U + 1/v? + 16u2 + Suv
e 20 + 4u '
By (1.14) we then arrive at the system
2
( Uy + v 2v + 4u
Uy = Uy
u+v \ v+ v} + 1602 + S8uv
2
v 20 + 4du v(vy + \/v} + 16u2 + Suv) (1.22)
Vg = — — Uy :
! u+v \ vy + /v + 16u2 + Suv (u+v)(2v + 4u)
vy + /07 + 1602 + S8uv
+ e
0 2v +4u

This system possesses two independent non-trivial n-integrals (1.6) and ((1.7)).
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Remark 1.1. In both previous examples let us consider the corresponding x-rings. Let

0 0
X =D, Y = , Yo = ,
! Oy, 2 v,
Elz[}/hX]? EZZD/%X]; E3:[E15E2]'

We observe that
X =uF1 +v,Fy+ Y, + Y5
The following multiplication table

|E;, Ej] Ey Es Es
E1 0 E3 —2<U + ’U)_lEg
E, —F5 0 —Q(U + U)_lEg
E; 20u+v) B3 | 2(u+v) " E; 0

shows that the x-rings are finite-dimensional. Therefore, systems and are Darboux
integrable.

Remark 1.2. We consider the function D‘fﬁ1 defined tmplicitly by
H(K1, L) = K1 =0,
that s, by
owlD?_l — owDiJra_l +(1- D?_l)ul =0,

and expand it into a series of the form
Dif (u1,v,v1) Zan vy — )"
where the coefficients a,, depend on variables u; and v only. This yields

a—! (67
D; (ul,v,vl):1+u1+a2 v — +Zanvl—v

and

a2

D =1+ —
1(U17’U Ul) +u1+a2

(v — ) —i—Zan (v —v)".

n=2
Letting uy = u + euy, v1 = v + v, and passing to the limit as € — 0, one can see that system

becomes (1.5).

Theorem 1.2. System (1.13) admits n-integrals . ) and - if and only of it is of the

form
v(uyvy + d)Dy
ull’ -~ X
vy (uv + d)
(d — c)vv (D3 — 1) v (1.23)
Vg = . 2 Uy + _1Ur-

2¢(uv + d)Dy vDy
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The function Dy is defined implicitly by H(n, Ky, Ly) = 0, where, for each n, the symbol H
denotes an arbitrary smooth function and
_ vDy M

2d
Dy — 1) M~ e+d
Dz = 1) . (—2cduyvy + uwvDy M), Ly=—"——, (1.24)

Ky =
2 UDQ U1

where
(C —f- d) (D2 — 1)’&11)1

D,

M = 2cd +

Example 1.5. Let Ky = 0, then we get
~ (2cd + (¢ + d)uv)ugvy
(2¢d + (¢ + d)ugvy)uv

y =

Using (1.23)), we obtain the system
( wy(uvy +d)(2¢d + (¢ + d)uw)

e = u(uwv + d)(2ced + (¢ + d)yugvy)
 (d—o) uv?(2¢d + (¢ + d)uv) B uv?(2cd + (¢ + d)uyvy)
Vi " 2c(uv + d) < u(2ed + (¢ + d)uqvy) u1(2¢d + (¢ + d)uw) ) ta (1.25)

u(2ed + (¢ + d)uqvy)
L u1(2ed + (¢ + d)uw)
This system possesses two independent non-trivial n-integrals and . One can confirm
that this system possesses also the following two n-integrals
(2¢d + (¢ + d)uv)u, . (¢ — d)yuv?u, UV,
u(uv + d) ’ 2= 2¢(uv + d)(2¢d + (¢ + d)uw) + 2cd + (¢ + d)uv
Considering the corresponding x-ring we can also find the x-integrals given by
}_1:£<20d+(c+d)uv>z+g F, = i ww
2cd + (¢ + d)uyvy UgVs — UV
Example 1.6. Let Ky =0, then

Iy =

(e t+d)uin
© 2cd + (c+ d)ugvy

2

Using (1.23)) we get the system
( (e +dwv(uv +d)

e = (wv 4+ d)(2cd + (¢ + d)uqvy)
o (d—c)v ( (c+dwv;  2cd+(c+ d)ulvl> y
" 7 20(uwv + d) \ 2ed + (¢ + d)ugv, (c+ d)uy v
2cd + (¢ + d)uyvy
L (¢ + d)uqv

This system possesses two independent non-trivial n-integrals (L.9) and (1.10) and two

independent x-integrals
ctd e=d

1 (20d+(c+d)u1v1> 2d L <2cd+(c+d)u1v1) 2d

c+d Uy VU

Fi=

VU
and
i ctd
v1uy** (2¢d 4 (¢ + d)uqvy) 24
v (2ed + (¢ + d) (wyvy + ugvy))
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Remark 1.3. We consider a function Dy defined implicitly by
H(Ky, Ly) = Ly — (2¢d)*¥ ) =

and expand it into a series of the form

Ul,’U 'U1 E CLn Ul—U

where coefficients a,, depend on variables uy and v only. This gives:

(v —v) +Zan (v —v)".

n=2

Cc

D =14+ —
2(un,v,01) =1+ v(uv + ¢)

By letting w1 = u+eu,, vi = v+ ¢cv, and passing to the limit as € — 0 one can see that system

becomes (1.8) with a = —1.
Theorem 1.3. System (|1 admits n-integrals (1.11)) and ( - iof and only if it is of the

form
U1V + d1

Da(wv +d)

—pv} | pv*Df 5
v <D3(uv+d) * w+d)" TR

Uy =

(1.26)

The function D3 is given implicitly by H(n, K3, L3) = 0, where, for each n, the symbol H
denotes an arbitrary smooth function and

(Ul — Upg)ﬁ_l(dlu — dung)

K3 = D, , (1.27)
Ly = (v — vD2)(1-9)8 <d DI dy + (B — D (v —UD§)>. (1.28)
Here di = Dd and D is the shift operator.
Example 1.7. Considering K3 = 0, we find
1
Dy — Zijz

Using (1.26)), we get the system
 (wqvy + dy)ot/?

1l — x>

(uv + d)vi/ﬂ
2.1/3 2
va( pui + buu, )ugﬁ-ﬂvx
v

(1.29)

P (uv +d)  v(uv+d)

This system possesses two independent non-trivial n-integrals and and two
independent x-integrals

A= (- () ) (e ()

and
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One can confirm that this system possesses also the following two n-integrals

. v/ P, . Vg Loy,
v+ d v w+d
Example 1.8. Let K3 =0, we find
dlu
Dy = 4%
3 dU1
By (1.26)) we get the system
- (uvy + dy)duy
T w + d)dy
1.30
Bdviu, BdPv2uf dPuP (1.30)
Vig = | — 3 Uy + — 5V
diu(uv +d)  dBu) (uv + d) dbul]

This system possesses two independent non-trivial n-integrals (L.11) and (1.12) and two

independent x-integrals
B d’fuﬂv — dﬁufvl

F =
' dgufvl — dfugvg
and
(dPuPv — dPulvy) (ddiuPu — dydPullu + (1 — B)uuy)
Fo = .
ddluul
We confirm that this system possesses also the following two n-integrals
o du, e _ uPu, n Bu2uPu,
P (w4 d)’ o df dP(uv+d)
o . dy + R
Example 1.9. Considering Ly = 0 with = 2, we get D3 = 5 , where
UuLv
R = \/d% + 4U1U(U1U1 — dl)
Then by (1.26]) we arrive at the system
( B (ulvl + d1)<d1 — R)
Uiy = Uy,
2(uv + d)(dy — uyvy)
2(R—d d? +2 —d iR -
v = <U1< 1) L4 + UW(“W; 1) +di ) u (1.31)
d1 — U1 uy uv + d
d% + 2U1U(U1U1 — dl) + leU
\ 2uiv? .

This system possesses two independent non-trivial n-integrals (1.11) and (1.12)).

Example 1.10. Considering Ly = 0 with = 1/2, we see that

D1/2 _ 2d1 + uv; + R
3 2uqv

Y

where

R = \/(2d1 + U1U1)2 - 8d1U1U.
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Employing (L.26), we get the system
. (ulvl + d1>(2d1 + uivp — R)2

e = 162 (wv + d) e 1.32)
P —U%(2d1 + uv — R)2 i ’U(2d1 + uivp + R) Uy 2d1 + uv1 + R '
e = 32d3 Ay uv +d 2uqv v

This system possesses two independent non-trivial n-integrals - ) and ( -

Remark 1.4. In both previous examples the corresponding x-rings have the following
multiplication table

(E;, ] E, E, Es

I A
o —2u

Ey E3 0 d+ uv s
v 2u

Es d—l—qu3 d—l—qu3 0

where the fields X, Yy, Ys, E1, Fy and E3 are introduced in the same way as in Remark 1. This
shows that the x-rings are finite-dimensional and the corresponding systems (1.31)) and (1.32)
are Darboux integrable.

Remark 1.5. We consider a function D3 given implicitly by H (K3, L) = Ly = 0 and expand

it into a series of the form
Ul,?] ’U1 E Cln Ul—’U

where coefficients a,, depend on variables uq and v only. Then

dl(vl—v +Zan vy — o)™

Burv — "

u
Ds(ur,v,v1) =1+ 1

By letting uy = u+eu,, vi = v +cvy and passing to the limit as € — 0 one can see that system

becomes @ We observe that f = —a and constants o, ¢, d satisfy the identity d = ac.

2. PROOF OF THEOREM

It follows from the identity DJ; = J; that

Ulzx 1 1 Uty U1z o Uy (OZ + 1)“30 + AUy
Uty 1) up v u U alu+v)
that is
fw+fuux+fvva:+fu1f+fvlg+fuxua:z+fvxva:x . 1+i f
/ Qi) U+ v
(2.1)
g U (a+Du, +av,
up v U a(u+v)

By comparing the coefficients at v,, and u,,, we get
1
fs, =0 and Jur _ —.
[ g

Hence,
f(x7 n,u,v,u, v, Ug, Ux) - A(LU, n,u,v,u, Ul)um' (22)
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It follows from DI; = I; that

1 Aux 11— Aux —a1 1 U, -« U, —a
1+— ) v —g =(1+—)v — Uy .
aq Uy + U1 Uy + U1 Q U+ v U+ v

We first consider the case a; # a. We have:

g =Tu, + Mu ™~ + Nvu® ™,

where

1\ nA 1 a1 geu @ g
T:(1+—) U M:—<1+_>U<u+v) N:w'

a1 ) uy + vy’ a (ug + o)’ (ug + v1)™

Substituting the expression for g and f into (2.1)) and comparing the coefficients at u?, u,, v,,
ultr=® and v,u1 "%, we get

Ay

T 2.

é—l—Aul—i—AvlT— 14—i A — T =— 1+l L , (2.4)

A A o) up+v U+ al utv

A, 1

v 2.5

A u+v’ (2:5)
A 1

M LR =0 2.6
(%) -0 2.6)
A 1

N LR =0. 2.7
(A U1—|—'U1> ( )

It follows from ({2.5)-(2.7)) that

_U1+U1
U+ v

A

S(n, u,uy),

where S(n,u,up) is a function depending on n, u, u; only. Substitute this expression for A into
(2.4), we find that

1 2
(U+U)(U1+U1)é+(u1+v1)25u1 + <U1 w4 og)oi(ug + 1) ) g4
S 631 (05]

Uy + v

=0. (2.8)
Differentiating the last equation three times with respect to vy, we get

1
—6 (1 + —) S =0, hence, S=0.
aq

Hence, A = 0 is the only solution when «a # ;.
Now we consider the case when « is a constant, that is « is independent of n. We have:

1 A AC “ “
g:<1+_)( u__ v (“*“))W(MH) (2.9)
Q U +v; U+v \Uu+ v Uy + U1
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We substitute the expressions for f and g into (2.1) and compare the coeflicients at v,, u, and
the free term. This gives:

— =0 2.10
o, (2.10)
Ay 1 A%A, “ A
—+Au1+(1+—) |:Av1 v , <u+v) B
A Q up+v; Alu+v) \ug + v Uy + vy
A A~ “ 1
_ (] n v u+v n _o, (2.11)
(up +v1)?2  (u+v)(ug +v1) \ug + vy u+v
A, A, A" “ A~ “ 1
A Ay utov \" urvy —0. (2.12)
A A U1 + U1 u; +v; \up +vp u—+v
Let N
D, = ( utv ) A% (2.13)
U1 + U1
In terms of the function Dy, the equations (2.11)) and (2.12)) cast into the form
_ +1 -1
(U + U)Dlu + (U1 + ’Ul),D(ll 1D1u1 a o (’UlD UDI)Dlvl — Dl (D? — 1) = 0, (214)
D,
* + Dy, =0. 2.15
D, + luy ( )

The set of solutions of the above system is not empty. For example, D; = 1 is a singular solution
leading to Darboux integrable system (1.17). Let D; # 1. Tt is convenient to regard D; as a
function of n, u, v, uy, v; defined implicitly by the equation as follows

W(n,w,v,uy,vy, D) = 0.
Then in terms of function W = W(n,u,v,us, v, D), equations and ( can be

rewritten as
a—+1

(u+ V)W, + (ug +0))DS Wy, + —— (DY — D)W, + Dy(DY —1)Wp, =0, (2.16)
W,
—+W,, =0. 2.17
o+ (2.17)
Under the change of variables
17:1}, ?71:’01—?)2)1, ﬁ:u, le:ul, @1:1)1,

the above equations cast into the form
~ ~ 1 1 ~ 1 1 ~ —1 ~
(@ +0)Ws + (4 + 01 + 9D1) DY Wy, + ((1 + a) DY+ Eﬁ(D%*“ — Dl)) W,
+ (D —Dy)Wp, =0,
W5 = 0.

We differentiate the first equation with respect to v, then use the identity W; = 0, and get two
new equations

Wi+ D "Wy, + = (D”O‘ — D)Wy, =0,

1
ﬂWa+(a1+@1)Da Wu1+ ot Ulpa qu (D%M
a

—1

In the latter system, we make the change of variables

~ ~ -1 _ ~ . —1 _ ~ -1\ o - ~ ~
ul =i, — DIt 4, v} =aDy U+ (1-Df ), ut =, vt =10, D} =D
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and we get:
W, =0,
(i + a7 (1 =D ui + a7 oi Dy )Wy
a+1
+

VDY W + Di(D™ — 1)Wp; = 0.

The last equation has a general solution H(n, K, L;) = 0, where K;, L; rewritten in old
variables are given by ([1.15)), (1.16|) and H is a smooth function for each n. Now, using identities

(2.13), (2.2) and (2.9)), we obtain system ([1.14). This completes the proof.
3. PROOF OF THEOREM
The identity D.Jy = Jo implies that
fm + fuux + fvvm + fulf + fvlg + fuxuxx + fvmvzx + (dl - Cl)vlf — Ciurg

f c1(ugvy + dp) (3.1)
Uz (d — C)vu, — cuv,
T c(uv + d)
Comparing the coefficients at u,, and v,, in the above identity, we get
fux ]'
fo. =0 and TZU_x
Hence,
f=A(x,n,u,v,uq,v1)u,. (3.2)
The identity DI, = I implies
(di —c)viA®u,  cAg _(d- viu, vy (3.3)
2(uyvy + dy)? wvr +d; 2uwv+d)? w+d ’
It follows from that
(di — c1)viA  (d — c)vi(ugvy + dy) c(uyvy + dy)
- (201(1@1 +d) 20 A(uw + d)? ) YT At d) (3.4)

Substituting the expressions for f and g into (3.1) and comparing the coefficients at u,, v, and
the free term, we get

A
=, (3.5)

A
Au A+ Aw ! (di —c1)viA _ (d = c)v*(uvy + dy)
A “ A ULV + dl 261 (uwl + dl) 26114(1“) + d)2

(dy — 1) A (d—c)

S

(3.6)

ci(uvy +dy)  cluv + d)

Ay | cwmoi+di) (A R
A U1V + d1 uv + d N

Y

0. (3.7)

A qAuww +d)

One can check that
_ v(ugvy +d)
EROCER)
is a particular solution provided d; = d and ¢; = c.
Now assuming that
v(uivy + d)
vi(uww +d)’
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we introduce a new function ( )
vi(uv +d

Dy=——*_A. 3.8

2 v(uvy + dy) (3.8)

In terms of Dy, system (3.6) becomes

DQm = 07
+d,)D _
(wv + d)Day, + ”(“““U ) 2Dy, ”—21 ((dy = e1)Dy — (d — ¢)Dy ") Dy,
1 1
d d d—
. _UDQ ( 1 _I_ 1>UD22 + ,U( C) — 07
c 2cq 2c1

Cl?JDgDQU -+ CUlpgvl + (—CDQ -+ 01D22) =0.

In the same way as in the proof of Theorem [L.1} we introduce a function W (n, u, v, uy, vy, Ds).
For the function W = W (n, u,v,uy, vy, Dy) the last two equations become

(ugvy + dy) VU

(wv + d)W, + o DWWy ot (=)D = (d =)Dy ) W,
+ (d—:Dg _ldite)y ;C fl)“Df = U(C;—;C)) Wp, =0,
clvDoW, 4 co Wy, + (¢Dy — ¢ D> ) Wp, = 0.
In new variables
u=u, Uy = Uy, 0 =v(1Dy — ¢), o = vi(c1Dy — ¢)Dy Dy = D,,

the last system can be rewritten as
<(01152 — C)'EL?; + d(61252 — C)2> W{t + g (&1171152(01252 — C) + dl (ClﬁQ — 0)2) W{L
U1

~ ~ 2
+1~)2 (CldDQ _ (dl +01)D2 i C — d) W;)

c 2 2 (3.9)

~ 9 ~
dy — ¢;)D 4, D d
v [z D2 cdiDy o Ws, =0,
2 C1 2

W, = 0.

Special solutions of 1) may exist only when Dy = ¢; /c. We differentiate equation 1} with
respect to Dy three times and get the following system of three equations

(de? — civ)Wa + Py Sy, + Dy | (e Do, (3.10)
(%1 ! 2 2 !
(leL’INJ — 2d01C)Wﬂ — (2d161€~£ + C&lf}) Wal + Gy Wf) — vt Wf,l = O, (311)
V1 C C1

dy 20 d 02 dy — ;)00
a2+ (B L) wy, - )T izt (3.12)
U1 2 2
that has no solutions if ¢; # ¢ or d; # d. In the case ¢; = ¢ and d; = d the system becomes
W, — 17~252f2~d + (c —fl)ﬂ{ﬂ{) 7;— 271:11~(2~C~2Cl + (¢ 4~‘~d)ﬁ12~71~) W, =0, (3.13)
2¢(Ut, 001 + cd(a0 — 1171)) 2¢(Uty 00, + cd(Ud — Uy0y))
W, — 001 (—2c%d + (¢ + d)av) W 02(2¢*d + (—c + d)uv) Wy, = 0. (3.14)

26(?]’11117’(71 + Cd(ﬁ@ — 12161)) Y 20(&’&1661 + Cd(?]ﬁ - 1]1171))
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Under the change of variables

U 2d_
wi=dy,  vi=1y, vt = — (2 + (c+ d)iydy) T
U1
e—d _2d
ut =ty (2¢°d 4 (c+ d)in0y) = 23du 0707 (2¢°d + (e + d)andy)
equations (3.13)) and (3.14) become W, = 0 and W« = 0, respectively. We rewrite these first
integrals in old variables and get the general solution in an implicit form H(n, Ky, Ly) = 0,
where, for each n, H is a smooth function and Ky, Ly are given by ([1.24). The form of system

(1.23) follows from (3.2)), (3.4) and (3.8). The proof is complete.

4. PROOF OF THEOREM [[.3]
The identity DJ3 = J3 implies
_ fz + fuua: + fvvr + fulf + fvlg + fumumm + fvxvmm + 2U1f + urg o _%_’_Q’qu + UV,

f u 1 + dy Uy w+d (4.1)
Comparing the coefficients at u,, and v,, in the above identity, we get
w, 1
fuo. =0, fT o
Hence,
f=A(x,n,u,v,uq,v1)u,. (4.2)
It follows from the identity DI5 = I3 that
1% Brodfot e, gt 43
(upvr +dp)P  (wgvy +d)A*+t (wo +d)P - (uv + d)PH
First we consider the case 5, # 5. We have:
g = Toul P + Mul™=% - Nu,, (4.4)
where
T AP (uyvy + dy)* M Br2 AP (ugvy + dp)P N BrviA .
(wv +d) ’ (uv + d)P+1 ’ (wvy + dy)

We substitute this expression for g into equation (4.1)) and compare the coefficients at u?, u,,
uP=P1 v, ul™=P1 in the resulting equation. This gives:

As

==, (4.5)
% +Au + AiilN + ulej—ldl * ulslli\[dl - uv2j— d’ (4.6)
% - uvi d’ (47)

(AX + ﬁ) —0, (4.8)
M <A£1 + ﬁ) ~0. (4.9)

If T=0o0or M =0, then A = 0. Hence, in order to have A # 0, we assume that TM # 0. If
TM # 0, then equations (4.7)-(4.9) imply
d
uv + S
uvy +dg
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where S = S(n,u,uy) is a function depending on n, u and u; only. We substitute the above
expression for A into (4.6)) and we find that

Sy
(urvy + dy)*(uv + d>§ + (wyvy + di)(uv + d)*Sy, + v1(uv + d)2S — v(ugvy + dy)* = 0. (4.10)

Then we differentiate the last equation twice with respect to v; and we obtain:
2 Su 2
2u7 (uv + d)g — 2ujv =0,

that is,

Su W
S wv+d
This contradicts to the fact that S is independent of v, v;. Hence, 5; = .

We proceed to the case when 3 is a constant, that is, £ is independent of n. Let

U1V + d1

Dy = —.
° 7 A(uv + d)

(4.11)

Then it follows from (4.3) that

2 2pB
g = <_D (5711 + PuDs )ux—l—ngx. (4.12)
3

w +d)  (uww+d)

Being rewritten in terms of Ds, identity (4.1)) casts into the form

Dgx 4 Dgu ULV + d1 6(?)22)5 — U%Dgl)p 1 U1 _ v w
Ds Dy D(uwv+d) " Ds(uv + d) T Da(uwv+d) (wo+d) ) "
D _
+ (DS; + Dy 1D3v1) vy = 0.
We compare the coefficients at u,, v, and the free term and we get:
D3x - 07
uv +d uvy + dy Bv2DE — Bu?Dy ! o
D ——D D ——0v=0 4.13
Dg 3u + D32 3u1 + Dg 3v1 + Dg v ) ( )
Ds, + DyDs,, = 0. (4.14)

We introduce a function W in the same way as in the proof of Theorem and in new variables
ﬁlzvl—ng, U=, U =u, Uy = Uy, D; = D;,

equations 1) and 1} for the function W = W (n, @, 0,1y, 91, D3) can be rewritten as
follows

W; =0,
Ds(at 4 d)Wy + (a1 (01 4+ 0D5) + dy )Wy,
+ D3(8(Ds — D5) — 1) Wp, — Bon (01 + 0D )Ws, = 0.
We differentiate the latter equation with respect to v, employ the identity W; = 0, and get a
new system of equations:

UDsW; + Dy Wa, + (D3 — Dy ™YW, — B Dy W, = 0,
dDs Wy + (101 + dy)Wa, — 153171W753 — BoiW;, =0,
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which can be rewritten as

d1Dy — diDE + Dyiig dio, DI
W, + & ~3 ng + ~3~u1~le,§3— ; g 1~U51~ 3 W, =0,
diu — dD3 1y + utg 0y dvu — dD5uq + 4ty vy
o Ds(dDs — dD5 + aby) By (dDS — i) W o,

dyii — dDLty + @ty dy,  ° dyii — dDSiy + Gy Dy
In these equations, we make the change of variables

u* = @ P quaBpL _ gqfl0-Py 518

Dy =o' VDI o 4 (B - Dy
UT:ﬂl, U*:{}a /UI:@D
and these equations become W,» = 0 and W,,; = 0, respectively. We rewrite these first integrals

in old variables and get that the general solution is given implicitly by H(n, K3, L3) = 0, where,
for each n, the symbol H denotes an arbitrary smooth function and K3, L3 are given by (1.27)),

(1.28). The form of system ([1.26]) follows from (4.2)), (4.12)) and (4.11]). The proof is complete.
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