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ON DARBOUX NON-INTEGRABILITY

OF HIETARINTA EQUATION

S.YA. STARTSEV

Abstract. The autonomous Hietarinta equation is a well-known example of the quad-graph
discrete equation which is consistent around the cube. In a recent work, it was conjectured
that this equation is Darboux integrable, that is, for each of two independent discrete
variables there exist non-trivial functions that remain unchanged on solutions of the equation
after the shift in this discrete variable. We demonstrate that this conjecture is not true for
generic values of the equation coefficients.

To do this, we employ two-point invertible transformations introduced by R.I. Yamilov.
We prove that an autonomous difference equation on the quad-graph cannot be Darboux
integrable if a transformation of the above type maps solutions of this equation into its
solutions. This implies that the generic Hietarinta equation is not Darboux integrable
since the Hietarinta equation in the general case possesses the two-point invertible auto-
transformations. Along the way, all Darboux integrable subcases of the Hietarinta equation
are found. All of them are reduced by point transformations to already known integrable
equations.

At the end of the article, we also briefly describe another way to prove the Darboux
non-integrability of the Hietarinta equation. This alternative way is based on the known
fact that a difference substitution relates this equation to a linear one. Thus, the Hietarinta
equation gives us an example of a quad-graph equation that is linearizable but not Darboux
integrable.

Keywords: Hietarinta equation, quad-graph equation, Bäcklund auto-transformation,
Darboux integrability, C-integrability.
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1. Introduction

The Hietarinta equation

𝑧𝑛,𝑚 + 𝑏

𝑧𝑛,𝑚 + 𝑎

𝑧𝑛+1,𝑚+1 + 𝑑

𝑧𝑛+1,𝑚+1 + 𝑐
=
𝑧𝑛+1,𝑚 + 𝑏

𝑧𝑛+1,𝑚 + 𝑐

𝑧𝑛,𝑚+1 + 𝑑

𝑧𝑛,𝑚+1 + 𝑎
, 𝑛,𝑚 ∈ Z, (1.1)

where the constants 𝑎, 𝑏, 𝑐 and 𝑑 satisfy the inequality (𝑎 − 𝑏)(𝑎 − 𝑑)(𝑐 − 𝑏)(𝑐 − 𝑑) ̸= 0, gives
an important example of the quad-graph difference equation which is consistent around the
cube [1]. This example was introduced in [2] to illustrate that the tetrahedron property is not
necessary for the consistency around the cube.
A non-autonomous version of the Hietarinta equation was recently studied in [3]. It turned out

that this non-autonomous version was Darboux integrable. At the very end of [3], the authors
raised the question of whether autonomous Hietarinta equation (1.1) is Darboux integrable as
well. The main purpose of the present article is to answer this question and to demonstrate
that this answer is negative for the generic values of the constants 𝑎, 𝑏, 𝑐 and 𝑑.
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Let us recall that an equation of the form

𝑢𝑛+1,𝑚+1 = 𝐹 (𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚, 𝑢𝑛,𝑚+1),
𝜕𝐹

𝜕𝑢𝑛+1,𝑚

𝜕𝐹

𝜕𝑢𝑛,𝑚+1

𝜕𝐹

𝜕𝑢𝑛,𝑚
̸= 0 (1.2)

is called Darboux integrable if there exist functions Ω𝑛,𝑚(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚, . . . , 𝑢𝑛+𝑝,𝑚), 𝑝 > 0, and
Ω̄𝑛,𝑚(𝑢𝑛,𝑚, 𝑢𝑛,𝑚+1, . . . , 𝑢𝑛,𝑚+𝑝), 𝑝 > 0, such that they essentially depend on 𝑢𝑛,𝑚 and their last
arguments (𝑢𝑛+𝑝,𝑚 for Ω𝑛,𝑚 and 𝑢𝑛,𝑚+𝑝 for Ω̄𝑛,𝑚) and satisfy the relations

Ω𝑛,𝑚+1(𝑢𝑛,𝑚+1, 𝑢𝑛+1,𝑚+1, . . . , 𝑢𝑛+𝑝,𝑚+1) = Ω𝑛,𝑚(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚, . . . , 𝑢𝑛+𝑝,𝑚), (1.3)

Ω̄𝑛+1,𝑚(𝑢𝑛+1,𝑚, 𝑢𝑛+1,𝑚+1, . . . , 𝑢𝑛+1,𝑚+𝑝) = Ω̄𝑛,𝑚(𝑢𝑛,𝑚, 𝑢𝑛,𝑚+1, . . . , 𝑢𝑛,𝑚+𝑝) (1.4)

for all 𝑛,𝑚 and each solution 𝑢 of the equation. In other words, Ω𝑛,𝑚 and Ω̄𝑛,𝑚 remain unchanged
on solutions of (1.2) after the shifts in 𝑚 and 𝑛, respectively. The functions Ω𝑛,𝑚 and Ω̄𝑛,𝑚 are
respectively called an 𝑛-integral of order 𝑝 and an 𝑚-integral of order 𝑝 for the equation (1.2).
It should be stressed that we eliminate all variables of the form 𝑢𝑛+𝑖,𝑚+𝑗, 𝑖 · 𝑗 ̸= 0, via

equation (1.2) to check whether a relation (in particular, relations (1.3), (1.4)) holds on solutions
of the equation. That is, we substitute 𝐹 (𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚, 𝑢𝑛,𝑚+1) for 𝑢𝑛+1,𝑚+1,

𝐹 (𝑢𝑛+1,𝑚, 𝑢𝑛+2,𝑚, 𝐹 (𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚, 𝑢𝑛,𝑚+1)) for 𝑢𝑛+2,𝑚+1

and so on. A relation holds on solutions of the equation if and only if this relation holds
identically after the above substitutions. These substitutions show why we can assume without
loss of generality that the integrals are independent of the variables of the form 𝑢𝑛+𝑖,𝑚+𝑗, 𝑖·𝑗 ̸= 0.
In addition, after eliminating these variables from the defining relations of the integrals, the
independence of Ω𝑛,𝑚 and Ω̄𝑛,𝑚 of the variables 𝑢𝑛,𝑚+𝑗 and 𝑢𝑛+𝑖,𝑚 follows directly from (1.3)
and (1.4), respectively; see, for example, Lemma 1 in [4] for more details.

Remark 1.1. We note that defining relation (1.3) can be considered for each 𝑛 separately,
and the corresponding Ω𝑛,𝑚 may be chosen quite differently for different 𝑛. For example, we can
set Ω𝑛,𝑚 equal to constants for some values of 𝑛 and to non-constant ‘solutions’ of (1.3) (if
they exist) for other 𝑛. But, since (1.2) is explicitly independent of 𝑛, we can choose Ω𝑛,𝑚 same
for all 𝑛 and assume without loss of generality that it is explicitly independent of 𝑛, too. Under
this assumption and by using the inequality in (1.2), it can be proved that Ω𝑛,𝑚 must depend
on its first and last arguments for all 𝑛 and 𝑚 if Ω𝑛,𝑚 depends on these arguments for at least
some 𝑚 and satisfies (1.3) for all 𝑚. Of course, the same (up to the interchange 𝑛 ↔ 𝑚) is
also true for (1.4) and Ω̄𝑛,𝑚.

A simple example of Darboux integrable equation is the ‘multiplicative’ discrete wave
equation

𝑢𝑛+1,𝑚+1 =
𝑢𝑛+1,𝑚𝑢𝑛,𝑚+1

𝑢𝑛,𝑚
(1.5)

admitting the integrals

Ω𝑛,𝑚 =
𝑢𝑛+1,𝑚

𝑢𝑛,𝑚
, Ω̄𝑛,𝑚 =

𝑢𝑛,𝑚+1

𝑢𝑛,𝑚
.

We can modify (1.5) by the point transformation 𝑢̃𝑛,𝑚 = 𝜁𝑛,𝑚𝑢𝑛,𝑚, where 𝜁𝑛,𝑚 = −1 if both 𝑛
and 𝑚 are odd, and 𝜁𝑛,𝑚 = 1 otherwise. This gives the autonomous equation

𝑢̃𝑛+1,𝑚+1 = − 𝑢̃𝑛+1,𝑚𝑢̃𝑛,𝑚+1

𝑢̃𝑛,𝑚
(1.6)

that admits the integrals

Ω𝑛,𝑚 = (−1)𝑚
𝑢̃𝑛+1,𝑚

𝑢̃𝑛,𝑚
, Ω̄𝑛,𝑚 = (−1)𝑛

𝑢̃𝑛,𝑚+1

𝑢̃𝑛,𝑚
.
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We observe that these integrals are non-autonomous, i.e., they explicitly depend on 𝑚 and 𝑛.
The last example looks contrived since the equations (1.5) and (1.6) are, in fact, same. However,
some other autonomous quad-graph equations with non-autonomous integrals can be found, for
example, in [5]. Thus, we may not exclude non-autonomous integrals from consideration when
we check an autonomous equation for the Darboux integrability.
It is interesting that the non-autonomous Hietarinta equation in [3] is reduced to (1.6) by a

non-autonomous Möbius transformations, while the work [2] relates the equation (1.1) to (1.5)
by a point transformation in the case |𝑎−𝑐|+ |𝑏−𝑑| = 0 only. A less trivial example of Darboux
integrable discrete equation is the equation

𝑢𝑛+1,𝑚+1

𝑢𝑛,𝑚+1

=
𝑢𝑛+1,𝑚 + 1

𝑢𝑛,𝑚 + 1
(1.7)

admitting the integrals
𝑢𝑛,𝑚+1

𝑢𝑛,𝑚 + 1
and

𝑢𝑛+2,𝑚 − 𝑢𝑛+1,𝑚

𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚
.

This equation and its integrals were found in [5]. We show below that a point transformation
reduce equation (1.1) to (1.7) in the case 𝑎 = 𝑐, 𝑏 ̸= 𝑑 and to the equation obtained from (1.7)
by interchanging 𝑛 ↔ 𝑚 in the case 𝑎 ̸= 𝑐, 𝑏 = 𝑑. Hence, equation (1.1) is Darboux integrable
if (𝑎 − 𝑐)(𝑏 − 𝑑) = 0. In the present paper, we prove that all other cases of the autonomous
Hietarinta equation (1.1) are not Darboux integrable and, moreover, do not admit an integral
even in one direction.
As it was demonstrated in [6], [7], the smallest orders of the integrals for Darboux integrable

equations can be arbitrary high. To prove Darboux non-integrability, we therefore need to make
sure that there are no integrals of order 𝑝 for all 𝑝. Characteristic algebras [8] and Laplace
invariants [9], [10] give strong and enough constructive necessary conditions for the existence of
integrals of order 𝑝 for the quad-graph equations, but these methods do not solve the problem
of the arbitrariness of 𝑝. This is why the Darboux non-integrability of a quad-graph equation
is not always obvious.
To demonstrate the absence of integrals for the generic equation (1.1), we employ some

specific properties of the Heitarinta equation and prove theorems about the absence of integrals
for any quad-graph equation with the same properties1. These properties are considered in the
next section.

2. Hietarinta equation: transformations and Darboux integrable subcases

Following the work [11], it is convenient to make the point transformation

𝑧𝑛,𝑚 =
𝑑− 𝑐𝑢𝑛,𝑚
𝑢𝑛,𝑚 − 1

(2.1)

in the equation (1.1), that is, we denote 𝑧𝑛,𝑚+𝑑

𝑧𝑛,𝑚+𝑐
by 𝑢𝑛,𝑚 and rewrite (1.1) in terms of this new

variable. In the case 𝑎 ̸= 𝑐 this gives the equation

𝑢𝑛+1,𝑚+1(𝑢𝑛,𝑚 +𝐵)(𝑢𝑛,𝑚+1 + 𝐴) = 𝑢𝑛,𝑚+1(𝑢𝑛+1,𝑚 +𝐵)(𝑢𝑛,𝑚 + 𝐴), (2.2)

where 𝐴 = (𝑑− 𝑎)/(𝑎− 𝑐) and 𝐵 = (𝑑− 𝑏)/(𝑏− 𝑐). It should be noted that 𝐴 ̸= 𝐵 because

𝐴−𝐵 =
(𝑑− 𝑐)(𝑏− 𝑎)

(𝑎− 𝑐)(𝑏− 𝑐)

and the coefficients of (1.1) satisfy the conditions 𝑑 ̸= 𝑐 and 𝑏 ̸= 𝑎.

1But the author does not know other nonlinear examples of quad-graph equations with these properties.
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If 𝑎 = 𝑐, then (2.1) maps Hietarinta equation (1.1) into the equation

𝑢𝑛+1,𝑚+1

𝑢𝑛,𝑚+1

=
𝑢𝑛+1,𝑚 +𝐵

𝑢𝑛,𝑚 +𝐵
,

where the constant 𝐵 again equals (𝑑 − 𝑏)/(𝑏 − 𝑐). The last equation coincides with (1.5) if
𝐵 = 0. Otherwise, the scale transformation 𝑢𝑛,𝑚 → 𝐵𝑢𝑛,𝑚 relates this equation to (1.7).
In the case 𝐵 = 0, the equation (2.2) becomes

𝑢𝑛+1,𝑚+1
𝑢𝑛,𝑚+1 + 𝐴

𝑢𝑛,𝑚+1

= 𝑢𝑛+1,𝑚
𝑢𝑛,𝑚 + 𝐴

𝑢𝑛,𝑚
.

Recall that 𝑑 ̸= 𝑎 for (1.1) and 𝐴 ̸= 0 for (2.2). Denoting 𝐴/𝑢𝑛,𝑚 by 𝑣𝑛,𝑚, we obtain

𝑣𝑛+1,𝑚+1

𝑣𝑛+1,𝑚

=
𝑣𝑛,𝑚+1 + 1

𝑣𝑛,𝑚 + 1
. (2.3)

The last equation is Darboux integrable because it coincides with (1.7) up to the change of
notation 𝑣 → 𝑢 and the interchange 𝑛↔ 𝑚.
Summarizing the results of three previous paragraphs, we arrive at the following statement.

Proposition 2.1. Hietarinta equation (1.1) is Darboux integrable if (𝑎−𝑐)(𝑏−𝑑) = 0. In all
other cases, point transformation (2.1) reduces (1.1) to equation (2.2) with non-zero constants
𝐴 and 𝐵 such that 𝐴 ̸= 𝐵.

Below we prove that equation (2.2) is not Darboux integrable if 𝐴𝐵(𝐴−𝐵) ̸= 0. To do this,
we employ two-point invertible transformations. Alike transformations for differential-difference
and continuous analogues of the quad-graph equations were introduced in works [12] and [13],
respectively. For discrete equations (1.2), such transformations were, in fact, used in [14] and
then considered in a more explicit form in [15]. In particular, these transformations for (2.2)
were briefly given in [15], and we reproduce them in the next two paragraphs with detailed
calculations to make it easier for the reader to check them.
The mentioned transformation for (2.2) is as follows. We can rewrite (2.2) as

𝑢𝑛+1,𝑚+1
𝑢𝑛,𝑚+1 + 𝐴

𝑢𝑛,𝑚+1

=
(𝑢𝑛+1,𝑚 +𝐵)(𝑢𝑛,𝑚 + 𝐴)

𝑢𝑛,𝑚 +𝐵
. (2.4)

We denote

𝑣𝑛,𝑚 = 𝑢𝑛+1,𝑚
𝑢𝑛,𝑚 + 𝐴

𝑢𝑛,𝑚
− 𝐴. (2.5)

Then equations (2.4) implies that

𝑣𝑛,𝑚+1 =
(𝑢𝑛+1,𝑚 +𝐵)(𝑢𝑛,𝑚 + 𝐴)

𝑢𝑛,𝑚 +𝐵
− 𝐴 (2.6)

by virtue (i.e., on solutions) of the equation (2.2). The next step is to resolve the system (2.5)-
(2.6) with respect to 𝑢𝑛,𝑚 and 𝑢𝑛+1,𝑚, that is, to express 𝑢𝑛,𝑚 and 𝑢𝑛+1,𝑚 in terms of 𝑣𝑛,𝑚 and
𝑣𝑛,𝑚+1. Resolving (2.5) with respect to 𝑢𝑛+1,𝑚, we obtain

𝑢𝑛+1,𝑚 =
𝑢𝑛,𝑚(𝑣𝑛,𝑚 + 𝐴)

𝑢𝑛,𝑚 + 𝐴
. (2.7)

The substitution of (2.7) into (2.6) results in

𝑣𝑛,𝑚+1 =
𝑢𝑛,𝑚(𝑣𝑛,𝑚 +𝐵)

𝑢𝑛,𝑚 +𝐵
. (2.8)
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Resolving (2.8) with respect to 𝑢𝑛,𝑚, we get

𝑢𝑛,𝑚 =
𝐵𝑣𝑛,𝑚+1

𝐵 + 𝑣𝑛,𝑚 − 𝑣𝑛,𝑚+1

. (2.9)

Substituting (2.9) into (2.7), we find:

𝑢𝑛+1,𝑚 =
𝐵𝑣𝑛,𝑚+1(𝑣𝑛,𝑚 + 𝐴)

𝐴(𝑣𝑛,𝑚 +𝐵) + (𝐵 − 𝐴)𝑣𝑛,𝑚+1

. (2.10)

If we shift (2.9) by 1 in 𝑛 and compare the result with (2.10), we obtain the equality

𝐵𝑣𝑛+1,𝑚+1

𝐵 + 𝑣𝑛+1,𝑚 − 𝑣𝑛+1,𝑚+1

=
𝐵𝑣𝑛,𝑚+1(𝑣𝑛,𝑚 + 𝐴)

𝐴(𝑣𝑛,𝑚 +𝐵) + (𝐵 − 𝐴)𝑣𝑛,𝑚+1

. (2.11)

Resolving (2.11) with respect to 𝑣𝑛+1,𝑚+1, we see that

𝑣𝑛+1,𝑚+1(𝑣𝑛,𝑚 +𝐵)(𝑣𝑛,𝑚+1 + 𝐴) = 𝑣𝑛,𝑚+1(𝑣𝑛+1,𝑚 +𝐵)(𝑣𝑛,𝑚 + 𝐴).

The last equation coincides with (2.2) up to the change of notation 𝑢→ 𝑣. Thus, transformation
(2.5) maps solutions of (2.2) into solutions of (2.2) again, that is, (2.5) is a Bäcklund auto-
transformation for the Hietarinta equation (2.2).
Repeating the arguing in the previous paragraph in the inverse order, it is easy to confirm

that

𝑣𝑛,𝑚 =
𝐵𝑢𝑛,𝑚+1

𝐵 + 𝑢𝑛,𝑚 − 𝑢𝑛,𝑚+1

,

is in fact (2.9) if we replace the notations as 𝑢 → 𝑣, 𝑣 → 𝑢 and this is also an auto-
transformation for equation (2.2). Indeed, starting from (2.11) and introducing 𝑢𝑛,𝑚 by (2.9),
we obtain (2.10). Equation (2.8) appears by solving (2.9) with respect to 𝑣𝑛,𝑚+1, and (2.7)
does by substituting (2.8) into (2.10). Equation (2.7) implies (2.5), and (2.6) is obtained by
substituting (2.5) into (2.8). The comparison of (2.5) and (2.6) gives us the Heitarinta equation
in form (2.4).

Remark 2.1. Under the condition 𝐵 ̸= 0, all formulae (2.4)-(2.11) remain valid even if
𝐴 = 0 or 𝐴 = 𝐵. Thus, (2.5) and

𝑣𝑛,𝑚 =
𝐵𝑢𝑛,𝑚+1

𝐵 + 𝑢𝑛,𝑚 − 𝑢𝑛,𝑚+1

are auto-transformations for (2.2) in these cases, too. But (2.2) loses the dependence of 𝑢𝑛,𝑚+1

or 𝑢𝑛,𝑚 if 𝐴 = 0 or 𝐴 = 𝐵, respectively.

3. Transformation of integrals

In this section, we formulate some general propositions that are applicable, in particular,
to Hietarinta equation (2.2). The key propositions, Lemmata 3.1, 3.2, were proved in [16] in
the case of autonomous integrals. For the reader’s convenience and to demonstrate that these
propositions remain valid for non-autonomous integrals too, below we reproduce corresponding
(slightly modified) proofs from [16].

Lemma 3.1. Let there exist functions 𝜙(𝑥, 𝑦), 𝜙𝑦 ̸= 0, and 𝜓(𝑥, 𝑦) such that the right-hand
side of (1.2) satisfies the relation

𝜙(𝑢𝑛,𝑚+1, 𝐹 (𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚, 𝑢𝑛,𝑚+1)) = 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚), (3.1)
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that is, 𝜙(𝑢𝑛,𝑚+1, 𝑢𝑛+1,𝑚+1) = 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) on solutions of (1.2). In addition, let the identity
𝜙(𝑥, 𝑦) = 𝑣 be uniquely solvable for 𝑦. Then each 𝑝-th order 𝑛-integral for the equation (1.2)
can be written in the form

Φ𝑛,𝑚(𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚), 𝜙(𝑢𝑛+1,𝑚, 𝑢𝑛+2,𝑚), . . . , 𝜙(𝑢𝑛+𝑝−1,𝑚, 𝑢𝑛+𝑝,𝑚)). (3.2)

Note that Lemma 3.1 only defines the form of the integrals (if they exist) but does not
guarantee their existence.

Доказательство. Resolving the identity 𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) = 𝑣 with respect to 𝑢𝑛+1,𝑚, we obtain

𝑢𝑛+1,𝑚 = 𝑔(𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚), 𝑢𝑛,𝑚). (3.3)

Let (1.2) admit a 𝑝-th order 𝑛-integral Ω𝑛,𝑚. Using expression (3.3) as well as its consequences
derived by shifts in 𝑛, we rewrite Ω𝑛,𝑚 in terms of 𝑢𝑛,𝑚, 𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) and its shifts in 𝑛:

Ω𝑛,𝑚 = Φ𝑛,𝑚(𝑢𝑛,𝑚, 𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚), 𝜙(𝑢𝑛+1,𝑚, 𝑢𝑛+2,𝑚), . . . , 𝜙(𝑢𝑛+𝑝−1,𝑚, 𝑢𝑛+𝑝,𝑚)). (3.4)

The relation (3.1) implies that 𝜙(𝑢𝑛+𝑗,𝑚+1, 𝑢𝑛+𝑗+1,𝑚+1) = 𝜓(𝑢𝑛+𝑗,𝑚, 𝑢𝑛+𝑗+1,𝑚) on solutions of
(1.2). Therefore, the shift of (3.4) in 𝑚 gives:

Ω𝑛,𝑚+1 = Φ𝑛,𝑚+1(𝑢𝑛,𝑚+1, 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚), 𝜓(𝑢𝑛+1,𝑚, 𝑢𝑛+2,𝑚), . . . , 𝜓(𝑢𝑛+𝑝−1,𝑚, 𝑢𝑛+𝑝,𝑚)).

Comparing the last identity and (3.4), we see that Ω𝑛,𝑚 satisfies the defining relation (1.3) only
if the function Φ𝑛,𝑚+1 in (3.4) is independent of its first argument for all 𝑛 and 𝑚.

Let us consider the equation (1.7) as an illustrative example. Subtracting 1 from both sides
of (1.7) and then replacing them with their reciprocal values, we rewrite this equation in the
form

𝑢𝑛,𝑚+1

𝑢𝑛+1,𝑚+1 − 𝑢𝑛,𝑚+1

=
𝑢𝑛,𝑚 + 1

𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚
.

Thus, (1.7) satisfies all conditions of Lemma 3.1 with

𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) =
𝑢𝑛,𝑚

𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚
, 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) =

𝑢𝑛,𝑚 + 1

𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚
.

This choice of 𝜙 and 𝜓 is not most obvious but convenient for the reasoning in the next
paragraph. It is easy to check that

𝑢𝑛+2,𝑚 − 𝑢𝑛+1,𝑚

𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚
=
𝑣𝑛,𝑚 + 1

𝑣𝑛+1,𝑚

, (3.5)

where

𝑣𝑛,𝑚 = 𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) =
𝑢𝑛,𝑚

𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚
.

Note that the left-hand side of (3.5) is an 𝑛-integral of (1.7) and the right-hand side is the
representation in the form (3.2) for this integral.
Applying the scheme of the invertible two-point transformations from Section 2, we see that

𝑣𝑛,𝑚 =
𝑢𝑛,𝑚

𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚

maps solutions of (1.7) into solutions of the equation (2.3) and the right-hand side of (3.5) is
an 𝑛-integral for (2.3). The latter is a particular case of a more general fact formulated in the
following Lemma.
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Lemma 3.2. Let equation (1.2) satisfy the assumptions of Lemma 3.1, the functions 𝜙(𝑥, 𝑦),
𝜓(𝑥, 𝑦) be functionally independent and the transformation 𝑣𝑛,𝑚 = 𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) map
solutions of (1.2) into solutions of an equation

𝑣𝑛+1,𝑚+1 = 𝑄(𝑣𝑛,𝑚, 𝑣𝑛+1,𝑛, 𝑣𝑛,𝑚+1). (3.6)

Then equation (1.2) admits an 𝑛-integral of order 𝑝 > 1 only if equation (3.6) admits an
𝑛-integral of order 𝑝− 1.

Доказательство. Let Ω𝑛,𝑚 be a 𝑝-th order 𝑛-integral of (1.2). Lemma 3.1 implies that

Ω𝑛,𝑚 = Φ𝑛,𝑚(𝑣𝑛,𝑚, 𝑣𝑛+1,𝑚, . . . , 𝑣𝑛+𝑝−1,𝑚), (3.7)

where 𝑣𝑖,𝑗 = 𝜙(𝑢𝑖,𝑗, 𝑢𝑖+1,𝑗). Let 𝑇
𝑘
𝑛 denote the combination of the shift by 𝑘 in 𝑛 and the

elimination of the variables 𝑣𝑛+𝑖,𝑚+1, 𝑖 > 0, by using equation (3.6). Since 𝑣𝑛,𝑚 satisfies (3.6)
for each solution of (1.2), we have

𝑣𝑛+1,𝑚+1 = 𝑇 1
𝑛(𝑣𝑛,𝑚+1) = 𝑄(𝑣𝑛,𝑚, 𝑣𝑛+1,𝑚, 𝑣𝑛,𝑚+1),

𝑣𝑛+2,𝑚+1 = 𝑇 1
𝑛(𝑄) = 𝑄 (𝑣𝑛+1,𝑚, 𝑣𝑛+2,𝑚, 𝑄(𝑣𝑛,𝑚, 𝑣𝑛+1,𝑚, 𝑣𝑛,𝑚+1)) ,

𝑣𝑛+𝑘+1,𝑚+1 = 𝑇 𝑘
𝑛 (𝑄) = 𝑄(𝑣𝑛+𝑘,𝑚, 𝑣𝑛+𝑘+1,𝑚, 𝑇

𝑘−1
𝑛 (𝑄)), 𝑘 > 1.

Substituting these formulae into the defining relation for integral (3.7), we obtain

Φ𝑛,𝑚+1(𝑣𝑛,𝑚+1, 𝑄, . . . , 𝑇
𝑝−2
𝑛 (𝑄)) = Φ𝑛,𝑚(𝑣𝑛,𝑚, 𝑣𝑛+1,𝑚, . . . , 𝑣𝑛+𝑝−1,𝑚). (3.8)

This identity holds as

𝑣𝑛,𝑚+1 = 𝜙(𝑢𝑛,𝑚+1, 𝑢𝑛+1,𝑚+1) = 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚),

see (3.1), and
𝑣𝑛+ℓ,𝑚 = 𝜙(𝑢𝑛+ℓ,𝑚, 𝑢𝑛+ℓ+1,𝑚), ℓ = 0, 𝑝− 1,

other variables 𝑣𝑖,𝑗 are absent in (3.8). But 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) and 𝜙(𝑢𝑛+ℓ,𝑚, 𝑢𝑛+ℓ+1,𝑚) are
functionally independent and, hence, (3.8) should hold identically for arbitrary 𝑣𝑛,𝑚+1 and
𝑣𝑛,𝑚+ℓ. Thus, Φ𝑛,𝑚(𝑣𝑛,𝑚, 𝑣𝑛+1,𝑚, . . . , 𝑣𝑛+𝑝−1,𝑚) is an 𝑛-integral of the equation (3.6). Taking
(3.7) into account, we see that Φ𝑛,𝑚 essentially depends on 𝑣𝑛,𝑚 and 𝑣𝑛+𝑝−1,𝑚 if

𝜕Ω𝑛,𝑚

𝜕𝑢𝑛,𝑚
̸= 0 and

𝜕Ω𝑛,𝑚

𝜕𝑢𝑛+𝑝,𝑚

̸= 0.

The integral Φ𝑛,𝑚 therefore has order 𝑝− 1. The proof is complete.

Remark 3.1. In contrast to (1.2), we do not assume

𝜕𝑄

𝜕𝑣𝑛+1,𝑚

𝜕𝑄

𝜕𝑣𝑛,𝑚+1

𝜕𝑄

𝜕𝑣𝑛,𝑚
̸= 0

for (3.6). But this inequality follows from assumptions of Lemma 3.2. Indeed, substituting

𝑣𝑛,𝑚 = 𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚), 𝑣𝑛,𝑚+1 = 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚)

into (3.6), we obtain

𝜓(𝑢𝑛+1,𝑚, 𝑢𝑛+2,𝑚) = 𝑄 (𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚), 𝜙(𝑢𝑛+1,𝑚, 𝑢𝑛+2,𝑚), 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚)) (3.9)

and we see that the last relation holds only if 𝑄 depends essentially on its second argument.
The functional independence of 𝜙(𝑢𝑛+1,𝑚, 𝑢𝑛+2,𝑚) and 𝜓(𝑢𝑛+1,𝑚, 𝑢𝑛+2,𝑚) excludes the case when
𝑄 is independent of both first and third arguments. Differentiating relation (3.9) with respect
to 𝑢𝑛,𝑚, we see that this relation cannot hold if 𝑄 is independent of its first or third arguments
since 𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚), 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚), 𝜙(𝑢𝑛+1,𝑚, 𝑢𝑛+2,𝑚) are functionally independent and these
functions should essentially depend on their first argument to be compatible with both (3.1) and
the inequality in (1.2).
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The next proposition is a direct implication of Lemma 3.2.

Theorem 3.1. Let equation (1.2) satisfy the assumptions of Lemma 3.1, the functions
𝜙(𝑥, 𝑦), 𝜓(𝑥, 𝑦) be functionally independent and the transformation 𝑣𝑛,𝑚 = 𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) map
solutions of (1.2) into solutions of (1.2) again. Then equation (1.2) does not admit 𝑛-integrals.

Roughly speaking, the above theorem means that a quad-graph equation has no 𝑛-integrals
if it admits a two-point invertible, in the sense of [13], [15], auto-transformation depending on
the shift of 𝑢𝑛,𝑚 in 𝑛.

Доказательство. We argue by contradiction and assume the contrary. Let (1.2) have an 𝑛-
integrals of order 𝑝. If 𝑝 > 1, then, applying Lemma 3.2 several times, we obtain that (1.2)
admits a first-order 𝑛-integral.
Each first-order integral of (1.2) is of the form Φ𝑛,𝑚(𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚)) by Lemma 3.1, and

(3.1) implies that the defining relation for this integral takes the form

Φ𝑛,𝑚+1(𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚)) = Φ𝑛,𝑚(𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚)).

But this contradicts the functional independence of 𝜓 and 𝜙. The proof is complete.

Making the interchange 𝑛 ↔ 𝑚 in Lemmata 3.1, 3.2, Theorem 3.1 and in their proofs, we
also prove the following analogue of Theorem 3.1 for 𝑚-integrals.

Theorem 3.2. Let there exit functionally independent functions 𝜙(𝑥, 𝑦) and 𝜓(𝑥, 𝑦) such
that the right-hand side of (1.2) satisfies the relation

𝜙(𝑢𝑛+1,𝑚, 𝐹 (𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚, 𝑢𝑛,𝑚+1)) = 𝜓(𝑢𝑛,𝑚, 𝑢𝑛,𝑚+1),

that is, 𝜙(𝑢𝑛+1,𝑚, 𝑢𝑛+1,𝑚+1) = 𝜓(𝑢𝑛,𝑚, 𝑢𝑛,𝑚+1) on solutions of (1.2). In addition, let the equation
𝜙(𝑥, 𝑦) = 𝑣 be uniquely solvable for 𝑦. Then equation (1.2) does not admit 𝑚-integrals if the
transformation 𝑣𝑛,𝑚 = 𝜙(𝑢𝑛,𝑚, 𝑢𝑛,𝑚+1) maps solutions of (1.2) into solutions of (1.2).

As it is demonstrated in Section 2, equation (2.2) satisfies all assumptions of Theorems 3.1,
3.2 in the case 𝐴𝐵(𝐴−𝐵) ̸= 0. The corresponding functions 𝜙, 𝜓, 𝜙 and 𝜓 are

𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) = 𝑢𝑛+1,𝑚
𝑢𝑛,𝑚 + 𝐴

𝑢𝑛,𝑚
− 𝐴, 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) =

(𝑢𝑛+1,𝑚 +𝐵)(𝑢𝑛,𝑚 + 𝐴)

𝑢𝑛,𝑚 +𝐵
− 𝐴,

𝜙(𝑢𝑛,𝑚, 𝑢𝑛,𝑚+1) =
𝐵𝑢𝑛,𝑚+1

𝐵 + 𝑢𝑛,𝑚 − 𝑢𝑛,𝑚+1

, 𝜓(𝑢𝑛,𝑚, 𝑢𝑛,𝑚+1) =
𝐵𝑢𝑛,𝑚+1(𝑢𝑛,𝑚 + 𝐴)

𝐴(𝑢𝑛,𝑚 +𝐵) + (𝐵 − 𝐴)𝑢𝑛,𝑚+1

.

Thus, taking Proposition 2.1 into account, we make the following conclusion.

Proposition 3.1. Hietarinta equation (1.1) has no 𝑛- and 𝑚-integrals if (𝑎− 𝑐)(𝑏− 𝑑) ̸= 0.

Theorems 3.1 and 3.2 are also applicable to the linear equation

𝑢𝑛+1,𝑚+1 = 𝛼𝑢𝑛+1,𝑚 + 𝛽𝑢𝑛,𝑚+1 + 𝛾𝑢𝑛,𝑚 (3.10)

with constant coefficients 𝛼, 𝛽 and 𝛾. Indeed,

𝜙(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) = 𝑢𝑛+1,𝑚 − 𝛽𝑢𝑛,𝑚, 𝜓(𝑢𝑛,𝑚, 𝑢𝑛+1,𝑚) = 𝛼𝑢𝑛+1,𝑚 + 𝛾𝑢𝑛,𝑚,

𝜙(𝑢𝑛,𝑚, 𝑢𝑛,𝑚+1) = 𝑢𝑛,𝑚+1 − 𝛼𝑢𝑛,𝑚, 𝜓(𝑢𝑛,𝑚, 𝑢𝑛,𝑚+1) = 𝛽𝑢𝑛,𝑚+1 + 𝛾𝑢𝑛,𝑚

for this equation. The transformations 𝑣𝑛,𝑚 = 𝑢𝑛+1,𝑚 − 𝛽𝑢𝑛,𝑚, 𝑣𝑛,𝑚 = 𝑢𝑛,𝑚+1 − 𝛼𝑢𝑛,𝑚, which
coincide with the discrete Laplace transformations (see [17], [9]), map solutions of (3.10) into
solutions of (3.10) again. Thus, Theorems 3.1 and 3.2 imply that (3.10) has no integrals in the
case 𝛾 + 𝛼𝛽 ̸= 0 because both the pairs 𝜙, 𝜓 and 𝜙, 𝜓 are functionally independent under this
condition.
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Remark 3.2. As it was demonstrated in [9], [10], to vanish a Laplace invariant is a necessary
condition for the existence of autonomous integrals of (1.2). Analyzing the proof of Proposition 2
in [10], we can make sure that this necessary condition remains valid for non-autonomous
integrals of autonomous equations. Since all Laplace invariants of (3.10) are equal to 𝛾+𝛼𝛽, we
see that the Laplace invariants provides an alternative way to prove the absence of integrals for
equation (3.10) in the case 𝛾+𝛼𝛽 ̸= 0. And this provides another way to prove the Darboux non-
integrability of the generic Hietarinta equation if we employ the fact [11] that the transformation
𝑢𝑛,𝑚 = 𝑣𝑛+1,𝑚

𝑣𝑛,𝑚
− 𝐴 maps solutions of the linear equation

𝑣𝑛+1,𝑚+1 = 𝑣𝑛+1,𝑚 + 𝐴𝑣𝑛,𝑚+1 + (𝐵 − 𝐴)𝑣𝑛,𝑚 (3.11)

into solutions of (2.2). Indeed, since all Laplace invariants of (3.11) are equal to 𝐵, this
linear equation is not Darboux integrable in the case 𝐵 ̸= 0 and the Darboux integrability
of the corresponding Hietarinta equation (2.2) contradicts the following obvious statement, cf.
Lemma 1 in [7].

Proposition 3.2. Let a transformation

𝑢𝑛,𝑚 = 𝜑(𝑣𝑛,𝑚, 𝑣𝑛+1,𝑚, . . . , 𝑣𝑛+𝑘,𝑚), 𝑘 > 0,
𝜕𝜑

𝜕𝑣𝑛,𝑚

𝜕𝜑

𝜕𝑣𝑛+𝑘,𝑚

̸= 0, (3.12)

map solutions of an equation

𝑣𝑛+1,𝑚+1 = 𝑄(𝑣𝑛,𝑚, 𝑣𝑛+1,𝑚, 𝑢𝑛,𝑚+1) (3.13)

into solutions of (1.2) and let the equation (1.2) admit an 𝑛-integral of order 𝑝. Then the
equation (3.13) possesses an 𝑛-integral of order 𝑝+ 𝑘.

Доказательство. Let Ω𝑛,𝑚 be an 𝑛-integral for (1.2). Then defining relation (1.3) holds for
each solution of (1.2) and, in particular, for all solutions obtained by formula (3.12) from
solutions of (3.13). Therefore,

Ω𝑛,𝑚 (𝜑(𝑣𝑛,𝑚, 𝑣𝑛+1,𝑚, . . . , 𝑣𝑛+𝑘,𝑚), . . . , 𝜑(𝑣𝑛+𝑝,𝑚, 𝑣𝑛+𝑝+1,𝑚, . . . , 𝑣𝑛+𝑝+𝑘,𝑚))

is an 𝑛-integral of (3.13). The proof is complete.

Thus, the Hietarinta equation gives an example of a quad-graph equation that is linearizable
but is not Darboux integrable.
It should be noted that Remark 3.2 describes a sketch for the proof of the Darboux non-

integrability of (2.2) in a way very similar to that was used in [7] for estimating the minimal
orders of integrals for a particular linearizable quad-graph equation. In the present paper,
the author prefers another way that does not require introducing the Laplace invariants and
therefore seems to be more self-contained.
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